Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-05/0070

Handelsbezeichnung

Trade name

mungo Stahlbolzen m2, m2C mungo Throughbolt m2, m2C

Zulassungsinhaber

Holder of approval

Mungo Befestigungstechnik AG

Bornfeldstrasse 2 4603 Olten SCHWEIZ

Zulassungsgegenstand und Verwendungszweck

Kraftkontrolliert spreizender Dübel aus galvanisch verzinktem Stahl in den Größen M6, M8, M10, M12, M16 und M20 zur Verankerung im ungerissenen Beton

Generic type and use of construction product

Torque-controlled expansion anchor made of galvanised steel of sizes M6, M8, M10, M12, M16 an M20 for use in non-cracked concrete

Geltungsdauer: vom *Validity:* from

from bis to

26. April 2010

20. Februar 2008

verlängert vom extended from

from bis

23. April 2010

to

23. April 2015

Herstellwerk

Manufacturing plant

Mungo Werk Olten

Diese Zulassung umfasst This Approval contains

12 Seiten einschließlich 5 Anhänge

12 pages including 5 annexes

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 2: Kraftkontrolliert spreizende Dübel", ETAG 001-02"
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

-

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25

⁴ Bundesgesetzblatt Teil I 1998, S. 812

⁵ Bundesgesetzblatt Teil I 2006, S. 2407, 2416

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und Verwendungszweck

1.1 Beschreibung des Produkts

Der mungo Stahlbolzen m2, m2C in den Größen M6, M8, M10, M12, M16 und M20 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Im Anhang 1 ist der Dübel in eingebautem Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206-1: 2000-12 verwendet werden. Er darf nur im ungerissenen Beton verankert werden.

Der Dübel darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Die Anforderungen dieser europäischen technischen Zulassung beruhen auf der Annahme einer vorgesehenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Herstellergarantie ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl des richtigen Produkts angesichts der erwarteten wirtschaftlich angemessenen Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben des Anhangs 2. Die in Anhang 2 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 3 bis 5 angegeben.

Jeder Dübel ist mit dem Herstellerkennzeichen, dem Handelsnamen, der Gewindegröße, der Länge des Ankers und der maximalen Befestigungsdicke entsprechend Anlage 1 zu kennzeichnen.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 2 "Kraftkontrolliert spreizende Dübel", auf der Grundlage der Option 7.

Z17920.10 Deutsches Institut für Bautechnik 8.06.01-56/10

.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bescheinigung der Konformität des Produkts und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- a) Aufgaben des Herstellers:
 - (1) werkseigene Produktionskontrolle,
 - (2) zusätzliche Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan.
- b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts,
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle,
 - (5) laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeit

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/ Rohstoffe/ Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt⁹.

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

-

⁸ Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung, der nicht zusammen mit der Zulassung veröffentlicht und nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt wird.
Siehe Abschnitt 3.2.2.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit dem Prüfplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle,

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.

4 Voraussetzungen, unter denen die Brauchbarkeit des Produkts gegeben ist

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, für kraftkontrolliert spreizende Dübel unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern) angegeben.

4.3 Einbau der Dübel

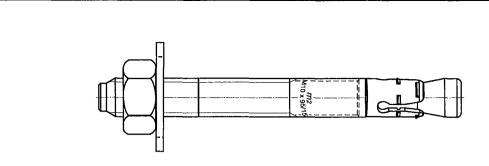
Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, der Dübel wie folgt eingebaut wird:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den angegebenen Werkzeugen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bohrlochherstellung durch Hammerbohren
- Reinigung des Bohrlochs vom Bohrmehl,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die Setztiefenmarkierung des Dübels nicht über die Betonoberfläche hinausragt,
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Aufbringen des im Anhang 3 angegebenen Drehmoments mit einem überprüften Drehmomentenschlüssel.

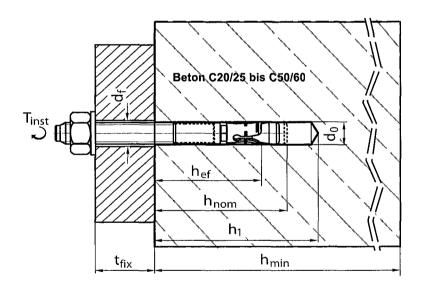
5 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

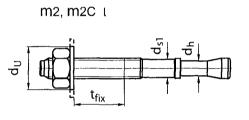

- Bohrerdurchmesser.
- Gewindedurchmesser.
- maximale Dicke der Anschlusskonstruktion,
- Mindestverankerungstiefe,
- Mindest-Bohrlochtiefe,
- Drehmoment,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Setzwerkzeuge,
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.


Dipl.-Ing. Georg Feistel Leiter der Abteilung Konstruktiver Ingenieurbau des Deutschen Instituts für Bautechnik Berlin, 23. April 2010 Beglaubigt

Output

Deutsches Issitut
für Bautechnik


	M	arkierung	Bezeichnung
	<i>m</i> 2	<i>m</i> 2	m2 Stahl verzinkt, U-Scheibe DIN 125 / m2C Stahl verzinkt, U-Scheibe DIN 9021
Beispiel:	/ 15	M6M20	Nenndurchmesser
"	x 95	x 65440	Bolzenlänge
	M10	/ 10325	Maximal nutzbare Anbauteildicke

mungo Stahlbolzen m2, m2C	Anhang 1
Produkt und Einbauzustand	Der europäischen technischen Zulassung ETA-05/0070

Tabelle 1: Dübelabmessungen

			M6	M8	M10	M12	M16	M20
Konusbolzen		[mm]	6	8	10	12	16	20
		[mm]	4	5.6	7.3	8.7	11.5	15.2
		[mm]	5.25	7.05	8.9	10.7	14.5	-
		[mm]	•	1	1	12	16	20
		[mm]	10	10	15	15	15	30
	_t _{fix} max	[mm]	40	95	100	265	325	140
	_ l _G min	[mm]	32	43	52	62	73	100
	ါ _ဇ max	[mm]	62	120	120	120	120	120
	l min	[mm]	65	80	95	110	130	160
	lmax	[mm]	95	165	180	360	440	270
	l _s	[mm]	9.5	12	14.2	16.8	19.3	21.6
DIN 125	$d_{\scriptscriptstyle \mathcal{U}}$	[mm]	12	16	20	24	30	37
DIN 9021	d _u	[mm]	18	24	30	37	50	60
	sw	[mm]	10	13	17	19	24	30
		$\begin{array}{c} & \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

m2, m2C l > 185 mm (M12 bis M20)

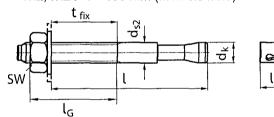


Tabelle 2: Werkstoffe

Teil	Benennung		Werkstoff			
1	Konusbolzen		Kaltstauch- bez. Automatenstahl	verzinkt	5	m DIN 50961
2	Spreizhülse		Nichtrost. Stahl nach EN10088 1.4016	-		
	m2		DIN 125; Stahl	verzinkt	5	m ISO4042
3	U-Scheibe	m2C	DIN 9021; Stahl	verzinkt	5	m ISO4042
4	Sechskantmu	utter	Stahl Festigkeitsklasse 8 nach EN20989-2	verzinkt	5	m ISO4042

mungo Stahlbolzen m2, m2C	Anhang 2
Werkstoff und Dübelabmessungen	Der europäischen technischen Zulassung ETA-05/0070

Tabelle 3: Montagekennwerte

			M6	M8	M10	M12	M16	M20
Bohrernenndurchmesser	d _o	[mm]	6	8	10	12	16	20
Bohrerschneidendurchmesser	d _{cut}	[mm]	6.4	8.45	10.45	12.5	16.5	20.55
Drehmoment beim Verankern	Tinst	[Nm]	5	15	30	50	100	200
Bohrlochtiefe	h,	[mm]	60	65	80	90	110	130
Setztiefe	h _{nom}	[mm]	46.9	58.5	68.8	79.6	96.4	118
Effektive Verankerungstiefe	h _{ef}	[mm]	40	50	58	68	80	100
Durchgangsloch im anzuschliessenden Bauteil	d _r	[mm]	7	9	12	14	18	22

Tabelle 4: Mindestbauteildicke und minimale Achs- und Randabstände

Nur im ungerissenen Beton			М6	M8	M10	M12¹)	M16 ¹⁾	M20
Mindest Bauteildicke	h _{min}	[mm]	100	100	120	140	160	200
Mindest Achsabstand	S _{min}	[mm]	40	50	60	75 (110)	100 (120)	200
Wilndest Achsabstand	für c	[mm]	70	90	115	150 (200)	190 (320)	400
Mindon Donale baland	C _{min}	[mm]	40	50	60	100 (150)	130 (240)	300
Mindest Randabstand	für s	[mm]	80	100	120	150 (210)	190 (240)	350

¹¹Werte in Klammern gelten für gedrehte Bolzen mit Länge >185mm

mungo Stahlbolzen m2, m2C	Anhang 3
Einbaudaten	Der europäischen technischen Zulassung ETA-05/0070

Tabelle 5: Charakteristische Werte bei zentrischer Zugbeanspruchung für das Bemessungsverfahren A

			М6	М8	M10	M12	M16	M20
Stahlversagen								
Charakt. Zugtragfähigkeit	$N_{Rk,s}$	[kN]	9.6	19.0	32.6	43.6	76.6	123.8
Teilsicherheitsbeiwert	γ _{Ms} 1)	-			1	.4		

Herausziehen									
Charakt. Tragfähigkeit im ungerissenen Beton C20/25		$N_{Rk,p}$	[kN]	7.5	12	16	25	30	50
Teilsicherheitsbeiwert		γ ₂ ²⁾	-	1.0			1.2		
		γ _{Mp} 1)	-	1.5			1.8		
		C30/37	-	1.17					
Erhöhungsfaktor für N _{Rk,p} im ungerissenen Beton	Ψ_{c}	C40/50	-	1.32					
in angonoconon boton	,	C50/60	-			1.	42		

Betonausbruch und Spalten								
Effektive Verankerungslänge	h _{ef}	[mm]	40	50	58	68	80	100
Achsabstand	S _{cr,N}	[mm]	120	150	174	204	240	300
Acrisabstand	S _{cr,sp}	[mm]	200	250	290	340	400	500
Randabstand	C _{cr,N}	[mm]	60	75	87	102	120	150
Randabstand	C _{cr,sp}	[mm]	100	125	145	170	200	250
Toilgigharhaitghaiwart	$\gamma_2^{(2)}$	-		1.0			1.2	
Teilsicherheitsbeiwert	$\gamma_{Mc} = \gamma_{M,sp}^{1}$	_		1.5			1.8	

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 6: Verschiebung der Dübel unter Zuglast im ungerissenen Beton

			М6	М8	M10	M12	M16	M20
Zuglast im ungerissenen Beton C20/25 bis C50/60		[kN]	3.6	5.7	7.6	9.9	11.9	19.8
Zugehörige Verschiebung	δ _{N0}	[mm]			0	.3		
Zugenonge verschiebung	δ_{N}	[mm]	1.3					

mungo Stahlbolzen m2, m2C	Anhang 4
Bemessungsverfahren A, charakteristische Werte bei Zugbeanspruchung; Dübelverschiebung	Der europäischen technischen Zulassung ETA-05/0070

²⁾ Der Montagesicherheitsfaktor γ₂ ist enthalten

Tabelle 7: Charakteristische Werte bei Querbanspruchung für das Bemessungsverfahren A

				M6	M8	M10	M12	M16	M20
Stahlversagen ohne Hebelarm	1								
Charakt. Quertragfähigkeit	,	$V_{Rk,s}$	[kN]	4.5	8.2	13.0	17.7	32.9	51.4
Teilsicherheitsbeiwert		γ _{Ms} 1)	-	1.5					

Stahlversagen mit Hebelarm				•				-
Charakt. Quertragfähigkeit	M _{Rk,s}	[Nm]	12.2	30.0	59.8	98.2	249	486.2
Teilsicherheitsbeiwert	γ 1) Ms	-	1.5					

Betonausbruch auf der lastabgewandten Seite								
Faktor in Leitlinie der ETAG Anhang C, 5.2.3.3, Gleichung (5.6)	k	-	1.0	2.0				
Teilsicherheitsbeiwert	γ _{Mc} 1)	-	1.5					

Betonkantenbruch					_			
Wirksame Dübellänge bei Querlast	l,	[mm]	40	50	58	68	80	100
Wirksamer Aussendurchmesser	d _{nom}	[mm]	6	8	10	12	16	20
Teilsicherheitsbeiwert	γ 1) Mc	-	1.5					

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 8: Verschiebung der Dübel unter Querlast

			М6	М8	M10	M12	M16	M20
Querlast im ungerissenen Beton C20/25 bis C50/60		[kN]	1.9	3.5	5.5	7.5	14.0	21.9
Zugehörige Verschiebung	δ_{vo}	[mm]	1.6	2.2	2.4	2.7	3.3	3.8
	δ_{v}	[mm]	2.4	3.2	3.6	4.1	4.9	5.7

mungo Stahlbolzen m2, m2C

Bemessungsverfahren A, charakteristische Werte bei Querbeanspruchung; Dübelverschiebung

Anhang 5

Der europäischen technischen Zulassung ETA-05/0070