

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0539 of 4 March 2024

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

String Stair System Hasler

Prefabricated stair kits

Hasler Treppentechnik AG
Ober Au 28
9487 GAMPRIN-BENDERN
FÜRSTENTUM LIECHTENSTEIN

Hasler Treppentechnik Plant 1 - 99

14 pages including 3 annexes which form an integral part of this assessment

EAD 340006-00-0506

ETA-16/0539 issued on 30 September 2016

European Technical Assessment ETA-16/0539

Page 2 of 14 | 4 March 2024

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0539 English translation prepared by DIBt

Page 3 of 14 | 4 March 2024

Specific Part

1 Technical description of the product

The String Stair System Hasler is a prefabricated stair system, which consists of steps, strings and system fasteners. The steps are connected with the strings by system fasteners on both sides. The steps and strings are made of solid wood, the system fasteners are made of steel.

The product description is given in Annex A. The material values, dimensions and tolerances of the components of the stair not indicated in the annexes shall correspond to the values laid down in the technical documentation¹.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the stair is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the stair of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

The technical documentation comprises all information of the holder of this ETA necessary for the production, installation and maintenance of the stair; these are in particular the structural analysis, design drawings and the manufacturer's installation instructions. The part to be treated confidentially is deposited with Deutsches Institut für Bautechnik and, as far as this is relevant to the tasks of the approved bodies involved in the procedure of the AVCP system, shall be handed over to the approved body.

European Technical Assessment ETA-16/0539

Page 4 of 14 | 4 March 2024

English translation prepared by DIBt

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Load-bearing capacity				
- Load-bearing capacity of the stair	Q_{Rk} , q_{Rk} and h_{Rk} : See Annex C2			
	H _{Rk} : No performance assessed			
 Load-bearing capacity of components of the stair 	M _{Rk} , V _{Rk} , N _{Rk} , E, G, f _{mk} and f _{vk} : See technical documentation of this European Technical Assessment			
- Load-bearing capacity of fixings	See technical documentation of this European Technical Assessment			
Load-Displacement behaviour	w _q and w _Q : See Annex C2			
Vibration behaviour	First natural frequency: $f_1 \ge 5 \text{ Hz}$ Deflection under a single load F = 1 kN: $w_{01} \le 5 \text{ mm}$			
Prevention of progressive collapse	Failure of individual components of the stair does not lead to a progressive collapse of the complete stair			
Residual load-bearing capacity	Local material failure does not lead to an abrupt total loss of load-bearing capacity of the stair			
Long-term behaviour	Load-bearing capacity are ensured under an appropriate use and maintenance over the indicated working life			
Resistance to earthquakes	No performance assessed			
Durability against physical, chemical, biological agents	Adequate durability for the intended use under an appropriate use and maintenance			

3.2 Safety in case of fire (BWR 2)

Essential characteristic Performance	
Reaction to fire	See Annex A5
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance		
Release of formaldehyde Wood adhesive does not contain formalde			
Release of pentachlorophenol	No pentachlorophenol contained		
Radioactive emission	No performance assessed		

European Technical Assessment ETA-16/0539

Page 5 of 14 | 4 March 2024

English translation prepared by DIBt

3.4 Safety in use (BWR 4)

Essential characteristic	Performance	
Geometry See Annex C1		
Slipperiness	No performance assessed	
Safety equipment No performance assessed		
Safe breakage	No brittle failure of individual components	
Impact resistance	No performance assessed	

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with the European Assessment Document EAD No. 340006-00-0506 the applicable European legal act is: 1999/89/EC

The System to be applied is: 2+

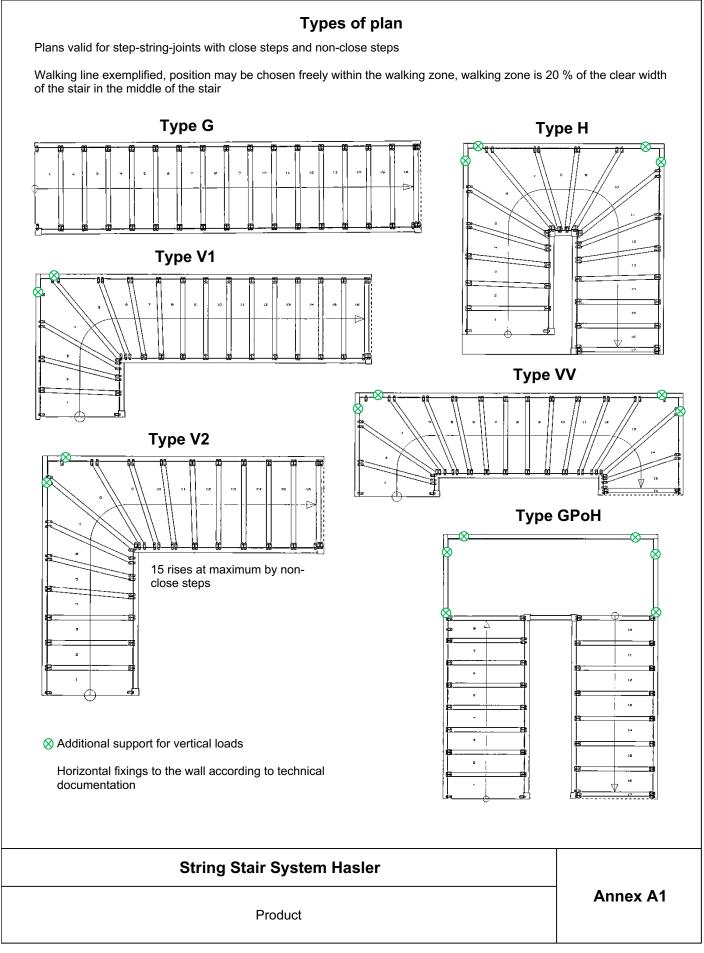
In addition, with regard to reaction to fire for products covered by the European Assessment Document EAD No. 340006-00-0506 the applicable European legal act is: 2001/596/EC

The System to be applied is: 4

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 4 March 2024 by Deutsches Institut für Bautechnik

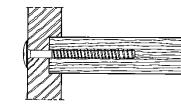

Dipl.-Ing. Beatrix Witstock

Head of Section

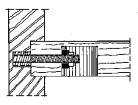
beglaubigt:

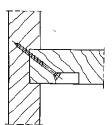
Stiller

Step-string-joint (Relationship of joints to the wood species and types of plan according to the technical documentation)

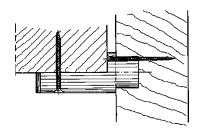

Close variants

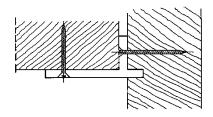
Type 1





Type 4

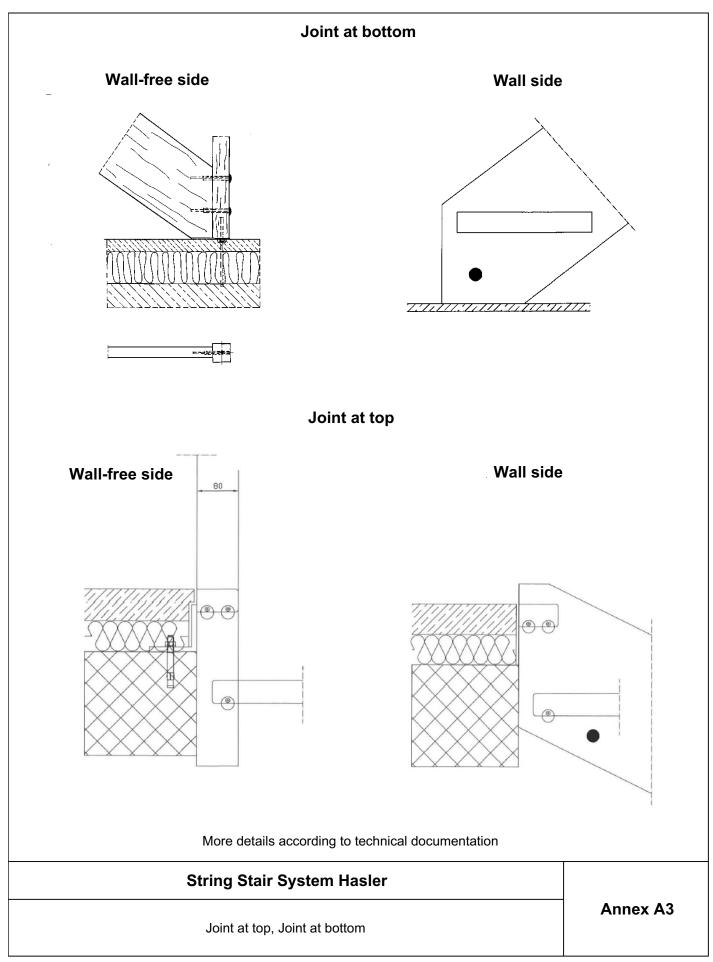

Type 5



Non-close variants

Type 1

Type 2


More details according to technical documentation

String Stair System Hasler

Step-string-joint

Annex A2

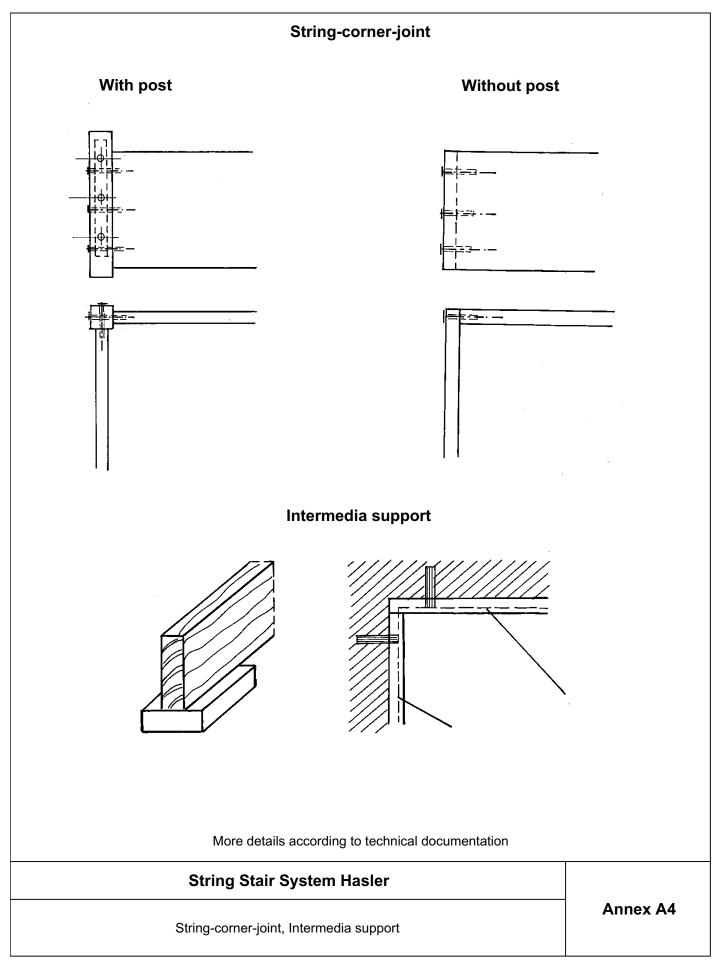


Table 1: Minimum dimensions of components of stair and reaction to fire

Component of stair		Material 1)	Dimension		Dimension Wert Value		Reaction to fire
Stop	Close			[mm]	40	D-s2, d0	
Step	Non-close	Solid Wood =	THICKHESS	[mm]	45	D-52, d0	
Ctring	Close	Calid wood 2)	Width x	[mm]	40 x 265300 ³⁾	D 62 d0	
String	Non-close	Solid wood ²⁾	Height	[mm]	45 x 265300 ³⁾	D-s2, d0	
Ang	le	Steel	_ 4))	A1	
System fa	m fastener Steel - 4)		A1				

¹⁾ Characteristic value of material according to technical documentation

⁴⁾ According to technical documentation

String Stair System Hasler	
Minimum dimension of components of stair and reaction to fire	Annex A5

²⁾ Only wood of following species: beech, oak, maple, acacia, nut tree, ash, merbau

³⁾ Depending on the number of rises, the type of plan and the site of string according to technical documentation

Specification of intended use (Part 1)

Intended use:

- European Technical Assessment applies for a construction system
- For the specific case of use the corresponding type of stair is manufactured within the context of the values defined in this European Technical Assessment
- Values of this ETA apply to all types of stairs according to Annex A1; the real dimensions follow in accordance with the relevant case of use

Stair subject to:

Static and quasi static loads

Use conditions:

- Indoor stair
- Air temperatures between +5 °C and +30 °C
- Relative air humidity between 30% and 70%
- To the individual requirements handrail and barrier can be attached to the stair optionally. Conditions for possible handrail/barrier:

Dead load ≤ 0,5 kN/m

Height ≤ 1,00 m

Distance of baluster ≤ 0,26 m

Design:

- Design of the stair according to the annexes and the technical documentation of this European Technical Assessment
- Fastening of the stair to the construction works according to the annexes and the technical documentation of this Technical European Assessment
- Verification of the transmission of loads to the construction works by the civil engineer responsible for the construction works
- Load bearing capacity at ultimate limit state:

$$\begin{array}{lll} q_k \cdot \gamma_Q & \leq & q_{Rk}/\gamma_M \\ \\ Q_k \cdot \gamma_Q & \leq & Q_{Rk}/\gamma_M \\ \\ h_k \cdot \gamma_Q \cdot \psi_0 & \leq & h_{Rk}/\gamma_M \end{array}$$

with

q_{Rk}, Q_{Rk}, h_{Rk:} characteristic values of resistance; see Table 3

 $\gamma_{\rm M}$: recommended material partial safety factor; see Table 3

 q_k , Q_k , h_k : characteristic values of imposed loads according to EN 1991-1-1:2002 + AC:2009

 γ_Q = 1,5: recommended partial safety factor, in absence of other national regulations ψ_0 = 0,7: recommended combination factor, in absence of other national regulations

 Maximum characteristic values of imposed loads under consideration of the partial factors mentioned above: see Table 5

String Stair System Hasler	
Specification of intended use (Part 1)	Annex B1

Specification of intended use (Part 2)

Installation:

- Installation by personal appropriately trained and authorized by the manufacturer by means of the technical documentation of this European Technical Assessment
- Installation only in the way as specified in the technical documentation of this European Technical Assessment
- Installation of timber components when moisture content of timber components is $8\pm2~\%$
- Sufficient support of the stair when assembling
- Installation of stair components without imposed deformations
- Installation of stair components without significant defects and cracks
- Replacing of stair components, which begin tearing when assembling
- Bolted connections are protected such that they will not be loosened by vibrations

Indication of the manufacturer:

- Ensure that all persons involved will be appropriately informed about the specific conditions according to sections 1 and 2 (including the annexes to which reference is being made as well as the not confidential parts of the technical documentation deposited to this European Technical Assessment)
- Packaging of timber components such that the wood moisture is 8 ± 2 % during transport and storage
- Instructions for use should provide information as to use, maintenance and repair of the stair. Including the information of avoidance of moisture penetration of the timber components and the information on the relationship between moisture content of timber components, air temperature and relative air humidity

String Stair System Hasler	
Specification of intended use (Part 2)	Annex B2

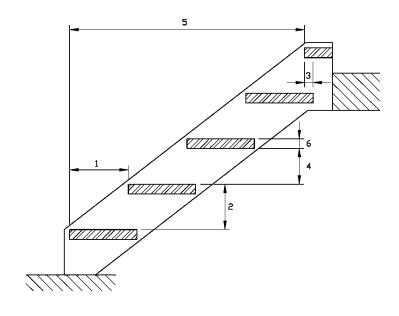


Table 2: Geometry

Designation				Dimension	
			Minimum	Maximum	
Coina	Step on w	Step on walking line 1)		210	370 ²⁾
Going	Tapered	Tapered step		100 2) 3)	590 ^{2) 4)}
Rise of the stairs	s ¹⁾		[°]	140 ²⁾	210
Pitch of the walk	king line 1)		[mm]	21	45
Overlap of the	Close		[mm]	30	_ 5)
steps	Non-cl	Non-close		50	_ 5)
Number of rises			[-]	3	17 ⁶⁾
0	Between	etween stair and wall		_ 5)	0
Openings	Between	consecutive steps	[mm]	_ 5)	170
Clear width of st	tair		[mm]	500	960
Minimum headroom			[mm]	-	. 5)
Length of the flig	ght		[mm]	_ 5)	4160 ^{6) 7)}
Thickness of steps		Close	[mm]	40	_ 5)
		Non-Close	[mm]	45	_ 5)

- 1) Values are constant within one flight
- $^{2)}$ Tolerance between nominal value and actual value= $\pm \ 5 \ \text{mm}$
- 3) Inside of tapered step
- 4) Outside of tapered step
- 5) Not relevant
- 6) Type V2, non-close max. 15 rises (L = 3640 mm)
- 7) Stair with landing max. 5960 mm

- 1 Going
- 2 Rise
- 3 Overlap
- 4 Opening between consecutive steps
- 5 Length of the flight
- 6 Thickness of steps

String Stair System Hasler	
Geometry	Annex C1

Table 3: Load-bearing capacity – Characteristic values of resistance

Component	Type of loading		Characteristic values of resistance		γм
	vertical variable uniformly distributed load	q _{Rk}	[kN/m²]	6,8	
Flight	vertical variable single load	Q_{Rk}	[kN]	4,5	1,5 ¹⁾
	horizontal variable uniformly distributed load on barrier	h _{Rk}	[kN/m]	0,8	
	vertical variable uniformly distributed load	q_{Rk}	[kN/m²]	5,9	
Joint at top	vertical variable single load	Q_{Rk}	[kN]	3,9	1,3 ²⁾
	horizontal variable uniformly distributed load on barrier	h _{Rk}	[kN/m]	0,7	
Joint at bottom	vertical variable uniformly distributed load	q_{Rk}	[kN/m²]	5,0	
	vertical variable single load	Q_{Rk}	[kN]	3,3	1,1 ³⁾
	horizontal variable uniformly distributed load on barrier	h _{Rk}	[kN/m]	0,6	

¹⁾ Recommended partial safety factor (wood decisive), in absence of other national regulations

Table 4: Deflections under loading

Deflection of the flight under uniformly distributed load					
uniformly distributed load	q _k	[kN/m²]	3,0		
length of the median line of the flight	L	[mm]	4160 ¹⁾		
deflection under load Fs related to the median line of the flight	W _q	[mm]	≤ L/200		
Defection of the step under single point load					
single load	Q _k	[kN]	2,0		
clear width of the stair	L	[mm]	960		
deflection under load Fs related to the clear width of the stair	W _Q	[mm]	≤ L/200		

 $^{^{1)}}$ Typ V2, non-close L = 3640 mm, Type GPoH L = 5960 mm

Table 5: Imposed loads

Type of loading	Imposed		
vertical variable uniformly distributed load	q_k	[kN/m²]	3,0
vertical variable single load	Q_k	[kN]	2,0
horizontal variable uniformly distributed load on barrier	h _k	[kN/m]	0,5

String Stair System Hasler Load-bearing capacity – Characteristic values of resistance, Deflections under loading, Imposed loads Annex C2

²⁾ Recommended partial safety factor (wood screw decisive), in absence of other national regulations

³⁾ Recommended partial safety factor (steel decisive), in absence of other national regulations