Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-05/0011

Handelsbezeichnung

Trade name

Zulassungsinhaber

Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom *Validity:* from

bis to

verlängert vom extended from

tended from bis

to

Herstellwerk

Manufacturing plant

HECO MULTI-MONTI MMS A4

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28 78713 Schramberg

Betonschraube aus nichtrostendem Stahl in den Größen 7,5, 10 und 12 zur Verankerung im Beton

Concrete screw made of stainless steel of sizes 7.5, 10 and 12 for use in concrete

29. März 2007

20. Januar 2010

6. Januar 2010

20. Januar 2015

HECO-Schrauben GmbH & Co. KG Dr.-Kurt-Steim-Straße 28

78713 Schramberg

Diese Zulassung umfasst This Approval contains 14 Seiten einschließlich 7 Anhänge

14 pages including 7 annexes

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

-

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25

⁴ Bundesgesetzblatt Teil I 1998, S. 812

⁵ Bundesgesetzblatt Teil I 2006, S. 2407, 2416

Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Die Betonschraube HECO MULTI-MONTI MMS A4 ist ein Dübel aus nichtrostendem Stahl in den Größen 7,5, 10 und 12. Der Dübel wird in ein vorgebohrtes zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Im Anhang 1 ist der Dübel im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt.

Der Dübel darf für Verankerungen, an die Anforderungen an die Feuerwiderstandsfähigkeit gestellt werden, verwendet werden.

Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden. Er darf im gerissenen und ungerissenen Beton verankert werden.

Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben nach Anhang 2. Die in Anhang 2 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

In Bezug auf die Anforderungen des Brandschutzes kann angenommen werden, dass der Dübel die Anforderungen der Brandverhaltensklasse A1 gemäß den Vorschriften der Entscheidung 96/603/EG der Europäischen Kommission (in geänderter Fassung 2000/605/EG), erfüllt.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 4 und 5 angegeben.

Die charakteristischen Werte für die Bemessung der Verankerungen in Bezug auf die Feuerwiderstandsfähigkeit sind in Anhang 6 angegeben. Sie gelten für die Verwendung in einem System, das den Anforderungen einer bestimmten Feuerwiderstandsklasse genügen muss.

Jeder Dübel ist mit dem Herstellerkennzeichen, dem Dübeltyp, dem Durchmesser, der Dübellänge, der maximalen Anbauteildicke und der Bezeichnung "A4" gemäß Anhang 2 gekennzeichnet.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit sowie der Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Anlehnung an die "Leitlinie für europäische technische Zulassungen für Metalldübel zur Verankerung in Beton" ETAG 001, Option 1, und durch die nachfolgend aufgeführten zusätzlich durchgeführten Versuche:

- 1. Montageversuche im hochfesten Beton;
- 2. Montageversuche im niederfesten Beton:
- 3. Montageversuche mit Schlagschrauber;
- 4. Geänderter Versuch unter wiederholter Belastung;
- 5. Versuche hinsichtlich der Sprödbruchneigung.

Die Beurteilung des Dübels für den vorgesehenen Verwendungszweck in Bezug auf die Feuerwiderstandsfähigkeit erfolgte entsprechend dem Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit".

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Mitteilung der Europäischen Kommission⁸ ist das System 2+ der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 2+: Konformitätserklärung des Herstellers für das Produkt aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) Erstprüfung des Produkts;
 - (2) werkseigener Produktionskontrolle;
 - (3) Prüfung von im Werk entnommenen Proben nach festgelegtem Prüfplan.
- (b) Aufgaben der zugelassenen Stelle:
 - (4) Zertifizierung der werkseigenen Produktionskontrolle aufgrund von:
 - Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹ Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüfplans durchzuführen:

- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle,

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass die werkseigene Produktionskontrolle mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für die werkseigene Produiktionskontrolle,

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

- Nummer der europäischen technischen Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 1),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z.B. Lage des Dübels zur Bewehrung oder zu den Auflagern, im gerissenen oder ungerissenen Beton usw.) angegeben.

Bei der Bemessung von Verankerungen unter Brandbeanspruchung sind die Bestimmungen des Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit" zu beachten. Die maßgebenden charakteristischen Dübelkennwerte sind in Anhang 6 angegeben. Die Bemessungsmethode gilt für eine einseitige Brandbeanspruchung des Bauteils. Bei mehrseitiger Brandbeanspruchung kann die Bemessungsmethode nur angewendet werden, wenn der Randabstand des Dübels $c \ge 300$ mm beträgt.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,

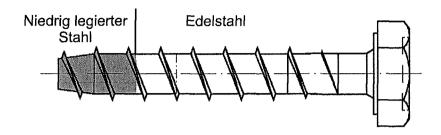
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Reinigung des Bohrlochs vom Bohrmehl,
- Der Dübel darf nur einmal verwendet werden,
- Einbau so, dass die Länge des Dübels im Beton mindestens dem Wert h_{nom} nach Anhang 3, Tabelle 2 entspricht,
- Vollständiges Anpressen des Anbauteils gegen den Beton ohne Zwischenschichten,
- Leichtes Weiterdrehen des Dübels ist nicht möglich,
- Der Dübelkopf liegt vollflächig am Anbauteil an und ist nicht beschädigt.

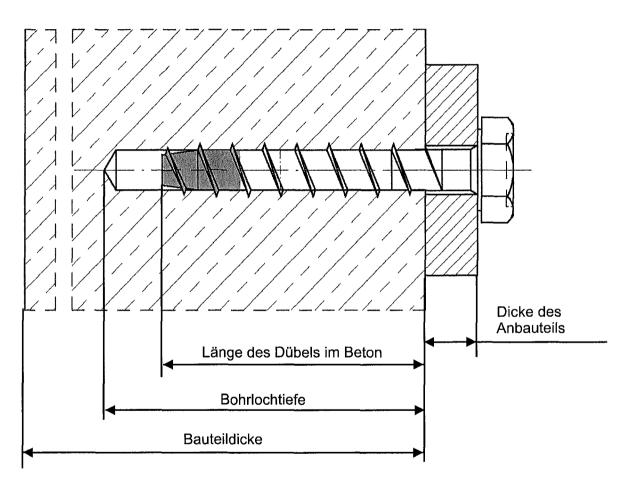
5 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Dübelgröße,
- Maximale Dicke des Anbauteils,
- Minimale Einbindetiefe,
- Mindestbohrlochtiefe,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung.
- Hinweis auf erforderliche Setzwerkzeuge,
- Herstelllos.


Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.


Dipl.-Ing. Georg Feistel Leiter der Abteilung Konstruktiver Ingenieurbau des Deutschen Instituts für Bautechnik Berlin, 6. Januar 2010 Beglaubigt

Oug

Deutsches Institut
für Bautechnik

MULTI-MONTI MMS A4

HECO MULTI-MONTI MMS A4	Anhang 1
Produkt und Einbauzustand	der europäischen technischen Zulassung ETA-05/0011

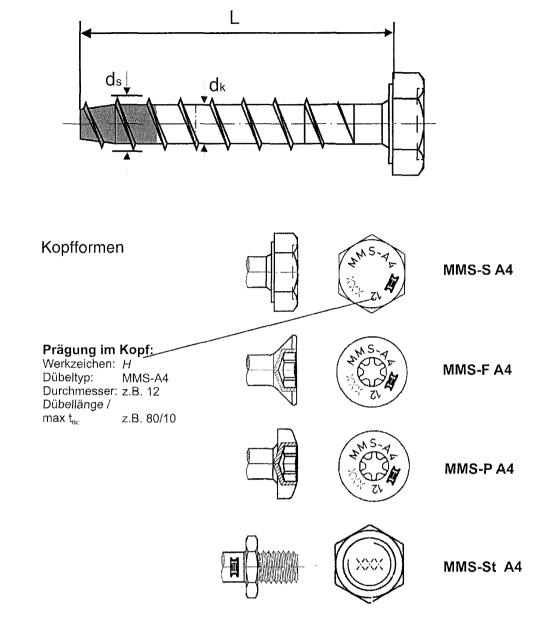


Tabelle 1: Abmessungen und Werkstoffe

Dübelgröße				MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Schraubenlänge	L	≥	[mm]	70	80	90
Schraubenlänge	L	≤	[mm]	160	160	320
Kerndurchmesser	d _k		[mm]	5,7	7,6	9,6
Aussendurchmesser	d _s		[mm]	7,5	10,1	12,4
Werkstoff					er Stahl 1.4401 ach EN 10263	i i
Werkstoff des niedrig legierten Stahls				Stah	nl nach EN 102	63-4

HECO MULTI-MONTI MMS A4	Anhang 2
Kopfformen, Abmessungen und Werkstoffe	der europäischen technischen Zulassung ETA-05/0011

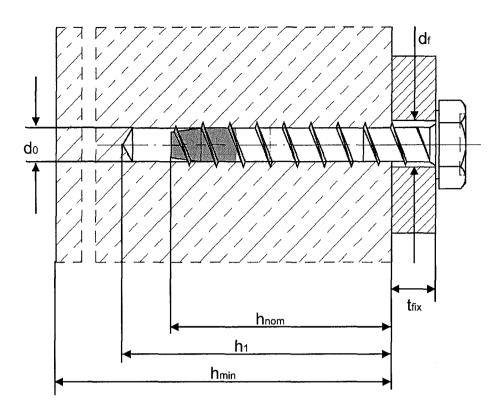


Tabelle 2: Montagekennwerte

Dübelgröße				MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Bohrernenndurchmesser	d ₀		[mm]	6,0	8,0	10,0
Bohrerschneidendurchmesser	d _{cut}	≤	[mm]	6,4	8,45	10,45
Bohrlochtiefe	h ₁	≥	[mm]	75	90	100
Länge des Dübels im Beton	h _{nom}	2	[mm]	65	75	90
Durchgangsloch im anzuschließenden Bauteil	d _f	≤	[mm]	9	12,0	14,0

Tabelle 3: Mindestbauteildicke und minimale Rand- und -Achsabstände

Dübelgröße		-		MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Mindestbauteildicke	h _{min}		[mm]	105	130	140
gerissener und ungerisse	ener Beton					<u></u>
min. Achsabstand	S _{min}	=	[mm]	40	50	60
min. Randabstand	C _{min}	=	[mm]	40	50	60

HECO MULTI-MONTI MMS A4	Anhang 3
Montagekennwerte,	der europäischen
Mindestbauteildicke,	technischen Zulassung
minimale Rand- und Achsabstände	ETA-05/0011

Tabelle 4: Charakteristische Werte bei zentrischer Zugbeanspruchung für das Bemessungsverfahren A

Dübelgröße			MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Stahlversagen		· · · · · · · · · · · · · · · · · · ·		<u> </u>	
charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	23	16	25
zugehöriger Teilsicherheitsbeiwert	γ _{Ms}			1,4	
Herausziehen					
charakteristische Zugtragfähigkeit im gerissenen Beton C20/25	N _{Rk,p}	[kN]	5	9	12
charakteristische Zugtragfähigkeit im ungerissenen Beton C20/25	N _{Rk,p}	[kN]	7,5	12	16
Erhöhungsfaktoren für die		C30/37		1,22	
charakteristische Tragfähigkeit im	Ψς	C40/50		1,41	
gerissenen und ungerissenen Beton		C50/60		1,55	
Teilsicherheitsbeiwert	γ _{Mp} 1)		2,1 ³⁾	1,	8 ²⁾
Betonausbruch und Spalten					
rechnerische Verankerungstiefe	h _{ef}	[mm]	40	47,5	54,5
Achsabstand s _{cr,N}	= S _{cr,sp}	[mm]		3 h _{ef}	
Randabstand c _{cr,N}	= C _{cr,sp}	[mm]		1,5 h _{ef}	
Teilsicherheitsbeiwert	γ _{Mc} 1)		2,1 ³⁾	1,	8 ²⁾

¹⁾ Sofern keine anderen nationalen Regelungen vorliegen

Tabelle 5: Verschiebungen bei Zugbeanspruchung

Dübelgröße			MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Zuglast in gerissenem Beton	N	[kN]	1,7	3,0	4,0
Tugob öviga Maragbiokungan	$\delta_{ m N0}$	[mm]	0,1	0,1	0,2
zugehörige Verschiebungen	$\delta_{ m N\infty}$	[mm]	0,2	0,2	0,6
Zuglast in ungerissenem Beton	N	[kN]	2,6	4,0	5,3
zugehörige Verschiebungen	$\delta_{ m N0}$	[mm]	0,1	0,1	0,2
zugenonge verschiebungen	$\delta_{ m N\infty}$	[mm]	0,2	0,2	0,6

HECO MULTI-MONTI MMS A4	Anhang 4
Bemessungsverfahren A,	der europäischen
Charakteristische Werte bei Zugbeanspruchung,	technischen Zulassung
Dübelverschiebungen	ETA-05/0011

²⁾ Der Teilsicherheitsbeiwert γ_2 = 1,2 ist enthalten

³⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,4$ ist enthalten

Tabelle 6: Charakteristische Werte bei Querbeanspruchung für das Bemessungsverfahren A

Dübelgröße			MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Stahlversagen ohne Hebelarm					
charakteristische Quertragfähigkeit	V _{Rk,s}	[kN]	12,3	20	33
zugehöriger Teilsicherheitsbeiwert	γ _{Ms} 1)			1,5	
Stahlversagen mit Hebelarm					
charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]	22	45	93
zugehöriger Teilsicherheitsbeiwert	γ _{Ms}			1,5	
Betonausbruch auf der lastabgewar	ndten Seite)			
Faktor in der Gleichung 5.6 entsprechend ETAG 001, Anhang C Absatz 5.2.3.3	k		1,0	2	,0
Teilsicherheitsbeiwert	γ _{Mc} 1)			1,5 ²⁾	
Betonkantenbruch					
wirksame Dübellänge bei Querlast	ℓ _f	[mm]	40	47,5	54,5
wirksamer Außendurchmesser	d _{nom}	[mm]	6	8	10
Teilsicherheitsbeiwert	γ _{Mc} 1)			1,5 ²⁾	

¹⁾ Sofern keine anderen nationalen Regelungen vorliegen

Tabelle 7: Verschiebungen bei Querbeanspruchung

Dübelgröße			MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Querlast in gerissenem und ungerissenem Beton	V	[kN]	5,9	9,7	15,7
zugehörige Verschiebungen	δ_{V0}	[mm]	1,7	3,0	3,2
zugenonge verschiebungen	$\delta_{V\infty}$	[mm]	2,6	4,5	4,8

Hinweis zur Bemessung bei Querlast

Im allgemeinen sind die Bedingungen nach ETAG 001, Annex C Abschnitt 4.2.2.1 a) und Abschnitt 4.2.2.2 b) nicht eingehalten, weil das Durchgangsloch im anzuschließenden Bauteil nach Anhang 3 Tabelle 2 größer ist als die in Annex C Tabelle 4.1 angegebenen Werte für die entsprechenden Dübeldurchmesser.

Der Hersteller kann jedoch für jede ausgeführte Dübellänge die Anbauteildicke angeben, für die diese Bedingungen erfüllt sind.

HECO MULTI-MONTI MMS A4	Anhang 5
Bemessungsverfahren A,	der europäischen
Charakteristische Werte bei Querlast,	technischen Zulassung
Dübelverschiebungen	ETA-05/0011

²⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1.0$ ist enthalten

Tabelle 8: Charakteristische Zugtragfähigkeit unter Brandbeanspruchung im gerissenen und ungerissenen Beton C20/25 bis C50/60

Dübelgröße			MMS-7,5			MMS-10				MMS-12				
Feuerwiderstandsdauer	R	[min]	30	60	90	120	30	60	90	120	30	60	90	120
Stahlversagen														
charakteristische Tragfähigkeit	N _{Rk,s,fi}	[kN]	1,7	1,2	0,8	0,6	3,4	2,5	1,7	1,2	5,9	4,4	3,0	2,2
charakteristische Tragfähigkeit für die Ausführung MMS-St	$N_{Rk,s,fi}$	[kN]	1,7	1,2	0,8	0,6	1,8	1,5	1,1	1,0	-	1	-	-
Herausziehen														
charakteristische Tragfähigkeit in Beton C20/25 bis C50/60	N _{Rk,p,fi}	[kN]		1,3		1,0		2,3		1,8		3,0		2,4
Betonversagen						-								
charakteristische Tragfähigkeit in Beton C20/25 bis C50/60	N _{Rk,c,fi}	[kN]		1,8		1,5		2,8		2,2		3,9		3,2
Achsabstand	S _{cr,N}	[mm]	4 x h _{ef}											
Acrisabstaria	S _{min}	[mm]	s _{min} nach Anhang 3											
	C _{cr,N}	[mm]	2 x h _{ef}											
Randabstand	C _{min}	[mm]	c_{min} = 2 x h_{ef} ; bei Brandbeanspruchung von mehr als einer Seite, muss der Randabstand des Dübels mehr als 300 mm betragen.											

Sofern andere nationale Regelungen fehlen, wird für Brandbeanspruchung ein Sicherheitsbewiwert von $\gamma_{M.fi}$ = 1,0 empfohlen

Tabelle 9: Charakteristische Quertragfähigkeit unter Brandbeanspruchung im gerissenen und ungerissenen Beton C20/25 bis C50/60

Dübelgröße				MM	S-7,5			ММ	S-10			MM	S-12	
Feuerwiderstandsdauer	R	[min]	30	60	90	120	30	60	90	120	30	60	90	120
Stahlversagen ohne Hebelarm					,				,					
charakteristische Quertragfähigkeit	V _{Rk,s,fi}	[kN]	1,7	1,2	0,8	0,6	3,4	2,5	1,7	1,2	5,9	4,4	3,0	2,2
Stahlversagen mit Hebelarm			•											
charakteristisches Biegemoment	M ⁰ _{Rk,s,fi}	[Nm]	1,5	1,1	0,7	0,5	4,0	3,0	2,0	1,5	8,8	6,6	4,4	3,3

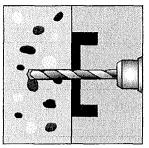
Betonausbruch auf der lastabgewandten Seite

Nach Gleichung (5.6) of ETAG 001, Annex C, 5.2.3.3 muss der k-Wert 2,0 (1,0 für MMS-7,5) und der maßgebende Wert N⁰_{Rk,c,fi}

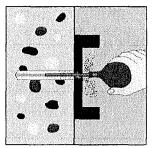
aus Tabelle 8 berücksichtigt werden

Betonkantenbruch

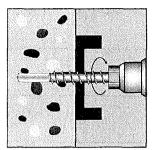
Der Ausgangswert V⁰_{Rk,c,fi} für die charakteristische Tragfähigkeit in Beton C20/25 bis C50/60 unter Brandbeanspruchung läßt sich wie folgt berechnen:

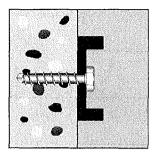

$$V_{Rk,c,fi}^{0} = 0.25 \times V_{Rk,c}^{0}$$
 (R30, R60, R90)

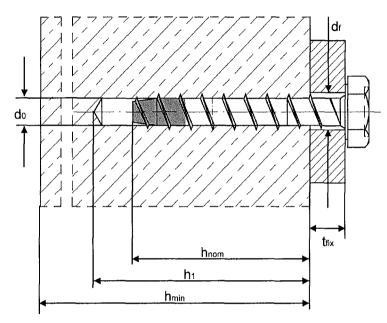
$$V_{Rk,c,fi}^0 = 0,20 \times V_{Rk,c}^0$$
 (R120)


mit $V^0_{Rk,c}$ charakteristische Tragfähigkeit im gerissenen Beton C20/25 bei normaler Temperatur

Sofern andere nationale Regelungen fehlen, wird für Brandbeanspruchung ein Sicherheitsbewiwert von $\gamma_{M,fi}=1,0$ empfohlen


HECO MULTI-MONTI MMS A4	Anhang 6
Charakterisitische Zug- und Quertragfähigkeit unter Brandbeanspruchung	der europäischen technischen Zulassung ETA-05/0011


Bohren Bohrdurchmesser d₀ und Bohrtiefe h₁ einhalten


Bohrmehl entfernen z. Bsp. Ausblasen

Einschrauben z. Bsp. manuell oder mit Tangentialschlagschrauber

Fertig prüfen: Kopfauflage / Setztiefe h_{nom}

Dübelgröße				MMS-7,5 A4	MMS-10 A4	MMS-12 A4
Bohrernenndurchmesser	d ₀		[mm]	6,0	8,0	10,0
Bohrlochtiefe	h ₁	≥	[mm]	75	90	100
Länge des Dübels im Beton	h _{nom}	≥	[mm]	65	75	90
Durchgangsloch im anzuschließenden Bauteil	d _f	≤	[mm]	9	12,0	14,0
empfohlenes Setzgerät		max. Leis	Tangentialschla tungsabgabe T _i Herstellerangab	_{max} gemäß		
				100 Nm	250 Nm	250 Nm

HECO MULTI-MONTI MMS	Anhang 7
Montageanweisung	der europäischen technischen Zulassung ETA-05/0011