Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA Member of EOTA

Europäische Technische Zulassung ETA-08/0091

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

> bis to

Herstellwerk Manufacturing plant VINYL-ESTER RESIN mit Ankerstange SVZ VINYL-ESTER RESIN with anchor rod SVZ

Blinker España, S.A. Pol. Industrial las Atalayas, parcelas 03114 ALICANTE SPANIEN

Verbunddübel mit Ankerstange aus galvanisch verzinktem Stahl in den Gößen M10, M12 und M16 zur Verankerung im ungerissenen Beton

Bonded anchor with anchor rod made of galvanised steel of sizes M10, M12 and M16 for use in non-cracked concrete

22. Februar 2008

25. Februar 2010

Blinker España. S.A. Plant1, Germany

Diese Zulassung umfasst This Approval contains 15 Seiten einschließlich 7 Anhänge 15 pages including 7 annexes

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Gesetz vom 06.01.2004⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

•

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11.02.1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30.08.1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31.10.2003, S. 25

⁴ Bundesgesetzblatt I, S. 812

⁵ Bundesgesetzblatt I, S. 2, 15

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20.01.1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Das Injektionssystem VINYL-ESTER RESIN mit Ankerstange SVZ besteht aus einer Mörtelkartusche mit VINYL-ESTER RESIN Injektionsmörtel und einer Ankerstange mit Sechskantmutter und Unterlegscheibe in den Größen M10, M12 und M16. Die Ankerstange (einschließlich Mutter und Unterlegscheibe) besteht aus galvanisch verzinktem Stahl.

Der Dübel wird durch Verbund zwischen Ankerstange, Injektionsmörtel und Beton verankert. Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf nur im ungerissenen Beton verankert werden.

Der Dübel darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Der Dübel darf in trockenem oder nassem Beton jedoch nicht in mit Wasser gefüllte Bohrlöcher gesetzt werden.

Überkopfmontage ist nicht zulässig.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

Temperaturbereich I: -40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und

max. Langzeit-Temperatur +50 °C)

Temperaturbereich II: -40 °C bis +120 °C (max. Kurzzeit-Temperatur +120 °C und

max. Langzeit-Temperatur +72 °C)

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren.

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 4. Die in den Anhängen 1 bis 4 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 6 und 7 angegeben.

7

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Jede Mörtelkartusche ist mit dem Aufdruck VINYL-ESTER RESIN, der Kartuschengröße, Verarbeitungshinweisen, Haltbarkeitsdatum, der Gefahrenbezeichnung, der Aushärtezeit und der Verarbeitungszeit gemäß Anhang 4 gekennzeichnet.

Die zwei Komponenten des VINYL-ESTER RESIN Injektionsmörtel werden unvermischt in Mörtelkartuschen in der Größe von 150 ml, 280 ml, 300 ml, 330 ml, 380 ml oder 410 ml (Typ: coaxial) bzw. in der Größe von 345 ml (Typ: side-by-side) gemäß Anhang 4 geliefert.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 7.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z.B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission8 ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - (2) zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

8

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften einschließlich der Aufzeichnungen der erzielten Ergebnisse sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Kontrollplan vom Januar 2006, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Kontrollplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Kontrollplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Kontrollplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit dem Kontrollplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Kontrollplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Zulassungsinhabers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,

9

Der Kontrollplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.
- 4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Der Dübel wird entsprechend den Bestimmungen der europäischen technischen Zulassung in einem automatisierten Verfahren hergestellt, das bei der Inspektion des Herstellwerks durch das Deutsche Institut für Bautechnik und die zugelassene Überwachungsstelle festgestellt und in der technischen Dokumentation festgelegt ist.

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Einbau

4.2.1 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die Europäische Technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, für Verbunddübel unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Für die nachstehend aufgeführten Nachweise nach Anhang C der Leitlinie ist folgendes zu beachten:

- Für den Nachweis Betonausbruch (Abschnitt 5.2.2.4, Anhang C der Leitlinie) ist N_{Rk,c} entsprechend (1) und (2) zu ermitteln: Der kleinere der Werte nach (1) und (2) ist maßgebend.
 - (1) N_{Rk.c} nach Gleichung (5.2), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^{0}$$
 nach Anhang 6
 $s_{cr,N}$ nach Anhang 6
 $c_{cr,N}$ nach Anhang 6
 $\psi_{ucr,N}$ = 1,0

Für die in ETAG 001, Annex C Abschnitt 5.2.2.4 g) aufgeführten Sonderfälle ist die dort angegebene Methode gültig. Allerdings ist der Wert N_{Rk,c} wie folgt abzumindern:

$$N_{Rk,c}^0 = N_{Rk,c}^0$$
 (Anhang 6) $\times \frac{h'_{ef}}{h_{ef}}$

Z6698.08

(2) N_{Rk,c} nach Gleichung (5.2), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^{0} = 0.75 \times 15.5 \times h_{ef}^{1.5} \times f_{ck,cube}^{0.5}$$

 $s_{cr,N} = 3 h_{ef}$
 $c_{cr,N} = 1.5 h_{ef}$
 $\psi_{ucr,N} = 1.0$

- Für den Nachweis Versagen durch Spalten bei Belastung (Abschnitt 5.2.2.6, Anhang C der Leitlinie) ist N_{Rk.sp} entsprechend (3) zu ermitteln.
 - (3) N_{Rk.sp} nach Gleichung (5.3), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^0$$
 nach Anhang 6
 $s_{cr,sp}$ nach Anhang 6
 $c_{cr,sp}$ nach Anhang 6
 $\psi_{ucr,N} = 1,0$
 $\psi_{h,sp} = 1,0$

 Für den Nachweis Betonausbruch auf der lastabgewandten Seite (Abschnitt 5.2.3.3, Anhang C der Leitlinie) ist N_{Rk,c} für Gleichung (5.6), Anhang C der Leitlinie entsprechend (1) zu ermitteln.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.2.2 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile, es dürfen auch handelsübliche Ankerstangen, Scheibe und Sechskantmutter verwendet werden, wenn die folgenden Anforderungen erfüllt sind:
 - Werkstoff und mechanische Eigenschaften entsprechend Anhang 3,
 - Nachweis des Werkstoffs und der mechanischen Eigenschaften durch ein Abnahmeprüfzeugnis gemäß EN 10204:2004,
 - Herstellerkennzeichen und Markierung der Verankerungstiefe gemäß Anhang 2.
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Bohrlochlochreinigung durch mindestens 4x Blasen / 4x Bürsten / 4x Blasen,
- der Dübel darf nicht in wassergefüllte Bohrlöcher gesetzt werden,
- Einhaltung der effektiven Verankerungstiefe;
- die Temperatur der Dübelteile muss beim Einbau mindestens +5 °C betragen,
- die Temperatur im Beton darf während Einbau und Aushärtung des Injektionsmörtels
 -5 °C nicht unterschreiten;

- Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 3,
- Befestigung des Anbauteils nach der Wartezeit mit einem Drehmomentenschlüssel unter Einhaltung der in Anhang 5 angegebenen Drehmomente.

5 Vorgaben für den Hersteller

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1, 4.2.2 und 5 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

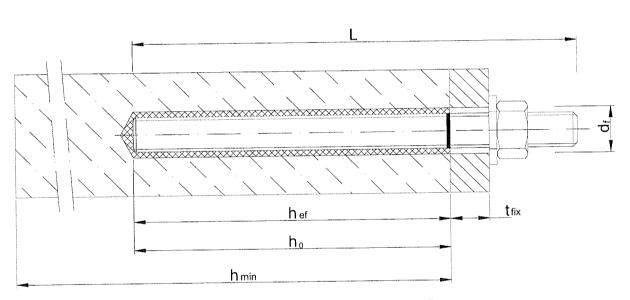
- Bohrerdurchmesser.
- Bohrlochtiefe.
- Mindestverankerungstiefe,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau,
- Temperatur im Verankerungsgrund beim Setzen des Dübels,
- zulässige Verarbeitungszeit der Mörtels,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- Drehmoment.
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Verpackung, Transport und Lagerung

Die Mörtelkartuschen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern.


Mörtelkartuschen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden.


Dipl.-Ing. E. Jasch Präsident des Deutschen Instituts für Bautechnik Berlin, 22. Februar 2008

Ankerstange mit Unterlegscheibe und Sechskantmutter

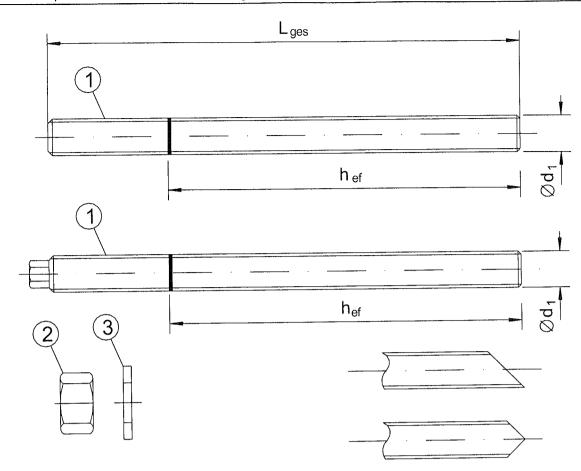
Nutzungskategorie:

- Einbau in trockenem oder feuchtem Beton

- Verwendung in trockenen Innenräumen

- Keine Überkopfmontage

Temperaturbereich: -40°C bis +80°C


(max. Kurzzeit-Temperatur +80°C und

max. Langzeit-Temperatur +50°C)

-40°C bis +120°C (max. Kurzzeit-Temperatur +120°C und

max. Langzeit-Temperatur +72°C)

VINYL-ESTER RESIN mit Ankerstange SVZ	Anhang 1
Produkt und Anwendungsbereich	der europäischen technischen Zulassung
	ETA-08/0091

Gewindestange mit:

- Mechanischen Eigenschaften gem. EN ISO 898-1:1999 (s. Anhang 3, Tabelle 2)
- Abnahmeprüfzeugnis gem. EN 10204:2004
- Werkszeichen des Herstellers, z.B.: CVM
- Setztiefenmarkierung

Zur Benennung der Dübelteile s. Anhang 3 (Tabelle 2).

Dübelabmessungen Tabelle 1:

		Ankerstange	4)
Größe	ø d₁ [mm]	h _{ef} [mm]	min L ¹⁾ [mm]
M 10	10	90	≥ 110
M 12	12	110	≥ 130
M 16	16	125	≥ 145

 $^{^{1)}}$ max L = 1500 mm

VINYL-ESTER RESIN mit Ankerstange SVZ	Anhang 2
Dübelabmessungen	der europäischen technischen Zulassung
	ETA-08/0091

Tabelle 2: Werkstoffe

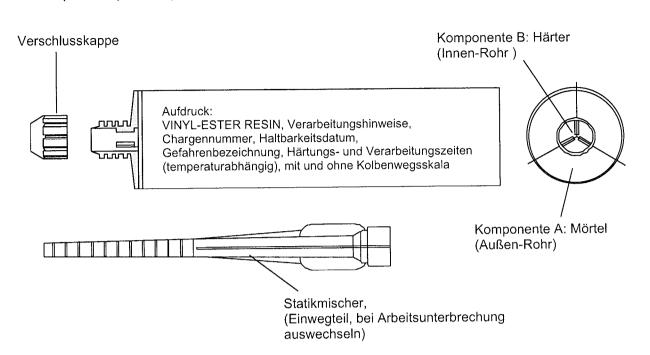
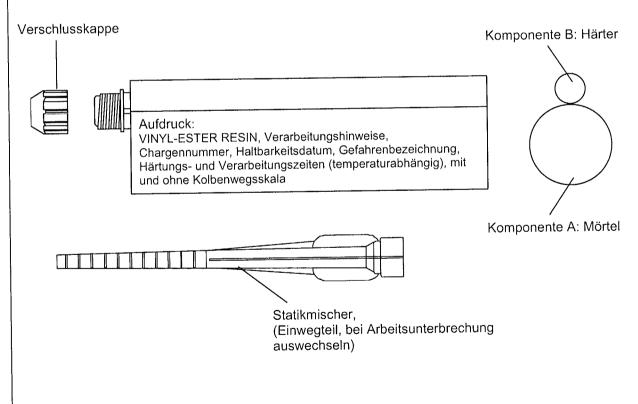

Teil	Benennung	Stahl, galv. verzinkt ≥ 5 µm nach EN ISO 4042		
1	Ankerstange	Stahl nach DIN EN 10087 oder DIN EN 10263 Festigkeitsklasse 5.8, 8.8 nach EN ISO 898-1:1999		
2	Sechskantmutter nach DIN 934 oder DIN EN 24032	Festigkeitsklasse 5 (für 5.8 Ankerstange) EN 20898-2, Festigkeitsklasse 8 (für 8.8 Ankerstange) EN 20898-2,		
3	Unterlegscheibe nach EN ISO 7089, EN ISO 7093, oder EN ISO 7094	Stahl, galvanisch verzinkt		
4	Mörtelmasse	Bindemittel: Vinylesterharz, styrolfrei Zuschläge: Quarzsand Härter: Dibenzoylperoxid		

Tabelle 3: Mindest-Aushärtezeit des Verbundmörtels bis zur Aufbringung der Last


Temperatur im Verankerungsgrund	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton
≥ -5 °C	6 h	12 h
≥ 0 °C	3 h	6 h
≥ +5°C	2 h	4 h
≥ + 10 °C	80 min	160 min
≥ + 20 °C	45 min	90 min
≥ + 30 °C	25 min	50 min
≥ + 35 °C	20 min	40 min

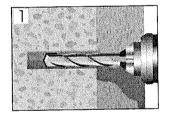
VINYL-ESTER RESIN mit Ankerstange SVZ	Anhang 3
Werkstoffe, Mindest-Aushärtezeiten in Abhängigkeit von der Temperatur	der europäischen technischen Zulassung
	ETA-08/0091

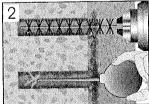
150 ml, 280 ml, 300 ml, 330 ml, 380 ml und 410 ml Verbundmörtel-Kartusche (Typ: coaxial)

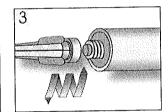
345 ml Verbundmörtel-Kartusche (Typ: "side-by-side")

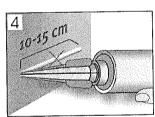
VINYL-ESTER RESIN mit Ankerstange SVZ	Anhang 4
Mörtelkartuschen	der europäischen technischen Zulassung
	ETA-08/0091

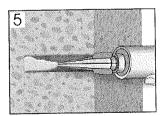
Tabelle 4: Montagekennwerte

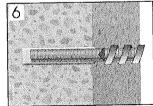

Dübelgröße		M 10	M 12	M 16
Bohrernenndurchmesser	$d_0 [mm] =$	12	14	18
Bohrerschneidendurchmesser	d _{cut} [mm] ≤	12,5	14,5	18,5
Bohrlochtiefe	h ₀ [mm] ≥	90	110	125
Durchgangsloch im anzuschließenden Bauteil	d _f [mm] ≤	12	14	18
Stahlbürstendurchmesser	d _b [mm] ≥	14	16	20
Drehmoment	T _{inst} [Nm]	20	40	60
min t _{fix} [m		0		
Anbauteildicke	max t _{fix} [mm] <	1400	1380	1360
Mindestbauteildicke	h _{min} [mm]	130	160	160
minimaler Achsabstand	s _{min} [mm]	90	110	125
minimaler Randabstand	c _{min} [mm]	45	55	62,5

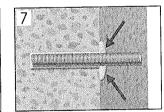

Stahlbürste

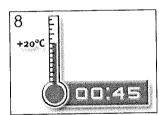


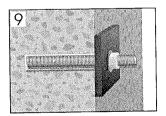

Handpumpe











VINYL-ESTER RESIN mit Ankerstange SVZ
· · · · · · · · · · · · · · · · · · ·

Montagekennwerte

Anhang 5

der europäischen technischen Zulassung

ETA-08/0091

Bemessungsverfahren A: Tabelle 5: Charakteristische Werte bei Zugbeanspruchung

			M 10	M 12	M 16	
charakt. Zugtragfähigkeit	$N_{Rk,s}$	[kN]	29	42	78	
Teilsicherheitsbeiwert	γ _{Ms} 1)			1,50		
charakt. Zugtragfähigkeit	$N_{Rk,s}$	[kN]	46	67	126	
Teilsicherheitsbeiwert	γ _{Ms} 1)			1,50		
etonausbruch						
3)	$N_{Rk,c}^0 = N_{Rk,p}$	[kN]	20	25	35	
	$N_{Rk,c}^0 = N_{Rk,p}$	[kN]	16	20	30	
C20/25 (72 °C / 120 °C) ³⁾ Erhöhungsfaktoren für ungerissenen Beton		C30/37		1,22		
		C40/50		1,41		
Ψο		C50/60		1,55		
stiefe	h _{ef}	[mm]	90	110	125	
	C _{cr,N}	[mm]	90	110	125	
	S _{cr,N}	[mm]	180	220	250	
Teilsicherheitsbeiwert		$\gamma_{Mc} = \gamma_{Mp}^{1}$ 1,8		1,8 ²⁾		
	S _{cr,sp}	[mm]	180	220	250	
	C _{cr,sp}	[mm]	90	110	125	
Randabstand Teilsicherheitsbeiwert		γ _{Msp} 1) 1,8		1,8 ²⁾		
	Teilsicherheitsbeiwert charakt. Zugtragfähigkeit Teilsicherheitsbeiwert etonausbruch 3) C)3)	Teilsicherheitsbeiwert $\gamma_{Ms}^{1)}$ charakt. Zugtragfähigkeit $\gamma_{Ms}^{1)}$ Teilsicherheitsbeiwert $\gamma_{Ms}^{1)}$ Ptonausbruch $N_{Rk,c}^{0} = N_{Rk,p}$ $N_{Rk,c}^{0} = N_{R$	Teilsicherheitsbeiwert γ_{Ms}^{11} charakt. Zugtragfähigkeit γ_{Ms}^{11} reilsicherheitsbeiwert γ_{Ms}^{11} reilsicherheitsbeiwert γ_{Ms}^{11} reilsicherheitsbeiwert γ_{Ms}^{11} retonausbruch	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Verschiebung bei Zugbeanspruchung Tabelle 6:

Dübelgröße			M 10	M 12	M 16
Zuglast	N	[kN]	6,6	8,3	11,6
Verschiebung	δ_{N0}	[mm]	0,3	0,5	0,4
	$\delta_{N^{\infty}}$	[mm]	0,6	1,6	2,0

VINYL-ESTER RESIN mit Ankerstange SVZ	Anhang 6
Bemessungsverfahren A:	der europäischen technischen Zulassung
Charakteristische Werte bei Zugbeanspruchung, Verschiebungen	ETA-08/0091

Sofern andere nationalen Regelungen fehlen.

1) In diesem Wert ist der Teilsicherheitsbeiwert γ_2 = 1,2 enthalten.
3) maximale Langzeit-Temperatur / maximale Kurzzeit-Temperatur

Bemessungsverfahren A: Tabelle 7: Charakteristische Werte bei Querbeanspruchung

Dübelgröße				M 10	M 12	M 16
Stahlversagen ohne l	lebelarm					
Festigkeitsklasse 5.8 gem. EN ISO 898-1	charakt. Quertragfähigkeit	$V_{Rk,s}$	[kN]	14	21	39
	Teilsicherheitsbeiwert	γ _{Ms} 1)		1,25		
Festigkeitsklasse 8.8 gem. EN ISO 898-1	charakt. Quertragfähigkeit	$V_{Rk,s}$	[kN]	23	33	63
	Teilsicherheitsbeiwert	γ _{Ms} 1)		1,25		
Stahlversagen mit He	belarm					
Festigkeitsklasse 5.8 gem. EN ISO 898-1	charakt. Biegemoment	${\sf M}^0_{\sf Rk,s}$	[Nm]	37	65	166
	Teilsicherheitsbeiwert	γ _{Ms} 1)			1,25	
Festigkeitsklasse 8.8 gem. EN ISO 898-1	charakt. Biegemoment	$M^0_{Rk,s}$	[Nm]	60	105	266
	Teilsicherheitsbeiwert	γ _{Ms} 1)		1,25		
Betonausbruch auf d	er lastabgewandten Seite					
Faktor k in Gleichung (5.6) der ETAG 001, Anhang C, Kapitel 5.2.3.3				2,0		
Teilsicherheitsbeiwert		γ _{Mc} 1)		1,50 ²⁾		
Betonkantenbruch					,	
wirksame Dübellänge bei Querlast		ℓ_{f}	[mm]	90	110	125
wirksamer Außendurchmesser		d_{nom}	[mm]	12	14	18
Teilsicherheitsbeiwert		γ _{Mc} 1)		1,50 ²⁾		

Tabelle 8: Verschiebung bei Querbeanspruchung

Dübelgröße			M 10	M 12	M 16
Querlast	V	[kN]	6,6	8,3	11,6
Verschiebung	δ_{V0}	[mm]	0,4	1,1	1,3
	$\delta_{V_{\infty}}$	[mm]	0,6	1,6	2,0

VINYL-ESTER RESIN mit Ankerstange SVZ	Anhang 7
Bemessungsverfahren A: Charakteristische Werte bei Querbeanspruchung,	der europäischen technischen Zulassung ETA-08/0091

¹⁾ Sofern andere nationalen Regelungen fehlen ²⁾ In diesem Wert ist der Teilsicherheitsbeiwert γ_2 = 1,0 enthalten.