Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr, 30 L 10829 Berlin Deutschland

Tel.: Fax:

+49(0)30 787 30 0 +49(0)30 787 30 320

E-mail: dibt@dibt.de Internet: www.dibt.de

Ermächtigt und notifiziert gemäß Artikel 10 der Richtlinie des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte (89/106/EWG)

Mitglied der EOTA Member of EOTA

Europäische Technische Zulassung ETA-05/0256

Handelsbezeichnung

Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity:

vom from bis

to

Herstellwerke Manufacturing plants Hilti HVU mit HAS(-E)R und HIS-RN

Hilti HVU with HAS(-E)R and HIS-RN

Hilti Aktiengesellschaft **Business Unit Anchors** 9494 Schaan FÜRSTENTUM LIECHTENSTEIN

Verbunddübel mit Ankerstange oder Innengewindehülse aus nichtrostendem Stahl in den Größen M8, M10, M12, M16, M20, M24, M27 und M30 zur Verankerung im ungerissenen Beton

Bonded anchor with anchor rod or internal sleeve made of stainless steel of sizes M8, M10, M12, M16, M20, M24, M27 and M30 for use in non-cracked concrete

20. Januar 2006

20. Januar 2011

Herstellwerk 6

Herstellwerk 8

Herstellwerk 18

Diese Zulassung umfasst This Approval contains

19 Seiten einschließlich 11 Anhänge

19 pages including 11 annexes

RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese Europäische Technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Gesetz vom 06.01.2004⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von Europäischen Technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die Europäische Technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser Europäischen Technischen Zulassung erfüllt werden. Diese Prüfung kann in den Herstellwerken erfolgen. Der Inhaber der Europäischen Technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der Europäischen Technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese Europäische Technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser Europäischen Technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese Europäische Technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese Europäische Technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der Europäischen Technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die Europäische Technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

¹ Amtsblatt der Europäischen Gemeinschaften Nr. L 40 vom 11.2.1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften Nr. L 220 vom 30.8.1993, S. 1

³ Amtsblatt der Europäischen Union Nr. L 284 vom 31.10.2003, S. 25

⁴ Bundesgesetzblatt I, S. 812

⁵ Bundesgesetzblatt I, S. 2, 15

Amtsblatt der Europäischen Gemeinschaften Nr. L 17 vom 20.1.1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der Hilti HVU mit HAS(-E)R und HIS-RN ist ein Verbunddübel, der aus einer Folienpatrone Hilti HVU und einer Ankerstange HAS(-E)R mit Sechskantmutter und Unterlegscheibe in den Größen M8, M10, M12, M16, M20, M24, M27 und M30 oder einer Innengewindehülse HIS-RN in den Größen M8, M10, M12, M16 und M20 besteht. Die Ankerstange HAS(-E)R (einschließlich Mutter und Unterlegscheibe) besteht aus nichtrostendem Stahl. Die Folienpatrone wird in das Bohrloch gesetzt und die Ankerstange mit einer Maschine durch Schlagen und Drehen in die Patrone getrieben.

Der Dübel durch Verbund zwischen Ankerstange, Injektionsmörtel und Beton verankert. Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese ETA nicht erfasst. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf nur im ungerissenen Beton verankert werden.

Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Der Dübel darf in trockenem oder nassem Beton gesetzt werden, er darf nicht in wassergefüllte Bohrlöcher gesetzt werden.

Der Dübel darf in den folgenden Temperaturbereich verwendet werden:

Temperaturbereich 1: -40 °C bis +40°C	(max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
Temperaturbereich 2: -40 °C bis +80 °C	(max. Langzeit- Temperatur +50 °C und max. Kurzzeit-Temperatur +80 °C)
Temperaturbereich 3: -40 °C bis +120 °C	(max. Langzeit-Temperatur +72 °C und max. Kurzzeit-Temperatur +120 °C)

Die Bestimmungen dieser Europäischen Technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 3. Die in den Anhängen 1 bis 3 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser Europäischen Technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 5 bis 11 angegeben.

Jede Folienpatrone ist mit dem Aufdruck HVU, der Dübelgröße und dem Verfallsdatum entsprechend Anhang 1 gekennzeichnet. Jede Ankerstange ist mit dem Werkzeichen, der Markierung für den Werkstoff und der Markierung für die Verankerungstiefe gemäß Anhang 3 gekennzeichnet. Jede Innengewindehülse ist mit dem Werkzeichen, der Prägung "HIS-RN" gekennzeichnet.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die Europäische Technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 7.

In Ergänzung zu den spezifischen Bestimmungen dieser Europäischen Technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

⁸ Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser Europäischen Technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe / Rohstoffe / Bestandteile verwenden, die in der technischen Dokumentation dieser Europäischen Technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Kontrollplan vom Januar 2006, der Teil der technischen Dokumentation dieser Europäischen Technischen Zulassung ist, übereinstimmen. Der Kontrollplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Kontrollplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Kontrollplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser Europäischen Technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den im Kontrollplan durchzuführen:

- Erstprüfung des Produkts
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle,

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser Europäischen Technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der Europäischen Technischen Zulassung und des zugehörigen Kontrollplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

 Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),

Der Kontrollplan ist ein vertraulicher Bestandteil der Dokumentation dieser Europäischen Technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der Europäischen Technischen Zulassung,
- Nummer der Leitlinie für die Europäische Technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Der Dübel wird entsprechend den Bestimmungen der Europäischen Technischen Zulassung in einem automatisierten Verfahren hergestellt, das bei der Inspektion des Herstellwerks durch das Deutsche Institut für Bautechnik und die zugelassene Überwachungsstelle festgestellt und in der technischen Dokumentation festgelegt ist.

Die Europäische Technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Einbau

4.2.1 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die Europäische Technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, für Verbunddübel unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Für die nachstehend aufgeführten Nachweise nach Anhang C der Leitlinie ist folgendes zu beachten:

- Für den Nachweis Betonausbruch (Abschnitt 5.2.2.4, Anhang C der Leitlinie) ist N_{Rk,c} entsprechend (1) und (2) zu ermitteln: Der kleinere der Werte nach (1) und (2) ist maßgebend.
 - (1) N_{Rk.c} nach Gleichung (5.2), Anhang C der Leitlinie

s_{cr,N} nach Anhang 6 bzw. 8

c_{cr,N} nach Anhang 6 bzw. 8

$$\psi_{ucr.N} = 1.0$$

Für die in ETAG 001, Annex C Abschnitt 5.2.2.4 g) aufgeführten Sonderfälle ist die dort angegebene Methode gültig. Allerdings ist der Wert $N_{\text{Rk,c}}^{\text{o}}$ wie folgt abzumindern:

$$N_{Rk,c}^0$$
 = $N_{Rk,c}^0$ (Anhang 6 bzw. 8) $\times \frac{h'_{ef}}{h_{ef}}$

(2) N_{Rk.c} nach Gleichung (5.2), Anhang C der Leitlinie

mit:
$$N_{Rkc}^0 = 0.75 \times 15.5 \times h_{ef}^{-1.5} \times f_{ck,cube}^{0.5}$$

$$s_{cr,N} = 3 h_{ef}$$

 $c_{cr,N} = 1,5 h_{ef}$
 $\psi_{ucr,N} = 1,0$

- Für den Nachweis Versagen durch Spalten bei Belastung (Abschnitt 5.2.2.6, Anhang C der Leitlinie) ist N_{Rk,sp} entsprechend (3) zu ermitteln.
 - (3) N_{Rk,sp} nach Gleichung (5.3), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^0$$
 nach Anhang 6 bzw. 8 $s_{cr,sp}$ nach Anhang 6 bzw. 8 $c_{cr,sp}$ nach Anhang 6 bzw. 8 $\psi_{ucr,N} = 1,0$ $\psi_{h,sp} = 1,0$

• Für den Nachweis Betonausbruch auf der lastabgewandten Seite (Abschnitt 5.2.3.3, Anhang C der Leitlinie) ist N_{Rk,c} für Gleichung (5.6), Anhang C der Leitlinie entsprechend (1) zu ermitteln.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.2.2 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser Europäischen Technischen Zulassung angegebenen Werkzeugen.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der effektiven Verankerungstiefe;
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Bohren mit Hartmetall-Hammerbohrern gemäß ISO oder nationalen Standards,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Bohrlochlochreinigung, eventuell vorhandenes Wasser vollständig entfernen und Reinigung durch mindestens 4x Blasen,
- die Temperatur der Dübelteile und im Verankerungsgrund muss bei der Montage und Aushärtung mindestens -5 °C betragen; Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 4.
- Befestigung des Anbauteils nach der Wartezeit mit einem Drehmomentenschlüssel unter Einhaltung der in Anhang 5 angegebenen Drehmomente.
- Verwendung von Befestigungsschrauben mit Scheibe oder Gewindestangen mit Scheibe und Mutter aus nichtrostendem Stahl mindestens der Festigkeitsklasse 70 nach EN ISO 3506 für die Innengewindehülse HIS-RN.

5 Vorgaben für den Hersteller

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1, 4.2.2 und 5 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der Europäischen Technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

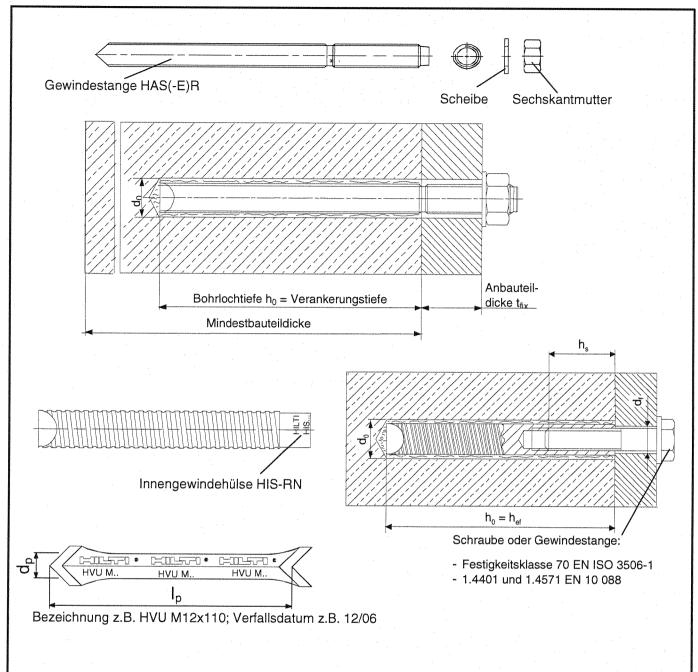
Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Bohrlochtiefe,
- Ankerstangendurchmesser,
- Mindestverankerungstiefe,
- maximale Dicke der Anschlusskonstruktion,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau,
- Temperatur im Verankerungsgrund beim Setzen des Dübels,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- Drehmoment,
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Verpackung, Transport und Lagerung

Die Folienpatronen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern.


Folienpatronen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden.

Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Folienpatronen sind separat von den Ankerstangen (inklusive Sechskantmuttern und Unterlegscheiben) verpackt.

Die Montageanleitung muss darauf hinweisen, dass die Folienpatronen nur mit den entsprechenden Ankerstangen HAS(-E)R bzw. Innengewindehülsen HIS-RN nach Anhang 3 verwendet werden dürfen.

Dipl.-Ing. E. Jasch

Béglaubig

Nutzungskategorie nach ETAG 001 Teil 5:

- Nutzungskategorie 1: Der Dübel darf in trockenen oder nassen Beton, jedoch nicht in mit Wasser gefüllte Bohrlöcher gesetzt werden
- Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen.

Temperaturbereich 1: -40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeittemperatur 24°C)

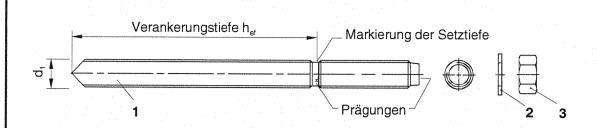
Temperaturbereich 2: -40°C bis +80°C (max. Kurzzeittemperatur +80°C und max. Langzeittemperatur 50°C)

Temperaturbereich 3: -40°C bis +120°C (max. Kurzzeittemperatur +120°C und max. Langzeittemperatur 72°C)

Hilti HVU mit HAS(-E)R und HIS-RN	Anhang 1
Produkt und Verwendungszweck	der Europäischen Technischen Zulassung
	ETA - 05/0256

Tabelle 1a: Abmessungen der Mörtelpatrone

SUMMER THE PROPERTY OF THE PRO	F							
Mörtelpatrone HVU	M8x80	M10x90	M12x110	M16x125	M20x170	M24x210	M27x240	M30x270
Durchmesser d _p [mm]	9,3	10,7	12,9	16,9	22,0	25,7	26,8	31,5
Länge l₀ [mm]	100	110	127	140	170	200	225	260


Tabelle 1b: Zuordnung der Mörtelpatrone

Mörtelpatrone HVU	M8x80	M10x90	M12x110	M16x125	M20x170	M24x210	M27x240	M30x270
zugehörige HAS(-E)R	M8x80	M10x90	M12x110	M16x125	M20x170	M24x210	M27x240	M30x270
zugehörige HIS-RN	-	M8x90	M10x110	M12x125	M16x170	M20x205	_	_

Tabelle 2: Benennung und Werkstoffe

Benennung	Kennzeichnung		Ausführung
Mörtelpatrone	HVU M x h _{ef}	Folie: Füllstoff: Bindemittel: Härter:	PP-PET-PE Verbundfolie Korund (M8, M10), Quarzsand (M12 - M30), Reaktionsharz (styrolfrei) Dibenzoylperoxid

Hilti HVU mit HAS(-E)R und HIS-RN	Anhang 2	
Mörtelpatrone und Material	der Europäischen Technischen Zulassung ETA – 05/0256	

Markierung: Werksmarkierung - H und Prägung "=" (für nichtrostenden Stahl)

Tabelle 3: Abmessungen und Verankerungstiefen h_{ef} , Gewindestangen HAS(-E)R

НА	S(-E)R	M8	M10	M12	M16	M20	M24	M27	M30
Ød ₁	[mm]	8	10	12	16	20	24	27	30
h _{ef}	[mm]	80	90	110	125	170	210	240	270

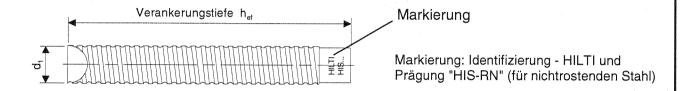


Tabelle 4: Abmessungen der Innengewindehülsen HIS-RN

HIS	S-RN	M8	M10	M12	M16	M20
$\emptyset d_1$	[mm]	12,5	16,5	20,5	25,4	27,6
h _{ef}	[mm]	90	110	125	170	205
hs	[mm]	20	25	30	40	50

Tabelle 5: Werkstoffe

Teil	Benennung	nichtrostender Stahl
Gewir	ndestange HAS(-E)R	
1	Gewindestange	1.4401 und 1.4571 EN 10088, Festigkeitsklasse 70 EN ISO 3506-1
2	Scheibe EN ISO 7089	1.4401 und 1.4571 EN 10088
3	Sechskantmutter EN ISO 4032	1.4401 und 1.4571 EN 10088, Festigkeitsklasse 70 EN ISO 3506-2
Innen	gewindehülse HIS-RN	
1	Innengewindehülse	1.4401 und 1.4571 EN 10088

Hilti HVU mit HAS(-E)R und HIS-RN	Anhang 3 der Europäischen
Abmessungen und Werkstoffe der	Technischen Zulassung
Gewindestangen und Innengewindehülsen	ETA - 05/0256

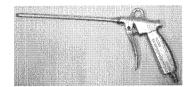


Bild 1: Montageanweisung und erforderliche Reinigungshilfsmittel (Handpumpe oder Druckluft 6 bar)

Tabelle 6: Wartezeit bis zum Aufbringen der Last¹⁾

Temperatur im Verankerungsgrund	min. Wartezeit
-5 °C bis -1 °C	5h
0 °C bis 9 °C	1h
10 °C bis 19 °C	30 min
20 °C bis max. 40 °C	20 min

Die angegebenen Wartezeiten gelten nur für trockenen Verankerungsgrund. Bei feuchtem Verankerungsgrund sind die Wartezeiten zu verdoppeln.

Hilti HVU mit HAS(-E)R und HIS-RN	Anhang 4
	der Europäischen
Montageanweisung und Wartezeiten	Technischen Zulassung
	ETA - 05/0256

Tabelle 7: Montagekennwerte; minimale Bauteildicke, minimale Achs- und Randabstände für Gewindestangen HAS(-E)R

HVU mit HAS(-E)R			М8	M10	M12	M16	M20	M24	M27	M30
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210	240	270
Bohrernenndurchmesser	d ₀	[mm]	10	12	14	18	24	28	30	35
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	10,45	12,5	14,5	18,5	24,55	28,55	30,55	35,7
Bohrlochtiefe	h ₀	[mm]	80	90	110	125	170	210	240	270
Durchgangsloch im anzuschließenden Bauteil	df	[mm]	9	12	14	18	22	26	30	33
Anzugsdrehmoment beim Verankern	T _{inst}	[Nm]	10	20	40	80	150	200	270	300
Minimale Bauteildicke	h _{min}	[mm]	110	120	140	170	220	270	300	340
Minimaler Achsabstand	S _{min}	[mm]	40	45	55	65	90	120	130	135
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65	90	120	130	135

Tabelle 8: Montagekennwerte; minimale Bauteildicke, minimale Achs- und Randabstände für Innengewindehülsen HIS-RN

HVU mit HIS-RN			M 8	M 10	M 12	M 16	M 20
Effektive Verankerungstiefe	h _{ef}	[mm]	90	110	125	170	205
Bohrernenndurchmesser	d ₀	[mm]	14	18	22	28	32
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	14,5	18,5	22,55	28,55	32,7
Bohrlochtiefe	h ₀	[mm]	90	110	125	170	205
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	9	12	14	18	22
Anzugsdrehmoment beim Verankern	T _{inst}	[Nm]	10	20	40	80	150
Einschraubtiefe (min-max)	hs	[mm]	8-20	10-25	12-30	16-40	20-50
Minimale Bauteildicke	h _{min}	[mm]	120	150	170	230	270
Minimaler Achsabstand	Smin	[mm]	40	45	60	80	125
Minimaler Randabstand	C _{min}	[mm]	40	45	60	80	125

Hilti HVU mit HAS(-E)R und HIS-RN	Anhang 5
Montagekennwerte; minimale Bauteildicke,	der Europäischen Technischen Zulassung
minimale Achs- und Randabstände	ETA - 05/0256

Tabelle 9: HAS(-E)R: Bemessungsverfahren A

Charakteristische Werte bei Zugbeanspruchung M24 M27 M30 M8 M10 M16 M20 HVU mit HAS(-E)R 270 240 90 110 125 170 210 Effektive Verankerungstiefe hef [mm] Stahlversagen HAS(-E)R [kN] 217 263 Charakteristische Zugtragfähigkeit $N_{Rk,s}$ 224 23 37 53 101 157 γ_{Ms}1) [-] 2.4 **Teilsicherheitsbeiwert** 1,87 Herausziehen, Betonausbruch und Spalten 2) Charakt. Tragfähigkeit im ungerissenen N_{Rk,c} 140 200 250 60 115 25 35 50 [kN] _ N_{Rk,p} Beton C20/25; (40°C/24°C) Optimiert für minimale Bauteildicke 210 340 370 480 540 210 Minimale Bauteildicke [mm] 140 160 hmin 1080 680 840 960 [mm] 320 360 440 500 Spalten Achsabstand S_{cr,sp} 540 420 480 [mm] 180 220 250 340 Spalten Randabstand C_{cr.sp} Optimiert für minimale Achsabstände 540 420 480 h=2 h_{ef} 220 250 340 160 Minimale Bauteildicke [mm] 680 680 960 1080 360 360 260 Spalten Achsabstand [mm] 200 Scr sp 540 340 340 480 Spalten Randabstand 100 130 180 [mm] C_{cr,sp} $N_{\mathsf{Rk},c}$ Charakt. Tragfähigkeit im ungerissenen 140 170 115 50 75 20 25 40 Beton C20/25; (80°C/50°C) _ N_{Rk,p} Optimiert für minimale Bauteildicke 380 170 170 220 300 Minimale Bauteildicke [mm] 110 120 hmin 500 680 840 960 1080 260 300 440 [mm] Spalten Achsabstand S_{cr,sp} 480 540 340 420 Spalten Randabstand 130 150 220 250 C_{cr.sp} Optimiert für minimale Achsabstände 540 420 480 250 340 Minimale Bauteildicke h=2 hef [mm] 160 180 220 250 340 420 480 540 160 180 220 Spalten Achsabstand [mm] S_{cr,sp} 125 170 210 240 270 80 90 110 [mm] Spalten Randabstand C_{cr,sp} $N_{\mathsf{Rk},c}$ Charakt. Tragfähigkeit im ungerissenen 75 40 60 75 25 [kN] 9 12 16 Beton C20/25; (120°C/72°C) $N_{Rk,p}$ 340 220 270 300 110 120 140 170 Minimale Bauteildicke [mm] hmin 480 540 220 250 340 420 180 160 Spalten Achsabstand S_{cr,sp} [mm] 240 270 210 90 110 125 170 Spalten Randabstand [mm] C_{cr,sp} C30/37 1,06 Erhöhungsfaktor für N_{Rkp} 1,10 C40/50 Ψ_c im ungerissenen Beton C50/60 1,13 Achsabstand [mm] 2 hef Scr N Randabstand [mm] C_{cr,N} 1 hef $\gamma_{Mp} = \gamma_{Msp} = \gamma_{Mc}^{1)}$ $1,5^{3)}$ Teilsicherheitsbeiwert [-]

Hilti HVU mit HAS(-E)R und HIS-RN

HAS(-E)R: Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung

Anhang 6

der Europäischen Technischen Zulassung

⁾ Sofem andere nationale Regelungen fehlen.

²⁾ Für den Nachweis Betonausbruch, sowie Spalten ist der Abschnitt 4.2.1 zu beachten.

³⁾ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ enthalten.

Tabelle 10: HAS(-E)F	: Verschiebungen	bei Zugbeanspruchung
----------------------	------------------	----------------------

HVU mit HAS(-E)R			M8	M10	M12	M16	M20	M24	M27	M30
		(40°C / 2	4°C)		4	·	<u> </u>		danconocamen
Zuglast im ungerissenen Beton	N	[kN]	8,8	14,1	20,2	28,6	54,8	66,7	64,6	78,3
Verschiebung	δ_{N0}	[mm]	0,15	0,2	0,2	0,2	0,3	0,3	0,25	0,3
Verschiebung	$\delta_{N\infty}$	[mm]	0,4	0,5	0,55	0,55	0,8	0,8	0,65	0,7
		. (80°C / 5	0°C)		2010/2019/1010/0010/0010	-	-	Maria de Caracita	400000000000000000000000000000000000000
Zuglast im ungerissenen Beton	N	[kN]	8,8	11,9	19,0	23,8	35,7	54,8	64,6	78,3
Verschiebung	δ_{N0}	[mm]	0,15	0,15	0,2	0,2	0,2	0,25	0,25	0,3
Verschiebung	δ _{N∞}	[mm]	0,4	0,4	0,5	0,5	0,55	0,65	0,65	0,7
		(1	20°C / 7	72°C)					Att anni kamuri venna an i jam	***************************************
Zuglast im ungerissenen Beton	N	[kN]	4,3	5,7	7,6	11,9	19,0	28,6	35,7	35,7
Verschiebung	δ_{NO}	[mm]	0,1	0,1	0,1	0,1	0,1	0,15	0,15	0,15
Verschiebung	δ _{N∞}	[mm]	0,2	0,2	0,2	0,25	0,3	0,35	0,35	0,35

Hilti HVU mit HAS(-E)R und HIS-RN

Anhang 7

der Europäischen Technischen Zulassung

HAS(-E)R: Verschiebungen bei Zugbeanspruchung

Tabelle 11: HIS-RN: Bemessungsverfahren A

Charakteristische Werte bei Zugbeanspruchung

HVU mit HIS-RN			M 8	M 10	M 12	M 16	M 20
Effektive Verankerungstiefe	h _{ef}	[mm]	90	110	125	170	205
Stahlversagen HIS-RN mit Schraube Fe	estigkeitskla	isse 70					-
Charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	26	41	59	110	166
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾	[-]			2,4		
Herausziehen, Betonausbruch und Spalt	en ²⁾					***************************************	
Charakt. Tragfähigkeit im ungerissenen Beton C20/25; (40°C/24°C)	N _{Rk,c} = N _{Rk,p}	[kN]	25	40	60	95	140
Optimiert für	minimale Bau	uteildicke					
Minimale Bauteildicke	h _{min}	[mm]	120	150	180	250	350
Spalten Achsabstand	S _{cr,sp}	[mm]	180	300	500	680	820
Spalten Randabstand	C _{cr,sp}	[mm]	90	150	250	340	410
Optimiert für m	nimale Achsa	abstände					
Minimale Bauteildicke	h=2 h _{ef}	[mm]	-	220	250	340	410
Spalten Achsabstand	S _{cr,sp}	[mm]	-	220	250	340	500
Spalten Randabstand	C _{cr,sp}	[mm]	-	110	125	170	250
Charakt. Tragfähigkeit im ungerissenen Beton C20/25; (80°C/50°C)	N _{Rk,c} = N _{Rk,p}	[kN]	20	35	50	75	95
Minimale Bauteildicke	h _{min}	[mm]	120	150	170	230	270
Spalten Achsabstand	S _{cr,sp}	[mm]	180	220	300	340	440
Spalten Randabstand	C _{cr,sp}	[mm]	90	110	150	170	220
Charakt. Tragfähigkeit im ungerissenen Beton C20/25; (120°C/72°C)	N _{Rk,c} ₌ N _{Rk,p}	[kN]	9	16	20	40	50
Minimale Bauteildicke	h _{min}	[mm]	120	150	170	230	270
Spalten Achsabstand	S _{cr,sp}	[mm]	180	220	250	340	410
Spalten Randabstand	C _{cr,sp}	[mm]	90	110	125	170	205
		C30/37			1,12		
Erhöhungsfaktor für N _{Pkp} Ψ _c m ungerissenen Beton	· · ·	C40/50			1,21		
		C50/60			1,28		
Achsabstand	S _{cr,N}	[mm]			2 h _{ef}		
Randabstand	C _{cr,N}	[mm]			1 h _{ef}		
Feilsicherheitsbeiwert γ_{Mp} =	γ _{Msp} = γ _{Mc} ¹⁾	[-]			1,5 ³⁾	The state of the s	

¹⁾ Sofern andere nationale Regelungen fehlen.

Hilti HVU mit HAS(-E)R und HIS-RN

HIS-RN: Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung

Anhang 8

der Europäischen Technischen Zulassung

Für den Nachweis Betonausbruch, sowie Spalten ist der Abschnitt 4.2.1 zu beachten. ³⁾ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ enthalten.

Tabelle 12: HIS-RN: Verschiebung bei Zugbeanspruchung

HVU mit HIS-RN			M8	M10	M12	M16	M20
		(40)°C / 24°C)			et Proposition (non-decomposition and non-decomposition and non-de	£
Zuglast im ungerissenen Beton	N	[kN]	9,9	15,7	22,5	42,0	49,4
Verschiebung	δ_{NO}	[mm]	0,15	0,2	0,2	0,3	0,3
Verschiebung	$\delta_{N\infty}$	[mm]	0,4	0,45	0,5	0,75	0,8
		(80	°C / 50°C)				dominion de la constitución de l
Zuglast im ungerissenen Beton	N	[kN]	9,5	15,7	22,5	35,7	45,2
Verschiebung	δ_{NO}	[mm]	0,15	0,2	0,2	0,25	0,3
Verschiebung	$\delta_{N\!\!\:\!$	[mm]	0,4	0,45	0,5	0,65	0,7
		(12	0°C / 72°C)				
Zuglast im ungerissenen Beton	N	[kN]	4,3	7,6	9,5	19,0	23,8
Verschiebung	δ_{NO}	[mm]	0,1	0,1	0,1	0,15	0,15
Verschiebung	$\delta_{N\infty}$	[mm]	0,2	0,2	0,2	0,35	0,4

Hilti HVU mit HAS(-E)R und HIS-RN	Anhang 9 der Europäischen
HIS-RN: Verschiebung bei Zugbeanspruchung	Technischen Zulassung
Tho-Tity. Verschiebung bei Zugbeansprüchung	ETA - 05/0256

Tabelle 13: HAS(-E)R: Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

					1		,				
HVU mit HAS(-E)R			М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Stahlversagen ohne Hebelarm	HAS(-E)R		COMMISSION OF THE PROPERTY OF	Account to the second s	American Company of the Company of t					
Charakteristische Quertragfähigkei	t V _{Rk,s}	[kN]	12	18	27	51	79	112	108	132	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,	56		J	2,0		
Stahlversagen mit Hebelarm HA	AS(-E)F	}						***************************************	ł	······································	
Charakteristisches Biegemoment	M ⁰ Rk,s	[Nm]	23	46	79	205	398	680	765	1023	
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾	[-]			1,:	56		J	2	,0	
Betonausbruch auf der lastabgev	wandte	n Seite							<u> </u>		
Faktor in Gleichung (5.6) der ETAG 001 Anhang C, 5.2.3.3	k	[-]				2	,0	-			
Teilsicherheitsbeiwert	γ _{Mcp} 1)	[-]				1,	5 ²⁾				
Betonkantenbruch											
Wirksame Dübellänge bei Querlast	I _f	[mm]	80	90	110	125	170	210	240	270	
Wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]		L		1,:	5 ²⁾	I			

Tabelle 14: Verschiebung der Dübel bei Querbeanspruchung

HVU mit HAS(-E)R			M8	M10	M12	M16	M20	M24	M27	M30
Querlast im ungerissenen Beton	V	[kN]	5,5	8,2	12,4	23,4	36,2	51,3	38,6	47,1
Verschiebung	δ_{V0}	[mm]	0,5	0,6	0,7	1,0	1,3	1,5	1,1	1,3
Verschiebung	δ _{V∞}	[mm]	0,8	0,9	1,1	1,5	2,0	2,3	1,7	2,0

Hilti HVU mit HAS(-E)R und HIS-RN

HAS(-E)R: Bemessungsverfahren A Charakteristische Werte und Verschiebungen bei Querbeanspruchung

Anhang 10

der Europäischen Technischen Zulassung

¹⁾ Sofern andere nationale Regelungen fehlen.
²⁾ In diesem Wert ist der Teilsicherheitsbeiwert γ_2 = 1,0 enthalten.

Tabelle 15: Charakteristische Werte für die Tragfähigkeit bei Querbeanspruchung für das Bemessungsverfahren A

rar add Derri	Coourigove	mainen A						
HVU mit HIS-RN		M 8	M 10	M 12	M 16	M20		
Stahlversagen ohne Hebelarm i	HIS-RN mit So	chraube Fest	tigkeitsklasse	70		Accommodition and the second and the second		
Charakteristische Quertragfähigkei	t V _{Rk,s} [kN]	13	20	30	55	83		
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾ [-]	1,56 2,0						
Stahlversagen mit Hebelarm HI	S- RN mit Sch	raube Festi	gkeitsklasse 7	70				
Charakteristisches Biegemoment	M ⁰ _{Rk,s} [Nm]	26	52	92	233	454		
Teilsicherheitsbeiwert	γ _{Ms} ¹⁾ [-]			1,56		A		
Betonausbruch auf der lastabgev	vandten Seite				***************************************			
Faktor in Gleichung (5.6) der ETAG 001 Anhang C, 5.2.3.3	k [-]			2,0				
Teilsicherheitsbeiwert	γ _{Mcp} ¹⁾ [-]			1,5 ²⁾				
Betonkantenbruch		-		***************************************				
Wirksame Dübellänge bei Querlast	l _f [mm]	90	110	125	170	205		
Wirksamer Außendurchmesser	d _{nom} [mm]	12,5	16,5	20,5	25,4	27,6		
Teilsicherheitsbeiwert	γ _{Mc} ¹⁾ [-]			1,5 ²⁾	1			

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle 16: Verschiebung der Dübel bei Querbeanspruchung

HVU mit HIS-RN			M8	M10	M12	M16	M20
Querlast im ungerissenen Beton	,	V [kN]	6,0	9,2	13,7	25,2	29,6
Verschiebung	δ_{V0}	[mm]	0,5	0,7	0,8	1,1	1,1
Verschiebung	δ_{V^∞}	[mm]	0,8	1,1	1,2	1,7	1,7

Hilti HVU mit HAS(-E)R und HIS-RN

Anhang 11

HIS-RN: Bemessungsverfahren A Charakteristische Werte und Verschiebungen bei Querbeanspruchung der Europäischen Technischen Zulassung

⁾ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2=1,0$ enthalten.