Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-09/0192

Handelsbezeichnung

Trade name

Zulassungsinhaber

Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis

Herstellwerk

Manufacturing plant

Chemfix Verbundanker Supercap

Chemfix Chemical Capsule Anchor Supercap

CHEMFIX PRODUCTS LTD

Mill Street East

DEWSBURY, West Yorkshire WF12 9BQ

GROSSBRITANNIEN

Verbunddübel mit Ankerstange in den Größen M8, M10, M12, M16, M20 und M24 zur Verankerung im ungerissenen Beton

Bonded anchor with anchor rod of sizes M8, M10, M12, M16, M20 and M24 for use in non-cracked concrete

23. Juni 2009

24. November 2010

Chemfix UK Fabrik 2

Diese Zulassung umfasst This Approval contains

18 Seiten einschließlich 5 Anhänge 18 pages including 5 annexes

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur
 Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom
 31. Oktober 2006⁵:
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

.

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25

⁴ Bundesgesetzblatt Teil I 1998, S. 812

⁵ Bundesgesetzblatt Teil I 2006, S. 2407, 2416

Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der Chemfix Verbundanker Supercap ist ein Verbunddübel, der aus einer Glaspatrone mit Chemfix Supercap und einer Ankerstange mit Sechskantmutter und Unterlegscheibe in den Größen M8, M10, M12, M16, M20 und M24 besteht. Die Ankerstange (einschließlich Mutter und Unterlegscheibe) besteht aus galvanisch verzinktem Stahl, feuerverzinktem Stahl, aus nichtrostendem Stahl 1.4401, 1.4404 oder 1.4571 oder aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565. Die Glaspatrone wird in ein Bohrloch gesetzt und die Ankerstange durch gleichzeitiges Schlagen und Drehen eingetrieben. Der Dübel wird durch Ausnutzung des Verbundes zwischen Ankerstange, Mörtel und Beton verankert.

Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden. Er darf nur im ungerissenen Beton verankert werden.

galvanisch verzinkter oder feuerverzinkter Stahl

Die Ankerstange, Mutter und Scheibe aus galvanisch verzinktem oder feuerverzinktem Stahl darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571

Die Ankerstange, Mutter und Scheibe aus nichtrostendem Stahl darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunnels, in denen Enteisungsmittel verwendet wird).

Hochkorrosionsbeständiger Stahl 1.4529 oder 1.4565

Die Ankerstange, Mutter und Scheibe aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565 darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunnels, in denen Enteisungsmittel verwendet wird.

Der Dübel darf in trockenem oder nassem Beton jedoch nicht in mit Wasser gefüllte Bohrlöcher gesetzt werden.

Überkopfmontage ist nicht zulässig.

Der Dübel darf in folgendem Temperaturbereichen verwendet werden:

Temperaturbereich: -40 °C bis +80 °C (max. Kurzzeit-Temperatur +80 °C und max. Langzeit-Temperatur +50 °C)

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 3. Die in den Anhängen 1 bis 3 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 4 und 5 angegeben.

Jede Glaspatrone ist mit dem Herstellerkennzeichen, dem Patronentyp und mit der Patronengröße entsprechend Anhang 1 gekennzeichnet.

Jede Ankerstange ist mit dem Herstellerkennzeichen, der Markierung für die Verankerungstiefe (blaue Farbe oder Rille), mit der Dübelgröße und einer zusätzlichen Markierung für die Stahlgüte gemäß Anhang 1 gekennzeichnet.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 8.

In Ergänzung zu den speziellen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Substanzen beziehen, können im Geltungsbereich dieser Zulassung weitere Anforderungen an das Produkt gestellt werden (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der EG-Bauproduktenrichtlinie zu erfüllen, müssen diese Anforderungen, sofern sie gelten, ebenfalls eingehalten werden.

3 Bescheinigung der Konformität des Produkts und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

-

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

⁸ Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - (2) zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe / Rohstoffe / Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Kontrollplan vom März 2007, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Kontrollplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Kontrollplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Kontrollplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung mit der Aussage abzugeben, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit dem Kontrollplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

-

Der Kontrollplan ist ein vertraulicher Bestandteil der europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Kontrollplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Zulassungsinhabers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 8),
- Größe.

4 Voraussetzungen, unter denen die Brauchbarkeit des Produkts gegeben ist

4.1 Herstellung

Der Dübel wird entsprechend den Bestimmungen der europäischen technischen Zulassung in einem automatisierten Verfahren hergestellt, das bei der Inspektion des Herstellwerks durch das Deutsche Institut für Bautechnik und die zugelassene Überwachungsstelle festgestellt und in der technischen Dokumentation festgelegt ist.

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Einbau

4.2.1 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, für Verbunddübel unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Für die nachstehend aufgeführten Nachweise nach Anhang C der Leitlinie ist folgendes zu beachten:

Für den Nachweis Betonausbruch (Abschnitt 5.2.2.4, Anhang C der Leitlinie) ist N_{Rk,c} entsprechend (1) und (2) zu ermitteln: Der kleinere der Werte nach (1) und (2) ist maßgebend.

(1) N_{Rk,c} nach Gleichung (5.2), Anhang C der Leitlinie

mit: N_{Rkc} nach Anhang 4, Tabelle 6, 8 oder 10

s_{cr.N} nach Anhang 4, Tabelle 6, 8 oder 10

c_{cr,N} nach Anhang 4, Tabelle 6, 8 oder 10

 $\psi_{\text{ucr,N}} = 1.0$

Für die in ETAG 001, Annex C Abschnitt 5.2.2.4 g) aufgeführten Sonderfälle ist die dort angegebene Methode gültig. Allerdings ist der Wert $N_{Rk,c}^0$ wie folgt abzumindern:

$$N_{Rk,c}^0 = N_{Rk,c}^0$$
 (Anhang 4, Tabelle 6, 8 oder 10) $\times \frac{h'_{ef}}{h_{ef}}$

(2) N_{Rk,c} nach Gleichung (5.2), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^{0} = 0.75 \times 15.5 \times h_{ef}^{1.5} \times f_{ck,cube}^{0.5}$$

 $s_{cr,N} = 3 h_{ef}$
 $c_{cr,N} = 1.5 h_{ef}$
 $\psi_{ucr,N} = 1.0$

- Für den Nachweis Versagen durch Spalten bei Belastung (Abschnitt 5.2.2.6, Anhang C der Leitlinie) ist N_{Rk,sp} entsprechend (3) zu ermitteln.
 - (3) N_{Rk,sp} nach Gleichung (5.3), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^0$$
 nach Anhang 4, Tabelle 6, 8 oder 10 $s_{cr,sp}$ nach Anhang 4, Tabelle 6, 8 oder 10 $c_{cr,sp}$ nach Anhang 4, Tabelle 6, 8 oder 10 $\psi_{ucr,N} = 1,0$ $\psi_{h,sp} = 1,0$

 Für den Nachweis Betonausbruch auf der lastabgewandten Seite (Abschnitt 5.2.3.3, Anhang C der Leitlinie) ist N_{Rk,c} für Gleichung (5.6), Anhang C der Leitlinie entsprechend (1) zu ermitteln.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.2.2 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der effektiven Verankerungstiefe;
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Der Dübel darf nicht in wassergefüllte Bohrlöcher gesetzt werden.

- Bohrlochlochreinigung:
 - vollständiges Entfernen von im Bohrloch eventuell vorhandenem Wasser und Reinigung des Bohrlochs durch mindestens 1x Blasen / 1x Bürsten / 1x Blasen / 1x Bürsten; Reinigen mit dem vom Hersteller gelieferten Reinigungsgeräten; vor dem Ausbürsten Säubern der Bürste und Überprüfung, ob der Bürstendurchmesser nach Anhang 3, Tabelle 3 eingehalten ist,
- Überkopfmontage ist nicht zulässig,
- die Temperatur im Verankerungsgrund muss mindestens +5 °C betragen und darf während der Aushärtung des Injektionsmörtels –5 °C nicht unterschreiten; Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 3, Tabelle 5.
- Befestigung des Anbauteils nach der Wartezeit mit einem Drehmomentenschlüssel unter Einhaltung der in Anhang 3 angegebenen Drehmomente.

5 Empfehlungen für Verpackung, Beförderung und Lagerung

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1, 4.2.2 und 5.1 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Bohrlochtiefe.
- Ankerstangendurchmesser,
- Mindestverankerungstiefe,
- maximale Dicke der Anschlusskonstruktion,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Stahlteile (Ankerstange, Scheibe und Mutter) müssen aus dem gleichen Werkstoff mit den dazugehörigen Materialeigenschaften entsprechend Anhang 2, Tabelle 1 sein,
- Temperatur der Dübelteile beim Einbau,
- Temperatur im Verankerungsgrund beim Setzen des Dübels,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- Drehmoment,
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Empfehlungen für Verpackung, Beförderung und Lagerung

Die Glaspatronen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern.

Glaspatronen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden.

Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Glaspatronen sind separat von den Ankerstangen (inklusive Sechskantmuttern und Unterlegscheiben) verpackt.

Die Montageanleitung muss darauf hinweisen, dass die Glaspatronen nur mit den entsprechenden Ankerstangen nach Anhang 1 verwendet werden darf.

i. V. Dipl.-Ing. SeyfertVizepräsident des Deutschen Instituts für BautechnikBerlin, 23. Juni 2009

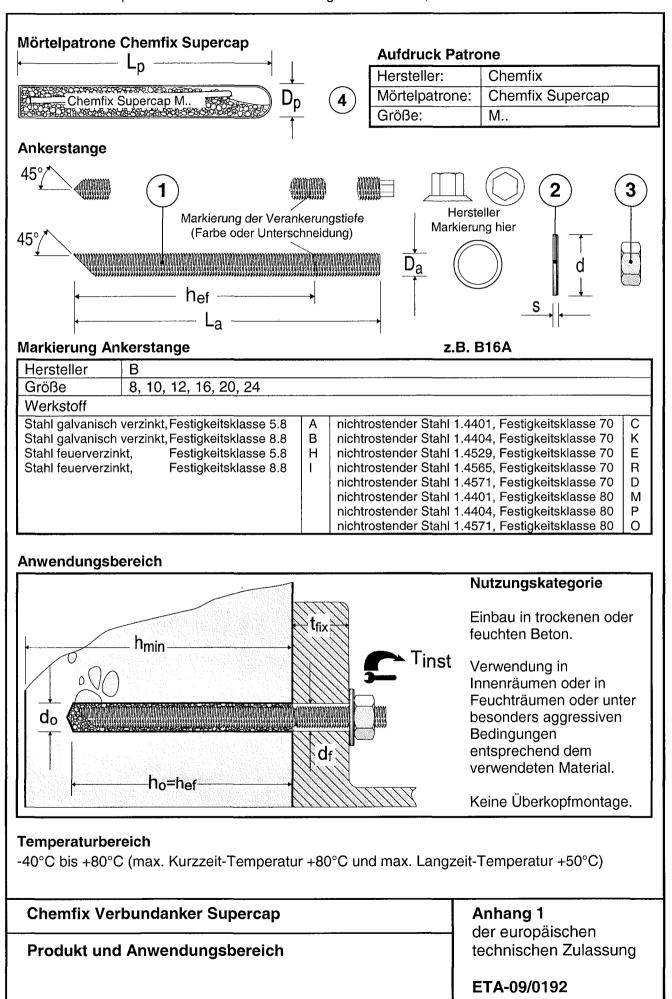


Tabelle 1 Werkstoffe

Teil	Bezeichnung	Werkstoff						
1	Ankerstange	Stah Festigkeitskl. 5 EN ISO 8	.8 oder 8.8	Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571	Nichtrostender Stahl 1.4529 oder 1.4565			
		galvanisch verzinkt ≥ 5µm gemäß	feuerverzinkt EN ISO 10684	Festigkeitskl. A4-70 oder A4-80 EN ISO 3506-1	Festigkeitskl. 70 EN ISO 3506-1			
2	Lintaria ga ab aib a	EN ISO 4042 Stah		Nichtrostender Stahl	Nichtrostender Stahl			
2	Unterlegscheibe	galvanisch verzinkt ≥ 5µm gemäß	feuerverzinkt	1.4401, 1.4404 oder 1.4571	1.4529, 1.4565			
		EN ISO 4042	EN ISO 10684					
		EN	ISO 887 oder EN	N ISO 7089 bis EN ISO 7094				
3	Mutter	Stah Festigkeitskl. EN ISO 20	5 oder 8	Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571	Nichtrostender Stahl 1.4529 oder 1.4565			
		galvanisch verzinkt ≥5µm gemäß	feuerverzinkt	Festigkeitskl. A4-70 oder A4-80	Festigkeitskl. 70			
		EN ISO 4042	EN ISO 10684	EN ISO 3506-2	EN ISO 3506-2			
			EN ISO 4032	2 oder EN ISO 4034				
4	Mörtelpatrone	Glas Quarz Harz Härter						

Tabelle 2 Abmessungen in mm

Teil	Bezeichnung		M8	M10	M12	M16	M20	M24
1	Ankerstange	Da	M8	M10	M12	M16	M20	M24
		L _a ≥	95	110	130	150	200	245
		h_{ef}	80	90	110	.125	170	210
2	Unterlegscheibe	s	1,6	2,1	2,5	3,0	3,0	4,0
	-	d	16	21	24	30	37	44
3	Mutter	SW	13	17	19	24	30	36
4	Mörtelpatrone	Dp	9	11	13	17	22	24
		L_p	80	80	95	95	175	210

Chemfix Verbundanker Supercap	Anhang 2 der europäischen
Werkstoffe und Abmessungen	technischen Zulassung
	ETA-09/0192

Tabelle 3	Montagekennwerte
1000000	

Dübelgröße			М8	M10	M12	M16	M20	M24
Bohrernenndurchmesser	d₀	[mm]	10	12	14	18	25	28
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	10,5	12,5	14,5	18,5	25,5	28,5
Bohrlochtiefe	h _o	[mm]	80	90	110	125	170	210
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	9	12	14	18	22	26
Stahlbürstendurchmesser	D	[mm]	11	13	16	20	27	30
Montagedrehmoment	T _{inst}	[Nm]	10	20	40	80	120	180

Stahlbürste und Montageanleitung

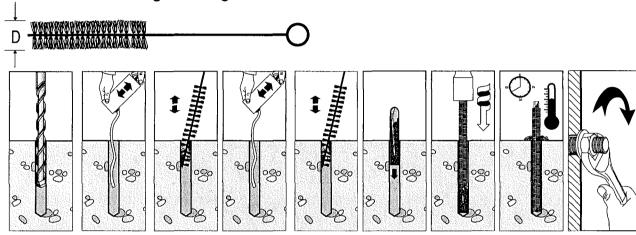


Tabelle 4 Mindestbauteildicke, Achs- und Randabstand

		,						
Dübelgröße			M8	M10	M12	M16	M20	M24
Mindestbauteildicke	h _{min}	[mm]	110	120	140	160	220	260
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65	85	105
Minimaler Achsabstand	S _{min}	[mm]	40	45	55	65	85	105

Tabelle 5 Aushärtezeiten

Temperatur im Bohrloch	Min. Aushärtezeit im trockenen Beton	Min. Aushärtezeit im feuchten Beton
≥ - 5°C	5 Std.	10 Std.
≥ 0°C	5 Std.	10 Std.
≥ + 5°C	1 Std.	2 Std.
≥ +10°C	1 Std.	2 Std.
≥ +20°C	20 Min.	40 Min.
≥ +30°C	10 Min.	20 Min.
≥ +35°C	10 Min.	20 Min.

Chemfix Verbundanker Supercap	Anhang 3 der europäischen
Montagekennwerte, Mindestbauteildicke minimaler Achs- und Randabstand minimale	technischen Zulassung
Aushärtezeiten	ETA-09/0192

Teile aus galvanisch verzinktem oder feuerverzinktem Stahl

Bemessungsverfahren A Tabelle 6 Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen							•	
Charakteristische Zugtragfähigkeit Festigkeitsklasse 5.8	$N_{Rk,S}$	[kN]	18	29	42	78	123	177
Charakteristische Zugtragfähigkeit Festigkeitsklasse 8.8	$N_{Rk,S}$	[kN]	29	46	67	126	196	282
Teilsicherheitsbeiwert Festigkeitsklasse 5.8, 8.8	γ _{Ms} 1)	[-]			1	,5		
Herausziehen, Betonausbruc	h							
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25 bis C50/60 N _{BI}	$_{k,p} = N^0_{Rk,c}$	[kN]	20	30	40	50	75	90
	$=\gamma_{Mc}^{1)}$	[-]			1,8	8 2)		I
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210
Randabstand	C _{cr,N}	[mm]	1,5 h _{ef}			1 h _{ef}	•	
Achsabstand	S _{cr,N}	[mm]	3 h _{ef}			$2 h_{\text{ef}}$		
Spalten								
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef}			1 h _{ef}		
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef}			2 h _{ef}		
Teilsicherheitsbeiwert γ _{Msj}	$_{\rm o}=\gamma_{\rm Mc}^{-1)}$	[-]			1,8	3 ²⁾		

Tabelle 7 Verschiebungen unter Zuglast

Dübelgröße			М8	M10	M12	M16	M20	M24
Zuglast	N	[kN]	8	12	16	20	30	38
Verschiebung	δ_{NO}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N_{\infty}}$	[mm]	-	-	0,5	-	-	-

Chemfix Verbundanker Supercap	Anhang 4A der europäischen
Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung	technischen Zulassung
Verschiebungen	ETA-09/0192

¹⁾ Sofern andere nationale Regelungen fehlen ²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,2$ ist enthalten

Teile aus nichtrostendem Stahl 1.4401, 1.4404 oder 1.4571

Bemessungsverfahren A Tabelle 8 Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen								
Charakteristische Zugtragfähigkeit Festigkeitsklasse A4-70	N _{Rk,S}	[kN]	26	40	59	110	172	247
Charakteristische Zugtragfähigkeit Festigkeitsklasse A4-80	N _{Rk,S}	[kN]	29	46	67	126	196	282
Teilsicherheitsbeiwert γ _{Ms} ¹⁾ [-] Festigkeitsklasse A4-70 Festigkeitsklasse A4-80						87 60		
Herausziehen, Betonausbruch			- · · · · · ·					
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25 bis C50/60 N _{Rk,p} = I	V ⁰ Rk,c	[kN]	20	30	40	50	75	90
Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma_{M}$	1) c	[-]			1,8	3 ²⁾		•
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210
Randabstand	C _{cr,N}	[mm]	1,5 h _{ef} 1 h _{ef}					
Achsabstand	S _{cr,N}	[mm]	3 h _{ef} 2 h _{ef}					
Spalten								
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef}			1 h _{ef}		
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef}			2 h _{ef}		
Teilsicherheitsbeiwert $\gamma_{Msp} = \gamma_{N}$	1) //c	[-]			1,8	3 ²⁾		

Verschiebungen unter Zuglast Tabelle 9

Dübelgröße			M8	M10	M12	M16	M20	M24
Zuglast	N	[kN]	8	12	16	20	30	38
Verschiebung	δ_{No} .	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N_{\infty}}$	[mm]	-	-	0,5	-	-	-

Charakteristische Werte bei Zugbeanspruchung	Anhang 4B der europäischen
Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung	technischen Zulassung
Verschiebungen	ETA-09/0192

¹⁾ Sofern andere nationale Regelungen fehlen ²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,2$ ist enthalten

Teile aus nichtrostendem Stahl 1.4529 oder 1.4565

Bemessungsverfahren A Tabelle 10 Charakteristische Werte bei Zugbeanspruchung

Dübelgröße	_		M8	M10	M12	M16	M20	M24
Stahlversagen						•		
Charakteristische Zugtragfähigkeit Festigkeitsklasse 70	N _{Rk,S}	[kN]	26	40	59	110	172	247
Teilsicherheitsbeiwert γ_{Ms}^{-1} [-]					1,8	37		
Herausziehen, Betonausbruch								
Charakteristische Tragfähigkeit im ungerissenen Beton C20/25 bis C50/60 N _{Rk,p} = I	N ⁰ _{Rk,c}	[kN]	20	30	40	50	75	90
Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma_{M}$	1) c	[-]	1,8 2)					
Effektive Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210
Randabstand	C _{cr,N}	[mm]	1,5 h _{ef}			1 h _{ef}		
Achsabstand	S _{cr,N}	[mm]	3 h _{ef}			2 h _{ef}		
Spalten								
Randabstand	C _{cr,sp}	[mm]	1,5 h _{ef}			1 h _{ef}		
Achsabstand	S _{cr,sp}	[mm]	3 h _{ef}			2 h _{ef}		
Teilsicherheitsbeiwert $\gamma_{Msp} = \gamma_{N}$	1) //c	[-]			1,8	3 ²⁾		

Tabelle 11 Verschiebungen unter Zuglast

Dübelgröße			М8	M10	M12	M16	M20	M24
Zuglast	N	[kN]	8	12	16	20	30	38
Verschiebung	δ_{NO}	[mm]	0,1	0,2	0,2	0,2	0,5	0,4
	$\delta_{N_{\infty}}$	[mm]	•	-	0,5	-	-	_

Chemfix Verbundanker Supercap	Anhang 4C der europäischen
Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung	technischen Zulassung
Verschiebungen	ETA-09/0192

¹⁾ Sofern andere nationale Regelungen fehlen ²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,2$ ist enthalten

Teile aus galvanisch verzinktem oder feuerverzinktem Stahl

Tabelle 12 Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

Dübelgröße			М8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit Festigkeitsklasse 5.8	V _{Rk,S}	[kN]	9	14	21	39	61	88
Charakteristische Quertragfähigkeit Festigkeitsklasse 8.8	$V_{Rk,S}$	[kN]	15	23	33	63	98	141
Teilsicherheitsbeiwert Festigkeitsklasse 5.8, 8.8	γ _{Ms} 1)	[-]			1,	25		
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment Festigkeitsklasse 5.8	M ⁰ _{Rk,S}	[Nm]	19	37	65	166	325	561
Charakteristisches Biegemoment Festigkeitsklasse 8.8	M ⁰ _{Rk,S}	[Nm]	30	60	105	266	519	898
Teilsicherheitsbeiwert Festigkeitsklasse 5.8, 8.8	γ _{Ms} 1)	[-]			1,	25		
Betonausbruch auf der lastabge	wandte	n Seite						
Faktor k in Gleichung (5.6) der ETAG 001, Anhang C, 5.2.3.3	k	[-]			2	,0		
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]	1.10		1,	5 ²⁾		
Betonkantenbruch								
Wirksame Dübellänge bei Querlast	ℓ_{f}	[mm]	80	90	110	125	170	210
Wirksamer Außendurchmesser	d _{nom}	[mm]	10	12	14	18	25	28
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]	1,5 2)					
1) Cafara andere metionale Decelus								

Tabelle 13 Verschiebungen unter Querlast

Dübelgröße			М8	M10	M12	M16	M20	M24
Querlast	V	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	$\delta_{V_{\infty}}$.	[mm]	4	5	5	6	7	7

Chemfix Verbundanker Supercap	Anhang 5A der europäischen		
Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung	technischen Zulassung		
Verschiebungen	ETA-09/0192		

¹⁾ Sofern andere nationale Regelungen fehlen ²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten

Teile aus nichtrostendem Stahl 1.4401, 1.4404 oder 1.4571

Tabelle 14 Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24
Stahlversagen ohne Hebelarm						·		
Charakteristische Quertragfähigkeit Festigkeitsklasse A4-70	$V_{Rk,S}$	[kN]	13	20	29	55	86	124
Charakteristische Quertragfähigkeit Festigkeitsklasse A4-80	$V_{Rk,S}$	[kN]	15	23	33	62	98	141
Teilsicherheitsbeiwert Festigkeitsklasse A4-70 Festigkeitsklasse A4-80	γ _{Ms} 1)	[-]			,	56 33		
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment Festigkeitsklasse A4-70	M ⁰ _{Rk,S}	[Nm]	26	52	92	233	454	785
Charakteristisches Biegemoment Festigkeitsklasse A4-80	M ⁰ _{Rk,S}	[Nm]	30	60	105	266	519	898
Teilsicherheitsbeiwert Festigkeitsklasse A4-70 Festigkeitsklasse A4-80	γ _{Ms} 1)	[-]				56 33		
Betonausbruch auf der lastabge	wandte	n Seite						
Faktor k in Gleichung (5.6) der ETAG 001, Anhang C, 5.2.3.3	k	[-]			2	,0		
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,	5 ²⁾		
Betonkantenbruch								
Wirksame Dübellänge bei Querlast	ℓ_{f}	[mm]	80	90	110	125	170	210
Wirksamer Außendurchmesser	d _{nom}	[mm]	10	12	14	18	25	28
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]	1,5 ²⁾					

Tabelle 15 Verschiebungen unter Querlast

Dübelgröße			М8	M10	M12	M16	M20	M24
Querlast	V	[kN]	5	8	12	22	35	50
Verschiebung	$\delta_{ m V0}$	[mm]	2	3	3	4	5	5
	$\delta_{V_{\infty}}$	[mm]	4	5	5	6	7	7

Chemfix Verbundanker Supercap	Anhang 5B der europäischen
Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung	technischen Zulassung
Verschiebungen	ETA-09/0192

¹⁾ Sofern andere nationale Regelungen fehlen ²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten

Teile aus nichtrostendem Stahl 1.4529

Tabelle 16 Bemessungsverfahren A
Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24	
Stahlversagen ohne Hebelarm			····						
Charakteristische Quertragfähigkeit Festigkeitsklasse 70	$V_{Rk,S}$	[kN]	13	20	29	55	86	124	
Stahlversagen mit Hebelarm									
Charakteristisches Biegemoment Festigkeitsklasse 70	M ⁰ _{Rk,S}	[Nm]	26	52	92	233	454	785	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	1,56						
Betonausbruch auf der lastabge	wandte	n Seite							
Faktor k in Gleichung (5.6) der ETAG 001, Anhang C, 5.2.3.3	k	[-]			2	,0			
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,	5 ²⁾			
Betonkantenbruch									
Wirksame Dübellänge bei Querlast	ℓ_{f}	[mm]	80	90	110	125	170	210	
Wirksamer Außendurchmesser	d _{nom}	[mm]	10	12	14	18	25	28	
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,	5 ²⁾			

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 17 Verschiebungen unter Querlast

Dübelgröße			M8	M10	M12	M16	M20	M24
Querlast	V	[kN]	5	8	12	22	35	50
Verschiebung	δ_{V0}	[mm]	2	3	3	4	5	5
	δν∞	[mm]	4	5	5	6	7	7

der eui
technis
ETA-0

Anhang 5C der europäischen technischen Zulassung

ETA-09/0192

²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten