Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 +49(0)30 787 30 320 Fax: E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA Member of EOTA

Europäische Technische Zulassung ETA-05/0018

Handelsbezeichnung

Trade name

MKT Bolzenanker B A4

MKT Wedge anchor B A4

Zulassungsinhaber

Holder of approval

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity:

from bis

verlängert vom extended from

> bis to

Kraftkontrolliert spreizender Dübel aus nichtrostendem Stahl in den Größen M6, M8, M10, M12, M16 und M20 zur Verankerung im ungerissenen Beton

Torque controlled expansion anchor made of stainless steel of sizes M6, M8, M10, M12, M16 and M20 for use in non-cracked concrete

15. Januar 2008

28. Januar 2010

5. Januar 2010

28. Januar 2015

Herstellwerk

Manufacturing plant

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2

67685 Weilerbach

Diese Zulassung umfasst This Approval contains

12 Seiten einschließlich 5 Anhänge

12 pages including 5 annexes

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 2: Kraftkontrolliert spreizende Dübel", ETAG 001-02"
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

-

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25

⁴ Bundesgesetzblatt Teil I 1998, S. 812

⁵ Bundesgesetzblatt Teil I 2006, S. 2407, 2416

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der MKT Bolzenanker B A4 in den Größen M6, M8, M10, M12, M16 und M20 ist ein Dübel aus nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Im Anhang 1 sind Produkt und Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt.

Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf nur im ungerissenen Beton verankert werden.

Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 2 und 3. Die in den Anhängen 2 und 3 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 4 und 5 angegeben.

Jeder Dübel ist mit dem Werkzeichen, der Dübelbezeichnung, der Dübelgröße, der maximalen Anbauteildicke bei h_{ef} und $h_{\text{ef,red}}$ und der Bezeichnung "A4" für nichtrostenden Stahl gemäß Anhang 2 gekennzeichnet.

Der Dübel darf nur als Befestigungseinheit geliefert werden.

-

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 2 "Kraftkontrolliert spreizende Dübel", auf der Grundlage der Option 7.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - (2) zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/ Rohstoffe/ Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt⁹.

⁸ Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung, der nicht zusammen mit der Zulassung veröffentlicht und nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt wird. Siehe Abschnitt 3.2.2.

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den im Prüfplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle,

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, im gerissenen oder ungerissenen Beton usw.) angegeben.

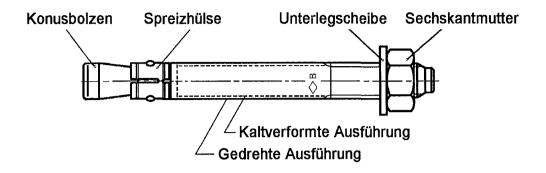
4.3 Einbau der Dübel

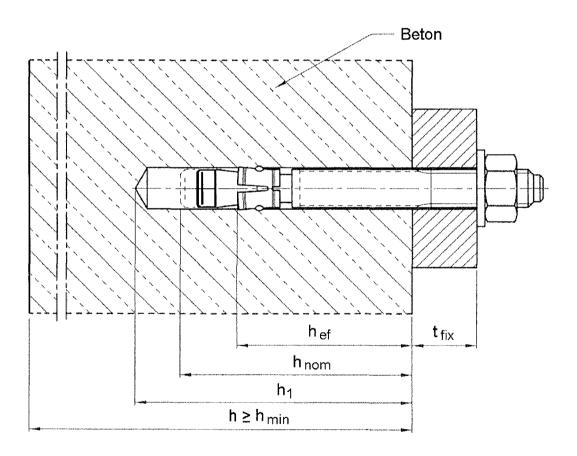
Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den angegebenen Werkzeugen.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Reinigung des Bohrlochs vom Bohrmehl,
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die vorhandene Dicke des anzuschließenden Bauteils nicht größer ist als die am Dübel geprägte maximale Anbauteildicke, gemäß Anhang 2,
- Aufbringen des im Anhang 3 angegebenen Drehmoments mit einem überprüften Drehmomentenschlüssel.

5 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2.1 und 4.2.2 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

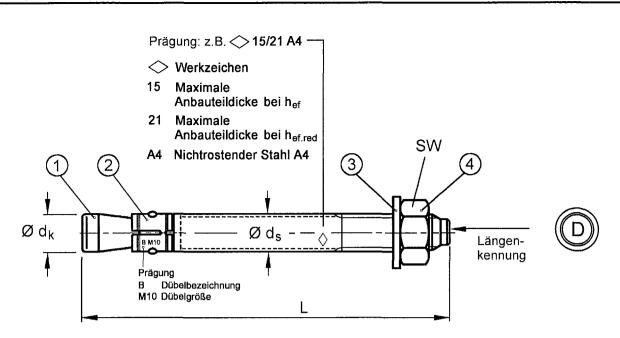

Es sind mindestens folgende Angaben zu machen:


- Bohrerdurchmesser,
- Gewindedurchmesser.
- maximale Dicke der Anschlusskonstruktion,
- Mindestverankerungstiefe,
- Mindest-Bohrlochtiefe,
- Drehmoment.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Setzwerkzeuge.
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

Dipl.-Ing. Georg Feistel Leiter der Abteilung Konstruktiver Ingenieurbau des Deutschen Instituts für Bautechnik Berlin, 5. Januar 2010 Beglaubigt

für Bantechnik



MKT Bo	lzenan.	ker B	Α4
--------	---------	-------	----

Produkt und Einbauzustand

Anhang 1

der europäischen technischen Zulassung

Längenkennung		Α	В	С	D	Е	F	G	Н	I	J	K	L	М
Dübellänge min	N	38,1	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Dübellänge max	<	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2

Längenkennung		N	0	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z
Dübellänge min	≥	203,2	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2
Dübellänge max	<	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	483,0

Maße in mm

Tabelle 1: Dübelabmessungen

_			Dübell		
Dübelgröße	\emptyset d _k	$arnothing$ d_s	Standard Verankerungstiefe	Reduzierte Verankerungstiefe	SW
M6	6	6 / 5,3 ¹⁾	t _{fix} + 57,4	t _{fix hef,red} + 47,4	10
M8	8	8 / 7,1 ¹⁾	$t_{fix} + 66,4$	$t_{\text{fix hef,red}} + 57,4$	13
M10	10	10 / 8,9 ¹⁾	$t_{fix} + 74,0$	$t_{\text{fix hef,red}} + 68,0$	17
M12	12	12 / 10,7 ¹⁾	$t_{fix} + 96,5$	t _{fix hef,red} + 81,5	19
M16	16	16 / 14,5 ¹⁾	t _{fix} + 117,8	t _{fix hef,red} + 101,8	24
M20	19,7	19,7 / 18,2 ¹⁾	t _{fix} + 142,7	$t_{\text{fix hef,red}} + 120,7$	30

¹⁾ kaltverformte Version

Tabelle 2: Benennung und Werkstoffe

Teil	Benennung	Werkstoffe
1	Konusbolzen	nichtrostender Kaltstauch- bzw. Automatenstahl, 1.4401, 1.4404, 1.4571, 1.4578, 1.4362, EN 10088, beschichtet
2	Spreizhülse	nichtrostender Stahl 1.4401, 1.4571, 1.4362, EN 10088
3	Unterlegscheibe nach EN ISO 7089, oder EN ISO 7093, oder EN ISO 7094	nichtrostender Stahl 1.4401, 1.4571, 1.4362, EN 10088
4	Sechskantmutter DIN 934	ISO 3506, A4-70, nichtrostender Stahl 1.4401, 1.4571, 1.4362, EN 10088, beschichtet

MKT Bolzenanker B A4 Dübelabmessungen, Benennung und Werkstoffe Anhang 2 der europäischen technischen Zulassung ETA-05/0018

Tabelle 3: Montagekennwerte

Dübelgröße			М6	М8	M10	M12	M16	M20
Bohrernenndurchmesser	d ₀ =	[mm]	6	8	10	12	16	20
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	6,40	8,45	10,45	12,5	16,5	20,55
Drehmoment beim Verankern	T _{inst} =	[Nm]	6	15	25	50	100	160
Durchgangsloch im anzuschließenden Bauteil	$d_f \le$	[mm]	7	9	12	14	18	22
Standardverankerungstiefe			"			_		
Bohrlochtiefe	h ₁ ≥	[mm]	55	65	70	90	110	130
Setztiefe	h _{nom} ≥	[mm]	49	56	62	81	99	121
Verankerungstiefe	h _{ef} ≥	[mm]	40	44	48	65	80	100
Reduzierte Verankerungstiefe						_		
Bohrlochtiefe	h _{1,red} ≥	[mm]	45	55	65	75	95	110
Setztiefe	h _{nom.red} ≥	[mm]	39	47	56	66	83	99
Verankerungstiefe	h _{ef.red} ≥	[mm]	30	35	42	50	64	78

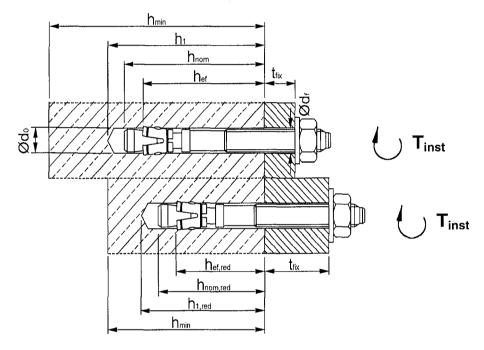


Tabelle 4: Mindestbauteildicke, minimale Achs- und Randabstände

Dübelgröße			M6	М8	M10	M12	M16	M20
Standardverankerungstiefe h _{ef}	*** <u>****</u>				•	· · · · · · · · · · · · · · · · · · ·		<u> </u>
Mindestbauteildicke	h _{min}	[mm]	100	100	100	130	160	200
Mindestachsabstand	S _{min}	[mm]	35	35	45	60	80	100
	für c ≥	[mm]	40	65	70	100	120	150
Mindestrandabstand	C _{min}	[mm]	35	45	55	70	80	100
	für s ≥	[mm]	60	110	80	100	140	180
Reduzierte Verankerungstiefe hef,red								
Mindestbauteildicke	h _{min}	[mm]	80	80	100	100	130	160
Mindestachsabstand	S _{min}	[mm]	35	60	55	100	110	140
Mindestrandabstand	C _{min}	[mm]	40	60	65	100	110	140

MKT Bolzenanker B A4

Montagekennwerte, Mindestbauteildicke, minimale Achs- und Randabstände

Anhang 3

der europäischen technischen Zulassung

Tabelle 5: Bemessungsverfahren A, Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M6	M8	M10	M12	M16	M20
Stahlversagen					!	*	·	
charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	10	18	30	44	88	134
Teilsicherheitsbeiwert	YMs 1)	[-]		<u> </u>	1,50			1,68
Herausziehen und Spalten für Der höhere der beiden maßgebe Fall 1					darf ange	setzt werd	en.	
				r		r	Γ	
charakteristische Tragfähigkeit im ungerissenen Beton C20/25	N _{Rk,p} ⁵⁾	[kN]	6	9	12	20	30	40
zugehöriger Achsabstand	S _{cr,sp}	[mm]			3	h _{ef}		
zugehöriger Randabstand	C _{cr,sp}	[mm]			1,5	5 h _{ef}		
Fall 2								
charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	7,5 ⁵⁾	12	16	25	3)	3)
zugehöriger Achsabstand	S _{cr,sp}	[mm]	160	220	240	340	410	560
zugehöriger Randabstand	C _{cr,sp}	[mm]	80	110	120	170	205	280
Herausziehen und Spalten für	reduzierte V	/eranke	rungstief	e h _{ef, red}				
charakteristische Tragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	6 ⁴⁾	9 4)	12	3)	3)	3)
zugehöriger Achsabstand	S _{cr,sp}	[mm]	180	210	230	300	320	400
zugehöriger Randabstand	C _{cr,sp}	[mm]	90	105	115	150	160	200
	C30/37	[-]		<u> </u>	1,	22		
Erhöhungsfaktoren für N _{Rk,p}	ψ _C C40/50	[-]			1,	41		
	C50/60	[-]			1,	55		
Betonausbruch für Standardvo	erankerungs	stiefe h _e	ıf					
effektive Verankerungstiefe	h _{ef}	[mm]	40	44	48	65	80	100
Achsabstand	S _{cr,N}	[mm]		L	3	h _{ef}	<u> </u>	
Randabstand	C _{cr,N}	[mm]				h _{ef}		
Betonausbruch für reduzierte	Verankerun	gstiefe						
effektive Verankerungstiefe	h _{ef}	[mm]	30 ⁴⁾	35 ⁴⁾	42	50	64	78
Achsabstand	S _{cr,N}	[mm]			3	h _{ef}		
Randabstand	C _{cr,N}	[mm]			1,5	h _{ef}		
Teilsicherheitsbeiwert $\gamma_{Mo} =$	$\gamma_{Msp} = \gamma_{Mc}^{(1)}$	[-]			1.	5 ²⁾		

Verschiebung unter Zugbeanspruchung Tabelle 6:

Dübelgröße			М6	М8	M10	M12	М16	M20
Standardverankerungstiefe					<u> </u>	Ļ	<u></u>	<u> </u>
Zuglast	N	[kN]	3,6	5,7	7,6	11,9	17,2	24,0
Varaahiahung	δηο	[mm]	0,7	0,9	0,5	0,6	0,9	2,1
Verschiebung	$\delta_{N_{\infty}}$	[mm]			1,8			4,2
Reduzierte Verankerungstie	efe							
Zuglast	N	[kN]	2,9	4,3	5,7	8,5	12,3	16,6
Mara dallahara	δ_{N0}	[mm]	0,4	0,7	0,4	0,4	0,6	1,5
Verschiebung	$\delta_{N_{\infty}}$	[mm]			1,3			2,9

MKT Bolzenanker B A4

Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung, Dübelverschiebungen

Anhang 4

der europäischen technischen Zulassung

 $^{^{1)}}$ Sofern andere nationale Regelungen fehlen $^{2)}$ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2=$ 1,0 enthalten $^{3)}$ Herausziehen ist nicht maßgebend

⁴⁾ Die Verwendung ist beschränkt auf die Verankerung statisch unbestimmter Systeme.

⁵⁾ Beim Nachweis gegen Spalten nach ETAG 001 Annex C, ist in Gleichung (5.3) für N⁰_{Rk,c} der hier angegebene Wert $N_{Rk,p}$ zu verwenden ($\psi_{ucr,Sp} = 1,0$).

Tabelle 7: Bemessungsverfahren A, Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M6	M8	M10	M12	M16	M20
Stahlversagen ohne Hebelarm								
charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	7	12	19	27	50	86
zugehöriger Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,25			1,4
Stahlversagen mit Hebelarm						-		
charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]	10	24	49	85	199	454
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,25			1,4
Betonausbruch auf der lastabge	wandten \$	Seite fü	r Standar	dverankeı	rungstief	e h _{ef}		
Faktor in Gleichung (5.6) ETAG 001 Annex C, 5.2.3.3	k	[-]	1,0	1,0	1,0	2,0	2,0	2,0
Betonausbruch auf der lastabge	wandten 9	Seite fü	r reduzier	te Verank	erungsti	efe h _{ef, red}		
Faktor in Gleichung (5.6) ETAG 001 Annex C, 5.2.3.3	k	[-]	1,0 ³⁾	1,0 ³⁾	1,0	1,0	2,0	2,0
Teilsicherheitsbeiwert	γ _{Mcp} 1)	[-]			1,	5 ²⁾		
Betonkantenbruch für Standard	/erankeru	ngstief	e h _{ef,}					
wirksame Dübellänge bei Querlast	lf	[mm]	40	44	48	65	80	100
Betonkantenbruch für reduzierte	Veranke	rungsti	efe h _{ef, red}					
wirksame Dübellänge bei Querlast	lf	[mm]	30 ³⁾	35 ³⁾	42	50	64	78
wirksamer Außendurchmesser	d _{nom}	[mm]	6	8	10	12	16	20
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,	5 ²⁾		

Tabelle 8: **Verschiebung unter Querlast**

Dübelgröße			М6	M8	M10	M12	M16	M20
Querlast	V	[kN]	4,0	6,9	10,9	15,4	28,6	43,7
zugehörige Verschiebungen	δ_{V0}	[mm]	1,1	2,0	1,2	2,0	2,2	2,1
	δν∞	[mm]	1,7	3,0	1,8	3,0	3,3	3,2

MKT Bolzenanker B A4

Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung, Dübelverschiebungen

Anhang 5

der europäischen technischen Zulassung

 $^{^{1)}}$ Sofern andere nationale Regelungen fehlen $^{2)}$ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2=1,0$ enthalten $^{3)}$ Die Verwendung ist beschränkt auf die Verankerung statisch unbestimmter Systeme.