Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-04/0092

MKT Injektionssystem VMZ

Handelsbezeichnung

Trade name

MKT Injection System VMZ

Zulassungsinhaber

Holder of approval

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Kraftkontrolliert spreizender Verbunddübel mit Ankerstange in

Torque controlled bonded anchor with anchor rod of sizes M8, M10, M12,

den Größen M8, M10, M12, M16, M20 und M24 zur

Auf dem Immel 2 67685 Weilerbach

Verankerung im Beton

M16, M20 and M24 for use in concrete

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom
Validity: from

from bis

6. Januar 2009

1. November 2009

Herstellwerk

Manufacturing plant

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach

Diese Zulassung umfasst

This Approval contains

19 Seiten einschließlich 11 Anhänge

19 pages including 11 annexes

Diese Zulassung ersetzt

This Approval replaces

ETA-04/0092 mit Geltungsdauer vom 02.03.2006 bis 01.11.2009 ETA-04/0092 with validity from 02.03.2006 to 01.11.2009

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur
 Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz BauPG) vom 28. April 1998⁴, zuletzt geändert durch Gesetz vom 06.01.2004⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

-

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11.02.1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30.08.1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31.10.2003, S. 25

⁴ Bundesgesetzblatt I, S. 812

⁵ Bundesgesetzblatt I. S. 2, 15

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20.01.1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Das MKT Injektionssystem VMZ, ein kraftkontrolliert spreizender Verbunddübel, besteht aus einer Mörtelkartusche mit MKT Injektionsmörtel VMZ und einer Ankerstange in den Größen M8, M10, M12, M16, M20 und M24 mit Sechskantmutter und Unterlegscheibe.

Die Kraftübertragung erfolgt über die mechanische Verzahnung einzelner Konen im Injektionsmörtel und weiter über eine Kombination aus Halte- und Reibungskräften im Verankerungsgrund (Beton).

Im Anhang 1 sind Produkt und Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese ETA nicht erfasst. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf im gerissenen und ungerissenen Beton verankert werden.

Die Dübelgrößen M12 bis M24 dürfen im trockenen oder nassen Beton oder in wassergefüllte Bohrlöcher gesetzt werden.

Die Dübelgrößen M8 und M10 dürfen nur im trockenen oder nassen Beton gesetzt werden.

Der Dübel darf in folgenden Temperaturbereichen verwendet werden:

Temperaturbereich: -40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und

max. Langzeit-Temperatur +50 °C)

Temperaturbereich: -40 °C bis +120 °C (max. Kurzzeit-Temperatur +120 °C und

max. Langzeit-Temperatur +72 °C)

Ankerstangen aus galvanisch verzinktem Stahl:

Ankerstangen aus galvanisch verzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Ankerstangen aus nichtrostendem Stahl (A4):

Ankerstangen aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571 oder 1.4362 dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Ankerstangen aus hochkorrosionsbeständigem Stahl (HCR):

Ankerstangen aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565 dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 3. Die in den Anhängen 1 bis 3 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 7 bis 11 angegeben.

Jede Ankerstange ist mit dem Herstellerkennzeichen (Werkzeichen), der Verankerungstiefe, dem Handelsnamen, der Gewindegröße, der Markierung der effektiven Verankerungstiefe, der maximalen Anbauteildicke und der Längenmarkierung entsprechend Anhang 2 gekennzeichnet.

Jede Ankerstange aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571 oder 1.4362 ist zusätzlich mit "A4" gemäß Anhang 2 gekennzeichnet. Jede Ankerstange aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565 ist zusätzlich mit "HCR" gemäß Anhang 2 gekennzeichnet.

Jede Mörtelkartusche ist mit dem Herstellerkennzeichen, dem Handelsnamen, Verarbeitungshinweisen, dem Sicherheitshinweisen, dem Haltbarkeitsdatum, der Aushärtezeit und Verarbeitungszeit (temperaturabhängig) gemäß Anhang 3 gekennzeichnet.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel" sowie des Technical Report TR 018 "Kraftkontrolliert spreizende Verbunddübel", auf der Grundlage der Option 1.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

-

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - (2) zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/ Rohstoffe/ Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Kontrollplan vom Dezember 2008, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Kontrollplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Kontrollplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Kontrollplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung mit der Aussage abzugeben, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

⁸ Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Der Kontrollplan ist ein vertraulicher Bestandteil der europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit dem Kontrollplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Kontrollplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 1),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Der Dübel wird entsprechend den Bestimmungen der europäischen technischen Zulassung in einem automatisierten Verfahren hergestellt, das bei der Inspektion des Herstellwerks durch das Deutsche Institut für Bautechnik und die zugelassene Überwachungsstelle festgestellt und in der technischen Dokumentation festgelegt ist.

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich die Gültigkeit der CE-Kennzeichnung aufgrund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Einbau

4.2.1 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.2.2 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten.
- Einwandfreie Verdichtung des Betons, z. B keine signifikanten Hohlräume.
- Einhaltung der effektiven Verankerungstiefe.
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen.
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.
- Fehlbohrungen sind zu vermörteln.
- Die Dübelgrößen M8 und M10 dürfen nicht in wassergefüllte Bohrlöcher gesetzt werden; ggf. muss das vorhandene Wasser im Bohrloch vollständig entfernt werden.
- Wassergefüllte Bohrlöcher dürfen nicht verschmutzt sein andernfalls ist die Bohrlochreinigung zu wiederholen;
- Bohrlochreinigung durch mindestens 2x blasen / 2x bürsten / 2x blasen entsprechend den Montageanweisungen des Herstellers;
- Mörtelinjektion entsprechend den Montageanweisungen des Herstellers gemäß den Anhängen 5 und 6; die Temperatur der Dübelteile beim Einbau beträgt mindestens +5 °C; die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels unterschreitet nicht -5 °C; Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 7, Tabelle 5;
- Befestigung des Anbauteils nach der Wartezeit mit einem Drehmomentenschlüssel unter Einhaltung der in Anhang 4, Tabelle 4a und 4b angegebenen Drehmomente.

5 Empfehlungen für Verpackung, Beförderung und Lagerung

5.1 Verpflichtungen des Herstellers

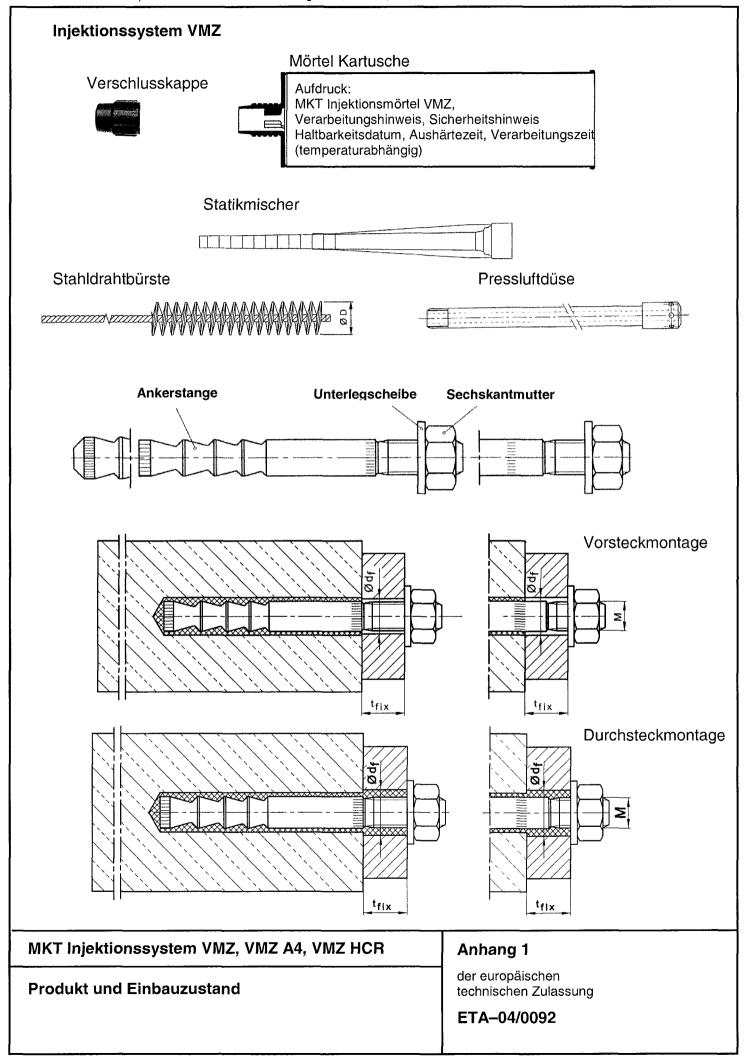
Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1, 4.2.2 und 5 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

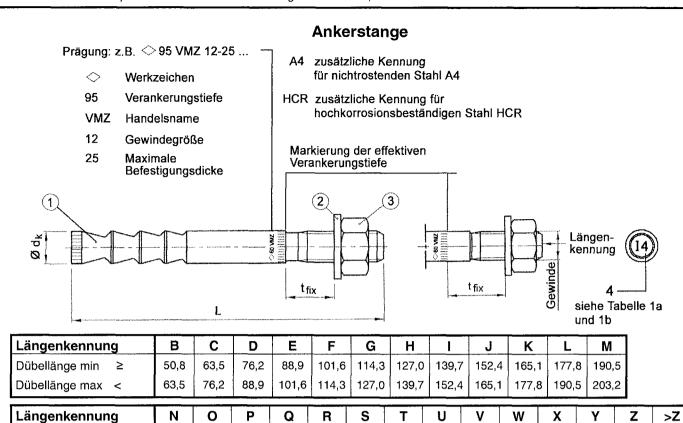
Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser:
- Bohrlochtiefe;
- Ankerstangendurchmesser;
- Mindestverankerungstiefe;
- maximale Dicke des Anbauteils:
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung;
- Temperatur der Dübelteile beim Einbau:
- Temperatur im Verankerungsgrund beim Setzen des Dübels;
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen:
- max. Drehmoment beim Befestigen;
- Herstelllos

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Empfehlungen für Verpackung, Beförderung und Lagerung


Die Mörtelkartuschen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanweisung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern.


Mörtelkartuschen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden. Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelkartuschen sind separat von den Ankerstangen, Sechskantmuttern und Unterlegscheiben verpackt.

Die Montageanleitung muss darauf hinweisen, dass der MKT Injektionsmörtel VMZ nur mit den Ankerstangen des Herstellers entsprechend Anhang 2 verwendet werden darf.

Dipl.-Ing. E. Jasch Präsident des Deutschen Instituts für Bautechnik Berlin, 6. Januar 2009

Tabelle 1a: Dübelabmessungen Ankerstangen M8 - M12

228,6

241,3

241,3

254,0

254,0

279,4

279,4

304,8

304,8

330,2

330,2

355,6

355,6

381,0

381,0

406,4

406,4

431,8

431,8

457,2

457,2

482,6

482,6

203,2

215,9

215,9

228,6

	Dübelgröße				50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
	Zusatzprägung			1	2	1	2	1	2	3	4	5	6	7
1	Ankerstange	Gewinde		M8	M8	M10	M10	M12	M12	M12	M12	M12	M12	M12
		\emptyset d _k	11	8,0	8,0	9,7	9,7	10,7	12,5	12,5	12,5	12,5	12,5	12,5
		t _{fix} min	≥	1	1	1	1	1	1	1	1	1	1	1
ĺ		t fix max	≤	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
		L min		53	64	76	91	96	91	101	116	121	131	146
		L max		3052	3063	3075	3090	3095	3090	3100	3115	3120	3130	3145
3	Sechskantmu	ıtter SW		13	13	17	17	19	19	19	19	19	19	19

Maße in mm

Tabelle 1b: Dübelabmessungen Ankerstangen M16 – M24

	Dübelgröße			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
	Zusatzprägung			1	2	3	4	1	2	3	1	2	3
1	Ankerstange	Gewinde		M16	M16	M16	M16	M20	M20	M20	M24	M24	M24
		$\emptyset d_k$	=	16,5	16,5	16,5	16,5	19,7	22,0	22,0	24,0	24,0	24,0
1	t _{fix} min ≥		2	1	1	1	1	1	20 (1)	20 (1)	20 (1)	20 (1)	20 (1)
		t _{fix} max	≤	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
ĺ		L min		115	130	151	171	144	204	224	211	241	266
		L max		3114	3129	3150	3170	3143	3203	3223	3240	3240	3265
3	Sechskantmutter SW		24_	24	24	24	30	30	30	36	36	36	

Dübelabmessungen

Dübellänge min

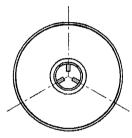
Dübellänge max

Anhang 2

der europäischen technischen Zulassung

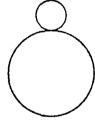
Tabelle 2a: Werkstoff

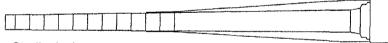
Teil	Benennung	Stahl, galvanisch verzinkt	Nichtrostender Stahl A4	Hochkorrosionsbeständiger Stahl (HCR)
1	Ankerstange	Stahl nach DIN EN 10087, galvanisch verzinkt und beschichtet	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088, beschichtet	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565, nach EN 10088, beschichtet
2	Unterlegscheibe	Stahl, galvanisch verzinkt	Nichtrostender Stahl, 1.4401, 1.4571, EN 10088	Hochkorrosionsbeständiger Stahl 1.4529 oder 1.4565, nach EN 10088
3	Sechskantmutter DIN 934	Festigkeitsklasse 8 nach EN 20898-2, galvanisch verzinkt	ISO 3506, A4-70, 1.4401, 1.4571, EN 10088	ISO 3506, Festigkeitsklasse 70, Hochkorrosionsbeständiger Stahl 1.4529 oder 1.4565, EN 10088


Mörtelkartuschen

(Verschiedene Gebindegrößen)

Aufdruck:


MKT Injektionsmörtel VMZ, Verarbeitungshinweise, Sicherheitshinweise, Haltbarkeitsdatum, Aushärtezeit, Verarbeitungszeit (temperaturabhängig)


Aufdruck:

MKT Injektionsmörtel VMZ, Verarbeitungshinweise, Sicherheitshinweise, Haltbarkeitsdatum, Aushärtezeit, Verarbeitungszeit (temperaturabhängig)

Verschlusskappe

Statikmischer

Einwegteil, bei Arbeitsunterbrechung auswechseln.

Tabelle 2b: Benennung und Werkstoffe

Teil	Benennung	Werkstoff
4	Mörtel Kartusche Mischungsverhältnis 1:10	Vinylesterharz, styrolfrei
	Verschlusskappe	

MKT Injektionssystem	VMZ,	VMZ	A4,	VMZ HCR
----------------------	------	-----	-----	---------

Werkstoff Mörtelkartuschen

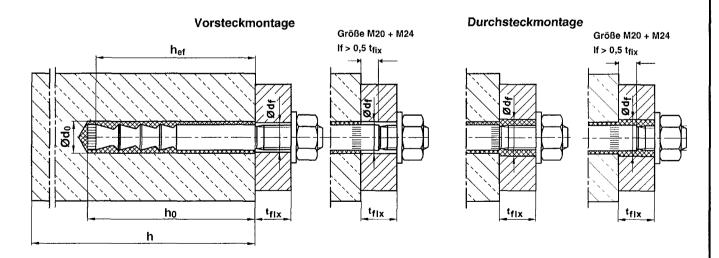
Anhang 3

der europäische technischen Zulassung

Tabelle 3: Montagebedingungen im Beton

)	Montage im									
Größe	trockenen Beton	nassen Beton	wassergefüllten Bohrloch								
M8 - M10	ja	ja	nein								
M12 - M24	ja	ja	ja								

Tabelle 4a: Montage- und Dübelkennwerte M8 – M12


Dübelgröße			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Verankerungstiefe	h _{ef} =	[mm]	40	50	60	75	75	70	80	95	100	110	125
Bohrernenndurchmesser	$d_0 =$	[mm]	10	10	12	12	12	14	14	14	14	14	14
Bohrlochtiefe	h₀≥	[mm]	42	55	65	80	80	75	85	100	105	115	130
Bürstendurchmesser	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,0
Drehmoment beim Verankern	T _{inst} =	[Nm]	10	10	15	15	25	25	25	25	30	30	30
Durchgangsloch im anzuschliel	3enden	Bauteil											
Vorsteckmontage	d _f ≤	[mm]	9	9	12	12	14	14	14	14	14	14	14
Durchsteckmontage 1)	d _f ≤	[mm]	- 2)	2)	14	14	14	16	16	16	16	16	16

¹⁾ Der Ringspalt im Anbauteil muss nach dem Setzen vollständig mit Überschussmörtel verfüllt sein.

Tabelle 4b: Montage- und Dübelkennwerte M16 – M24

Dübelgröße			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Verankerungstiefe	h _{ef} =	[mm]	90	105	125	145	115	170	190	170	200	225
Bohrernenndurchmesser	d ₀ =	[mm]	18	18	18	18	22	24	24	26	26	26
Bohrlochtiefe	h ₀ ≥	[mm]	98	113	133	153	120	180	200	185	215	240
Bürstendurchmesser	D≥	[mm]	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Drehmoment beim Verankern	T _{inst} =	[Nm]	50	50	50	50	80	80	80	100	120	120
Durchgangsloch im anzuschliel	Benden	Bauteil										
Vorsteckmontage	d _f ≤	[mm]	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Durchsteckmontage 1)	d _f ≤	[mm]	20	20	20	20	24	26	26	28	28	28

¹⁾ Der Ringspalt im Anbauteil muss nach dem Setzen vollständig mit Überschussmörtel verfüllt sein.

Montagebedingungen, Montage- und Dübelkennwerte

Anhang 4

der europäischen technischen Zulassung

²⁾ Nicht bei Durchsteckmontage einsetzbar

Montageanleitung Vorsteckmontage Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds mit Hammerbohrer oder Pressluftbohrer erstellen 1 Bohrloch muss unmittelbar vor der Montage des Ankers gereinigt werden. VMZ M8 - M16: Bohrloch vom Grund her mit MKT Ausblaspumpe VM-AP mindestens zweimal ausblasen. Bei der 2a Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden. min. 6 bar VMZ M20 - M24: MKT Ausblaspistole VM-ABP an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und 2b Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen. MKT Reinigungsbürste RB mit Hilfe der MKT Bürstenlehre VM-BL kontrollieren. Wenn Bürste sich ohne Widerstand durch Bürstenlehre schieben lässt, neue Bürste verwenden. Bürste in 3 Bohrmaschine einspannen. Bohrmaschine einschalten und erst dann mit rotierender Bürste das Bohrloch bis zum Grund in einer Vor- und Rückwärtsbewegung mindestens zweimal ausbürsten. VMZ M8 - M16: Bohrloch vom Grund her mit MKT Ausblaspumpe VM-AP mindestens zweimal ausblasen. Bei der 4a Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden. min 6 ha VMZ M20 - M24: MKT Ausblaspistole VM-ABP an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und 4b Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen. Mindesthaltbarkeitsdatum auf Mörtelkartusche VMZ überprüfen. Niemals abgelaufenen Mörtel verwenden. Verschlusskappe von Mörtelkartusche entfernen und Statikmischer VM-X auf 5 Mörtelkartusche aufschrauben. Für iede neue Kartusche einen neuen Statikmischer verwenden. Kartusche niemals ohne Statikmischer und Statikmischer niemals ohne Mischwendel verwenden. Mörtelkartusche in Auspresspistole einsetzen und Mörtelverlauf solange auspressen (ca. 2 volle Hübe oder einen ca. 10 cm langen Mörtelstrang), bis der austretende İnjektionsmörtel eine 6 gleichmäßig graue Farbe aufweist. Dieser Vorlauf darf nicht verwendet werden. Prüfen, ob Statikmischer bis zum Bohrlochgrund reicht. Falls nicht, Mischerverlängerung VM-XL auf 7 Statikmischer stecken. Das gereinigte Bohrloch luftfrei vom Grund her mit ausreichend gemischtem Injektionsmörtel verfüllen. Ankerstange innerhalb der Verarbeitungszeit von Hand, drehend bis zur Markierung der Verankerungstiefe in das vermörtelte Bohrloch eindrücken. Ankerstange ist richtig gesetzt, wenn um 8 die Ankerstange am Bohrlochmund Mörtel austritt. Wird kein Mörtel an der Betonoberfläche sichtbar, Ankerstange sofort herausziehen, Mörtel aushärten lassen, Loch aufbohren und erneut bei Schritt 2 beginnen. Aushärtezeit entsprechend Tabelle 5 einhalten. Während der Aushärtezeit darf die Ankerstange 9 nicht bewegt oder belastet werden. 10 Ausgetretenen Mörtel entfernen. T_{INST}

MKT Injektionssystem VMZ, VMZ A4, VMZ HCR

Montageanleitung Vorsteckmontage

ZD | D)

11

Anhang 5

Nach der Aushärtezeit kann das Anbauteil montiert werden. Das Montagedrehmoment gemäß

Tabelle 4a oder 4b ist mit einem Drehmomentschlüssel aufzubringen

der europäischen technischen Zulassung

Montageanleitung Durchsteckmontage

		Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds mit Hammerbohrer oder
1	90°	Pressluftbohrer erstellen
·	←	Bohrloch muss unmittelbar vor der Montage des Ankers gereinigt werden.
2a	M8 - M16	VMZ M8 - M16: Bohrloch vom Grund her mit MKT Ausblaspumpe VM-AP mindestens zweimal ausblasen. Bei der Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden.
2b	min. 6 bar 2x +	VMZ M20 - M24: MKT Ausblaspistole VM-ABP an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen.
3	N	MKT Reinigungsbürste RB mit Hilfe der MKT Bürstenlehre VM-BL kontrollieren. Wenn Bürste sich ohne Widerstand durch Bürstenlehre schieben lässt, neue Bürste verwenden. Bürste in Bohrmaschine einspannen. Bohrmaschine einschalten und erst dann mit rotierender Bürste das Bohrloch bis zum Grund in einer Vor- und Rückwärtsbewegung mindestens zweimal ausbürsten.
4a	M8 - M16	VMZ M8 - M16: Bohrloch vom Grund her mit MKT Ausblaspumpe VM-AP mindestens zweimal ausblasen. Bei der Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden.
4b	min. 6 bar 2x ← => M20 - M24	VMZ M20 - M24: MKT Ausblaspistole VM-ABP an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen.
5		Mindesthaltbarkeitsdatum auf Mörtelkartusche VMZ überprüfen. Niemals abgelaufenen Mörtel verwenden. Verschlusskappe von Mörtelkartusche entfernen und Statikmischer VM-X auf Mörtelkartusche aufschrauben. Für jede neue Kartusche einen neuen Statikmischer verwenden. Kartusche niemals ohne Statikmischer und Statikmischer niemals ohne Mischwendel verwenden.
6	min. 10 cm	Mörtelkartusche in Auspresspistole einsetzen und Mörtelverlauf solange auspressen (ca. 2 volle Hübe oder einen ca. 10 cm langen Mörtelstrang), bis der austretende Injektionsmörtel eine gleichmäßig graue Farbe aufweist. Dieser Vorlauf darf nicht verwendet werden.
7	***	Prüfen, ob Statikmischer bis zum Bohrlochgrund reicht. Falls nicht, Mischerverlängerung VM-XL auf Statikmischer stecken. Das gereinigte Bohrloch luftfrei vom Grund her mit ausreichend gemischtem Injektionsmörtel verfüllen.
8		Ankerstange innerhalb der Verarbeitungszeit mit der Hand drehend bis zur vorgeschriebenen Verankerungstiefe in das vermörtelte Bohrloch eindrücken. Ankerstange ist richtig gesetzt, wenn der Ringspalt zwischen Ankerstange und Anbauteil vollständig vermörtelt ist. Wird kein Mörtel an der Anbauteiloberfläche sichtbar, Ankerstange sofort herausziehen, Mörtel aushärten lassen, Loch aufbohren und erneut bei Schritt 2 beginnen.
9	X	Aushärtezeit entsprechend Tabelle 5 einhalten. Während der Aushärtezeit darf die Ankerstange nicht bewegt oder belastet werden.
10		Ausgetretenen Mörtel entfernen.
11	T _{INST}	Nach der Aushärtezeit können die Unterlegscheibe und die Mutter montiert werden. Das Montagedrehmoment gemäß Tabelle 4a oder 4b ist mit einem Drehmomentschlüssel aufzubringen

MKT Injektionssystem VMZ, VMZ A4, VMZ HCR

Montageanleitung Durchsteckmontage

Anhang 6

der europäischen technischen Zulassung

Tabelle 5: Verarbeitungszeit und Aushärtezeiten bis zum Aufbringen der Last

Temperatur [°C]	Maximale	Minimale Au	ıshärtezeit
im Bohrloch	Verarbeitungszeit	Trockener Beton	Nasser Beton
+ 40 °C	1,4 min	15 min	30 min
+ 35 °C	2 min	20 min	40 min
+ 30 °C	4 min	25 min	50 min
+ 20 °C	6 min	45 min	1:30 h
+ 10 °C	12 min	1:20 h	2:40 h
+ 5 °C	20 min	2:00 h	4:00 h
0 °C	45 min	3:00 h	6:00 h
- 5 °C	1:30 h	6:00 h	12:00 h

Tabelle 6a: Mindestbauteildicke und minimale Achs- und Randabstände, M8 – M12

Dübelgröße			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Mindestbauteildicke	h _{min}	[mm]	80	80	100	110 100 ¹⁾	110	110	110	130 125 ¹⁾	130	140	160
Gerissener Beton		<u> </u>			<u>.</u>		·	 .		<u>' </u>			<u>' </u>
minimaler Achsabstand	S _{min}	[mm]	40	40	40	40	50	55	40	40	50	50	50
minimaler Randabstand	C _{min}	[mm]	40	40	40	40	50	55	50	50	50	50	50
Ungerissener Beton					•								
minimaler Achsabstand	S _{min}	[mm]	40	40	50	50	50	55	55	55	80 ²⁾	80 ²⁾	80 ²⁾
minimaler Randabstand	C _{min}	[mm]	40	40	50	50	50	55	55	55	55 ²⁾	55 ²⁾	55 ²⁾

Tabelle 6b: Mindestbauteildicke und minimale Achs- und Randabstände, M16 - M24

Dübelgröße			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Mindestbauteildicke	h _{min}	[mm]	130	150	170 160 1)	190 180 ¹⁾	160	230 220 ¹⁾	250 240 ¹⁾	230 220 ¹⁾	270 260 ¹⁾	300 290 ¹⁾
Gerissener Beton					•							
minimaler Achsabstand	S _{min}	[mm]	50	50	60	60	80	80	80	80	80	80
minimaler Randabstand	C _{min}	[mm]	50	50	60	60	80	80	80	80	80	80
Ungerissener Beton				1								
minimaler Achsabstand	Smin	[mm]	50	60	60	60	80	80	80	80	105	105
minimaler Randabstand	C _{min}	[mm]	50	60	60	60	80	80	80	80	105	105

¹⁾ Die Rückseite des Betonbauteils soll nach dem Bohren auf Beschädigungen untersucht werden. Im Falle von Durchbohrungen müssen diese mit hochfestem Mörtel verschlossen werden. Die volle Verankerungstiefe h_{ef} ist einzuhalten und ein potentieller Mörtelverlust muss ausgeglichen werden.

MK i injektionssystem	VMZ, VMZ A4, VMZ HCR
-----------------------	----------------------

Verarbeitungszeiten und Aushärtezeiten, Mindestbauteildicke, minimale Achs- und Randabstände

Anhang 7

der europäischen technischen Zulassung

²⁾ Für Randabstand c ≥ 80 mm, minimaler Achsabstand s_{min} = 55 mm

Tabelle 7a: Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung, M8 - M12

Dübelgröße			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Stahlversagen			1		1			1					
Charakteristische Galvanisch ver	erzinkter Stahl	[kN]	15	18	25	25	35	49	54	54	57	57	57
Zugtragfähigkeit N _{Rk,s} Nichtrostende	r Stahl A4, HCR	[kN]	15	18	25	25	35	49	54	54	57	57	57
Teilsicherheitsbeiwert	γ _{Ms} 4)	-					·	1,5			•		
Herausziehen und Spalten für S	Standardbaut	eildick	е										
Standardbauteildicke	h _{std} ≥ 2 h _{ef}	[mm]	100	100	120	150	150	140	160	190	200	220	250
Charakteristische Tragfähigkeit	50°C ²⁾ /80°C ³⁾	[kN]						_ 1)	 		•		
N _{Rk,p} im gerissenen Beton C20/25	72°C ²⁾ /120°C ³⁾	[kN]	5	7,5	12	12	12	16	20	20	30	30	30
Charakteristische Tragfähigkeit	50°C ²⁾ /80°C ³⁾	[kN]	7,5	9	16	20	20	20	- 1)	30	40	40	40
N _{Rk,p} im ungerissenen Beton	72°C ²⁾ /120°C ³⁾	[kN]	6	9	16	16	16	16	25	25	30	30	30
C20/25 mit $c_{cr,sp} = 1,5 h_{ef}$	C _{cr,sp}	[mm]						l,5 h _{ef}					
Charakteristische Tragfähigkeit N _{Rk.p}	50°C ²⁾ /80°C ³⁾	[kN]	9			- 1)				40	_ 1)	50	50
im ungerissenen Beton C20/25	C _{cr,sp}	[mm]	3 1) _{of}	2,5	3,5	3,5	2,5	1,5	2,5	2	3	2,5
	4) 5)	[,,,,,,]			h _{ef}	h _{ef}	h _{ef}	h _{ef}	h _{ef}	h _{ef}	h _{ef}	h _{ef}	h _{ef}
Teilsicherheitsbeiwert	YMc	<u>-</u>	<u> </u>			1,5							
Herausziehen und Spalten für I	·-··				T					1			
Mindestbauteildicke	h _{min} ≥	[mm]	80	80	100	100	110	100	110	125	130	140	160
Charakteristische Tragfähigkeit	50°C ²⁾ /80°C ³⁾	[kN]		,			r——	_ 1)				,	
N _{Rk,p} im gerissenen Beton C20/25	72°C ²⁾ /120°C ³⁾	[kN]	5	7,5	12	12	12	16	20	20	30	30	30
Charakteristische Tragfähigkeit	50°C ²⁾ /80°C ³⁾	[kN]	7,5		16	16	16	20	25	25	30	30	30
N _{Rk,p} im ungerissenen Beton	72°C ²⁾ /120°C ³⁾	[kN]	-	-	16	16	16	16	25	25	30	30	30
C20/25 mit $c_{cr,sp} = 1,5 h_{ef}$	C _{cr,sp}	[mm]					1)	1,5 h _{ef}		I	1 1)		
Charakteristische Tragfähigkeit N _{Rk.p}	50°C ²⁾ /80°C ³⁾	[kN]	9					T = =		40	- 1)	50	50
im ungerissenen Beton C20/25	C _{cr,sp}	[mm]	3 h _{ef}	3,5	3	3,5	3,5	3,5	3	3,5	3	3	3
Teilsicherheitsbeiwert	γ _{Mc} 4) 5)			h _{ef}	h _{ef}	h _{ef}	1,5	h _{ef}	h _{ef}	h _{ef}	h _{ef}	h _{ef}	h _{ef}
Betonausbruch	үмс	<u> </u>					1,5						
Verankerungstiefe	h _{ef}	[mm]	40	50	60	75	75	70	80	95	100	110	125
Achsabstand	S _{cr.N}	[mm]		1 00	00	7.0		3 h _{ef}	_ 00	00	100	110	120
Randabstand	C _{cr,N}	[mm]						1,5 h _{ef}					
Teilsicherheitsbeiwert	4)	_[[[]]]						1,5 Her					
Tolisionomolitabelwert	γ _{Mc} ⁴ / C25/30	-						1,10					
_	C30/37	<u>-</u> -						1,22		-			
— Erhöhungsfaktoren für N _{Rk,p} ψ _C	C40/50	-						1,41					
,,	C45/55	-	1.10										
	C50/60	-	1,55										

¹⁾ Herausziehen ist nicht maßgebend 3) Maximale Kurzzeittemperatur

Tabelle 8a: Verschiebung unter Zugbeanspruchung, M8 - M12

Dübelgröße			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Zugtragfähigkeit im gerissenen Beton	N	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0
zugehärige Verschiebung	δ_{N0}	[mm]	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,7
zugehörige Verschiebung -	δ _{N∞}	[mm]						1,3					
Zugtragfähigkeit im ungerissenen Beton	N	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8
zugehärige Verschiebungen	δΝο	[mm]	0,2	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6
zugehörige Verschiebungen -	$\delta_{N_{\infty}}$	[mm]						1,3					

Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung, M8 - M12, Verschiebungen

Anhang 8

der europäischen technischen Zulassung

⁵⁾ In diesem Wert ist der Teilsicherheitsbeiwert γ_2 = 1,0 enthalten

 ²⁾ Maximale Langzeittemperatur
 ⁴⁾ Sofern andere nationale Regelungen fehlen

Bemessungsverfahren A, Tabelle 7b: charakteristische Werte bei Zugbeanspruchung, M16 - M24

Dübelgröße			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)	
Stahlversagen		_											
Charakteristische Galvanisch ver	rzinkter Stahl	[kN]	88	95	111	111	96	188	188	222	222	222	
Zugtragfähigkeit N _{Rk,s} Nichtrostende	r Stahl A4, HCR	[kN]	88	95	111	111	114	165	165	194	194	194	
Teilsicherheitsbeiwert	(Ms				1,5		1,68			1,5			
Herausziehen und Spalten für	Standardbaut	eildic	кe									-	
Standardbauteildicke	h _{std} ≥ 2 h _{ef}	[mm]	180	200	250	290	230	340	380	340	400	450	
Charakteristische Tragfähigkeit	50°C ²⁾ /80°C ³⁾	[kN]					_ 1)				-		
N _{Rk,p} im gerissenen Beton C20/25	72°C ²⁾ /120°C ³⁾	[kN]	20	30	50	50	30	60	60	75	75	75	
Charakteristische Tragfähigkeit	50°C ²⁾ /80°C ³⁾	[kN]	40	50	50	60	-	1)	115	-	1)	140	
N _{Rk,p} im ungerissenen Beton	72°C ²⁾ /120°C ³⁾	[kN]	25	35	50	50	40	75	75	95	95	95	
C20/25 mit $c_{cr,sp} = 1,5 h_{ef}$	C _{cr,sp}	[mm]					1	,5 h _{ef}					
Charakteristische Tragfähigkeit N _{Rk,p}	F0002)(00003)	[kN]		- 1)		75				- 1)			
im ungerissenen Beton C20/25	$\mathbf{c}_{cr,sp}$	[mm]	2 h _{ef}	2 h _{ef}	2 h _{ef}	2 h _{ef}	1,5 h _{ef}	1,5 h _{ef}	2 h _{ef}	1,5 h _{ef}	1,5 h _{ef}	1,8 h _{ef}	
Teilsicherheitsbeiwert	γ _{Mc} 4) 5)	-						1,5					
Herausziehen und Spalten für	Mindestbaute	ildicke	e			•							
Mindestbauteildicke	h _{min} ≥	[mm]	130	150	160	180	160	220	240	220	260	290	
Charakteristische Tragfähigkeit	50°C ²⁾ /80°C ³⁾	[kN]				•		- 1)					
N _{Rk,p} im gerissenen Beton C20/25	72°C ²⁾ /120°C ³⁾	[kN]	20	30	50	50	30	60	60	75	75	75	
Observation by Tuesdahistorit N	50°C ²⁾ /80°C ³⁾	[kN]	35	50	40	50	-	75	75	_ 1)	115	115	
Charakteristische Tragfähigkeit N _{Rk,p} im ungerissenen Beton C20/25	72°C ²⁾ /120°C ³⁾	[kN]	25	35	40 (50) ⁶⁾	50	-	75	75	95	95	95	
mit $c_{cr,sp} = 1.5 h_{ef}$	C _{cr,sp}	[mm]			5 h _{ef}		- 1			1,5 h _{ef}			
Charakteristische Tragfähigkeit N _{Rk,p}	50°C ²⁾ /80°C ³⁾	[kN]		- 1)	_	75				1)		_	
im ungerissenen Beton C20/25	$c_{cr,sp}$	[mm]	2,5 h _{ef}	2,5 h _{ef}	3 h _{ef}	2,5 h _{ef}	2,5 h _{ef}	2,6 h _{ef}	2,2 h _{ef}	2,6 h _{ef}	2,2 h _{ef}	2,2 h _{ef}	
Teilsicherheitsbeiwert	γ _{Mc} 4) 5)	-			-			1,5					
Betonausbruch													
Verankerungstiefe	h _{ef}	[mm]	90	105	125	145	115	170	190	170	200	225	
Achsabstand	S _{cr,N}	[mm]						3 h _{ef}					
Randabstand	C _{cr,N}	[mm]					1	,5 h _{ef}					
Teilsicherheitsbeiwert	γ _{Mc} ⁴⁾	-						1,5					
_	C25/30	~						1,10					
_	C30/37	-						1,22					
Erhöhungsfaktoren für $N_{Rk,p}$ ψ_C	C40/50	-						1,41					
-	C45/55	-	1,40										
	C50/60	•	<u> </u>					1,55					

¹⁾ Herausziehen ist nicht maßgebend 3) Maximale Kurzzeittemperatur

Tabelle 8b: Verschiebung unter Zugbeanspruchung, M16 - M24

Dübelgröße			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Zugtragfähigkeit im gerissenen Beton	N	[kN]	14,6	18,4	24,0	30,0	21,1	38,0	44,9	38,0	48,5	57,9
zugehörige Verschiebungen	δ_{N0}	[mm]	0,7	0,7	0,7	0,8	0,7	0,8	0,8	0,8	0,9	0,9
zugehörige Verschiebungen	$\delta_{N_{\infty}}$	[mm]		1	,3		1,1			1,3		
Zugtragfähigkeit im ungerissenen Beto	Zugtragfähigkeit im ungerissenen Beton N		20,5	25,9	33,0	35,7	29,6	53,3	63,0	53,3	67,9	81,1
zugehörige Vereshiebung	δ_{N0}	[mm]	0,6	0,6	0,6	0,6	0,5	0,6	0,6	0,6	0,6	0,6
zugehörige Verschiebung -	$\delta_{N_{\infty}}$	[mm]						1,3				

Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung, M16 - M24, Verschiebungen

Anhang 9

der europäischen technischen Zulassung

⁵⁾ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ enthalten

 ²⁾ Maximale Langzeittemperatur
 ⁴⁾ Sofern andere nationale Regelungen fehlen

⁶⁾ Gilt nur wenn $c_{cr,sp} \ge 3 h_{ef}$

Tabelle 9a: Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung, M8 – M12

Dübelgröße			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Stahlversagen ohne	Hebelarm												
Charakteristische	Galvanisch verzinkter Stahl	[kN]	14	14	21	21	34	34	34	34	34	34	34
Quertragfähigkeit V _{Rk,s}	Nichtrostender Stahl A4, HCR	[kN]	15	15	23	23	34	34	34	34	34	34	34
Teilsicherheitsbeiwert	γ _{Ms} 1)							1,25					
Stahlversagen mit He	ebelarm											·	
Charakteristische	Galvanisch verzinkter Stahl	[Nm]	30	30	60	60	105	105	105	105	105	105	105
Biegemomente M ⁰ Rk,s	Nichtrostender Stahl A4, HCR	[Nm]	30	30	60	60	105	105	105	105	105	105	105
Teilsicherheitsbeiwert	γ _{Ms} 1)	-						1,25					
Betonausbruch auf d	ler lastabgewar	dten	Seite										
Faktor in Gleichung (5,6) ETAG Anhang C, 5,2,3,3		-						2					
Teilsicherheitsbeiwert	7 _{Мср} 1)	-						1,5 ²⁾					
Betonkantenbruch													
wirksame Dübellänge be Querlast	l _f	[mm]	40	50	60	75	75	70	80	95	100	110	112
wirksamer Außendurchm	nesser d _{nom}	[mm]	10	10	12	12	12	14	14	14	14	14	14
Teilsicherheitsbeiwert	γ _{Mc} 1)	-						1,5 ²⁾					

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 10a: Verschiebung unter Querbeanspruchung, M8 – M12

Dübelgröße				50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Querlast im ungerissenen Beton	V	[kN]	8,3	8,3	13,3	13,3	19,3	19,3	19,3	19,3	19,3	19,3	19,3
-ugahäriga Varahishungan	δνο	[mm]	2,4	2,5	2,9	2,9	3,3	3,3	3,3	3,3	3,3	3,3	3,3
zugehörige Verschiebungen	δ_{V_∞}	[mm]	3,6	3,8	4,4	4,4	5,0	5,0	5,0	5,0	5,0	5,0	5,0

MKT Injektionssystem VMZ, VMZ A4, VMZ HCR

Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung, M8 - M12, Verschiebungen Anhang 10

der europäischen technischen Zulassung

² In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ enthalten

Tabelle 9b: Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung, M16 - M24

Dübelgröße			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Stahlversagen ohne He	ebelarm											
Charakteristische	Galvanisch verzinkter Stahl	[kN]	63	63	63	63	70	149 ²⁾ (98)	149 ²⁾ (98)	178 ²⁾ (141)	178 ²⁾ (141)	178 ²⁾ (141)
Quertragfähigkeit V _{Rk,}	s Nichtrostender Stahl A4, HCR	[kN]	63	63	63	63	86	131 ²⁾ (86)	131 ²⁾ (86)	156 ²⁾ (123)	156 ²⁾ (123)	156 ²⁾ (123)
Teilsicherheitsbeiwert	γ _{Ms} 1)	-		1,	25		1,4			1,25		
Stahlversagen mit Heb	elarm											
Charakteristische	Galvanisch verzinkter Stahl	[Nm]	266	266	266	266	392	519	519	896	896	896
Biegemomente M ⁰ _{Rk,s}	Nichtrostender Stahl A4, HCR	[Nm]	266	266	266	266	454	454	454	784	784	784
Teilsicherheitsbeiwert	γ _{Ms} 1)	-		1,	25		1,4			1,25		
Betonausbruch auf o	der lastabgewand	ten Se	eite									·
Faktor in Gleichung (5,6 ETAG Anhang C, 5,2,3,3		-						2				
Teilsicherheitsbeiwert	γ _{Mcp} 1)	-					1	,5 ³⁾				
Betonkantenbruch												
wirksame Dübellänge be Querlast	e i I _f	[mm]	90	105	125	144	115	170	190	170	200	208
wirksamer Außendurchn	nesser d _{nom}	[mm]	18	18	18	18	22	24	24	26	26	26
Teilsicherheitsbeiwert	γ _{Mc} 1)	-					1	,5 ³⁾				

Größe M20 + M24

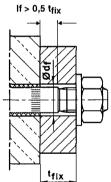


Tabelle 10b: Verschiebung unter Querbeanspruchung M16 - M24

Dübelgröße				105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Querlast im ungerissenen Beton	V	[kN]	36	36	36	36	44	75 (49)	75 (49)	89 (71)	89 (71)	89 (71)
zugehörige Verschiebungen	δ_{V0}	[mm]	3,8	3,8	3,8	3,8	3,0	4,3 (3,0)	4,3 (3,0)	4,6 (3,5)	4,6 (3,5)	4,6 (3,5)
zugenonge verschiebungen	$\delta_{V_{\infty}}$	[mm]	5,7	5,7	5,7	5,7	4,5	6,5 (4,5)	6,5 (4,5)	6,9 (5,3)	6,9 (5,3)	6,9 (5,3)

Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung, M16 - M24, Verschiebungen

Anhang 11

der europäischen technischen Zulassung

Sofern andere nationale Regelungen fehlen Dieser Wert gilt nur bei Einhaltung der Bedingung $I_t > 0.5 t_{fix}$ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2 = 1.0$ enthalten