# Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 B 10829 Berlin Germany

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de





Mitglied der EOTA

Member of EOTA

# **European Technical Approval ETA-10/0020**

English translation prepared by DIBt - Original version in German language

# Handelsbezeichnung

Trade name

# Zulassungsinhaber

Holder of approval

# Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis

to

#### Herstellwerk

Manufacturing plant

# Befestigungsschrauben BI und CF

Fastening screws BI and CF

IPEX Beheer B.V. Postbus 82 7468 ZH ENTER NIEDERLANDE

#### Befestigungsschrauben für Metallbauteile und Bleche

Fastening screws for metal members and sheeting

15 September 2010

15 September 2015

IPEX Beheer B.V. Vonderweg 14 7468 DC ENTER NIEDERLANDE

Diese Zulassung umfasst This Approval contains

47 Seiten einschließlich 39 Anhänge 47 pages including 39 annexes



#### I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
  - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products<sup>1</sup>, modified by Council Directive 93/68/EEC<sup>2</sup> and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council<sup>3</sup>:
  - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998<sup>4</sup>, as amended by law of 31 October 2006<sup>5</sup>;
  - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC<sup>6</sup>.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

<sup>1</sup> Official Journal of the European Communities L 40, 11 February 1989, p. 12

<sup>2</sup> Official Journal of the European Communities L 220, 30 August 1993, p. 1

<sup>3</sup> Official Journal of the European Union L 284, 31 October 2003, p. 25

<sup>4</sup> Bundesgesetzblatt Teil I 1998, p. 812

<sup>5</sup> Bundesgesetzblatt Teil I 2006, p.2407, 2416

<sup>6</sup> Official Journal of the European Communities L 17, 20 January 1994, p. 34

#### II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

# 1 Definition of the product and intended use

# 1.1 Definition of the construction product

The fastening screws BL and CF are self drilling screws listed in Table 1. The self drilling screws are made of stainless steel or case hardened carbon steel. They are partly completed with metallic washers and EPDM sealing rings. For details see the appropriate Annexes.

Examples of fastening screws and the corresponding connections are shown in Annex 1.

The self drilling screws and the corresponding connections are subject to tension and shear forces.

**Table 1** Different types of self drilling screws

| No.              | Self drilling screw | Description                                             | Annex    |
|------------------|---------------------|---------------------------------------------------------|----------|
| 1                | BI300-4,8           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 2  |
| 2                | CF300-4,8           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 3  |
| 3                | BI300-6,3           | mushroom head with torx drive and seal washer ≥ Ø11 mm  | Annex 4  |
| 4                | CF300-6,3           | mushroom head with torx drive and seal washer ≥ Ø11 mm  | Annex 5  |
| 5*)              | BI301-4,8           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 6  |
| 6 *)             | CF301-4,8           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 7  |
| 7 *)             | BI301-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 8  |
| 8*)              | CF301-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 9  |
| 9                | BI302-4,8           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 10 |
| 10               | CF302-4,8           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 11 |
| 11               | BI302-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 12 |
| 12               | CF302-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 13 |
| 13               | BI303-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 14 |
| 14               | CF303-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 15 |
| 15               | BI305-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 16 |
| 16               | CF305-5,5           | mushroom head with torx drive and seal washer ≥ Ø9,5 mm | Annex 17 |
| 17               | BI310-4,8           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 18 |
| 18               | CF310-4,8           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 19 |
| 19               | BI310-5,5           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 20 |
| 20               | CF310-5,5           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 21 |
| 21               | BI310-6,3           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 22 |
| 22               | CF310-6,3           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 23 |
| 23 *)            | BI311-4,8           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 24 |
| 24 *)            | CF311-4,8           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 25 |
| 25 <sup>*)</sup> | BI311-5,5           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 26 |
| 26 *)            | CF311-5,5           | hexagon head and seal washer ≥ Ø14 mm                   | Annex 27 |
| 27               | BI312-4,8           | hexagon head and seal washer ≥ Ø16 mm                   | Annex 28 |

| 28               | CF312-4,8 | hexagon head and seal washer ≥ Ø16 mm | Annex 29 |
|------------------|-----------|---------------------------------------|----------|
| 29               | BI312-5,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 30 |
| 30               | CF312-5,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 31 |
| 31               | BI313-5,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 32 |
| 32               | CF313-5,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 33 |
| 33               | BI313-6,3 | hexagon head and seal washer ≥ Ø16 mm | Annex 34 |
| 34               | CF313-6,3 | hexagon head and seal washer ≥ Ø16 mm | Annex 35 |
| 35               | BI315-5,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 36 |
| 36               | CF315-5,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 37 |
| 37 <sup>*)</sup> | BI319-6,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 38 |
| 38*)             | CF319-6,5 | hexagon head and seal washer ≥ Ø16 mm | Annex 39 |

<sup>\*)</sup> These self drilling screws are applicable for fastening to timber substructure

#### 1.2 Intended use

The self drilling screws are intended to be used for fastening steel sheeting to steel substructures and as far as stated in Table 1 to timber substructures. The sheeting can either be used as wall or roof cladding or as load bearing wall and roof element.

The self drilling screws can also be used for the fastening of other thin gauge steel members.

The component to be fastened is component I and the substructure is component II.

The intended use comprises self drilling screws and connections for indoor and outdoor applications. Self drilling screws which are made of stainless Steel are intended to be used in external environments with a high or very high corrosion category.

The intended use comprises connections with predominantly static loads (e.g. wind loads, dead loads).

The provisions made in this European technical approval are based on an assumed working life of the self drilling screws of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 2 Characteristics of product and methods of verification

# 2.1 Characteristics of product

The self drilling screws shall correspond to the drawings given in the appropriate Annexes (see Table 1).

The characteristic material values, dimensions and tolerances of the self drilling screws neither indicated in this section nor in the Annexes shall correspond to the respective values laid down in the technical documentation<sup>7</sup> to this European technical approval.

The characteristic values of the shear and tension resistance of the connections made with the self drilling screws are given in the appropriate Annexes or in section 4.2.

The technical documentation to this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as relevant fort the tasks of the approved bodies involved in the attestation of conformity procedure is handed over to the approved bodies.

The self drilling screws are considered to satisfy the requirements of performance class A1 of the characteristic reaction to fire.

#### 2.2 Methods of verification

The assessment of the fitness of the self drilling screws for the intended use in relation to the Essential Requirements ER 1 (Mechanical resistance and stability), ER 2 (Safety in case of fire), ER 4 (Safety in use) and additional aspects of durability has been made in accordance with section 3.2 of the Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC<sup>6</sup>.

The assessment of the resistance to fire performance is only relevant to the assembled system (self drilling screws, sheeting, substructure) which is not part of the ETA.

The self drilling screws are considered to satisfy the requirements of performance class A 1 of the characteristic reaction to fire, in accordance with the provisions of the EC Decision 96/603/EC (as amended) without the need for testing on the basis of its listing in that decision.

Concerning Essential Requirements No. 1 (Mechanical resistance and stability) and No. 4 (Safety in use) the following applies:

The characteristic values of resistance given in the Annexes were determined by shear and tension tests.

The formulas to calculate the design resistance are given in clause 4.2.1.

# 3 Evaluation and attestation of conformity and CE marking

# 3.1 System of attestation of conformity

According to the Decision 99/92 of the European Commission<sup>8</sup> system 3 of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 3: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
  - (1) factory production control;
- (b) Tasks for the approved body:
  - (2) initial type-testing of the product.

Note: Approved bodies are also referred to as "notified bodies".

#### 3.2 Responsibilities

# 3.2.1 Tasks for the manufacturer

#### 3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial materials stated in the technical documentation of this European technical approval.

<sup>8</sup> Official Journal of the European Communities L 80 of 18.03.1998.

The factory production control shall be in accordance with the "control plan of September 2010 relating to the European technical approval ETA-10/0020 issued on 17 August 2010" which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.<sup>9</sup>

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

#### 3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of self drilling screws in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of the European technical approval ETA-10/0020 issued on 17 August 2010.

# 3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in written reports.

#### 3.3 CE marking

The CE marking shall be affixed on each packaging of self drilling screws. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the European technical approval,
- the name of the product.

# 4 Assumptions under which the fitness of the product for the intended use was favourably assessed

#### 4.1 Manufacturing

The self drilling screws are manufactured in accordance with the provisions of the European technical approval using the manufacturing process as laid down in the technical documentation.

The "control plan" is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

#### 4.2 Design

#### 4.2.1 General

Self drilling screws completely or partly exposed to external weather or similar conditions are made of stainless steel or are protected against corrosion. For the corrosion protection the rules given in EN 1090-2:2008, EN 1993-1-3:2006 and EN 1993-1-4:2006 are taken into account.

For the types of connection (a, b, c, d) listed in the Annexes it is not necessary to take into account the effect of constraints due to temperature. For other types of connection it shall be considered for design as long as constraining forces due to temperature do not occur or are not significant (e. g. sufficient flexibility of the structure).

The loading is predominantly static. (Remark: Wind loads are regarded as predominantly static.)

Dimensions, material properties, torque moments  $M_{t,norm}$ , minimum effective screw-in length  $l_{ef}$  and nominal material thicknesses  $t_N$  as stated in the ETA or in the Annexes are observed.

The verification concept stated in EN 1990:2002 is used for the design of the connections made with the self drilling screws. The characteristic values (shear and tension resistance) stated in the Annexes are used for the design of the entire connections.

The following formulas are used to calculate the values of design resistance:

$$N_{Rd} = \frac{N_{Rk}}{\gamma_M}$$

$$V_{Rd} = \frac{V_{Rk}}{\gamma_M}$$

The recommended partial safety factor  $\gamma_{\text{M}}$  = 1.33 is used in order to determine the corresponding design resistances, provided no values are given in national regulations of the member state in which the self drilling screws are used or in the respective National Annex to Eurocode 3.

In case of combined tension and shear forces the linear interaction formula according to EN 1993-1-3:2006, section 8.3 (8) is taken into account.

$$\frac{N_{Sd}}{N_{Rd}} + \frac{V_{Sd}}{V_{Rd}} \le 1.0$$

The possibly required reduction of the tension resistance due to the position of the self drilling screws is taken into account in accordance with EN 1993-1-3:2006, section 8.3 (7) and Fig. 8.2.

#### 4.2.2 Additional rules for connections with timber substructures

As far as no other provisions are made in the following EN 1995-1-1:2004 + A1:2008 applies.

Drill points of self drilling screws are not taken into account for the effective screw-in length.

The following terms are used:

I<sub>α</sub> - Screw-in length – part of thread screwed into component II inclusive drill point.

l<sub>b</sub> - Length of unthreaded part of the drill-point.

 $l_{ef}$  - effective screw-in length  $l_{ef} = l_{g} - l_{b}$ 

 $N_{R,k}$  =  $F_{ax,Rk} \cdot k_{mod}$  $V_{B,k}$  =  $F_{v,Rk} \cdot k_{mod}$ 

 $F_{ax,Bk}$  according to EN 1995-1-1:2004 + A1:2008, equation (8.40a)

Remark:  $F_{ax,Rk} = F_{ax,m,Rk}$  with  $\alpha = 90^{\circ}$ 

 $F_{v,Rk}$  according to EN 1995-1-1:2004 + A1:2008, clause 8.2.3  $k_{mod}$  according to EN 1995-1-1:2004 + A1:2008, Table 3.1

 $M_{y,Rk}$  in equation (8.9) of EN 1995-1-1:2004 + A1:2008 and  $f_{ax,k}$  in equation (8.40a) of EN 1995-1-1:2004 + A1:2008 are given in the Annexes of this ETA.

The characteristic values for pullout and bearing resistance (timber substructure) calculated according to EN 1995-1-1:2004 + A1:2008 are compared with the characteristic values for component I (pull over and bearing resistance) stated in the right column of the table in the appropriate Annexes. The lower value is used for further calculations.

#### 4.3 Installation

The installation is only carried out according to the manufacturer's instructions. The manufacturer hands over the assembly instructions to the assembler.

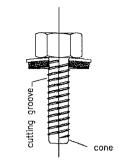
It is guaranteed by the execution that no bimetallic corrosion will occur.

For regular shear forces the components I and II are directly connected to each other so that the self drilling screws do not get additional bending. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

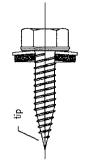
The self drilling screws are fixed rectangular to the surface of the components to guarantee a correct load bearing and if necessary rain-proof connection.

Self drilling screws for steel substructures are screwed in with the cylindrical part of the thread at least 6 mm if the substructure has a thickness over 6 mm unless otherwise declared in the manufacturer's instruction. Welded drill points are not taken into account for the screw-in length.

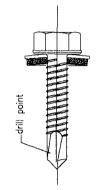
The conformity of the installed fasteners with the provisions of the ETA is attested by the executing company.


#### 5 Indications to the manufacturer

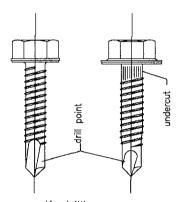
It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1, 2, 4.2 and 4.3 (including Annexes referred to) is given to those who are concerned. This information may be given by reproduction of the respective parts of the European technical approval.


In addition all installation data (predrill diameter, torque moment, application limits) shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

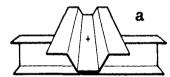
Georg Feistel Head of Department


*beglaubigt* Ulbrich

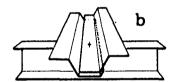



self tapping screw with sealing washer

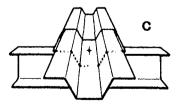



self tapping screw with sealing washer

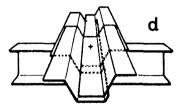



self-drilling screw with sealing washer




self-drilling screw with integrated washer




Single connection



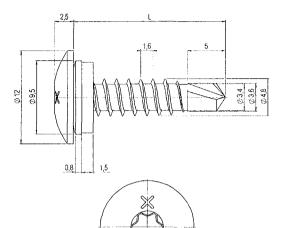
Side lap connection



End overlap connection



Side lap + end overlap connection


| S | c | r | e | v | v | s |
|---|---|---|---|---|---|---|
|   |   |   |   |   |   |   |

Examples for screws Types of connection

# Annex 1

of European Technical Approval

ETA-10/0020



TORX 20

<u>Materials</u>

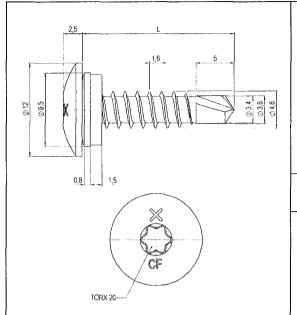
Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity


 $\Sigma t_i \le 2,00 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

|                                         |       | 0.5  |    |      |            | T 0 = | <u>-</u>  |            |        | T        |    |      |     | 1 4,     |                                        |      |   |
|-----------------------------------------|-------|------|----|------|------------|-------|-----------|------------|--------|----------|----|------|-----|----------|----------------------------------------|------|---|
|                                         | ,11 = | 0,5  |    | 0,6  | ා <u>ය</u> | 0,7   |           | 0,8        | 38<br> | 1,0      | טע | 1,1  |     | 1,2      | <u> </u>                               | 1,5  | 0 |
| M <sub>t,i</sub>                        | nom = | 3 N  | lm |      |            | 4 N   | <u>lm</u> | 1          |        |          |    |      | 5 I | ٧m       | ······································ |      |   |
|                                         | 0,50  | 0,67 | _  | 0,67 |            | 0,67  | _         | 0,67       | _      | 0,67     |    | 0,67 | _   | 0,67     |                                        | 0,67 | - |
|                                         | 0,55  | 0,67 |    | 0,76 | _          | 0,76  |           | 0,76       |        | 0,76     | _  | 0,76 |     | 0,76     |                                        | —    |   |
|                                         | 0,63  | 0,67 |    | 0,90 | _          | 0,90  | *****     | 0,90       |        | 0,90     | _  | 0,90 |     | 0,90     | _                                      | —    |   |
| [] []                                   | 0,75  | 0,67 |    | 0,90 | _          | 1,12  |           | 1,12       |        | 1,12     | _  | 1,12 | -   | 1,12     |                                        |      |   |
| z<br>Z                                  | 0,88  | 0,67 |    | 0,90 |            | 1,12  | _         | 1,82       | _      | 1,82     |    | 1,82 | _   |          |                                        | —    |   |
| for                                     | 1,00  | 0,67 |    | 0,90 |            | 1,12  |           | 1,82       | _      | 2,51     | а  | —    |     | —        |                                        | —    |   |
| V <sub>R,k</sub> for t <sub>N,I</sub>   | 1,13  | 0,67 |    | 0,90 |            | 1,12  |           | 1,82       |        | <u> </u> | _  |      | _   |          |                                        |      | _ |
| >                                       | 1,25  | 0,67 |    | 0,90 | _          | 1,12  |           | _          |        |          | _  |      |     | l —      |                                        |      | _ |
|                                         | 1,50  | 0,67 |    | _    | _          | l —   | -         | <b> </b> — |        |          | _  | l —  |     | l —      |                                        | l —  |   |
|                                         | 1,75  | _    |    |      |            | _     |           |            |        |          |    | _    |     |          |                                        |      | _ |
|                                         | 2,00  | _    |    |      |            | —     |           |            |        | _        |    | _    |     |          |                                        |      | _ |
|                                         | 0,50  | 0,35 |    | 0,52 |            | 0,68  |           | 0,90       |        | 1,12     |    | 1,29 |     | 1,29     |                                        | 1,29 |   |
|                                         | 0,55  | 0,35 |    | 0,52 |            | 0,68  |           | 0,90       | _      | 1,12     |    | 1,29 |     | 1,46     |                                        | l —  |   |
|                                         | 0,63  | 0,35 |    | 0,52 | _          | 0,68  |           | 0,90       |        | 1,12     | _  | 1,29 |     | 1,46     |                                        |      | _ |
| 11                                      | 0,75  | 0,35 |    | 0,52 | _          | 0,68  |           | 0,90       | _      | 1,12     |    | 1,29 |     | 1,46     |                                        | _    |   |
| <u>"</u>                                | 0,88  | 0,35 |    | 0,52 | _          | 0,68  | _         | 0,90       | _      | 1,12     |    | 1,29 | _   | <b> </b> |                                        | _    | _ |
| or                                      | 1,00  | 0,35 |    | 0,52 | _          | 0,68  |           | 0,90       | -      | 1,12     | а  |      |     | <u> </u> |                                        | _    |   |
| N <sub>R,k</sub> for t <sub>N,I</sub> = | 1,13  | 0,35 |    | 0,52 | _          | 0,68  |           | 0,90       |        |          | _  | _    |     |          |                                        | _    | _ |
| Z                                       | 1,25  | 0,35 |    | 0,52 |            | 0,68  |           | _          |        |          | _  |      |     |          |                                        |      |   |
| [[                                      | 1,50  | 0,35 |    |      |            |       |           | _          |        |          |    | _    | _   |          |                                        | l —  | _ |
|                                         | 1,75  |      |    |      |            |       |           | _          |        |          | _  | _    |     |          |                                        | _    |   |
|                                         | 2,00  | _    |    | _    |            | _     |           |            | _      |          |    | _    |     | _        |                                        | _    | _ |

| Self drilling screw                                                   | Annex 2                        |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0300BI - 4,8 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer:

carbon steel, galvanized

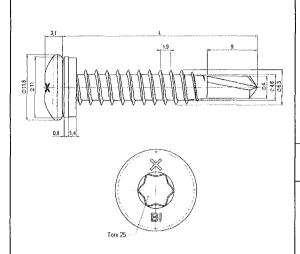
stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

**Drilling capacity** 


 $\Sigma t_i \le 2,00 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| t <sub>N,</sub>                         | JI =  | 0,5  | 50 | 0,6  | 33 | 0,7      | 75 | 0,8      | 38       | 1,0  | 00 | 1,1  | 13  | 1,2      | 25 | 1,5  | 50  |
|-----------------------------------------|-------|------|----|------|----|----------|----|----------|----------|------|----|------|-----|----------|----|------|-----|
| M <sub>t,r</sub>                        | nom = | 3 N  | lm |      |    | 4 N      | lm |          |          |      |    |      | 5 I | Nm       |    |      |     |
|                                         | 0,50  | 0,67 | _  | 0,67 |    | 0,67     |    | 0,67     |          | 0,67 |    | 0,67 |     | 0,67     |    | 0,67 |     |
|                                         | 0,55  | 0,67 | _  | 0,76 | _  | 0,76     |    | 0,76     | —        | 0,76 |    | 0,76 | _   | 0,76     | _  | —    | -   |
|                                         | 0,63  | 0,67 | _  | 0,90 |    | 0,90     |    | 0,90     |          | 0,90 |    | 0,90 |     | 0,90     |    | _    | _   |
| ,,                                      | 0,75  | 0,67 |    | 0,90 |    | 1,12     |    | 1,12     |          | 1,12 |    | 1,12 |     | 1,12     |    | —    | _   |
|                                         | 0,88  | 0,67 | _  | 0,90 | —  | 1,12     | _  | 1,82     | _        | 1,82 |    | 1,82 | _   | _        | _  | —    |     |
| for                                     | 1,00  | 0,67 |    | 0,90 | _  | 1,12     | _  | 1,82     | _        | 2,51 | а  |      | _   | _        |    | —    |     |
| V <sub>R,k</sub> for t <sub>N,I</sub>   | 1,13  | 0,67 |    | 0,90 |    | 1,12     |    | 1,82     |          | l —  |    | —    |     | <u> </u> | _  | —    | _   |
| >                                       | 1,25  | 0,67 | •  | 0,90 |    | 1,12     |    | —        |          | —    |    | l —  | _   | l —      |    | —    | -   |
|                                         | 1,50  | 0,67 |    |      |    | <u> </u> |    | <u> </u> |          | —    |    | _    |     |          |    | —    | _   |
|                                         | 1,75  |      |    |      |    |          | _  |          | _        |      |    |      | _   |          | _  |      |     |
|                                         | 2,00  | _    |    |      | _  |          | _  |          | _        |      | _  |      | _   |          |    |      | _   |
|                                         | 0,50  | 0,35 | _  | 0,52 |    | 0,68     |    | 0,90     | _        | 1,12 |    | 1,29 | _   | 1,29     | _  | 1,29 | _ ] |
|                                         | 0,55  | 0,35 |    | 0,52 | _  | 0,68     | _  | 0,90     | —        | 1,12 |    | 1,29 |     | 1,46     |    | —    |     |
|                                         | 0,63  | 0,35 |    | 0,52 |    | 0,68     |    | 0,90     | _        | 1,12 |    | 1,29 | _   | 1,46     | _  | —    | -   |
| <br>                                    | 0,75  | 0,35 |    | 0,52 |    | 0,68     |    | 0,90     | —        | 1,12 |    | 1,29 | _   | 1,46     |    | —    |     |
| يَّد                                    | 0,88  | 0,35 |    | 0,52 |    | 0,68     |    | 0,90     | <u> </u> | 1,12 |    | 1,29 | _   |          | _  | _    |     |
| for                                     | 1,00  | 0,35 | _  | 0,52 | _  | 0,68     | _  | 0,90     | _        | 1,12 | а  | -    |     | -        |    | -    | _   |
| N <sub>R,k</sub> for t <sub>N,l</sub> = | 1,13  | 0,35 | _  | 0,52 | _  | 0,68     | _  | 0,90     | _        | _    |    |      |     | —        |    | —    | -   |
|                                         | 1,25  | 0,35 |    | 0,52 |    | 0,68     |    | _        | _        | —    |    | ĺ —  | _   |          | _  |      |     |
|                                         | 1,50  | 0,35 |    | _    |    | _        | _  | _        | _        | _    |    |      | _   |          | _  | _    |     |
|                                         | 1,75  | _    |    | _    |    |          | _  |          | _        |      |    |      | —   | l —      |    | -    |     |
| l<br>L                                  | 2,00  |      |    |      |    |          |    | _        |          |      |    |      |     |          |    |      |     |

| - |                                                                       |                                |
|---|-----------------------------------------------------------------------|--------------------------------|
|   | Self drilling screw                                                   | Annex 3                        |
|   | IPEX - 0300CF - 4,8 x L                                               | of European technical approval |
|   | with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



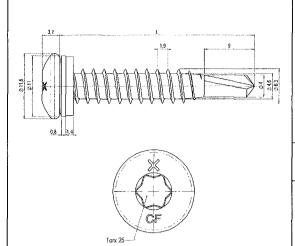
Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity


 $\Sigma t_i \le 2,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| th                                    | y,jj = | 0,5  | 50 | 0,5      | 55 | 0,6       | 33 | 0,7     | 75 | 0,8     | 38 | 1,0      | 00          | 1,1      | 13 | 1,2      | 25 | 1,5      | 50  |
|---------------------------------------|--------|------|----|----------|----|-----------|----|---------|----|---------|----|----------|-------------|----------|----|----------|----|----------|-----|
| M <sub>t</sub>                        | nom =  |      |    |          |    |           |    |         |    | 5 N     | lm |          |             |          | -  |          |    |          |     |
|                                       | 0,50   | 0,93 | ac | 0,93     |    | 0,93      |    | 0,93    |    | 0,93    |    | 0,93     |             | 0,93     |    | 0,93     | _  | 0,93     | _   |
|                                       | 0,55   | 0,93 |    | 1,09     | _  | 1,09      | _  | 1,09    | _  | 1,09    |    | 1,09     | _           | 1,09     | _  | 1,09     | —  | 1,09     |     |
|                                       | 0,63   | 0,93 | _  | 1,09     |    | 1,34      | _  | 1,34    | _  | 1,34    | _  | 1,34     | _           | 1,34     | _  | 1,34     |    | 1,34     | -   |
| ]] ]]                                 | 0,75   | 0,93 | _  | 1,09     | _  | 1,34      | _  | 1,74    | _  | 1,74    | _  | 1,74     | _           | 1,74     | _  | 1,74     | _  | 1,74     |     |
| V <sub>R,k</sub> for t <sub>N,1</sub> | 0,88   | 0,93 |    | 1,09     |    | 1,34      | _  | 1,74    | _  | 2,39    | _  | 2,39     | _           | 2,39     | _  | 2,39     | _  | 2,39     | —   |
| Į į                                   | 1,00   | 0,93 | _  | 1,09     |    | 1,34      | _  | 1,74    | _  | 2,39    | _  | 3,04     | _           | 3,04     | _  | 3,04     | _  | 3,04     | -   |
| \<br>  A, H                           | 1,13   | 0,93 |    | 1,09     | _  | 1,34      |    | 1,74    |    | 2,39    | _  | 3,04     |             | 3,77     | _  | 3,77     | _  | -        | -   |
| _                                     | 1,25   | 0,93 |    | 1,09     |    | 1,34      | _  | 1,74    | _  | 2,39    | _  | 3,04     | _           | 3,77     | _  | 4,50     | _  |          | -   |
|                                       | 1,50   | 0,93 |    | 1,09     |    | 1,34      | _  | 1,74    | _  | 2,39    | _  | 3,04     | _           |          | _  |          | —  | —        | -   |
|                                       | 1,75   | 0,93 |    | 1,09     |    | 1,34      |    | 1,74    |    | —       |    | -        |             | <b>—</b> | _  | _        |    | —        | -   |
| <u> </u>                              | 2,00   | 0,93 |    |          |    |           | _  |         |    |         |    |          |             |          |    |          |    |          |     |
|                                       | 0,50   | 0,59 | ac | 0,64     |    | 0,71      |    | 0,82    |    | 1,17    |    | 1,48     |             | 1,48     |    | 1,48     | _  | 1,48     |     |
|                                       | 0,55   | 0,59 |    | 0,64     |    | 0,71      |    | 0,82    |    | 1,17    |    | 1,52     |             | 1,65     |    | 1,65     |    | 1,65     |     |
|                                       | 0,63   | 0,59 |    | 0,64     | _  | 0,71      | _  | 0,82    | _  | 1,17    | _  | 1,52     | _           | 1,88     | —  | 1,92     | _  | 1,92     | -   |
| 11                                    | 0,75   | 0,59 | _  | 0,64     |    | 0,71      | _  | 0,82    | _  | 1,17    | _  | 1,52     |             | 1,88     | _  | 2,23     | -  | 2,27     |     |
| Į Ž                                   | 0,88   | 0,59 |    | 0,64     | _  | 0,71      |    | 0,82    |    | 1,17    |    | 1,52     | _           | 1,88     |    | 2,23     |    | 2,89     |     |
| ļ ģ                                   | 1,00   | 0,59 |    | 0,64     |    | 0,71      | _  | 0,82    | _  | 1,17    | _  | 1,52     | _           | 1,88     | _  | 2,23     | _  | 3,00     | -   |
| N <sub>R,k</sub> for t <sub>N,1</sub> | 1,13   | 0,59 |    | 0,64     |    | 0,71      | _  | 0,82    | _  | 1,17    | _  | 1,52     | _           | 1,88     | —  | 2,23     |    | _        |     |
| -                                     | 1,25   | 0,59 |    | 0,64     |    | 0,71      |    | 0,82    |    | 1,17    |    | 1,52     | <del></del> | 1,88     | _  | 2,23     | _  | —        | - [ |
|                                       | 1,50   | 0,59 |    | 0,64     |    | 0,71      | _  | 0,82    |    | 1,17    |    | 1,52     |             | -        | _  | -        |    |          | _   |
|                                       | 1,75   | 0,59 |    | 0,64     |    | 0,71      |    | 0,82    |    | _       |    | —        | _           | -        |    | —        |    | —        | -   |
| L                                     | 2,00   | 0,59 |    | <u> </u> |    | L <u></u> |    | <u></u> |    | <u></u> |    | <u> </u> |             |          |    | <u> </u> | _  | <u> </u> |     |

| Self drilling screw                                                  | Annex 4                        |
|----------------------------------------------------------------------|--------------------------------|
| IPEX - 0300BI - 6,3 x L                                              | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 11 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

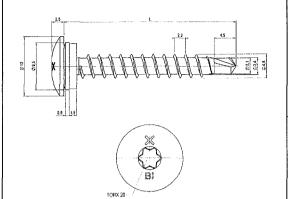
Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346


Drilling capacity  $\Sigma t_i \le 2,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| T +.                                  | –                          | 0.5  | 0,50 0,55 |       | 0,63 |       | 0, | 75   | 0,8 | 20   | 1,0  | <u> </u> | 1, | 13       | 1,2 | )5   | 1,5 | · · · · · · · · · · · · · · · · · · · |     |
|---------------------------------------|----------------------------|------|-----------|-------|------|-------|----|------|-----|------|------|----------|----|----------|-----|------|-----|---------------------------------------|-----|
|                                       | , <sub>nom</sub> =         | 0,   |           | 1 0,5 |      | 1 0,0 |    | 0,   | 7.5 | 5 N  |      | 1,0      |    | <u> </u> | 10  | 1,2  |     | <u> زا</u>                            |     |
|                                       | , <sub>nom</sub> –<br>0,50 | 0,93 | ac        | 0,93  |      | 0,93  |    | 0,93 |     | 0,93 | 4111 | 0,93     |    | 0,93     |     | 0,93 |     | 0,93                                  |     |
|                                       |                            |      |           |       |      | 1     |    |      | _   |      |      | 1 '      |    | 1        | _   |      | _   |                                       |     |
|                                       | 0,55                       | 0,93 |           | 1,09  |      | 1,09  |    | 1,09 |     | 1,09 |      | 1,09     |    | 1,09     | _   | 1,09 | _   | 1,09                                  | _   |
|                                       | 0,63                       | 0,93 |           | 1,09  |      | 1,34  | _  | 1,34 | -   | 1,34 |      | 1,34     |    | 1,34     | _   | 1,34 | _   | 1,34                                  | _   |
|                                       | 0,75                       | 0,93 | _         | 1,09  |      | 1,34  |    | 1,74 |     | 1,74 |      | 1,74     |    | 1,74     |     | 1,74 | _   | 1,74                                  |     |
| Į Ž                                   | 0,88                       | 0,93 |           | 1,09  |      | 1,34  | _  | 1,74 | —   | 2,39 | _    | 2,39     | _  | 2,39     |     | 2,39 |     | 2,39                                  | - 1 |
| \$                                    | 1,00                       | 0,93 |           | 1,09  |      | 1,34  |    | 1,74 | _   | 2,39 | _    | 3,04     | _  | 3,04     |     | 3,04 |     | 3,04                                  |     |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13                       | 0,93 |           | 1,09  | _    | 1,34  |    | 1,74 |     | 2,39 |      | 3,04     |    | 3,77     | _   | 3,77 | _   |                                       | _   |
|                                       | 1,25                       | 0,93 |           | 1,09  | _    | 1,34  | —  | 1,74 |     | 2,39 |      | 3,04     |    | 3,77     | _   | 4,50 | _   |                                       | _   |
|                                       | 1,50                       | 0,93 | _         | 1,09  | _    | 1,34  |    | 1,74 |     | 2,39 |      | 3,04     |    | —        | _   |      | _   |                                       | _   |
|                                       | 1,75                       | 0,93 |           | 1,09  |      | 1,34  | _  | 1,74 | _   |      | _    |          |    | _        |     | _    | _   | l —                                   | _   |
|                                       | 2,00                       | 0,93 |           | -     | _    |       | _  |      | _   |      |      | _        |    |          |     |      | _   |                                       | _   |
|                                       | 0,50                       | 0,59 | ac        | 0,64  |      | 0,71  | _  | 0,82 | _   | 1,17 | _    | 1,48     |    | 1,48     |     | 1,48 |     | 1,48                                  | _ [ |
|                                       | 0,55                       | 0,59 |           | 0,64  |      | 0,71  | _  | 0,82 | _   | 1,17 |      | 1,52     |    | 1,65     |     | 1,65 | _   | 1,65                                  | _   |
|                                       | 0,63                       | 0,59 |           | 0,64  |      | 0,71  |    | 0,82 | _   | 1,17 | _    | 1,52     | _  | 1,88     | _   | 1,92 |     | 1,92                                  | _   |
| ]]                                    | 0,75                       | 0,59 |           | 0,64  |      | 0,71  |    | 0,82 | _   | 1,17 | _    | 1,52     | _  | 1,88     |     | 2,23 |     | 2,27                                  | _   |
|                                       | 0,88                       | 0,59 |           | 0,64  | _    | 0,71  |    | 0,82 | _   | 1,17 | _    | 1,52     | _  | 1,88     |     | 2,23 | _   | 2,89                                  | _   |
| Į.                                    | 1,00                       | 0,59 | _         | 0,64  |      | 0,71  |    | 0,82 | _   | 1,17 | _    | 1,52     | _  | 1,88     |     | 2,23 | _   | 3,00                                  | _   |
| N <sub>R,k</sub> for t <sub>N,1</sub> | 1,13                       | 0,59 |           | 0,64  |      | 0,71  |    | 0,82 | _   | 1,17 | _    | 1,52     | _  | 1,88     |     | 2,23 | _   |                                       | _   |
| 2                                     | 1,25                       | 0,59 |           | 0,64  | _    | 0,71  |    | 0,82 |     | 1,17 |      | 1,52     |    | 1,88     |     | 2,23 |     |                                       | _   |
|                                       | 1,50                       | 0,59 |           | 0,64  |      | 0,71  |    | 0,82 |     | 1,17 |      | 1,52     | _  |          |     | _    |     | _                                     | _   |
|                                       | 1,75                       | 0,59 | _         | 0,64  |      | 0,71  |    | 0,82 |     | ·    |      | _        |    |          |     | _    | _   | _                                     | _   |
|                                       | 2,00                       | 0,59 |           |       |      |       | _  |      | _   |      | _    |          |    |          | _   |      | _   | <b> </b>                              |     |

| Self drilling screw                                                  | Annex 5                        |
|----------------------------------------------------------------------|--------------------------------|
| IPEX - 0300CF - 6,3 x L                                              | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 11 mm | ETA-10/0020                    |



Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

Drilling capacity

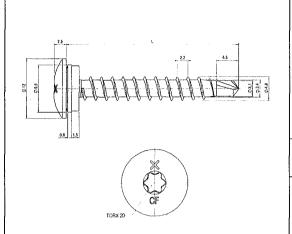
 $\Sigma t_i \le 2,50 \text{ mm}$ 

# Timber substructures

for timber substructures performance determined with

 $M_{v,Rk} = 4,937$ 

Nm


 $f_{ax,k} = 12,237$ 

 $N/mm^2$  for  $I_{ef} \ge 24$  mm

|                                         | l <sub>g</sub> =     | 29   | 31   | 33   | 35   | 37   | 39   | 41   | 43                                    | 45   | 47   |      |                                        |
|-----------------------------------------|----------------------|------|------|------|------|------|------|------|---------------------------------------|------|------|------|----------------------------------------|
| <u></u>                                 | l <sub>t,nom</sub> = |      |      |      |      | _    | _    |      | · · · · · · · · · · · · · · · · · · · |      |      |      |                                        |
|                                         | 0,50                 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32                                  | 1,32 | 1,32 | 1,32 | at I                                   |
|                                         | 0,55                 | 1,36 | 1,39 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42                                  | 1,42 | 1,42 | 1,42 | ne.                                    |
|                                         | 0,63                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 4,52 | 1,55                                  | 1,57 | 1,57 | 1,57 | gu                                     |
|                                         | 0,75                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,82 | 20                                     |
|                                         | 0,88                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,82 | of                                     |
| [] Jo                                   | 1,00                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,82 | nce                                    |
| V <sub>R,k</sub> for t <sub>N,I</sub>   | 1,13                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,85 | bearing resistance of component I      |
| _                                       | 1,25                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,88 | res                                    |
|                                         | 1,50                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,88 | ing                                    |
|                                         | 1,75                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,88 | ear                                    |
|                                         | 2,00                 | 1,36 | 1,39 | 1,42 | 1,44 | 1,47 | 1,49 | 1,52 | 1,55                                  | 1,57 | 1,60 | 1,88 | ڡٙ                                     |
|                                         | 0,50                 | 1,27 | 1,29 | 1,29 | 1,29 | 1,29 | 1,29 | 1,29 | 1,29                                  | 1,29 | 1,29 | 1,29 |                                        |
|                                         | 0,55                 | 1,27 | 1,37 | 1,48 | 1,57 | 1,57 | 1,57 | 1,57 | 1,57                                  | 1,57 | 1,57 | 1,57 | <del>)</del>                           |
|                                         | 0,63                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,02 | 2,02 | 2,02 | ge C                                   |
| п                                       | 0,75                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 2,45 | tan .                                  |
| Į, ž                                    | 0,88                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 3,19 | sis                                    |
| for                                     | 1,00                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 3,92 | h re                                   |
| N <sub>R,k</sub> for t <sub>N,I</sub> = | 1,13                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 4,32 | ough resist                            |
|                                         | 1,25                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 4,73 | th o                                   |
|                                         | 1,50                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 4,73 | pull-through resistance of component I |
|                                         | 1,75                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 4,73 | u.                                     |
|                                         | 2,00                 | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 4,73 |                                        |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                                                   | Annex 6                        |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0301BI - 4,8 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer: ca

carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

**Drilling capacity** 

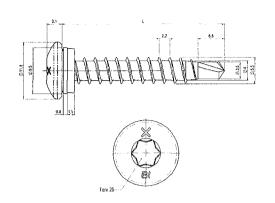
 $\Sigma t_i \leq 2,50 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 6,848$ 

Nm


 $f_{ax,k} = 12,2$ 

 $N/mm^2$  for  $I_{ef} \ge 24$  mm

|                                       | L _                         | 29   | 31   | 33                                    | 35   | 37   | 39    | 41   | 43   | 45   | 47   | i i                       |                                              |
|---------------------------------------|-----------------------------|------|------|---------------------------------------|------|------|-------|------|------|------|------|---------------------------|----------------------------------------------|
| l ———                                 | l <sub>g</sub> =            | 29   | 31   | 33                                    | 35   | 3/   |       | 41   | 43   | 45   | 1 47 |                           |                                              |
| ]                                     | t, <sub>nom</sub> =<br>0,50 | 1,32 | 1,32 | 1,32                                  | 1,32 | 1,32 | 1,32  | 1,32 | 1,32 | 1,32 | 1,32 | 1,32                      |                                              |
|                                       | 0,55                        | 1,42 | 1,42 | 1,42                                  | 1,42 | 1,42 | 1,42  | 1,42 |      |      |      |                           | bearing resistance of component l            |
|                                       | 0,63                        |      |      |                                       |      |      |       |      | 1,42 | 1,42 | 1,42 | 1,42                      | Loc                                          |
|                                       |                             | 1,55 | 1,57 | 1,57                                  | 1,57 | 1,57 | 1,57  | 1,57 | 1,57 | 1,57 | 1,57 | 1,57                      | Juc                                          |
| II II                                 | 0,75                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,82                      | <u>ğ</u>                                     |
| 1.5                                   | 0,88                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,82                      | 0 0                                          |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,82                      | anc                                          |
| ×                                     | 1,13                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,85                      | iste                                         |
|                                       | 1,25                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,88                      | <u> </u>                                     |
|                                       | 1,50                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,88                      | ing                                          |
|                                       | 1,75                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,88                      | ear                                          |
|                                       | 2,00                        | 1,55 | 1,57 | 1,60                                  | 1,63 | 1,65 | 1,68  | 1,71 | 1,73 | 1,76 | 1,79 | 1,88                      | م _                                          |
|                                       | 0,50                        | 1,27 | 1,29 | 1,29                                  | 1,29 | 1,29 | 1,29  | 1,29 | 1,29 | 1,29 | 1,29 | 1,29                      |                                              |
|                                       | 0,55                        | 1,27 | 1,37 | 1,48                                  | 1,57 | 1,57 | 1,57  | 1,57 | 1,57 | 1,57 | 1,57 | 1,57                      | <u>, ,                                  </u> |
|                                       | 0,63                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,02 | 2,02 | 2,02                      | e e                                          |
| "                                     | 0,75                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 2,45                      | and                                          |
|                                       | 0,88                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 2,96                      | sist                                         |
| ō                                     | 1,00                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 3,47                      | on re                                        |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 3,47                      | pull-through resistance of<br>component l    |
| Z                                     | 1,25                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 3,47                      | 원 <sup>3</sup>                               |
|                                       | 1,50                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 3,47                      | =                                            |
|                                       | 1,75                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 3,47                      | ₫.                                           |
| ]]                                    | 2,00                        | 1,27 | 1,37 | 1,48                                  | 1,59 | 1,69 | 1,80  | 1,90 | 2,01 | 2,11 | 2,22 | 3,47                      | X Andrews                                    |
|                                       |                             |      |      | · · · · · · · · · · · · · · · · · · · |      |      | · /:: |      |      |      |      | energy was to be a second |                                              |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                                                   | Annex 7                        |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0301CF - 4,8 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

Drilling capacity

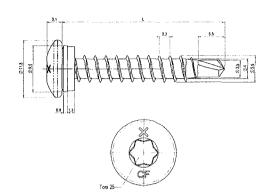
 $\Sigma t_i \leq 2,50 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 6,133$ 

Nm


 $f_{ax,k} = 12,137$ 

 $N/mm^2$  for  $l_{ef} \ge 28$  mm

36 38 40 42 48 52  $I_{\alpha} =$ 34 44 46 50  $M_{t,nom} =$ 0,50 1,43 1,43 1,43 1,43 1,43 1,43 1,43 1,43 1,43 1,43 1,43 bearing resistance of component 0,55 1,68 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 1,70 0.63 1.68 1.71 1.74 1.77 1.80 1.83 1.89 2,10 1.86 1,92 1,95 0,75 1,68 1,71 1,74 1,77 1,80 1,83 1,86 1.89 1,92 1,95 2,77 V<sub>R,k</sub> for t<sub>N,I</sub> 88,0 1,68 1,71 1,74 1,83 1,86 1,89 1,92 1,77 1,80 1,95 2,77 1,00 1,68 1,71 1,74 1,77 1,80 1,83 1,86 1,89 1,92 1,95 2,77 1,13 1,68 1,71 1,74 1,77 1,80 1,83 1,86 1,89 1,92 1,95 2,77 1,25 1,68 1,71 1,74 1,77 1,80 1,83 1,86 1,89 1,92 1,95 2,77 1,50 1,68 1,74 1,77 1,80 1,83 1,89 1,92 2,77 1,71 1,86 1,95 1,75 1.68 1,71 1,74 1,77 1.80 1,83 1,86 1,89 1,92 1,95 2,77 2,00 1,68 1,71 1,74 1,77 1,80 1,83 1,86 1,89 1,92 1,95 2,77 0,50 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,82 0,55 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,13 1,13 pull-through resistance of 0,63 1.43 1.43 1.43 1,43 1,43 1,43 1,43 1,43 1,43 1,43 1,43 0,75 1,68 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 1,74 component | 0,88 1,68 1,80 1,92 2,04 2,28 2,50 NR,k for thu 2,16 2,40 2,50 2,50 2,50 1,00 1,68 1.80 1,92 2.04 2,16 2,28 2,40 2,52 2,64 2,76 3,26 2,40 1.68 1,80 1,92 2,04 2.28 2.52 2,64 3,82 1,13 2.16 2,76 1,25 1,68 1,80 1,92 2,04 2,16 2,28 2,40 2,52 2,64 2,76 4,37 1,50 1,80 1,92 2,04 2,16 2,28 2,52 2,76 1,68 2,40 2,64 4,37 1,75 1,68 1,80 1,92 2,04 2,16 2,28 2,40 2,52 2,64 2,76 4,37 2,00 1,80 1,92 2,04 2,28 2,40 2,52 1,68 2,16 2,64 2,76 4,37

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                                                   | Annex 8                        |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0301BI - 5,5 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

**Drilling capacity** 

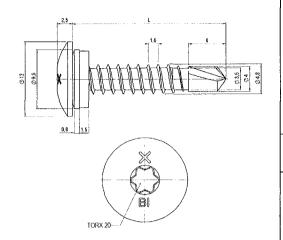
 $\Sigma t_i \le 2,50 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 7,064$ 

Nm


 $f_{ax,k} = 12,137$ 

 $N/mm^2$  for  $I_{ef} \ge 28$  mm

|                                       |                  |          |      |      |      | <u> </u> |      |      |      |      |      |      |                                        |  |  |  |  |
|---------------------------------------|------------------|----------|------|------|------|----------|------|------|------|------|------|------|----------------------------------------|--|--|--|--|
|                                       | l <sub>g</sub> = | 34       | 36   | 38   | 40   | 42       | 44   | 46   | 48   | 50   | 52   |      |                                        |  |  |  |  |
| M                                     | t,nom =          | <u> </u> |      |      |      |          |      |      |      |      |      |      |                                        |  |  |  |  |
| ]                                     | 0,50             | 1,43     | 1,43 | 1,43 | 1,43 | 1,43     | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | =                                      |  |  |  |  |
|                                       | 0,55             | 1,70     | 1,70 | 1,70 | 1,70 | 1,70     | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | bearing resistance of component l      |  |  |  |  |
|                                       | 0,63             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,10 | du                                     |  |  |  |  |
| II                                    | 0,75             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | S                                      |  |  |  |  |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 0,88             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | of                                     |  |  |  |  |
| Į į                                   | 1,00             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | nce                                    |  |  |  |  |
| /R,k                                  | 1,13             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | ista                                   |  |  |  |  |
| _                                     | 1,25             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | res                                    |  |  |  |  |
|                                       | 1,50             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | ing                                    |  |  |  |  |
| 11                                    | 1,75             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | ear                                    |  |  |  |  |
| ]                                     | 2,00             | 1,77     | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | ٩                                      |  |  |  |  |
|                                       | 0,50             | 0,82     | 0,82 | 0,82 | 0,82 | 0,82     | 0,82 | 0,82 | 0,82 | 0,82 | 0,82 | 0,82 |                                        |  |  |  |  |
|                                       | 0,55             | 1,13     | 1,13 | 1,13 | 1,13 | 1,13     | 1,13 | 1,13 | 1,13 | 1,13 | 1,13 | 1,13 | of                                     |  |  |  |  |
|                                       | 0,63             | 1,43     | 1,43 | 1,43 | 1,43 | 1,43     | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | ë                                      |  |  |  |  |
| II                                    | 0,75             | 1,68     | 1,74 | 1,74 | 1,74 | 1,74     | 1,74 | 1,74 | 1,74 | 1,74 | 1,74 | 1,74 | tan<br>T                               |  |  |  |  |
| ž                                     | 0,88             | 1,68     | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,50 | 2,50 | 2,50 | 2,50 | ssis                                   |  |  |  |  |
| ∯  j                                  | 1,00             | 1,68     | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 3,26 | h re                                   |  |  |  |  |
| N <sub>R,k</sub> for t <sub>N,1</sub> | 1,13             | 1,68     | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 3,82 | ough resist<br>component               |  |  |  |  |
|                                       | 1,25             | 1,68     | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 4,37 | ا بَقِ                                 |  |  |  |  |
|                                       | 1,50             | 1,68     | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 4,37 | pull-through resistance<br>component l |  |  |  |  |
|                                       | 1,75             | 1,68     | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 4,37 | <b></b>                                |  |  |  |  |
| <u> </u>                              | 2,00             | 1,68     | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 4,37 |                                        |  |  |  |  |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                                                   | Annex 9                        |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0301CF - 5,5 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



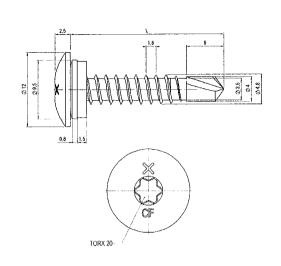
Fastener: stainless steel (1.4301) – EN 10088
Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity


 $\Sigma t_i \le 3,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| ,                                     |                |      |    |      |    |      |    |        |     | <del></del> |    |          |    | ,    |    |          |    |
|---------------------------------------|----------------|------|----|------|----|------|----|--------|-----|-------------|----|----------|----|------|----|----------|----|
| t <sub>r</sub>                        | <b>4</b> ,   = | 1,0  | 00 | 1,   | 13 | 1,2  | 25 | 5 1,50 |     | 1,7         | 75 | 2,0      | 00 | 2,5  | 50 | 3,0      | 00 |
| M <sub>t</sub>                        | nom =          |      |    |      |    |      |    |        | 5 I | ٧m          |    |          |    |      |    |          |    |
|                                       | 0,50           | 1,27 | ac | 1,29 | ac | 1,31 | ac | 1,34   | ac  | 1,34        | ac | 1,34     | ac | 1,34 | ac | 1,34     | а  |
|                                       | 0,55           | 1,37 | ac | 1,39 | ac | 1,41 | ac | 1,43   | ac  | 1,43        | ac | 1,43     | ac | 1,43 | а  | -        |    |
|                                       | 0,63           | 1,54 | ac | 1,55 | ac | 1,56 | ac | 1,58   | ac  | 1,58        | ac | 1,58     | ac | 1,58 | а  | —        | -  |
|                                       | 0,75           | 1,81 | ac | 1,81 | ac | 1,81 | ac | 1,81   | ac  | 1,81        | ac | 1,81     | ac | 1,81 | а  | —        |    |
| t.                                    | 0,88           | 2,02 | ac | 2,15 | ac | 2,27 | ac | 2,52   | ac  | 2,54        | ac | 2,55     | а  | 2,59 | а  |          | _  |
| for                                   | 1,00           | 2,23 | ac | 2,48 | ac | 2,73 | ac | 3,23   | ac  | 3,26        | а  | 3,30     | а  | 3,36 | а  | —        | -  |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13           | 2,23 | ac | 2,53 | ac | 2,83 | ac | 3,43   | а   | 3,48        | а  | 3,52     | а  | —    |    | —        |    |
|                                       | 1,25           | 2,23 | ac | 2,58 | а  | 2,93 | а  | 3,64   | а   | 3,69        | а  | 3,75     | а  | —    |    | —        |    |
|                                       | 1,50           | 2,23 | а  | 2,68 | а  | 3,14 | а  | 4,04   | а   | 4,12        | а  | 4,21     | а  | l —  |    | —        |    |
|                                       | 1,75           | 2,23 | а  | 2,68 | а  | 3,14 | а  | 4,04   | а   | 4,12        | а  |          | _  |      |    |          | -  |
|                                       | 2,00           | 2,23 | а  | 2,68 | а  | 3,14 | a  | 4,04   | а   |             |    |          |    |      |    |          |    |
|                                       | 0,50           | 1,06 | ac | 1,27 | ac | 1,29 | ac | 1,29   | ac  | 1,29        | ac | 1,29     | ac | 1,29 | ac | 1,29     | a  |
|                                       | 0,55           | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,57   | ac  | 1,57        | ac | 1,57     | ac | 1,57 | а  | _        | -  |
|                                       | 0,63           | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83   | ac  | 2,02        | ac | 2,02     | ac | 2,02 | а  | _        | -  |
|                                       | 0,75           | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83   | ac  | 2,19        | ac | 2,45     | ac | 2,45 | а  | -        | -  |
| <b>1</b>                              | 0,88           | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83   | ac  | 2,19        | ac | 2,54     | а  | 3,19 | а  |          | -  |
| for                                   | 1,00           | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83   | ac  | 2,19        | а  | 2,54     | а  | 3,21 | а  | —        | -  |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13           | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83   | а   | 2,19        | а  | 2,54     | а  | —    | _  |          | -  |
|                                       | 1,25           | 1,06 | ac | 1,27 | а  | 1,47 | а  | 1,83   | а   | 2,19        | а  | 2,54     | а  | —    |    | —        | -  |
|                                       | 1,50           | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83   | а   | 2,19        | а  | 2,54     | а  | —    | _  | -        |    |
|                                       | 1,75           | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83   | а   | 2,19        | а  |          | _  | —    | _  | <b> </b> |    |
|                                       | 2,00           | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83   | а   | L —         |    | <u>L</u> |    |      |    |          |    |

| Self drilling screw                                                   | Annex 10                       |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0302BI - 4,8 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

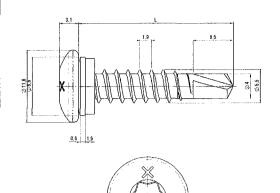
Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346


Drilling capacity  $\Sigma t_i \le 3,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

|              | t <sub>N,II</sub> = | 1,0  | 00 | 1,1  | 3  | 1,2  | 25 | 1,5  | 50  | 1,7      | 75 | 2,0      | 00                     | 2,5      | 50 | 3,0      | 00                           |
|--------------|---------------------|------|----|------|----|------|----|------|-----|----------|----|----------|------------------------|----------|----|----------|------------------------------|
|              | $M_{t,nom} =$       |      |    |      |    |      |    |      | 5 [ | ٧m       |    |          |                        |          |    |          |                              |
|              | 0,50                | 1,27 | ac | 1,29 | ac | 1,31 | ac | 1,34 | ac  | 1,34     | ac | 1,34     | ac                     | 1,34     | ac | 1,34     | а                            |
|              | 0,55                | 1,37 | ac | 1,39 | ac | 1,41 | ac | 1,43 | ac  | 1,43     | ac | 1,43     | ac                     | 1,43     | а  | _        | _                            |
|              | 0,63                | 1,54 | ac | 1,55 | ac | 1,56 | ac | 1,58 | ac  | 1,58     | ac | 1,58     | ac                     | 1,58     | а  |          | -                            |
| ,,           | 0,75                | 1,81 | ac | 1,81 | ac | 1,81 | ac | 1,81 | ac  | 1,81     | ac | 1,81     | ac                     | 1,81     | а  |          | -                            |
| , Z          | 0,88                | 2,02 | ac | 2,15 | ac | 2,27 | ac | 2,52 | ac  | 2,54     | ac | 2,55     | а                      | 2,59     | а  | _        |                              |
| Ve k for the | 1,00                | 2,23 | ac | 2,48 | ac | 2,73 | ac | 3,23 | ac  | 3,26     | а  | 3,30     | а                      | 3,36     | а  | _        |                              |
| ı x          | 1,13                | 2,23 | ac | 2,53 | ac | 2,83 | ac | 3,43 | а   | 3,48     | а  | 3,52     | а                      | —        |    |          | -                            |
| -            | 1,25                | 2,23 | ac | 2,58 | а  | 2,93 | а  | 3,64 | а   | 3,69     | а  | 3,75     | а                      | _        | _  | _        | -                            |
|              | 1,50                | 2,23 | а  | 2,68 | а  | 3,14 | а  | 4,04 | а   | 4,12     | а  | 4,21     | а                      | <u> </u> | _  |          | _                            |
|              | 1,75                | 2,23 | а  | 2,68 | а  | 3,14 | а  | 4,04 | а   | 4,12     | а  | <u> </u> |                        |          | _  | _        | -                            |
|              | 2,00                | 2,23 | а  | 2,68 | а  | 3,14 | а  | 4,04 | а   |          |    | -        | det mortere matemier S |          |    |          | in the 2-tension in blackers |
|              | 0,50                | 1,06 | ac | 1,27 | ac | 1,29 | ac | 1,29 | ac  | 1,29     | ac | 1,29     | ac                     | 1,29     | ac | 1,29     | а                            |
|              | 0,55                | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,57 | ac  | 1,57     | ac | 1,57     | ac                     | 1,57     | а  |          | -                            |
|              | 0,63                | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83 | ac  | 2,02     | ac | 2,02     | ac                     | 2,02     | а  | _        | -                            |
| l l          | 0,75                | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83 | ac  | 2,19     | ac | 2,45     | ac                     | 2,45     | а  | _        | -                            |
| <u> </u>     | 0,88                | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83 | ac  | 2,19     | ac | 2,54     | а                      | 3,19     | а  | _        | -                            |
| Į            | 1,00                | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83 | ac  | 2,19     | а  | 2,54     | а                      | 3,21     | а  |          | _                            |
| Ne k for tw  | 1,13                | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83 | а   | 2,19     | а  | 2,54     | а                      | —        |    | _        | _                            |
| ~            | 1,25                | 1,06 | ac | 1,27 | а  | 1,47 | а  | 1,83 | а   | 2,19     | а  | 2,54     | а                      |          |    | _        | -                            |
|              | 1,50                | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83 | а   | 2,19     | а  | 2,54     | а                      |          | _  | <b>—</b> | -                            |
|              | 1,75                | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83 | а   | 2,19     | а  | —        | _                      |          |    | _        | -                            |
| L            | 2,00                | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83 | а   | <u> </u> |    | <u> </u> |                        | <u> </u> |    | <u> </u> |                              |

| Self drilling screw                                                   | Annex 11                       |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0302CF - 4,8 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Torx 25---

# Materials

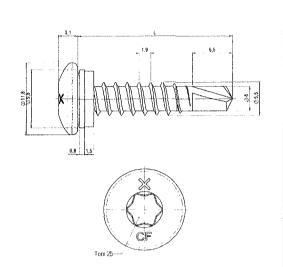
Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

**Drilling capacity** 


 $\Sigma t_i \le 3,50 \text{ mm}$ 



for timber substructures no performance determined

| , , , , , , , , , , , , , , , , , , , , |        |      |    |      |    |      |    |      |    |      |    |      |    |             |    |              |     |
|-----------------------------------------|--------|------|----|------|----|------|----|------|----|------|----|------|----|-------------|----|--------------|-----|
| tn                                      | V.II = | 1,0  | 00 | 1,   | 13 | 1,2  | 25 | 1,5  | 50 | 1,7  | 75 | 2,0  | 00 | 2,5         | 50 | 3,0          | 00  |
| M <sub>t,</sub>                         | лот =  |      |    |      |    |      |    |      | 5  | ٧m   | lm |      |    |             |    |              |     |
|                                         | 0,50   | 1,36 | ac | 1,42 | ac | 1,48 | ac | 1,59 | ac | 1,59 | ac | 1,59 | ac | 1,59        | ac | 1,59         | а   |
|                                         | 0,55   | 1,46 | ac | 1,51 | ac | 1,55 | ac | 1,64 | ac | 1,64 | ac | 1,64 | ac | 1,64        | а  | —            |     |
|                                         | 0,63   | 1,60 | ac | 1,63 | ac | 1,66 | ac | 1,72 | ac | 1,72 | ac | 1,72 | ac | 1,72        | а  | _            |     |
|                                         | 0,75   | 1,84 | ac | 1,84        | а  | —            |     |
| , <u>ż</u>                              | 0,88   | 2,19 | ac | 2,37 | ac | 2,53 | ac | 2,87 | ac | 2,93 | ac | 2,99 | а  | 3,12        | а  | —            | _   |
| V <sub>R,k</sub> for t <sub>N,I</sub>   | 1,00   | 2,53 | ac | 2,88 | ac | 3,21 | ac | 3,89 | ac | 4,02 | а  | 4,14 | а  | 4,39        | а  | <del>-</del> | _   |
| /n, x                                   | 1,13   | 2,53 | ac | 2,93 | ac | 3,3  | ac | 4,06 | а  | 4,17 | а  | 4,28 | а  | <del></del> |    | —            |     |
|                                         | 1,25   | 2,53 | ac | 2,97 | а  | 3,38 | а  | 4,23 | а  | 4,33 | а  | 4,42 | а  | · —         |    |              |     |
|                                         | 1,50   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а  | 4,63 | а  | 4,70 | а  |             | _  | -            |     |
|                                         | 1,75   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а  | 4,63 | а  | _    | _  | —           | _  | <u> </u>     | -   |
|                                         | 2,00   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а  |      |    |      |    |             |    |              |     |
|                                         | 0,50   | 0,82 | ac | 0,82        | ac | 0,82         | а   |
| H                                       | 0,55   | 1,13 | ac | 1,13        | а  | <b> </b>     |     |
|                                         | 0,63   | 1,21 | ac | 1,43        | а  |              |     |
| п                                       | 0,75   | 1,21 | ac | 1,48 | ac | 1,74        | а  |              |     |
| , Z                                     | 0,88   | 1,21 | ac | 1,48 | ac | 1,75 | ac | 2,35 | ac | 2,50 | ac | 2,50 | а  | 2,50        | а  | -            |     |
| for                                     | 1,00   | 1,21 | ac | 1,48 | ac | 1,75 | ac | 2,35 | ac | 2,94 | а  | 3,26 | a. | 3,26        | а  | —            |     |
| NR,k for t <sub>N,I</sub>               | 1,13   | 1,21 | ac | 1,48 | ac | 1,75 | ac | 2,35 | а  | 2,94 | а  | 3,54 | а  | —           |    | -            | _   |
|                                         | 1,25   | 1,21 | ac | 1,48 | а  | 1,75 | а  | 2,35 | а  | 2,94 | а  | 3,54 | а  | ] —         | _  |              |     |
|                                         | 1,50   | 1,21 | а  | 1,48 | а  | 1,75 | а  | 2,35 | а  | 2,94 | а  | 3,54 | а  | —           |    | —            | - [ |
|                                         | 1,75   | 1,21 | а  | 1,48 | а  | 1,75 | а  | 2,35 | а  | 2,94 | а  | -    | _  | —           |    | —            | -   |
|                                         | 2,00   | 1,21 | а  | 1,48 | а  | 1,75 | a  | 2,35 | а  |      |    |      |    |             |    | <u> </u>     |     |

| Self drilling screw                                                   | Annex 12                       |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0302BI - 5,5 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

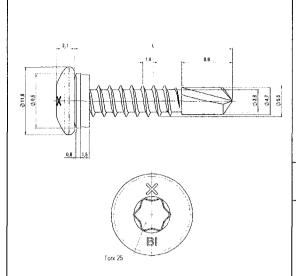
Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346


Drilling capacity  $\Sigma t_i \leq 3,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| tr                                      | v,II = | 1,0  | 00 | 1,1  | 3  | 1,2  | 25 | 1,5  | 50       | 1,7       | 75 | 2,0      | 00 | 2,5         | 50 | 3,0      | 00 |
|-----------------------------------------|--------|------|----|------|----|------|----|------|----------|-----------|----|----------|----|-------------|----|----------|----|
| M <sub>t</sub>                          | ,nom = |      |    |      |    |      |    |      | 5        | <u>Nm</u> |    |          |    |             |    |          |    |
|                                         | 0,50   | 1,36 | ac | 1,42 | ac | 1,48 | ac | 1,59 | ac       | 1,59      | ac | 1,59     | ac | 1,59        | ac | 1,59     | а  |
|                                         | 0,55   | 1,46 | ac | 1,51 | ac | 1,55 | ac | 1,64 | ac       | 1,64      | ac | 1,64     | ac | 1,64        | а  | —        |    |
|                                         | 0,63   | 1,60 | ac | 1,63 | ac | 1,66 | ac | 1,72 | ac       | 1,72      | ac | 1,72     | ac | 1,72        | а  | —        |    |
|                                         | 0,75   | 1,84 | ac | 1,84 | ac | 1,84 | ac | 1,84 | ac       | 1,84      | ac | 1,84     | ac | 1,84        | а  | l —      | -  |
| , ż                                     | 0,88   | 2,19 | ac | 2,37 | ac | 2,53 | ac | 2,87 | ac       | 2,93      | ac | 2,99     | а  | 3,12        | а  | _        | _  |
| ₫.                                      | 1,00   | 2,53 | ac | 2,88 | ac | 3,21 | ac | 3,89 | ac       | 4,02      | а  | 4,14     | а  | 4,39        | а  | <u> </u> |    |
| V <sub>R,k</sub> for t <sub>N,I</sub> = | 1,13   | 2,53 | ac | 2,93 | ac | 3,3  | ac | 4,06 | а        | 4,17      | а  | 4,28     | а  | _           |    | _        | _  |
| _                                       | 1,25   | 2,53 | ac | 2,97 | а  | 3,38 | а  | 4,23 | а        | 4,33      | а  | 4,42     | а  |             | _  | _        |    |
|                                         | 1,50   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а        | 4,63      | а  | 4,70     | а  | _           | _  |          | -  |
|                                         | 1,75   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а        | 4,63      | а  | <u> </u> |    | <u> </u>    |    | <b>—</b> | -  |
|                                         | 2,00   | 2,53 | a  | 3,06 | а  | 3,55 | a  | 4,56 | <u>a</u> | _         |    |          |    | <del></del> |    |          |    |
|                                         | 0,50   | 0,82 | ac | 0,82 | ac | 0,82 | ac | 0,82 | ac       | 0,82      | ac | 0,82     | ac | 0,82        | ac | 0,82     | а  |
|                                         | 0,55   | 1,13 | ac | 1,13 | ac | 1,13 | ac | 1,13 | ac       | 1,13      | ac | 1,13     | ac | 1,13        | а  |          |    |
|                                         | 0,63   | 1,21 | ac | 1,43 | ac | 1,43 | ac | 1,43 | ac       | 1,43      | ac | 1,43     | ac | 1,43        | а  |          | -  |
| Ш                                       | 0,75   | 1,21 | ac | 1,48 | ac | 1,74 | ac | 1,74 | ac       | 1,74      | ac | 1,74     | ac | 1,74        | а  | —        |    |
| t <sub>N</sub> ,                        | 0,88   | 1,21 | ac | 1,48 | ac | 1,75 | ac | 2,35 | ac       | 2,50      | ac | 2,50     | а  | 2,50        | а  | —        |    |
| for                                     | 1,00   | 1,21 | ac | 1,48 | ac | 1,75 | ac | 2,35 | ac       | 2,94      | а  | 3,26     | а  | 3,26        | а  | —        |    |
| N <sub>R,k</sub> for t <sub>N,i</sub>   | 1,13   | 1,21 | ac | 1,48 | ac | 1,75 | ac | 2,35 | а        | 2,94      | а  | 3,54     | а  |             | _  |          |    |
| ~                                       | 1,25   | 1,21 | ac | 1,48 | а  | 1,75 | а  | 2,35 | а        | 2,94      | а  | 3,54     | а  | —           |    | _        | -  |
|                                         | 1,50   | 1,21 | а  | 1,48 | a  | 1,75 | а  | 2,35 | а        | 2,94      | а  | 3,54     | а  | -           |    | _        | -  |
|                                         | 1,75   | 1,21 | а  | 1,48 | а  | 1,75 | а  | 2,35 | а        | 2,94      | а  | <u> </u> |    | -           | _  | _        | -  |
|                                         | 2,00   | 1,21 | а  | 1,48 | а  | 1,75 | a  | 2,35 | а        | <u> </u>  |    |          |    | <u> </u>    |    |          |    |

| Self drilling screw                                                        | Annex 13                       |
|----------------------------------------------------------------------------|--------------------------------|
| IPEX - 0302CF - 5,5 x L                                                    | of European technical approval |
| with mushroom head with Torx® drive system and seal washer $\geq$ Ø 9,5 mm | ETA-10/0020                    |
|                                                                            |                                |

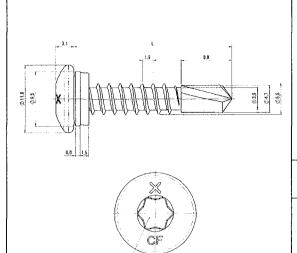


Fastener: stainless steel (1.4301) – EN 10088
Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346


Drilling capacity  $\Sigma t_i \le 6,00 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| t                                     | N,II = | 2,0  | 00 | 2,5  | 50 | 3,0  | 00        | 4,0  | 00 | 5,0      | 00 | 6,0 | 00 | 7,           | 00 | 8,       | 00 |
|---------------------------------------|--------|------|----|------|----|------|-----------|------|----|----------|----|-----|----|--------------|----|----------|----|
| Mt                                    | nom =  |      |    |      |    | 5 N  | <u>lm</u> |      |    |          |    |     |    | _            | _  |          |    |
|                                       | 0,50   | 1,35 | ac | 1,35 | ac | 1,35 | ac        | 1,35 | ac | 1,35     | ac |     | _  | _            |    | _        | _  |
|                                       | 0,55   | 1,53 | ac | 1,53 | ac | 1,53 | ac        | 1,53 | ac | 1,53     | а  | _   | _  |              | _  | _        |    |
|                                       | 0,63   | 1,81 | ac | 1,81 | ac | 1,81 | ac        | 1,81 | ac | 1,81     | а  | _   | _  | _            | _  | —        | _  |
|                                       | 0,75   | 2,27 | ac | 2,27 | ac | 2,27 | ac        | 2,27 | ac | 2,27     | а  | _   | _  |              | _  | <u> </u> |    |
|                                       | 0,88   | 2,66 | ac | 2,66 | ac | 2,66 | ac        | 2,66 | ac | 2,66     | а  |     | _  | <b>—</b>     | _  |          |    |
| for                                   | 1,00   | 3,04 | ac | 3,04 | ac | 3,04 | ac        | 3,04 | ac | 3,04     | а  |     | _  | <del> </del> |    | _        | _  |
| VR.k for tou                          | 1,13   | 3,32 | ac | 3,77 | ac | 3,77 | ac        | 3,77 | а  |          | _  |     |    | —            | _  | <b> </b> |    |
|                                       | 1,25   | 3,60 | ac | 4,05 | ac | 4,50 | ac        | 4,50 | а  | —        | _  |     | _  | _            |    | —        | _  |
|                                       | 1,50   | 4,15 | ac | 4,34 | ac | 4,53 | ac        | 4,73 | а  | —        | _  |     | _  | _            |    | —        | -  |
|                                       | 1,75   | 4,15 | ac | 4,34 | ac | 4,53 | а         | 4,73 | а  |          | _  | _   |    | _            | _  |          |    |
|                                       | 2,00   | 4,15 | ac | 4,34 | а  | 4,53 | a         | 4,73 | а  | <u> </u> |    |     | _  |              |    | L —      |    |
|                                       | 0,50   | 0,82 | ac | 0,82 | ac | 0,82 | ac        | 0,82 | ac | 0,82     | ac | _   | _  |              | _  | _        |    |
|                                       | 0,55   | 1,13 | ac | 1,13 | ac | 1,13 | ac        | 1,13 | ac | 1,13     | а  |     | _  | <b>—</b>     |    | _        | -  |
|                                       | 0,63   | 1,43 | ac | 1,43 | ac | 1,43 | ac        | 1,43 | ac | 1,43     | а  | _   | _  | _            | _  | _        | _  |
| 11                                    | 0,75   | 1,74 | ac | 1,74 | ac | 1,74 | ac        | 1,74 | ac | 1,74     | а  |     | _  | _            |    | —        | _  |
|                                       | 0,88   | 2,50 | ac | 2,50 | ac | 2,50 | ac        | 2,50 | ac | 2,50     | а  |     |    | _            | _  | _        |    |
| ģ                                     | 1,00   | 3,01 | ac | 3,26 | ac | 3,26 | ac        | 3,26 | ac | 3,26     | а  |     | _  | _            | _  |          | _  |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13   | 3,01 | ac | 3,79 | ac | 3,82 | ac        | 3,82 | а  |          | _  | _   |    |              | _  | _        |    |
|                                       | 1,25   | 3,01 | ac | 3,79 | ac | 4,37 | ac        | 4,37 | а  | —        | _  |     |    | _            |    | _        | _  |
|                                       | 1,50   | 3,01 | ac | 3,79 | ac | 4,37 | ac        | 4,37 | а  |          | _  |     |    | _            |    | _        | -  |
|                                       | 1,75   | 3,01 | ac | 3,79 | ac | 4,37 | а         | 4,37 | а  | -        | _  | _   |    |              | _  | _        | -  |
|                                       | 2,00   | 3,01 | ac | 3,79 | а  | 4,37 | а         | 4,37 | а  | <u> </u> |    |     |    |              |    |          |    |

| Self drilling screw                                                   | Annex 14                       |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0303BI - 5,5 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity  $\Sigma t_i \le 6,00 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

|                                       |         |      |    |      | <del> </del> |      |           |      |    |          |    |          |    |              |    |          |     |
|---------------------------------------|---------|------|----|------|--------------|------|-----------|------|----|----------|----|----------|----|--------------|----|----------|-----|
| t                                     | N,II =  | 2,0  | 00 | 2,5  | 50           | 3,0  | 00        | 4,0  | 00 | 5,0      | 00 | 6,0      | 00 | 7,           | 00 | 8,       | 00  |
| M                                     | t,nom = |      |    |      |              | 5 N  | <u>lm</u> |      |    |          |    |          |    | -            |    |          |     |
|                                       | 0,50    | 1,35 | ac | 1,35 | ac           | 1,35 | ac        | 1,35 | ac | 1,35     | ac | _        |    |              | _  | _        | -   |
|                                       | 0,55    | 1,53 | ac | 1,53 | ac           | 1,53 | ac        | 1,53 | ac | 1,53     | а  |          |    | <b> </b>     | _  | —        | -   |
|                                       | 0,63    | 1,81 | ac | 1,81 | ac           | 1,81 | ac        | 1,81 | ac | 1,81     | а  | _        |    |              | _  |          | _   |
| 11                                    | 0,75    | 2,27 | ac | 2,27 | ac           | 2,27 | ac        | 2,27 | ac | 2,27     | а  | _        |    | ĺ —          | _  | <b>—</b> | - 1 |
| , Z                                   | 0,88    | 2,66 | ac | 2,66 | ac           | 2,66 | ac        | 2,66 | ac | 2,66     | а  |          | _  | <u> </u>     | _  | _        | -   |
| for                                   | 1,00    | 3,04 | ac | 3,04 | ac           | 3,04 | ac        | 3,04 | ac | 3,04     | а  |          | _  |              | _  | _        | _   |
| V <sub>R,k</sub> for t <sub>n,i</sub> | 1,13    | 3,32 | ac | 3,77 | ac           | 3,77 | ac        | 3,77 | а  |          |    |          |    | —            |    | -        | _   |
|                                       | 1,25    | 3,60 | ac | 4,05 | ac           | 4,50 | ac        | 4,50 | а  |          |    | _        |    | _            |    | -        | _   |
|                                       | 1,50    | 4,15 | ac | 4,34 | ac           | 4,53 | ac        | 4,73 | а  |          |    | _        |    | l —          |    | -        | - 1 |
|                                       | 1,75    | 4,15 | ac | 4,34 | ac           | 4,53 | a         | 4,73 | а  | _        | _  |          | _  |              | _  | _        |     |
|                                       | 2,00    | 4,15 | ac | 4,34 | а            | 4,53 | а         | 4,73 | а  |          |    |          | _  |              |    |          |     |
|                                       | 0,50    | 0,82 | ac | 0,82 | ac           | 0,82 | ac        | 0,82 | ac | 0,82     | ac |          | _  |              | _  |          |     |
|                                       | 0,55    | 1,13 | ac | 1,13 | ac           | 1,13 | ac        | 1,13 | ac | 1,13     | а  | _        |    | <u> </u>     |    | -        | _   |
|                                       | 0,63    | 1,43 | ac | 1,43 | ac           | 1,43 | ac        | 1,43 | ac | 1,43     | а  |          |    | <del> </del> | _  | —        | _   |
|                                       | 0,75    | 1,74 | ac | 1,74 | ac           | 1,74 | ac        | 1,74 | ac | 1,74     | а  | _        |    | —            | _  | <u> </u> | _   |
| Ţ.                                    | 0,88    | 2,50 | ac | 2,50 | ac           | 2,50 | ac        | 2,50 | ac | 2,50     | а  | _        |    |              | _  |          |     |
| for                                   | 1,00    | 3,01 | ac | 3,26 | ac           | 3,26 | ac        | 3,26 | ac | 3,26     | a  | _        |    | _            |    | _        | _   |
| NR,k for tn,ı                         | 1,13    | 3,01 | ac | 3,79 | ac           | 3,82 | ac        | 3,82 | а  |          |    | _        |    | _            | _  | _        | _   |
| ~                                     | 1,25    | 3,01 | ac | 3,79 | ac           | 4,37 | ac        | 4,37 | а  |          | _  |          | _  | —            | _  | —        |     |
|                                       | 1,50    | 3,01 | ac | 3,79 | ac           | 4,37 | ac        | 4,37 | а  |          |    |          | _  | —            |    | _        |     |
|                                       | 1,75    | 3,01 | ac | 3,79 | ac           | 4,37 | а         | 4,37 | а  |          |    |          |    | —            |    | —        |     |
|                                       | 2,00    | 3,01 | ac | 3,79 | а            | 4,37 | a         | 4,37 | а  | <u> </u> |    | <u> </u> |    | _            |    |          |     |

| Self drilling screw                                                   | Annex 15                       |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0303CF - 5,5 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |

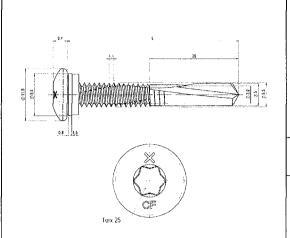


Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

**Drilling capacity** 


 $\Sigma t_i \le 13,0 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| <del></del>                           |        | T-   |    |      |    | <del></del>  |    |      |     |      |    | <del></del> |    | <del></del> |    |    | <del></del> |
|---------------------------------------|--------|------|----|------|----|--------------|----|------|-----|------|----|-------------|----|-------------|----|----|-------------|
| t <sub>n</sub>                        | v,II = | 4,(  | 00 | 5,0  | 00 | 6,0          | 00 | 7,0  | 00  | 8,0  | 00 | 10,         | 00 | 12,         | 00 | 14 | ,00         |
| M <sub>t</sub>                        | nom =  |      |    |      |    | <del>,</del> |    | 5 N  | lm_ |      |    |             |    |             |    | _  | _           |
|                                       | 0,50   | 1,48 | ac | 1,48 | ac | 1,48         | ac | 1,48 | ac  | 1,48 | ac | 1,48        | ac | 1,48        | ac | _  |             |
|                                       | 0,55   | 1,63 | ac | 1,63 | ac | 1,63         | ac | 1,63 | ac  | 1,63 | ac | 1,63        | ac | 1,63        | а  |    |             |
|                                       | 0,63   | 1,86 | ac | 1,86 | ac | 1,86         | ac | 1,86 | ac  | 1,86 | ac | 1,86        | ac | 1,86        | а  |    |             |
| ii ii                                 | 0,75   | 2,24 | ac | 2,24 | ac | 2,24         | ac | 2,24 | ac  | 2,24 | ac | 2,24        | ac | 2,24        | а  |    | - [         |
| , Ž                                   | 0,88   | 3,01 | ac | 3,01 | ac | 3,01         | ac | 3,01 | ac  | 3,01 | ac | 3,01        | ac | 3,01        | а  | _  | _           |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00   | 3,78 | ac | 3,78 | ac | 3,78         | ac | 3,78 | ac  | 3,78 | ac | 3,78        | ac | 3,78        | а  |    | _           |
| /n, x                                 | 1,13   | 3,93 | ac | 4,05 | ac | 4,18         | ac | 4,31 | ac  | 4,43 | ac | 4,44        | ac | 4,44        | а  | _  | - 1         |
|                                       | 1,25   | 4,06 | ac | 4,30 | ac | 4,55         | ac | 4,79 | ac  | 5,03 | ac | 5,04        | ac | 5,05        | а  |    | - 1         |
| ll .                                  | 1,50   | 4,34 | ac | 4,83 | ac | 5,31         | ac | 5,80 | ac  | 6,28 | ac | 6,30        | ac | 6,32        | а  | _  | — i         |
|                                       | 1,75   | 4,34 | ac | 4,83 | ac | 5,31         | ac | 5,80 | а   | 6,28 | а  | 6,30        | а  | 6,32        | а  | _  |             |
| <u> </u>                              | 2,00   | 4,34 | ac | 4,83 | а  | 5,31         | а  | 5,80 | а   | 6,28 | а  | 6,30        | а  | 6,32        | а  |    |             |
|                                       | 0,50   | 0,82 | ac | 0,82 | ac | 0,82         | ac | 0,82 | ac  | 0,82 | ac | 0,82        | ac | 0,82        | ac |    | _           |
|                                       | 0,55   | 1,13 | ac | 1,13 | ac | 1,13         | ac | 1,13 | ac  | 1,13 | ac | 1,13        | ac | 1,13        | а  | _  |             |
|                                       | 0,63   | 1,43 | ac | 1,43 | ac | 1,43         | ac | 1,43 | ac  | 1,43 | ac | 1,43        | ac | 1,43        | а  | _  | _           |
|                                       | 0,75   | 1,74 | ac | 1,74 | ac | 1,74         | ac | 1,74 | ac  | 1,74 | ac | 1,74        | ac | 1,74        | а  | _  | _           |
| , Z,                                  | 0,88   | 2,50 | ac | 2,50 | ac | 2,50         | ac | 2,50 | ac  | 2,50 | ac | 2,50        | ac | 2,50        | а  |    | -           |
| for                                   | 1,00   | 3,26 | ac | 3,26 | ac | 3,26         | ac | 3,26 | ac  | 3,26 | ac | 3,26        | ac | 3,26        | а  |    | -           |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13   | 3,82 | ac | 3,82 | ac | 3,82         | ac | 3,82 | ac  | 3,82 | ac | 3,82        | ac | 3,82        | а  |    |             |
| ~                                     | 1,25   | 4,37 | ac | 4,37 | ac | 4,37         | ac | 4,37 | ac  | 4,37 | ac | 4,37        | ac | 4,37        | а  | _  | _           |
|                                       | 1,50   | 4,37 | ac | 4,37 | ac | 4,37         | ac | 4,37 | ac  | 4,37 | ac | 4,37        | ac | 4,37        | а  |    | -           |
|                                       | 1,75   | 4,37 | ac | 4,37 | ac | 4,37         | ac | 4,37 | а   | 4,37 | а  | 4,37        | а  | 4,37        | а  |    | -           |
|                                       | 2,00   | 4,37 | ac | 4,37 | а  | 4,37         | а  | 4,37 | а   | 4,37 | а  | 4,37        | а  | 4,37        | a  |    |             |

| Self drilling screw                                                        | Annex 16                       |
|----------------------------------------------------------------------------|--------------------------------|
| IPEX - 0305BI - 5,5 x L                                                    | of European technical approval |
| with mushroom head with Torx® drive system and seal washer $\geq$ Ø 9,5 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

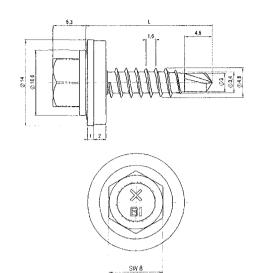
Washer: carbon steel, galvanized

stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

**Drilling capacity** 


 $\Sigma t_i \le 13,0 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| t.                   | V.II = | 4.0  | <u> </u> | 5,0      | )()                                            | 6,0  | <u>'</u> | 7,0  | 10 | 8,0  |                                                | 10,  |    | 12,   | 00       | 14  | ,00 |
|----------------------|--------|------|----------|----------|------------------------------------------------|------|----------|------|----|------|------------------------------------------------|------|----|-------|----------|-----|-----|
|                      | nom =  | 7,0  |          | <u> </u> | , <u>, , , , , , , , , , , , , , , , , , ,</u> | 0,0  |          | 5 N  |    |      | , <u>, , , , , , , , , , , , , , , , , , ,</u> | 10,  |    | 1 12, | ,00      | 17  | -   |
| ,,,,                 | 0,50   | 1,48 | ac       | 1,48     | ac                                             | 1,48 | ac       | 1,48 | ac | 1,48 | ac                                             | 1,48 | ac | 1,48  | ac       | _   |     |
|                      | 0,55   | 1.63 | ac       | 1,63     | ac                                             | 1,63 | ac       | 1,63 | ac | 1,63 | ac                                             | 1,63 | ac | 1,63  | а        |     | _   |
|                      | 0,63   | 1.86 | ac       | 1,86     | ac                                             | 1,86 | ac       | 1,86 | ac | 1,86 | ac                                             | 1,86 | ac | 1,86  | a        |     | _   |
| l                    | 0,75   | 2,24 | ac       | 2,24     | ac                                             | 2,24 | ac       | 2.24 | ac | 2,24 | ac                                             | 2,24 | ac | 2,24  | а        | _   | _   |
| I II                 | 0.88   | 3,01 | ac       | 3,01     | ac                                             | 3.01 | ac       | 3,01 | ac | 3,01 | ac                                             | 3,01 | ac | 3,01  | a        | _   |     |
| for t                | 1,00   | 3,78 | ac       | 3,78     | ac                                             | 3,78 | ac       | 3,78 | ac | 3,78 | ac                                             | 3,78 | ac | 3,78  | а        | _   |     |
| V <sub>R,k</sub> f   | 1,13   | 3,93 | ac       | 4,05     | ac                                             | 4,18 | ac       | 4,31 | ac | 4,43 | ac                                             | 4,44 | ac | 4,44  | а        | _   | _   |
| >                    | 1,25   | 4,06 | ac       | 4,30     | ac                                             | 4,55 | ac       | 4,79 | ac | 5,03 | ac                                             | 5,04 | ac | 5,05  | а        | l — | _   |
|                      | 1,50   | 4,34 | ac       | 4,83     | ac                                             | 5,31 | ac       | 5,80 | ac | 6,28 | ac                                             | 6,30 | ac | 6,32  | а        |     |     |
|                      | 1,75   | 4,34 | ac       | 4,83     | ac                                             | 5,31 | ac       | 5,80 | а  | 6,28 | а                                              | 6,30 | а  | 6,32  | а        |     | _   |
|                      | 2,00   | 4,34 | ac       | 4,83     | а                                              | 5,31 | a        | 5,80 | а  | 6,28 | а                                              | 6,30 | а  | 6,32  | а        |     | _   |
|                      | 0,50   | 0,82 | ac       | 0,82     | ac                                             | 0,82 | ac       | 0,82 | ac | 0,82 | ac                                             | 0,82 | ac | 0,82  | ac       | _   | _   |
|                      | 0,55   | 1,13 | ac       | 1,13     | ac                                             | 1,13 | ac       | 1,13 | ac | 1,13 | ac                                             | 1,13 | ac | 1,13  | а        | _   | _   |
|                      | 0,63   | 1,43 | ac       | 1,43     | ac                                             | 1,43 | ac       | 1,43 | ac | 1,43 | ac                                             | 1,43 | ac | 1,43  | а        |     | _   |
|                      | 0,75   | 1,74 | ac       | 1,74     | ac                                             | 1,74 | ac       | 1,74 | ac | 1,74 | ac                                             | 1,74 | ac | 1,74  | а        |     | _   |
| IN.                  | 0,88   | 2,50 | ac       | 2,50     | ac                                             | 2,50 | ac       | 2,50 | ac | 2,50 | ac                                             | 2,50 | ac | 2,50  | а        |     | _   |
| for t <sub>N,1</sub> | 1,00   | 3,26 | ac       | 3,26     | ac                                             | 3,26 | ac       | 3,26 | ac | 3,26 | ac                                             | 3,26 | ac | 3,26  | а        | _   | _   |
| N<br>A,R             | 1,13   | 3,82 | ac       | 3,82     | ac                                             | 3,82 | ac       | 3,82 | ac | 3,82 | ac                                             | 3,82 | ac | 3,82  | а        |     | _   |
| _                    | 1,25   | 4,37 | ac       | 4,37     | ac                                             | 4,37 | ac       | 4,37 | ac | 4,37 | ac                                             | 4,37 | ac | 4,37  | а        | —   |     |
|                      | 1,50   | 4,37 | ac       | 4,37     | ac                                             | 4,37 | ac       | 4,37 | ac | 4,37 | ac                                             | 4,37 | ac | 4,37  | а        | _   | _   |
|                      | 1,75   | 4,37 | ac       | 4,37     | ac                                             | 4,37 | ac       | 4,37 | а  | 4,37 | а                                              | 4,37 | а  | 4,37  | а        |     | —   |
|                      | 2,00   | 4,37 | ac       | 4,37     | а                                              | 4,37 | а        | 4,37 | а  | 4,37 | а                                              | 4,37 | а  | 4,37  | <u>a</u> |     |     |

| Self drilling screw                                                   | Annex 17                       |
|-----------------------------------------------------------------------|--------------------------------|
| IPEX - 0305CF - 5,5 x L                                               | of European technical approval |
| with mushroom head with Torx® drive system and seal washer ≥ Ø 9,5 mm | ETA-10/0020                    |



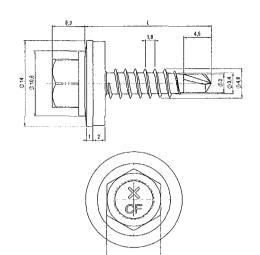
Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity Σ


 $\Sigma t_i \le 2,40 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| t <sub>l</sub>                        | √'II = | 0,5     | 50          | 0,6  | 33 | 0,7      | 75 | 0,8  | 38 | 1,0      | 00 | 1,1      | 3   | 1,2      | 25 | 1,5  | 50 |
|---------------------------------------|--------|---------|-------------|------|----|----------|----|------|----|----------|----|----------|-----|----------|----|------|----|
| M <sub>t</sub>                        | nom =  | 3 N     | lm          |      |    | 4 N      | lm |      |    |          |    |          | 5 [ | Nm       |    |      |    |
|                                       | 0,50   | 0,67    |             | 0,67 | _  | 0,67     |    | 0,67 |    | 0,67     |    | 0,67     | _   | 0,67     | _  | 0,67 |    |
|                                       | 0,55   | 0,67    |             | 0,76 | _  | 0,76     | _  | 0,76 | _  | 0,76     | _  | 0,76     | _   | 0,76     |    | 0,76 | -  |
|                                       | 0,63   | 0,67    |             | 0,90 |    | 0,90     | _  | 0,90 | _  | 0,90     |    | 0,90     |     | 0,90     |    | 0,90 | -  |
|                                       | 0,75   | 0,67    | -           | 0,90 |    | 1,12     | _  | 1,12 | _  | 1,12     | _  | 1,12     |     | 1,12     |    | 1,12 | -  |
| <u> </u>                              | 0,88   | 0,67    |             | 0,90 |    | 1,12     |    | 1,82 |    | 1,82     |    | 1,82     | —   | 1,82     | —  | 1,82 | _  |
| Ve,k for to,                          | 1,00   | 0,67    |             | 0,90 | _  | 1,12     | _  | 1,82 |    | 2,51     | а  | 2,51     | а   | 2,51     | а  | -    | _  |
| /a,k                                  | 1,13   | 0,67    |             | 0,90 |    | 1,12     |    | 1,82 | _  | 2,51     | а  | 2,80     | а   | 2,80     | а  |      |    |
| _                                     | 1,25   | 0,67    | <del></del> | 0,90 |    | 1,12     | —  | 1,82 |    | 2,51     | а  | 2,80     | а   | —        | _  | —    |    |
| []                                    | 1,50   | 0,67    |             | 0,90 | _  | 1,12     |    | 1,82 |    | <u> </u> |    | —        |     |          |    | —    | -  |
|                                       | 1,75   | 0,67    |             | 0,90 |    | —        |    |      |    | <b>—</b> |    | <b> </b> |     | —        |    | —    | _  |
|                                       | 2,00   |         |             |      |    |          |    |      |    |          |    |          |     |          |    |      |    |
|                                       | 0,50   | 0,45    |             | 0,66 | -  | 0,87     |    | 1,15 |    | 1,36     | _  | 1,36     |     | 1,36     |    | 1,36 |    |
|                                       | 0,55   | 0,45    |             | 0,66 |    | 0,87     | —  | 1,15 |    | 1,42     |    | 1,67     |     | 1,67     |    | 1,67 | _  |
| H                                     | 0,63   | 0,45    |             | 0,66 |    | 0,87     |    | 1,15 |    | 1,42     |    | 1,67     | _   | 1,91     | _  | 2,17 | _  |
| 11                                    | 0,75   | 0,45    | _           | 0,66 |    | 0,87     |    | 1,15 |    | 1,42     | -  | 1,67     |     | 1,91     | _  | 2,60 | -  |
| , z                                   | 0,88   | 0,45    |             | 0,66 |    | 0,87     |    | 1,15 |    | 1,42     |    | 1,67     | _   | 1,91     | _  | 2,60 | -  |
| for                                   | 1,00   | 0,45    |             | 0,66 |    | 0,87     |    | 1,15 |    | 1,42     | а  | 1,67     | а   | 1,91     | а  | —    | _  |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13   | 0,45    |             | 0,66 |    | 0,87     |    | 1,15 | _  | 1,42     | а  | 1,67     | а   | 1,91     | а  | —    |    |
| ~                                     | 1,25   | 0,45    |             | 0,66 |    | 0,87     |    | 1,15 |    | 1,42     | а  | 1,67     | а   | —        | _  |      | -  |
|                                       | 1,50   | 0,45    |             | 0,66 | _  | 0,87     | _  | 1,15 |    | <u> </u> |    | _        |     | _        |    | _    | -  |
|                                       | 1,75   | 0,45    |             | 0,66 |    |          | _  |      |    | -        |    | _        |     | —        |    | _    |    |
|                                       | 2,00   | <u></u> |             |      |    | <u> </u> |    |      |    |          |    |          |     | <u> </u> |    |      |    |

| Self drilling screw                                                           | Annex 18                       |
|-------------------------------------------------------------------------------|--------------------------------|
| IPEX - 0310BI - 4,8 x L with undercut, hexagon head and seal washer ≥ Ø 14 mm | of European technical approval |
|                                                                               | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

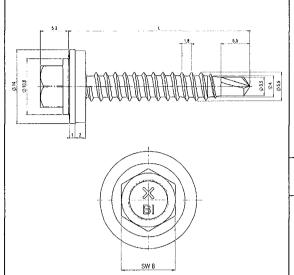
Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346


Drilling capacity  $\Sigma t_i \le 2,40 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| \                                     |                |          |    |             |   |      |      |          |    |          |    |      |    | ,    |    | ,            | <del></del> |
|---------------------------------------|----------------|----------|----|-------------|---|------|------|----------|----|----------|----|------|----|------|----|--------------|-------------|
| t <sub>N</sub>                        | <b>1</b> ,11 = | 0,5      | 50 | 0,6         | 3 | 0,7  | 75   | 0,8      | 38 | 1,0      | 00 | 1,1  | 13 | 1,2  | 25 | 1,5          | 50          |
| M <sub>t,</sub>                       | nom =          | 3 N      | lm |             |   | 4 N  | lm   |          |    | 5 Nm     |    |      |    |      |    |              |             |
|                                       | 0,50           | 0,67     | _  | 0,67        | _ | 0,67 |      | 0,67     |    | 0,67     |    | 0,67 | _  | 0,67 | _  | 0,67         |             |
|                                       | 0,55           | 0,67     |    | 0,76        | _ | 0,76 |      | 0,76     |    | 0,76     |    | 0,76 | _  | 0,76 | _  | 0,76         |             |
|                                       | 0,63           | 0,67     | _  | 0,90        | _ | 0,90 |      | 0,90     |    | 0,90     |    | 0,90 | _  | 0,90 |    | 0,90         |             |
| ll II                                 | 0,75           | 0,67     | _  | 0,90        | _ | 1,12 | -    | 1,12     |    | 1,12     | _  | 1,12 | _  | 1,12 | _  | 1,12         |             |
| ξ                                     | 0,88           | 0,67     |    | 0,90        |   | 1,12 | _    | 1,82     | _  | 1,82     |    | 1,82 |    | 1,82 | _  | 1,82         | -           |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00           | 0,67     |    | 0,90        | _ | 1,12 | —    | 1,82     |    | 2,51     | а  | 2,51 | а  | 2,51 | а  |              | -           |
| /a,k                                  | 1,13           | 0,67     | _  | 0,90        |   | 1,12 | _    | 1,82     | _  | 2,51     | а  | 2,80 | а  | 2,80 | а  | -            | _           |
|                                       | 1,25           | 0,67     |    | 0,90        |   | 1,12 | -    | 1,82     | _  | 2,51     | а  | 2,80 | а  | —    | _  |              |             |
|                                       | 1,50           | 0,67     |    | 0,90        |   | 1,12 | -    | 1,82     | _  | <u>-</u> |    | l —  |    | —    | _  |              | -           |
|                                       | 1,75           | 0,67     | _  | 0,90        |   | —    |      | <b>—</b> | _  |          | _  |      | _  | _    | _  | —            | _           |
|                                       | 2,00           |          |    |             |   |      |      |          |    |          |    |      |    |      |    |              |             |
|                                       | 0,50           | 0,45     | _  | 0,66        | _ | 0,87 | **** | 1,15     |    | 1,36     |    | 1,36 | _  | 1,36 |    | 1,36         | -           |
|                                       | 0,55           | 0,45     | _  | 0,66        |   | 0,87 |      | 1,15     |    | 1,42     | _  | 1,67 | _  | 1,67 |    | 1,67         | -           |
|                                       | 0,63           | 0,45     |    | 0,66        | _ | 0,87 |      | 1,15     | _  | 1,42     |    | 1,67 | _  | 1,91 | _  | 2,17         |             |
| 11                                    | 0,75           | 0,45     |    | 0,66        | _ | 0,87 | _    | 1,15     |    | 1,42     |    | 1,67 | _  | 1,91 | _  | 2,60         |             |
| r,                                    | 0,88           | 0,45     |    | 0,66        | _ | 0,87 | _    | 1,15     | _  | 1,42     |    | 1,67 | _  | 1,91 | _  | 2,60         |             |
| for                                   | 1,00           | 0,45     | _  | 0,66        |   | 0,87 |      | 1,15     |    | 1,42     | а  | 1,67 | а  | 1,91 | а  | —            | _           |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13           | 0,45     | _  | 0,66        | _ | 0,87 | ·    | 1,15     |    | 1,42     | а  | 1,67 | а  | 1,91 | а  | —            | -           |
|                                       | 1,25           | 0,45     |    | 0,66        |   | 0,87 | —    | 1,15     | _  | 1,42     | а  | 1,67 | а  | —    | _  |              | -           |
|                                       | 1,50           | 0,45     |    | 0,66        | _ | 0,87 | _    | 1,15     | _  |          | _  |      |    | —    | _  |              | -           |
|                                       | 1,75           | 0,45     |    | 0,66        | _ |      | _    |          | _  | —        |    |      | —  | —    | _  | <del>-</del> |             |
| L                                     | 2,00           | <u> </u> |    | L <u> —</u> |   |      |      |          |    | <u> </u> |    |      |    |      |    |              |             |

| Self drilling screw                                   | Annex 19                       |
|-------------------------------------------------------|--------------------------------|
| IPEX - 0310CF - 4,8 x L                               | of European technical approval |
| with undercut, hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



Fastener: stainless steel (1.4301) – EN 10088
Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

**Drilling capacity** 


 $\Sigma t_i \le 2,40 \text{ mm}$ 

#### Timber substructures

for timber substructures no performance determined

| <u> </u>                              |                | <del></del> |    | T :       | ===    | 1    |   | <del> !</del> |    | 7          | ===       | 1    |   | 7    | - | <del>                                     </del> |    | 1              |   |
|---------------------------------------|----------------|-------------|----|-----------|--------|------|---|---------------|----|------------|-----------|------|---|------|---|--------------------------------------------------|----|----------------|---|
| t <sub>i</sub>                        | <b>1</b> ,11 = | 0,5         | 50 | 0,55 0,63 |        | 0,75 |   | 0,8           | 88 | 1,00       |           | 1,13 |   | 1,25 |   | 1,5                                              | 50 |                |   |
| M <sub>t</sub>                        | nom =          |             |    |           |        |      |   | ·             |    | <u>5 N</u> | <u>lm</u> | ,    |   |      |   |                                                  |    |                |   |
|                                       | 0,50           | 0,71        |    | 0,71      | _      | 0,71 |   | 0,71          | _  | 0,71       | _         | 0,71 |   | 0,71 | _ | 0,71                                             |    | 0,71           |   |
|                                       | 0,55           | 0,71        | _  | 0,91      |        | 0,91 | _ | 0,91          |    | 0,91       |           | 0,91 | _ | 0,91 | — | 0,91                                             |    | 0,91           |   |
|                                       | 0,63           | 0,71        |    | 0,91      |        | 1,22 |   | 1,22          | _  | 1,22       | _         | 1,22 | _ | 1,22 |   | 1,22                                             | _  | 1,22           |   |
| [[ <sub>11</sub>                      | 0,75           | 0,71        |    | 0,91      | _      | 1,22 |   | 1,73          | _  | 1,73       | _         | 1,73 |   | 1,73 | _ | 1,73                                             | _  | 1,73           | - |
| <u>-</u>                              | 0,88           | 0,71        |    | 0,91      | _      | 1,22 |   | 1,73          |    | 2,27       | _         | 2,27 | - | 2,27 | _ | 2,27                                             | _  | 2,27           |   |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00           | 0,71        |    | 0,91      |        | 1,22 | _ | 1,73          | _  | 2,27       | _         | 2,80 | а | 2,80 | а | 2,80                                             | а  | _              | - |
| , H,                                  | 1,13           | 0,71        | _  | 0,91      |        | 1,22 | _ | 1,73          |    | 2,27       |           | 2,80 | а | 3,59 | а | 3,59                                             | а  |                | _ |
| _                                     | 1,25           | 0,71        | _  | 0,91      | _      | 1,22 |   | 1,73          | _  | 2,27       |           | 2,80 | а | 3,59 | а | —                                                |    | -              | - |
| )                                     | 1,50           | 0,71        |    | 0,91      | _      | 1,22 |   | 1,73          | _  | 2,27       |           | l —  |   |      |   | —                                                |    | <del> </del> — | _ |
|                                       | 1,75           | 0,71        | _  | 0,91      |        | 1,22 | _ |               |    | _          | _         |      | _ | _    | _ |                                                  | —  | —              |   |
|                                       | 2,00           |             |    |           |        |      |   |               |    | _          | _         |      |   |      |   |                                                  |    | _              | _ |
|                                       | 0,50           | 0,63        |    | 0,73      |        | 0,89 | _ | 1,14          |    | 1,36       | _         | 1,36 | _ | 1,36 | _ | 1,36                                             | _  | 1,36           | _ |
|                                       | 0,55           | 0,63        | _  | 0,73      |        | 0,89 | _ | 1,14          | -  | 1,40       | _         | 1,66 |   | 1,67 | _ | 1,67                                             |    | 1,67           | _ |
|                                       | 0,63           | 0,63        |    | 0,73      | _      | 0,89 |   | 1,14          | _  | 1,40       |           | 1,66 | _ | 1,94 |   | 2,17                                             | _  | 2,17           |   |
| 11                                    | 0,75           | 0,63        |    | 0,73      | _      | 0,89 |   | 1,14          |    | 1,40       |           | 1,66 | _ | 1,94 |   | 2,21                                             | _  | 3,13           |   |
|                                       | 0,88           | 0,63        | _  | 0,73      |        | 0,89 |   | 1,14          | _  | 1,40       |           | 1,66 | _ | 1,94 |   | 2,21                                             | _  | 3,13           |   |
| for                                   | 1,00           | 0,63        |    | 0,73      |        | 0,89 | _ | 1,14          |    | 1,40       | _         | 1,66 | а | 1,94 | а | 2,21                                             | а  | <u> </u>       | _ |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13           | 0,63        |    | 0,73      |        | 0,89 |   | 1,14          |    | 1,40       | _         | 1,66 | а | 1,94 | а | 2,21                                             | а  |                | _ |
| ~                                     | 1,25           | 0,63        | _  | 0,73      | _      | 0,89 |   | 1,14          | _  | 1,40       |           | 1,66 | а | 1,94 | а | _                                                |    | —              |   |
|                                       | 1,50           | 0,63        |    | 0,73      | _      | 0,89 | _ | 1,14          | _  | 1,40       |           | —    | _ |      |   | —                                                |    | _              | ( |
|                                       | 1,75           | 0,63        |    | 0,73      | _      | 0,89 |   |               | _  |            |           | _    |   |      | _ | _                                                | _  | _              |   |
|                                       | 2,00           | <u>L</u>    |    |           | ****** |      |   |               |    |            |           |      |   |      |   |                                                  |    |                |   |

| Self drilling screw                                   | Annex 20                       |
|-------------------------------------------------------|--------------------------------|
| IPEX - 0310BI - 5,5 x L                               | of European technical approval |
| with undercut, hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

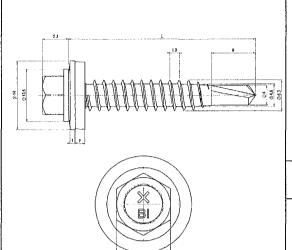
Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346


Drilling capacity  $\Sigma t_i \le 2,40 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| tı                                    | t <sub>N,II</sub> = 0,50 0,55 0,63 0,75 |      | 75 | 0,8       | <del></del> | 1,0  | 00 | 1,       | 13 | 1,2      | <del>==</del> ===<br>25 | 1,50     |   |         |   |          |       |          |   |
|---------------------------------------|-----------------------------------------|------|----|-----------|-------------|------|----|----------|----|----------|-------------------------|----------|---|---------|---|----------|-------|----------|---|
| 1                                     | nom =                                   |      |    |           |             | A    |    |          |    | 5 N      |                         | •        |   |         |   |          |       |          |   |
|                                       | 0,50                                    | 0,71 |    | 0,71      | _           | 0,71 |    | 0,71     |    | 0,71     | _                       | 0,71     | _ | 0,71    |   | 0,71     | _     | 0,71     | _ |
|                                       | 0,55                                    | 0,71 | _  | 0,91      |             | 0,91 | _  | 0,91     | _  | 0,91     | _                       | 0,91     |   | 0,91    | _ | 0,91     | _     | 0,91     |   |
|                                       | 0,63                                    | 0,71 |    | 0,91      |             | 1,22 | _  | 1,22     | _  | 1,22     | _                       | 1,22     |   | 1,22    | _ | 1,22     | _     | 1,22     |   |
|                                       | 0,75                                    | 0,71 |    | 0,91      |             | 1,22 | _  | 1,73     | _  | 1,73     |                         | 1,73     |   | 1,73    | _ | 1,73     | —     | 1,73     |   |
| ž                                     | 0,88                                    | 0,71 | _  | 0,91      |             | 1,22 |    | 1,73     | _  | 2,27     | _                       | 2,27     | _ | 2,27    |   | 2,27     |       | 2,27     | - |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00                                    | 0,71 |    | 0,91      |             | 1,22 |    | 1,73     | _  | 2,27     | _                       | 2,80     | а | 2,80    | а | 2,80     | а     | -        | - |
| /R,k                                  | 1,13                                    | 0,71 |    | 0,91      | _           | 1,22 |    | 1,73     |    | 2,27     |                         | 2,80     | а | 3,59    | а | 3,59     | а     | —        |   |
|                                       | 1,25                                    | 0,71 | _  | 0,91      | _           | 1,22 |    | 1,73     | _  | 2,27     | _                       | 2,80     | а | 3,59    | а | —        |       | —        | - |
|                                       | 1,50                                    | 0,71 | _  | 0,91      | _           | 1,22 |    | 1,73     |    | 2,27     | _                       |          | _ |         |   | —        | ***** | —        | - |
|                                       | 1,75                                    | 0,71 | -  | 0,91      |             | 1,22 | _  |          |    | —        |                         | —        |   | —       | _ |          | _     | <u> </u> |   |
|                                       | 2,00                                    |      |    |           |             |      |    |          |    |          |                         |          |   |         |   |          |       |          |   |
|                                       | 0,50                                    | 0,63 |    | 0,73      |             | 0,89 | _  | 1,14     | _  | 1,36     |                         | 1,36     |   | 1,36    | _ | 1,36     | _     | 1,36     |   |
|                                       | 0,55                                    | 0,63 |    | 0,73      | _           | 0,89 | _  | 1,14     |    | 1,40     |                         | 1,66     | _ | 1,67    | _ | 1,67     |       | 1,67     | - |
| }                                     | 0,63                                    | 0,63 | _  | 0,73      |             | 0,89 | _  | 1,14     | _  | 1,40     |                         | 1,66     |   | 1,94    | _ | 2,17     | _     | 2,17     |   |
| 11                                    | 0,75                                    | 0,63 |    | 0,73      |             | 0,89 | _  | 1,14     |    | 1,40     |                         | 1,66     | _ | 1,94    | _ | 2,21     | _     | 3,13     | - |
| Z.                                    | 0,88                                    | 0,63 |    | 0,73      | _           | 0,89 | —  | 1,14     |    | 1,40     |                         | 1,66     | _ | 1,94    |   | 2,21     |       | 3,13     | - |
| fo                                    | 1,00                                    | 0,63 | _  | 0,73      |             | 0,89 | _  | 1,14     | _  | 1,40     |                         | 1,66     | а | 1,94    | а | 2,21     | а     | <b>—</b> | - |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13                                    | 0,63 | _  | 0,73      |             | 0,89 | _  | 1,14     |    | 1,40     |                         | 1,66     | а | 1,94    | а | 2,21     | а     | —        | - |
| ~                                     | 1,25                                    | 0,63 |    | 0,73      | _           | 0,89 | _  | 1,14     |    | 1,40     | _                       | 1,66     | а | 1,94    | а | —        | _     | _        |   |
|                                       | 1,50                                    | 0,63 |    | 0,73      | _           | 0,89 | _  | 1,14     |    | 1,40     |                         |          | _ | _       |   | _        |       |          | - |
|                                       | 1,75                                    | 0,63 |    | 0,73      |             | 0,89 | _  |          |    | -        |                         | <u> </u> | _ |         | _ | -        |       | _        |   |
|                                       | 2,00                                    |      |    | <u></u> _ |             |      |    | <u> </u> |    | <u> </u> |                         |          |   | <u></u> |   | <u> </u> |       |          |   |

| Self drilling screw                                   | Annex 21                       |
|-------------------------------------------------------|--------------------------------|
| IPEX - 0310CF - 5,5 x L                               | of European technical approval |
| with undercut, hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



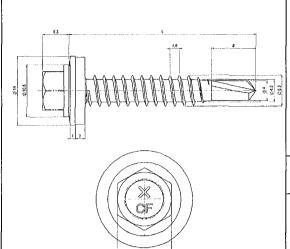
Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity


 $\Sigma t_i \le 2,40 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

|                                       |        | <del></del> |    |      |    |      |    |          |    |      |      |          |    |          |    |              |    |          |     |
|---------------------------------------|--------|-------------|----|------|----|------|----|----------|----|------|------|----------|----|----------|----|--------------|----|----------|-----|
| tı                                    | v,II = | 0,5         | 50 | 0,5  | 55 | 0,6  | 3  | 0,7      | 75 | 0,8  | 88   | 1,0      | 00 | 1,13     |    | 1,25         |    | 1,5      | 50  |
| M <sub>t</sub>                        | nom =  |             |    |      |    |      |    |          |    | 5 N  | lm   |          |    |          |    |              |    |          |     |
|                                       | 0,50   | 0,93        | ac | 0,93 | ac | 0,93 | ac | 0,93     | ac | 0,93 | ac   | 0,93     | ac | 0,93     | ac | 0,93         | ac | 0,93     | а   |
|                                       | 0,55   | 0,93        | ac | 1,09 | _  | 1,09 |    | 1,09     | _  | 1,09 | —    | 1,09     |    | 1,09     | _  | 1,09         | _  | 1,09     | -   |
|                                       | 0,63   | 0,93        | ac | 1,09 | _  | 1,34 |    | 1,34     |    | 1,34 |      | 1,34     | _  | 1,34     |    | 1,34         | _  | 1,34     | -   |
|                                       | 0,75   | 0,93        | ac | 1,09 |    | 1,34 | _  | 1,74     |    | 1,74 | _    | 1,74     |    | 1,74     | _  | 1,74         | _  | 1,74     | -   |
| ž                                     | 0,88   | 0,93        | ac | 1,09 | _  | 1,34 | _  | 1,74     |    | 2,39 |      | 2,39     | _  | 2,39     |    | 2,39         |    | 2,39     | _   |
| V <sub>R,k</sub> for t <sub>N,1</sub> | 1,00   | 0,93        | ac | 1,09 |    | 1,34 | _  | 1,74     |    | 2,39 | _    | 3,04     |    | 3,04     | _  | 3,04         |    | —        | -   |
| /R, K                                 | 1,13   | 0,93        | ac | 1,09 | _  | 1,34 |    | 1,74     | _  | 2,39 |      | 3,04     | _  | 3,77     |    | 3,77         | _  | _        |     |
| _                                     | 1,25   | 0,93        | ac | 1,09 | _  | 1,34 |    | 1,74     | _  | 2,39 | **** | 3,04     | _  | _        |    | -            | _  | —        |     |
| )                                     | 1,50   | 0,93        | ac | 1,09 | _  | 1,34 |    | 1,74     | _  | —    |      |          | _  | _        |    | <del> </del> | _  | -        |     |
|                                       | 1,75   | 0,93        | ac | 1,09 | _  | 1,34 | _  |          |    | —    | _    |          | _  | —        |    | <del></del>  | _  | —        | _   |
|                                       | 2,00   |             | ac |      |    |      |    |          |    |      |      |          |    |          |    |              |    |          |     |
|                                       | 0,50   | 0,59        | ac | 0,64 | ac | 0,71 | ac | 0,82     | ac | 1,17 | ac   | 1,46     | ac | 1,46     | ac | 1,46         | ac | 1,46     | а   |
|                                       | 0,55   | 0,59        | ac | 0,64 |    | 0,71 | _  | 0,82     |    | 1,17 | _    | 1,52     | _  | 1,77     | _  | 1,77         | _  | 1,77     | _   |
|                                       | 0,63   | 0,59        | ac | 0,64 | _  | 0,71 | _  | 0,82     | _  | 1,17 |      | 1,52     | _  | 1,88     |    | 2,23         | _  | 2,27     |     |
| ll II                                 | 0,75   | 0,59        | ac | 0,64 |    | 0,71 | _  | 0,82     |    | 1,17 | _    | 1,52     | _  | 1,88     | _  | 2,23         | _  | 3,00     | -   |
| ž                                     | 0,88   | 0,59        | ac | 0,64 |    | 0,71 |    | 0,82     | _  | 1,17 | _    | 1,52     |    | 1,88     | _  | 2,23         |    | 3,00     | -   |
| f.                                    | 1,00   | 0,59        | ac | 0,64 |    | 0,71 | _  | 0,82     |    | 1,17 | _    | 1,52     |    | 1,88     | _  | 2,23         | _  | -        | -   |
| N <sub>R,k</sub> for t <sub>N,1</sub> | 1,13   | 0,59        | ac | 0,64 |    | 0,71 | _  | 0,82     |    | 1,17 | _    | 1,52     |    | 1,88     | _  | 2,23         |    | <u> </u> | -   |
| -                                     | 1,25   | 0,59        | ac | 0,64 | _  | 0,71 |    | 0,82     | _  | 1,17 |      | 1,52     | _  | _        |    | —            | _  |          |     |
|                                       | 1,50   | 0,59        | ac | 0,64 | _  | 0,71 |    | 0,82     | _  | —    |      | -        | _  | <u> </u> |    | -            | _  |          | - [ |
|                                       | 1,75   | 0,59        | ac | 0,64 | _  | 0,71 | _  |          |    | —    |      | -        | _  | _        |    |              | —  | —        |     |
|                                       | 2,00   | <u></u>     | ac |      |    |      |    | <u> </u> |    |      |      | <u> </u> |    |          |    | <u>L – .</u> |    | <u></u>  |     |

| Self drilling screw                                   | Annex 22                       |
|-------------------------------------------------------|--------------------------------|
| IPEX - 0310BI - 6,3 x L                               | of European technical approval |
| with undercut, hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

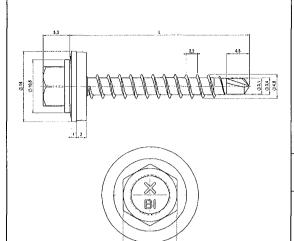
stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity


 $\Sigma t_i \le 2,40 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| t <sub>r</sub>                        | V,II = | 0,5  | 50 | 0,5      | 55 | 0,6      | 3  | 0,7                                           | 75 | 0,8      | 38 | 1,0           | 00 | 1,1  | 13 | 1,2      | 25 | 1,50     |     |
|---------------------------------------|--------|------|----|----------|----|----------|----|-----------------------------------------------|----|----------|----|---------------|----|------|----|----------|----|----------|-----|
| Mt                                    | nom =  |      |    |          |    |          |    |                                               |    | 5 N      | lm |               |    |      |    |          |    |          |     |
|                                       | 0,50   | 0,93 | ac | 0,93     | ac | 0,93     | ac | 0,93                                          | ac | 0,93     | ac | 0,93          | ac | 0,93 | ac | 0,93     | ac | 0,93     | а   |
|                                       | 0,55   | 0,93 | ac | 1,09     |    | 1,09     |    | 1,09                                          |    | 1,09     |    | 1,09          |    | 1,09 |    | 1,09     |    | 1,09     |     |
|                                       | 0,63   | 0,93 | ac | 1,09     |    | 1,34     | _  | 1,34                                          | _  | 1,34     | _  | 1,34          | _  | 1,34 | _  | 1,34     | _  | 1,34     | -   |
| ]] ]]                                 | 0,75   | 0,93 | ac | 1,09     | _  | 1,34     | —  | 1,74                                          |    | 1,74     | _  | 1,74          | _  | 1,74 | _  | 1,74     | -  | 1,74     |     |
|                                       | 0,88   | 0,93 | ac | 1,09     |    | 1,34     |    | 1,74                                          | _  | 2,39     | _  | 2,39          | _  | 2,39 | _  | 2,39     | _  | 2,39     | - 1 |
| for                                   | 1,00   | 0,93 | ac | 1,09     |    | 1,34     | _  | 1,74                                          | _  | 2,39     | _  | 3,04          | _  | 3,04 | _  | 3,04     | _  |          | -   |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13   | 0,93 | ac | 1,09     |    | 1,34     |    | 1,74                                          |    | 2,39     |    | 3,04          |    | 3,77 |    | 3,77     | _  | _        |     |
|                                       | 1,25   | 0,93 | ac | 1,09     |    | 1,34     | _  | 1,74                                          | _  | 2,39     | _  | 3,04          | _  |      | _  |          | _  |          | -   |
|                                       | 1,50   | 0,93 | ac | 1,09     | _  | 1,34     | _  | 1,74                                          | _  |          | _  | —             | _  | -    | _  | _        | _  |          | -   |
|                                       | 1,75   | 0,93 | ac | 1,09     | _  | 1,34     | _  | —                                             |    |          | _  |               | _  |      | _  | _        | _  |          | -   |
| ]                                     | 2,00   |      | ac |          |    |          |    |                                               |    |          |    |               |    |      |    |          |    |          |     |
|                                       | 0,50   | 0,59 | ac | 0,64     | ac | 0,71     | ac | 0,82                                          | ac | 1,17     | ac | 1,46          | ac | 1,46 | ac | 1,46     | ac | 1,46     | a   |
|                                       | 0,55   | 0,59 | ac | 0,64     |    | 0,71     | _  | 0,82                                          | _  | 1,17     | _  | 1,52          |    | 1,77 | _  | 1,77     |    | 1,77     |     |
|                                       | 0,63   | 0,59 | ac | 0,64     |    | 0,71     |    | 0,82                                          |    | 1,17     |    | 1,52          |    | 1,88 |    | 2,23     |    | 2,27     |     |
|                                       | 0,75   | 0,59 | ac | 0,64     | _  | 0,71     | _  | 0,82                                          | _  | 1,17     | _  | 1,52          | _  | 1,88 | _  | 2,23     | _  | 3,00     | -   |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 0,88   | 0,59 | ac | 0,64     | _  | 0,71     |    | 0,82                                          | —  | 1,17     |    | 1,52          | _  | 1,88 |    | 2,23     |    | 3,00     |     |
| ₽                                     | 1,00   | 0,59 | ac | 0,64     |    | 0,71     | _  | 0,82                                          | _  | 1,17     | _  | 1,52          | _  | 1,88 | _  | 2,23     |    | —        |     |
| ¥                                     | 1,13   | 0,59 | ac | 0,64     |    | 0,71     | _  | 0,82                                          | _  | 1,17     | _  | 1,52          | _  | 1,88 |    | 2,23     | —  | —        |     |
| -                                     | 1,25   | 0,59 | ac | 0,64     | _  | 0,71     |    | 0,82                                          | _  | 1,17     | _  | 1,52          |    |      | _  |          | _  |          | -   |
|                                       | 1,50   | 0,59 | ac | 0,64     | _  | 0,71     | _  | 0,82                                          | _  |          | _  |               | _  |      | _  |          |    |          | -   |
|                                       | 1,75   | 0,59 | ac | 0,64     | _  | 0,71     | _  |                                               | _  |          | _  |               | _  |      | _  |          | _  |          | -   |
|                                       | 2,00   |      | ac | <u> </u> |    | <u> </u> |    | <u>                                      </u> |    | <u> </u> |    | <u>L — _ </u> |    |      |    | <u> </u> |    | <u> </u> |     |

| Self drilling screw                                   | Annex 23                       |
|-------------------------------------------------------|--------------------------------|
| IPEX - 0310CF - 6,3 x L                               | of European technical approval |
| with undercut, hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

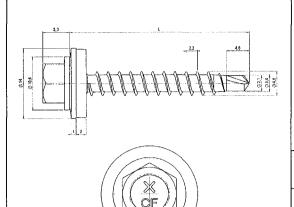
Drilling capacity

 $\Sigma t_i \le 2,50 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with

 $M_{v,Rk} = 5,320$ 


 $f_{ax,k} = 12,237$ 

 $N/mm^2$  for  $l_{ef}~\geq~24~mm$ 

| \(\frac{1}{2} \)                      | I <sub>a</sub> = | 29   | 31   | 33   | 35   | 37   | 39   | 41   | 43                                    | 45   | 47   |      |                                        |
|---------------------------------------|------------------|------|------|------|------|------|------|------|---------------------------------------|------|------|------|----------------------------------------|
| М                                     | t,nom =          |      |      |      |      |      |      |      | · · · · · · · · · · · · · · · · · · · | •    |      |      |                                        |
|                                       | 0,50             | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32                                  | 1,32 | 1,32 | 1,32 | - t                                    |
|                                       | 0,55             | 1,40 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42                                  | 1,42 | 1,42 | 1,42 | je                                     |
|                                       | 0,63             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,57                                  | 1,57 | 1,57 | 1,57 | odu                                    |
| // II                                 | 0,75             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,82 | co                                     |
| <u> </u>                              | 0,88             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,82 | bearing resistance of component I      |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,82 | nce                                    |
| /R,¥                                  | 1,13             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,85 | ista                                   |
|                                       | 1,25             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,88 | res                                    |
| <b>{</b> {                            | 1,50             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,88 | ing                                    |
| -                                     | 1,75             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,88 | ear                                    |
|                                       | 2,00             | 1,40 | 1,43 | 1,46 | 1,48 | 1,51 | 1,53 | 1,56 | 1,59                                  | 1,61 | 1,64 | 1,88 | Ω                                      |
|                                       | 0,50             | 1,27 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36                                  | 1,36 | 1,36 | 1,36 |                                        |
|                                       | 0,55             | 1,27 | 1,37 | 1,48 | 1,59 | 1,67 | 1,67 | 1,67 | 1,67                                  | 1,67 | 1,67 | 1,67 | 45                                     |
| }}                                    | 0,63             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,17 | 2,17 | ě                                      |
| П п                                   | 0,75             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 3,21 | tan<br>T                               |
| t.<br>Z.                              | 0,88             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 3,83 | ssis                                   |
| <b>[</b> ]                            | 1,00             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 4,44 | h re<br>por                            |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 4,96 | ough resist                            |
| ~                                     | 1,25             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 5,48 | i i                                    |
|                                       | 1,50             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 5,48 | pull-through resistance of component I |
|                                       | 1,75             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 5,48 |                                        |
| <u> </u>                              | 2,00             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01                                  | 2,11 | 2,22 | 5,48 |                                        |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                         | Annex 24                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0311BI - 4,8 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

Drilling capacity

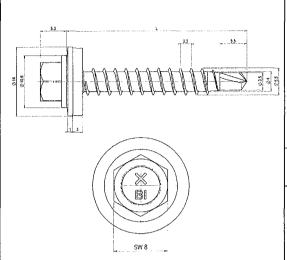
 $\Sigma t_i \le 2,50 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 7,518$ 

Nm


 $f_{ax,k} = 12,237$ 

 $N/mm^2$  for  $l_{ef}~\geq~24~mm$ 

|                                       | l <sub>g</sub> = | 29   | 31   | 33   | 35   | 37   | 39   | 41   | 43   | 45   | 47   |      |                                           |
|---------------------------------------|------------------|------|------|------|------|------|------|------|------|------|------|------|-------------------------------------------|
| M                                     | t,nom =          |      |      |      |      | _    |      |      |      |      |      |      |                                           |
|                                       | 0,50             | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | 1,32 | -<br>-                                    |
|                                       | 0,55             | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | 1,42 | ia Li                                     |
|                                       | 0,63             | 1,57 | 1,57 | 1,57 | 1,57 | 1,57 | 1,57 | 1,57 | 1,57 | 1,57 | 1,57 | 1,57 | bdu                                       |
| li ii                                 | 0,75             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,82 | 1,82 | bearing resistance of component           |
| , <u>z</u>                            | 0,88             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,82 | 1,82 | o d                                       |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,82 | 1,82 | nce                                       |
| /R,k                                  | 1,13             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,85 | 1,85 | ista                                      |
| _                                     | 1,25             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,85 | 1,88 | res                                       |
|                                       | 1,50             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,85 | 1,88 | bu                                        |
|                                       | 1,75             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,85 | 1,88 | eari                                      |
|                                       | 2,00             | 1,61 | 1,63 | 1,66 | 1,69 | 1,71 | 1,74 | 1,77 | 1,79 | 1,82 | 1,85 | 1,88 | ۵                                         |
|                                       | 0,50             | 1,27 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 |                                           |
|                                       | 0,55             | 1,27 | 1,37 | 1,48 | 1,59 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 75                                        |
| ,                                     | 0,63             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,17 | 2,17 | ė                                         |
| - 11                                  | 0,75             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 3,21 | tan<br>F                                  |
| ţ,                                    | 0,88             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 3,83 | ssis                                      |
| for                                   | 1,00             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 4,44 | h re                                      |
| N <sub>R,k</sub> for t <sub>N,1</sub> | 1,13             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 4,96 | ough resist                               |
|                                       | 1,25             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 5,48 | pull-through resistance of<br>component l |
|                                       | 1,50             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 5,48 | in [                                      |
|                                       | 1,75             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 5,48 | <u> </u>                                  |
|                                       | 2,00             | 1,27 | 1,37 | 1,48 | 1,59 | 1,69 | 1,80 | 1,90 | 2,01 | 2,11 | 2,22 | 5,48 |                                           |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                         | Annex 25                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0311CF - 4,8 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

Drilling capacity

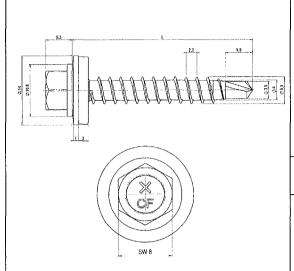
 $\Sigma t_i \le 2,50 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 6,133$ 

Nm


 $f_{ax,k} = 12,137$ 

 $N/mm^2$  for  $I_{ef} \ge 28$  mm

|                                       |                  |      |      |      |      | l    |      |      |      |      |      |      |                                        |
|---------------------------------------|------------------|------|------|------|------|------|------|------|------|------|------|------|----------------------------------------|
|                                       | l <sub>g</sub> = | 34   | 36   | 38   | 40   | 42   | 44   | 46   | 48   | 50   | 52   |      |                                        |
| <u>M</u>                              | t,nom =          |      |      |      | ,    |      |      |      |      | T    |      |      |                                        |
|                                       | 0,50             | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | =                                      |
|                                       | 0,55             | 1,68 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | nei                                    |
|                                       | 0,63             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,10 | odu                                    |
| [] 11                                 | 0,75             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | 50                                     |
| <u>;</u>                              | 0,88             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | of                                     |
| lor                                   | 1,00             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | nce                                    |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | bearing resistance of component l      |
| _                                     | 1,25             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | res                                    |
| []                                    | 1,50             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | ing                                    |
|                                       | 1,75             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | ear                                    |
|                                       | 2,00             | 1,68 | 1,71 | 1,74 | 1,77 | 1,80 | 1,83 | 1,86 | 1,89 | 1,92 | 1,95 | 2,77 | Ω                                      |
|                                       | 0,50             | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 |                                        |
|                                       | 0,55             | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | <del>j</del> o                         |
| }}                                    | 0,63             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,17 | 2,17 | 2,17 | 2,17 | 2,17 | 2,17 | 90                                     |
|                                       | 0,75             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 3,21 | tan<br>T                               |
| ž                                     | 0,88             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 3,83 | esis                                   |
| for                                   | 1,00             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 4,44 | h re<br>por                            |
| N <sub>R,k</sub> for t <sub>N,i</sub> | 1,13             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 6,33 | ough resist                            |
| ~                                     | 1,25             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 | Ţ,                                     |
|                                       | 1,50             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 | pull-through resistance<br>component l |
|                                       | 1,75             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 | _                                      |
|                                       | 2,00             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16 | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 |                                        |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                         | Annex 26                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0311BI - 5,5 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

carbon steel, galvanized Washer:

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

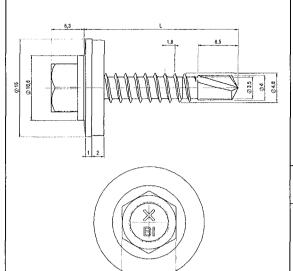
**Drilling capacity** 

 $\Sigma t_i \le 2,50 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with

 $M_{v,Rk} = 7,064$ 


12,137

 $N/mm^2~for~I_{ef}~\geq~28~mm$ 

|                                       |                  |      |      |      |      | <u> </u> |      |      |      |      |      |      |                                        |
|---------------------------------------|------------------|------|------|------|------|----------|------|------|------|------|------|------|----------------------------------------|
|                                       | l <sub>g</sub> = | 34   | 36   | 38   | 40   | 42       | 44   | 46   | 48   | 50   | 52   |      |                                        |
| M                                     | t,nom =          |      |      |      |      | _        | _    |      |      |      |      |      |                                        |
|                                       | 0,50             | 1,43 | 1,43 | 1,43 | 1,43 | 1,43     | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | 1,43 | = =                                    |
|                                       | 0,55             | 1,70 | 1,70 | 1,70 | 1,70 | 1,70     | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | 1,70 | neı                                    |
|                                       | 0,63             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,10 | du                                     |
| 11                                    | 0,75             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | S S                                    |
| ž                                     | 0,88             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | bearing resistance of component l      |
| for                                   | 1,00             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | nce                                    |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | ista                                   |
|                                       | 1,25             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | res                                    |
|                                       | 1,50             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | ing                                    |
|                                       | 1,75             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | ear                                    |
|                                       | 2,00             | 1,77 | 1,80 | 1,83 | 1,86 | 1,89     | 1,92 | 1,95 | 1,98 | 2,01 | 2,04 | 2,77 | <u> </u>                               |
|                                       | 0,50             | 1,36 | 1,36 | 1,36 | 1,36 | 1,36     | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 | 1,36 |                                        |
|                                       | 0,55             | 1,67 | 1,67 | 1,67 | 1,67 | 1,67     | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | of                                     |
|                                       | 0,63             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,17 | 2,17 | 2,17 | 2,17 | 2,17 | 2,17 | e)                                     |
| 11                                    | 0,75             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 3,21 | tan<br>T                               |
| , Ž                                   | 0,88             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 3,83 | esis                                   |
| for                                   | 1,00             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 4,44 | h re                                   |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 6,33 | ough resista<br>component l            |
| _                                     | 1,25             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 | pull-through resistance<br>component l |
|                                       | 1,50             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 | jn                                     |
|                                       | 1,75             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 | _                                      |
| L                                     | 2,00             | 1,68 | 1,80 | 1,92 | 2,04 | 2,16     | 2,28 | 2,40 | 2,52 | 2,64 | 2,76 | 8,22 |                                        |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                         | Annex 27                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0311CF - 5,5 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 14 mm | ETA-10/0020                    |



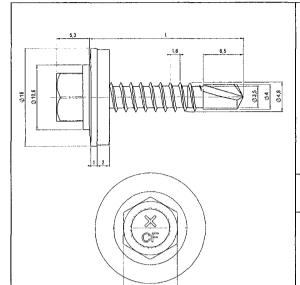
Fastener: stainless steel (1.4301) – EN 10088
Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity


 $\Sigma t_i \leq 3,50 \text{ mm}$ 

#### Timber substructures

for timber substructures no performance determined

|                                       |         |      |    |      |    |      |    | <del>, ::</del> |     |      |    |         |    | ,            |    |         |     |
|---------------------------------------|---------|------|----|------|----|------|----|-----------------|-----|------|----|---------|----|--------------|----|---------|-----|
| t                                     | N,II =  | 1,0  | 00 | 1,   | 13 | 1,2  | 25 | 1,5             | 50  | 1,7  | 75 | 2,0     | 00 | 2,           | 50 | 3,      | 00  |
| <u> </u>                              | t,nom = |      |    |      |    |      |    |                 | 5 I | ٧m   |    |         |    |              |    |         |     |
|                                       | 0,50    | 1,27 | ac | 1,29 | ac | 1,31 | ac | 1,34            | ac  | 1,34 | ac | 1,34    | ac | 1,34         | ac | 1,34    | a   |
|                                       | 0,55    | 1,37 | ac | 1,39 | ac | 1,41 | ac | 1,43            | ac  | 1,43 | ac | 1,43    | ac | 1,43         | а  | _       |     |
|                                       | 0,63    | 1,54 | ac | 1,55 | ac | 1,56 | ac | 1,58            | ac  | 1,58 | ac | 1,58    | ac | 1,58         | а  |         | - 1 |
|                                       | 0,75    | 1,81 | ac | 1,81 | ac | 1,81 | ac | 1,81            | ac  | 1,81 | ac | 1,81    | ac | 1,81         | а  |         | _   |
| Ţ,                                    | 0,88    | 2,02 | ac | 2,15 | ac | 2,27 | ac | 2,52            | ac  | 2,54 | ac | 2,55    | а  | 2,59         | а  | ĺ —     | [   |
| for                                   | 1,00    | 2,23 | ac | 2,48 | ac | 2,73 | ac | 3,23            | ac  | 3,26 | а  | 3,30    | а  | 3,36         | а  |         | _   |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13    | 2,23 | ac | 2,53 | ac | 2,83 | ac | 3,43            | а   | 3,48 | а  | 3,52    | а  | _            |    | —       |     |
|                                       | 1,25    | 2,23 | ac | 2,58 | а  | 2,93 | а  | 3,64            | а   | 3,69 | а  | 3,75    | а  | <del> </del> |    | _       | _   |
|                                       | 1,50    | 2,23 | а  | 2,68 | а  | 3,14 | а  | 4,04            | а   | 4,12 | а  | 4,21    | а  |              | _  |         | -   |
|                                       | 1,75    | 2,23 | а  | 2,68 | а  | 3,14 | а  | 4,04            | а   | 4,12 | а  | —       |    |              | _  | _       | - 1 |
|                                       | 2,00    | 2,23 | а  | 2,68 | а  | 3,14 | a  | 4,04            | а   |      |    |         |    |              |    |         |     |
|                                       | 0,50    | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,71            | ac  | 1,71 | ac | 1,71    | ac | 1,71         | ac | 1,71    | а   |
|                                       | 0,55    | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83            | ac  | 2,01 | ac | 1,57    | ac | 1,57         | а  | _       | -   |
|                                       | 0,63    | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83            | ac  | 2,19 | ac | 2,49    | ac | 2,49         | а  |         | -   |
| n                                     | 0,75    | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83            | ac  | 2,19 | ac | 2,54    | ac | 3,21         | а  |         | -   |
| Į,                                    | 0,88    | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83            | ac  | 2,19 | ac | 2,54    | а  | 3,21         | а  | _       | _   |
| for                                   | 1,00    | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83            | ac  | 2,19 | а  | 2,54    | а  | 3,21         | а  | _       |     |
| N <sub>R,k</sub> for t <sub>N,1</sub> | 1,13    | 1,06 | ac | 1,27 | ac | 1,47 | ac | 1,83            | а   | 2,19 | а  | 2,54    | а  |              |    | —       |     |
|                                       | 1,25    | 1,06 | ac | 1,27 | а  | 1,47 | а  | 1,83            | а   | 2,19 | а  | 2,54    | а  |              | _  |         | -   |
|                                       | 1,50    | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83            | а   | 2,19 | а  | 2,54    | а  | —            |    | _       |     |
|                                       | 1,75    | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83            | а   | 2,19 | а  |         |    | _            |    | —       | _   |
| L                                     | 2,00    | 1,06 | а  | 1,27 | а  | 1,47 | а  | 1,83            | а   |      |    | <u></u> |    | <u></u>      |    | <u></u> |     |

| Self drilling screw                         | Annex 28                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0312BI - 4,8 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer: carbon steel, galvanized

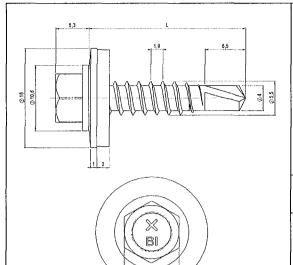
stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity


 $\Sigma t_i \leq 3,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| ┢╤ | t –                                   |       |      | <del></del> | <u> </u>    |    | 1                                     |            | T                     |     | T         |               |                                                        |               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ī .              | 7  |
|----|---------------------------------------|-------|------|-------------|-------------|----|---------------------------------------|------------|-----------------------|-----|-----------|---------------|--------------------------------------------------------|---------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|
|    |                                       | ,n =  | 1,0  | 00          | 1,1         | 3  | 1,2                                   | <u> 25</u> | 1,5                   |     | 1,7       | 75            | 2,0                                                    | 0             | 2,5  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,0              | 00 |
| ΙĿ | M <sub>t,</sub>                       | nom = |      |             | <del></del> |    | · · · · · · · · · · · · · · · · · · · |            | Totalian National and | 5 1 | <u>Vm</u> | escera sommer | I. Herrigan I. San | tanasa ina ma | I    | 5.00 (2.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 (4.00 ( | knomborostadosas |    |
|    |                                       | 0,50  | 1,27 | ac          | 1,29        | ac | 1,31                                  | ac         | 1,34                  | ac  | 1,34      | ac            | 1,34                                                   | ac            | 1,34 | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,34             | а  |
|    |                                       | 0,55  | 1,37 | ac          | 1,39        | ac | 1,41                                  | ac         | 1,43                  | ac  | 1,43      | ac            | 1,43                                                   | ac            | 1,43 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | —                |    |
|    |                                       | 0,63  | 1,54 | ac          | 1,55        | ac | 1,56                                  | ac         | 1,58                  | ac  | 1,58      | ac            | 1,58                                                   | ac            | 1,58 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b> </b>         |    |
| H  | П                                     | 0,75  | 1,81 | ac          | 1,81        | ac | 1,81                                  | ac         | 1,81                  | ac  | 1,81      | ac            | 1,81                                                   | ac            | 1,81 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                |    |
|    | ž                                     | 0,88  | 2,02 | ac          | 2,15        | ac | 2,27                                  | ac         | 2,52                  | ac  | 2,54      | ac            | 2,55                                                   | а             | 2,59 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | -  |
|    | ठ्                                    | 1,00  | 2,23 | ac          | 2,48        | ac | 2,73                                  | ac         | 3,23                  | ac  | 3,26      | а             | 3,30                                                   | а             | 3,36 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | _  |
|    | V <sub>R,k</sub> for t <sub>N,i</sub> | 1,13  | 2,23 | ac          | 2,53        | ac | 2,83                                  | ac         | 3,43                  | а   | 3,48      | а             | 3,52                                                   | а             | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                |    |
|    |                                       | 1,25  | 2,23 | ac          | 2,58        | а  | 2,93                                  | а          | 3,64                  | а   | 3,69      | а             | 3,75                                                   | а             | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                | _  |
|    |                                       | 1,50  | 2,23 | а           | 2,68        | а  | 3,14                                  | а          | 4,04                  | а   | 4,12      | а             | 4,21                                                   | а             | _    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | -  |
|    |                                       | 1,75  | 2,23 | а           | 2,68        | а  | 3,14                                  | а          | 4,04                  | а   | 4,12      | а             | _                                                      |               | —    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                | -  |
| IL |                                       | 2,00  | 2,23 | а           | 2,68        | а  | 3,14                                  | a          | 4,04                  | а   | _         |               |                                                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |    |
|    |                                       | 0,50  | 1,06 | ac          | 1,27        | ac | 1,47                                  | ac         | 1,71                  | ac  | 1,71      | ac            | 1,71                                                   | ac            | 1,71 | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,71             | а  |
|    |                                       | 0,55  | 1,06 | ac          | 1,27        | ac | 1,47                                  | ac         | 1,83                  | ac  | 2,01      | ac            | 1,57                                                   | ac            | 1,57 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b> </b>         |    |
|    |                                       | 0,63  | 1,06 | ac          | 1,27        | ac | 1,47                                  | ac         | 1,83                  | ac  | 2,19      | ac            | 2,49                                                   | ac            | 2,49 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>—</b>         | _  |
|    | 11                                    | 0,75  | 1,06 | ac          | 1,27        | ac | 1,47                                  | ac         | 1,83                  | ac  | 2,19      | ac            | 2,54                                                   | ac            | 3,21 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |    |
|    |                                       | 0,88  | 1,06 | ac          | 1,27        | ac | 1,47                                  | ac         | 1,83                  | ac  | 2,19      | ac            | 2,54                                                   | а             | 3,21 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                |    |
|    | for                                   | 1,00  | 1,06 | ac          | 1,27        | ac | 1,47                                  | ac         | 1,83                  | ac  | 2,19      | а             | 2,54                                                   | а             | 3,21 | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | _  |
|    | N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13  | 1,06 | ac          | 1,27        | ac | 1,47                                  | ac         | 1,83                  | а   | 2,19      | а             | 2,54                                                   | а             | —    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | _  |
|    | _                                     | 1,25  | 1,06 | ac          | 1,27        | а  | 1,47                                  | а          | 1,83                  | а   | 2,19      | а             | 2,54                                                   | а             | _    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                |    |
|    |                                       | 1,50  | 1,06 | а           | 1,27        | а  | 1,47                                  | а          | 1,83                  | а   | 2,19      | а             | 2,54                                                   | а             | -    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | _  |
|    |                                       | 1,75  | 1,06 | а           | 1,27        | а  | 1,47                                  | а          | 1,83                  | а   | 2,19      | а             | _                                                      |               | _    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                | _  |
|    |                                       | 2,00  | 1,06 | а           | 1,27        | а  | 1,47                                  | a          | 1,83                  | а   |           |               |                                                        |               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |    |

| Self drilling screw                         | Annex 29                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0312CF - 4,8 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |



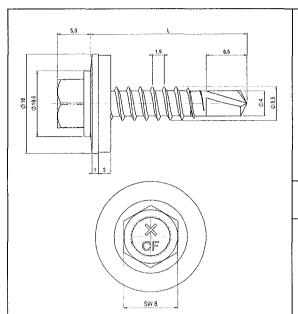
Fastener: stainless steel (1.4301) – EN 10088
Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity


 $\Sigma t_i \le 3,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| t <sub>r</sub>                        | ı,ji = | 1,0  | 00 | 1,1  | 13 | 1,25 |    | 1,   | 50   | 1,7  | 75 | 2,0     | 00 | 2,      | 50 | 3,0      | 00 |
|---------------------------------------|--------|------|----|------|----|------|----|------|------|------|----|---------|----|---------|----|----------|----|
| M <sub>t,</sub>                       | nom =  |      |    |      |    |      |    |      | 5 Nm |      |    |         |    |         |    |          |    |
|                                       | 0,50   | 1,36 | ac | 1,42 | ac | 4,48 | ac | 1,59 | ac   | 1,59 | ac | 1,59    | ac | 1,59    | ac | 1,59     | ac |
|                                       | 0,55   | 1,46 | ac | 1,51 | ac | 1,55 | ac | 1,64 | ac   | 1,64 | ac | 1,64    | ac | 1,64    | а  | _        | _  |
|                                       | 0,63   | 1,60 | ac | 1,63 | ac | 1,66 | ac | 1,72 | ac   | 1,72 | ac | 1,72    | ac | 1,72    | а  | —        | _  |
| ] ]]                                  | 0,75   | 1,84 | ac | 1,84 | ac | 1,84 | ac | 1,84 | ac   | 1,84 | ac | 1,84    | ac | 1,84    | а  |          | _  |
| <b>1</b> 2.                           | 0,88   | 2,19 | ac | 2,37 | ac | 2,53 | ac | 2,87 | ac   | 2,93 | ac | 2,99    | а  | 3,12    | а  | ĺ —      |    |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00   | 2,53 | ac | 2,88 | ac | 3,21 | ac | 3,89 | ac   | 4,02 | а  | 4,14    | а  | 4,39    | а  | —        |    |
| /R,k                                  | 1,13   | 2,53 | ac | 2,93 | ac | 3,30 | ac | 4,06 | а    | 4,17 | а  | 4,28    | а  |         | _  | <b> </b> | _  |
| _                                     | 1,25   | 2,53 | ac | 2,97 | а  | 3,38 | а  | 4,23 | а    | 4,33 | а  | 4,42    | а  |         | _  |          | _  |
|                                       | 1,50   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а    | 4,63 | а  | 4,70    | а  |         | _  |          | _  |
|                                       | 1,75   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а    | 4,63 | а  | _       | _  |         | _  | _        | -  |
|                                       | 2,00   | 2,53 | а  | 3,06 | а  | 3,55 | а  | 4,56 | а    |      | _  |         |    |         |    |          |    |
|                                       | 0,50   | 1,21 | ac | 1,71 | ac | 1,71 | ac | 1,71 | ac   | 1,71 | ac | 1,71    | ac | 1,71    | ac | 1,71     | ac |
|                                       | 0,55   | 1,21 | ac | 1,75 | ac | 2,01 | ac | 2,01 | ac   | 2,01 | ac | 2,01    | ac | 2,01    | а  |          | _  |
|                                       | 0,63   | 1,21 | ac | 1,75 | ac | 2,35 | ac | 2,49 | ac   | 2,49 | ac | 2,49    | ac | 2,49    | а  | l —      |    |
| it                                    | 0,75   | 1,21 | ac | 1,75 | ac | 2,35 | ac | 2,94 | ac   | 3,43 | ac | 3,43    | ac | 3,43    | a  |          | _  |
| ,Z                                    | 0,88   | 1,21 | ac | 1,75 | ac | 2,35 | ac | 2,94 | ac   | 3,54 | ac | 4,63    | а  | 4,63    | а  |          | _  |
| for                                   | 1,00   | 1,21 | ac | 1,75 | ac | 2,35 | ac | 2,94 | ac   | 3,54 | а  | 4,67    | а  | 5,80    | а  | _        | _  |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13   | 1,21 | ac | 1,75 | ac | 2,35 | ac | 2,94 | а    | 3,54 | а  | 4,67    | а  | _       |    |          | _  |
| _                                     | 1,25   | 1,21 | ac | 1,75 | а  | 2,35 | а  | 2,94 | а    | 3,54 | а  | 4,67    | а  | —       |    | —        |    |
|                                       | 1,50   | 1,21 | а  | 1,75 | а  | 2,35 | а  | 2,94 | а    | 3,54 | а  | 4,67    | а  | _       |    | —        |    |
|                                       | 1,75   | 1,21 | а  | 1,75 | а  | 2,35 | а  | 2,94 | а    | 3,54 | а  | _       |    | —       |    | _        |    |
| L                                     | 2,00   | 1,21 | а  | 1,75 | а  | 2,35 | а  | 2,94 | а    |      |    | <u></u> |    | <u></u> |    |          |    |

| Self drilling screw                         | Annex 30                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0312BI - 5,5 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer:

carbon steel, galvanized

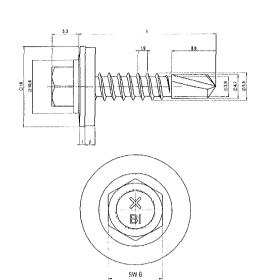
stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

**Drilling capacity** 


 $\Sigma t_i \leq 3,50 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

|                                       |         |      |    |      | <del></del> - |      |    |      |    |           |    |            |                          |          |                   |                   |    |
|---------------------------------------|---------|------|----|------|---------------|------|----|------|----|-----------|----|------------|--------------------------|----------|-------------------|-------------------|----|
| tr                                    | ı, ji = | 1,0  | 00 | 1,   | 13            | 1,2  | 25 | 1,5  | 50 | 1,7       | 75 | 2,0        | 00                       | 2,5      | 50                | 3,0               | 00 |
| Mt                                    | nom =   |      |    |      |               |      |    |      | 5  | <u>Vm</u> |    |            |                          |          |                   |                   |    |
|                                       | 0,50    | 1,36 | ac | 1,42 | ac            | 4,48 | ac | 1,59 | ac | 1,59      | ac | 1,59       | ac                       | 1,59     | ac                | 1,59              | ac |
|                                       | 0,55    | 1,46 | ac | 1,51 | ac            | 1,55 | ac | 1,64 | ac | 1,64      | ac | 1,64       | ac                       | 1,64     | а                 | —                 | _  |
|                                       | 0,63    | 1,60 | ac | 1,63 | ac            | 1,66 | ac | 1,72 | ac | 1,72      | ac | 1,72       | ac                       | 1,72     | а                 | —                 |    |
| IJ                                    | 0,75    | 1,84 | ac | 1,84 | ac            | 1,84 | ac | 1,84 | ac | 1,84      | ac | 1,84       | ac                       | 1,84     | а                 | —                 |    |
| Ż.                                    | 0,88    | 2,19 | ac | 2,37 | ac            | 2,53 | ac | 2,87 | ac | 2,93      | ac | 2,99       | а                        | 3,12     | а                 | _                 | —  |
| VR,k for t <sub>N,I</sub>             | 1,00    | 2,53 | ac | 2,88 | ac            | 3,21 | ac | 3,89 | ac | 4,02      | а  | 4,14       | а                        | 4,39     | а                 | —                 | _  |
| /R,k                                  | 1,13    | 2,53 | ac | 2,93 | ac            | 3,30 | ac | 4,06 | а  | 4,17      | а  | 4,28       | а                        | <u> </u> | -                 | —                 |    |
|                                       | 1,25    | 2,53 | ac | 2,97 | а             | 3,38 | а  | 4,23 | а  | 4,33      | а  | 4,42       | а                        | —        | _                 | _                 | _  |
|                                       | 1,50    | 2,53 | а  | 3,06 | а             | 3,55 | а  | 4,56 | а  | 4,63      | а  | 4,70       | а                        | <u> </u> | _                 |                   |    |
|                                       | 1,75    | 2,53 | а  | 3,06 | а             | 3,55 | а  | 4,56 | а  | 4,63      | а  | —          |                          | —        | _                 | -                 | _  |
|                                       | 2,00    | 2,53 | а  | 3,06 | а             | 3,55 | a  | 4,56 | а  |           |    |            | - Office Livery Property |          | and several field | Si Validado Longo |    |
|                                       | 0,50    | 1,21 | ac | 1,71 | ac            | 1,71 | ac | 1,71 | ac | 1,71      | ac | 1,71       | ac                       | 1,71     | ac                | 1,71              | ac |
|                                       | 0,55    | 1,21 | ac | 1,75 | ac            | 2,01 | ac | 2,01 | ac | 2,01      | ac | 2,01       | ac                       | 2,01     | а                 | <b> </b>          | _  |
|                                       | 0,63    | 1,21 | ac | 1,75 | ac            | 2,35 | ac | 2,49 | ac | 2,49      | ac | 2,49       | ac                       | 2,49     | а                 | _                 | _  |
| П                                     | 0,75    | 1,21 | ac | 1,75 | ac            | 2,35 | ac | 2,94 | ac | 3,43      | ac | 3,43       | ac                       | 3,43     | а                 |                   | _  |
| Ť,                                    | 0,88    | 1,21 | ac | 1,75 | ac            | 2,35 | ac | 2,94 | ac | 3,54      | ac | 4,63       | а                        | 4,63     | а                 |                   | _  |
| ρ                                     | 1,00    | 1,21 | ac | 1,75 | ac            | 2,35 | ac | 2,94 | ac | 3,54      | а  | 4,67       | а                        | 5,80     | а                 | _                 |    |
| N <sub>R,k</sub> for t <sub>N,i</sub> | 1,13    | 1,21 | ac | 1,75 | ac            | 2,35 | ac | 2,94 | а  | 3,54      | а  | 4,67       | а                        | —        | _                 | —                 |    |
| -                                     | 1,25    | 1,21 | ac | 1,75 | а             | 2,35 | а  | 2,94 | а  | 3,54      | а  | 4,67       | а                        |          | _                 | —                 |    |
|                                       | 1,50    | 1,21 | а  | 1,75 | а             | 2,35 | а  | 2,94 | а  | 3,54      | а  | 4,67       | а                        | —        |                   | _                 |    |
|                                       | 1,75    | 1,21 | а  | 1,75 | а             | 2,35 | а  | 2,94 | а  | 3,54      | а  |            |                          | <u> </u> |                   | —                 |    |
|                                       | 2,00    | 1,21 | а  | 1,75 | а             | 2,35 | а  | 2,94 | а  |           |    | L <u> </u> |                          | <u> </u> |                   |                   |    |

| Self drilling screw                         | Annex 31                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0312CF - 5,5 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |

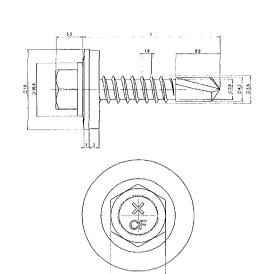


Fastener: stainless steel (1.4301) – EN 10088
Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 -- EN 10025-1

S280GD or S320GD - EN 10346


Drilling capacity  $\Sigma t_i \le 6,00 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

|                                       |          |      |    |      |      |                  |    | <u> </u> |     |      |    |    |    |              |    |          |     |
|---------------------------------------|----------|------|----|------|------|------------------|----|----------|-----|------|----|----|----|--------------|----|----------|-----|
| t                                     | N,II =   | 2,0  | 00 | 2,5  | 50   | 3,0              | 00 | 4,0      | 00  | 5,0  | 00 | 6, | 00 | 7,           | 00 | 8,       | 00  |
| M <sub>t</sub>                        | t,nom == |      |    |      |      | 5 <sub>.</sub> N | lm | _        |     |      |    |    |    |              |    |          |     |
|                                       | 0,50     | 1,35 | ac | 1,35 | ac   | 1,35             | ac | 1,35     | ac  | 1,35 | ac | _  |    | l —          |    |          | _ ] |
|                                       | 0,55     | 1,53 | ac | 1,53 | ac   | 1,53             | ac | 1,53     | ac  | 1,53 | а  |    | _  |              |    | <b>—</b> |     |
|                                       | 0,63     | 1,81 | ac | 1,81 | ac   | 1,81             | ac | 1,81     | ac  | 1,81 | а  |    | _  | <u> </u>     | _  | _        |     |
| 11                                    | 0,75     | 2,27 | ac | 2,27 | ac   | 2,27             | ac | 2,27     | ac  | 2,27 | а  |    | _  | —            |    | _        |     |
| t <sub>N,1</sub>                      | 0,88     | 2,66 | ac | 2,66 | ac   | 2,66             | ac | 2,66     | ac  | 2,66 | а  | _  |    | <b>—</b>     | _  | _        | - 1 |
| for                                   | 1,00     | 3,04 | ac | 3,04 | ac   | 3,04             | ac | 3,04     | ac  | 3,04 | а  | _  | _  | _            | _  |          | _   |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13     | 3,32 | ac | 3,77 | ac   | 3,77             | ac | 3,77     | a · |      | _  |    | _  | —            |    | _        |     |
| _                                     | 1,25     | 3,60 | ac | 4,05 | ac   | 4,50             | ac | 4,50     | а   |      | _  |    | -  |              | _  | _        | -   |
|                                       | 1,50     | 4,15 | ac | 4,34 | ac   | 4,53             | ac | 4,73     | а   |      | _  |    | _  |              | _  |          | _   |
|                                       | 1,75     | 4,15 | ac | 4,34 | ac   | 4,53             | а  | 4,73     | а   | —    |    | _  |    | <del> </del> | _  | _        | _   |
|                                       | 2,00     | 4,15 | ac | 4,34 | а    | 4,53             | а  | 4,73     | а   |      |    |    |    |              |    |          |     |
|                                       | 0,50     | 1,71 | ac | 1,71 | ac   | 1,71             | ac | 1,71     | ac  | 1,71 | ac |    | _  | —            | _  | _        |     |
|                                       | 0,55     | 2,01 | ac | 2,01 | ac   | 2,01             | ac | 2,01     | ac  | 2,01 | а  |    | _  |              |    | _        | _   |
|                                       | 0,63     | 2,49 | ac | 2,49 | ac   | 2,49             | ac | 2,49     | ac  | 2,49 | а  |    | _  |              | _  |          | _   |
| Ш                                     | 0,75     | 3,11 | ac | 3,43 | ac - | 3,43             | ac | 3,43     | ac  | 3,43 | а  | _  | _  | _            | _  |          | _   |
| Ĭ.                                    | 0,88     | 3,11 | ac | 3,84 | ac   | 4,56             | ac | 4,63     | ac  | 4,63 | а  |    | _  |              | _  |          |     |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,00     | 3,11 | ac | 3,84 | aç   | 4,56             | ac | 5,58     | ac  | 5,83 | а  | _  |    | _            |    |          | _   |
| Ä,                                    | 1,13     | 3,11 | ac | 3,84 | ac   | 4,56             | ac | 5,58     | а   | _    | _  |    |    | _            | _  | _        | _   |
| _                                     | 1,25     | 3,11 | ac | 3,84 | ac   | 4,56             | ac | 5,58     | а   | _    |    | _  |    |              | _  |          | -   |
|                                       | 1,50     | 3,11 | ac | 3,84 | ac   | 4,56             | ac | 5,58     | а   | _    |    | _  |    |              | _  | _        | _   |
|                                       | 1,75     | 3,11 | ac | 3,84 | ac   | 4,56             | а  | 5,58     | а   |      |    | _  |    | _            | _  | _        |     |
|                                       | 2,00     | 3,11 | ac | 3,84 | а    | 4,56             | а  | 5,58     | а   | —    |    | _  | _  |              | _  |          | _   |

| Self drilling screw                         | Annex 32                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0313BI - 5,5 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

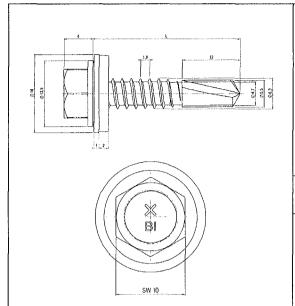
Washer: carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346


Drilling capacity  $\Sigma t_i \le 6,00 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| t                                     | N,II =  | 2,0  | 00 | 2,5  | 50 | 3,0  | 00 | 4,0  | 00 | 5,0      | 00 | 6, | 00 | 7,       | 00 | 8,           | 00 |
|---------------------------------------|---------|------|----|------|----|------|----|------|----|----------|----|----|----|----------|----|--------------|----|
| M                                     | t,nom = |      |    |      |    | 5 N  | ١m |      |    |          |    |    |    | _        | _  |              |    |
|                                       | 0,50    | 1,35 | ac | 1,35 | ac | 1,35 | ac | 1,35 | ac | 1,35     | ac | _  |    | —        | _  | _            | _  |
|                                       | 0,55    | 1,53 | ac | 1,53 | ac | 1,53 | ac | 1,53 | ac | 1,53     | а  |    | _  |          | _  | <u> </u>     |    |
|                                       | 0,63    | 1,81 | ac | 1,81 | ac | 1,81 | ac | 1,81 | ac | 1,81     | а  |    | _  |          | _  |              | _  |
| П                                     | 0,75    | 2,27 | ac | 2,27 | ac | 2,27 | ac | 2,27 | ac | 2,27     | а  |    | _  |          | _  |              | _  |
| ţ,                                    | 0,88    | 2,66 | ac | 2,66 | ac | 2,66 | ac | 2,66 | ac | 2,66     | а  | _  |    | <u> </u> |    | _            |    |
| ło                                    | 1,00    | 3,04 | ac | 3,04 | ac | 3,04 | ac | 3,04 | ac | 3,04     | а  |    |    | _        |    | <u> </u>     |    |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13    | 3,32 | ac | 3,77 | ac | 3,77 | ac | 3,77 | а  | —        |    | _  |    | <u> </u> |    | <u> </u>     |    |
|                                       | 1,25    | 3,60 | ac | 4,05 | ac | 4,50 | ac | 4,50 | а  | —        |    | _  |    | _        |    | —            | _  |
|                                       | 1,50    | 4,15 | ac | 4,34 | ac | 4,53 | ac | 4,73 | а  | —        |    | _  |    |          | _  | _            |    |
|                                       | 1,75    | 4,15 | ac | 4,34 | ac | 4,53 | а  | 4,73 | а  |          | —  |    | _  |          | _  |              | _  |
|                                       | 2,00    | 4,15 | ac | 4,34 | а  | 4,53 | а  | 4,73 | а  |          |    |    |    |          |    |              |    |
|                                       | 0,50    | 1,71 | ac | 1,71 | ac | 1,71 | ac | 1,71 | ac | 1,71     | ac |    | _  |          | _  | <b>-</b>     | _  |
|                                       | 0,55    | 2,01 | ac | 2,01 | ac | 2,01 | ac | 2,01 | ac | 2,01     | а  | _  | _  |          | _  |              | _  |
|                                       | 0,63    | 2,49 | ac | 2,49 | ac | 2,49 | ac | 2,49 | ac | 2,49     | а  | _  | _  |          | _  | <u> </u>     | _  |
| 11                                    | 0,75    | 3,11 | ac | 3,43 | ac | 3,43 | ac | 3,43 | ac | 3,43     | а  |    | _  |          | _  |              | _  |
| ž                                     | 0,88    | 3,11 | ac | 3,84 | ac | 4,56 | ac | 4,63 | ac | 4,63     | а  | _  | _  |          |    |              | _  |
| ō                                     | 1,00    | 3,11 | ac | 3,84 | ac | 4,56 | ac | 5,58 | ac | 5,83     | а  |    | _  |          | _  |              | _  |
| NR,k for to,                          | 1,13    | 3,11 | ac | 3,84 | ac | 4,56 | ac | 5,58 | а  | _        | _  |    | _  | _        |    | <del>-</del> |    |
|                                       | 1,25    | 3,11 | ac | 3,84 | ac | 4,56 | ac | 5,58 | а  |          | -  |    | _  |          | _  |              | _  |
|                                       | 1,50    | 3,11 | ac | 3,84 | ac | 4,56 | ac | 5,58 | а  |          | _  |    | _  |          |    | _            | _  |
|                                       | 1,75    | 3,11 | ac | 3,84 | ac | 4,56 | а  | 5,58 | а  |          | _  | _  | _  | <u> </u> | —  | _            |    |
|                                       | 2,00    | 3,11 | ac | 3,84 | а  | 4,56 | а  | 5,58 | а  | <u> </u> |    |    |    |          |    |              |    |

| Self drilling screw                         | Annex 33                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0313CF - 5,5 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |

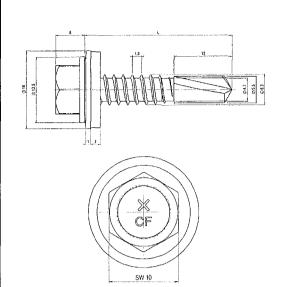


Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346


Drilling capacity  $\Sigma t_i \le 6,30 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

|                                       |        |      |    |      |    |      |    | <u> </u> |    |      |    |    |    |          |    |    |    |
|---------------------------------------|--------|------|----|------|----|------|----|----------|----|------|----|----|----|----------|----|----|----|
| tı                                    | N,II = | 2,0  | 00 | 2,5  | 50 | 3,0  | 00 | 4,0      | 00 | 5,0  | 00 | 6, | 00 | 7,       | 00 | 8, | 00 |
| Mt                                    | nom =  |      |    |      |    | 5 N  | lm | ···      |    | _    |    |    |    |          |    |    |    |
|                                       | 0,50   | 1,70 | ac | 1,70 | ac | 1,70 | ac | 1,70     | ac | 1,70 | ac | _  |    | _        |    | _  | _  |
|                                       | 0,55   | 1,90 | ac | 1,90 | ac | 1,90 | ac | 1,90     | ac | 1,90 | ac |    | _  |          |    | _  |    |
|                                       | 0,63   | 2,19 | ac | 2,19 | ac | 2,19 | ac | 2,19     | ac | 2,19 | ac | _  |    | —        |    | _  |    |
| Ш                                     | 0,75   | 2,68 | ac | 2,68 | ac | 2,68 | ac | 2,68     | ac | 2,68 | а  |    | _  |          | _  | _  | _  |
| ž                                     | 0,88   | 3,26 | ac | 3,26 | ac | 3,26 | ac | 3,26     | ac | 3,26 | а  | _  | _  | _        | _  | _  | _  |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,00   | 3,83 | ac | 3,83 | ac | 3,83 | ac | 3,83     | ac | 3,83 | а  |    | _  |          |    | _  |    |
| / <sub>R,k</sub>                      | 1,13   | 4,29 | ac | 4,53 | ac | 4,53 | ac | 4,53     | ac | 4,58 | а  | _  |    |          | _  |    | _  |
|                                       | 1,25   | 4,75 | ac | 4,99 | ac | 5,23 | ac | 5,23     | а  | 5,33 | а  |    | _  |          | _  | _  | _  |
|                                       | 1,50   | 5,67 | ac | 5,87 | ac | 6,06 | ac | 6,44     | а  | _    |    | _  |    |          | _  |    | _  |
|                                       | 1,75   | 5,67 | ac | 5,87 | ac | 6,06 | а  | 6,44     | а  | _    | -  | _  |    | <u> </u> |    | _  |    |
|                                       | 2,00   | 5,67 | ac | 5,87 | а  | 6,06 | а  | 6,44     | а  |      |    |    |    |          |    |    |    |
|                                       | 0,50   | 1,69 | ac | 1,69 | ac | 1,69 | ac | 1,69     | ac | 1,69 | ac |    | _  |          | _  | _  | _  |
|                                       | 0,55   | 2,27 | ac | 2,27 | ac | 2,27 | ac | 2,27     | ac | 2,27 | ac |    | _  |          |    | _  |    |
|                                       | 0,63   | 2,28 | ac | 2,28 | ac | 2,28 | ac | 2,28     | ac | 2,28 | ac | _  |    | _        | _  |    | _  |
| 11                                    | 0,75   | 3,24 | ac | 3,42 | ac | 3,42 | ac | 3,42     | ac | 3,42 | а  | _  |    |          | _  |    | _  |
| Z                                     | 0,88   | 3,24 | ac | 3,77 | ac | 3,77 | ac | 3,77     | ac | 3,77 | а  |    |    | _        | _  |    | _  |
| for                                   | 1,00   | 3,24 | ac | 4,11 | ac | 4,11 | ac | 4,11     | ac | 4,11 | а  |    | _  | _        |    | —  |    |
| N <sub>R,k</sub> for t <sub>n,1</sub> | 1,13   | 3,24 | ac | 4,19 | ac | 5,13 | ac | 5,33     | ac | 5,33 | а  |    | -  | _        |    | _  |    |
|                                       | 1,25   | 3,24 | ac | 4,19 | ac | 5,13 | ac | 6,55     | а  | 6,55 | а  |    | _  |          | _  |    | -  |
|                                       | 1,50   | 3,24 | ac | 4,19 | ac | 5,13 | ac | 6,55     | а  |      | _  |    | _  |          |    | _  |    |
|                                       | 1,75   | 3,24 | ac | 4,19 | ac | 5,13 | а  | 6,55     | а  | —    | _  |    |    | _        |    | _  |    |
|                                       | 2,00   | 3,24 | ac | 4,19 | а  | 5,13 | а  | 6,55     | а  |      |    | -  |    |          | _  |    | _  |

| Self drilling screw                         | Annex 34                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0313BI - 6,3 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

Washer: ca

carbon steel, galvanized

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

**Drilling capacity** 

 $\Sigma t_i \leq 6,30 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| •                                     |        | 0.00                                   |                | 0.50               |                   |            |                |               |    |                 |             |    |    |              |    |          |    |
|---------------------------------------|--------|----------------------------------------|----------------|--------------------|-------------------|------------|----------------|---------------|----|-----------------|-------------|----|----|--------------|----|----------|----|
|                                       | N,11 = | 2,0                                    | 00             | 2,5                | 50                | 3,0        |                | 4,0           | 00 | 5,0             | )()         | 6, | 00 | 7,           | 00 | 8,       | 00 |
| M <sub>t</sub>                        | ,nom = | 1 14 1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Januari 1864 M | Rose Solition (See | 11-14-14-14-14-14 | <u>5 N</u> | <del>l</del> m | Test cause we |    | talen satesaria | MASS VINCES |    |    |              |    | ,        |    |
|                                       | 0,50   | 1,70                                   | ac             | 1,70               | ac                | 1,70       | ac             | 1,70          | ac | 1,70            | ac          |    | _  | -            |    |          | _  |
|                                       | 0,55   | 1,90                                   | ac             | 1,90               | ac                | 1,90       | ac             | 1,90          | ac | 1,90            | ac          |    | _  |              | _  |          | _  |
|                                       | 0,63   | 2,19                                   | ac             | 2,19               | ac                | 2,19       | ac             | 2,19          | ac | 2,19            | ac          |    | _  |              | _  |          | _  |
| Ш                                     | 0,75   | 2,68                                   | ac             | 2,68               | ac                | 2,68       | ac             | 2,68          | ac | 2,68            | а           |    | _  |              | _  | -        | _  |
| ż                                     | 0,88   | 3,26                                   | ac             | 3,26               | ac                | 3,26       | ac             | 3,26          | ac | 3,26            | а           |    | _  | -            | _  | ĺ —      |    |
| ģ                                     | 1,00   | 3,83                                   | ac             | 3,83               | ac                | 3,83       | ac             | 3,83          | ac | 3,83            | а           |    | —  |              | _  |          | _  |
| V <sub>R,k</sub> for t <sub>n,i</sub> | 1,13   | 4,29                                   | ac             | 4,53               | ac                | 4,53       | ac             | 4,53          | ac | 4,58            | а           |    | _  |              |    |          | _  |
|                                       | 1,25   | 4,75                                   | ac             | 4,99               | ac                | 5,23       | ac             | 5,23          | а  | 5,33            | а           |    | _  |              | _  |          | _  |
|                                       | 1,50   | 5,67                                   | ac             | 5,87               | ac                | 6,06       | ac             | 6,44          | а  | _               | _           |    | _  |              | _  |          | _  |
|                                       | 1,75   | 5,67                                   | ac             | 5,87               | ac                | 6,06       | а              | 6,44          | а  |                 | _           |    | _  | _            |    | _        |    |
|                                       | 2,00   | 5,67                                   | ac             | 5,87               | a                 | 6,06       | a              | 6,44          | a  |                 |             |    |    |              |    |          |    |
|                                       | 0,50   | 1,69                                   | ac             | 1,69               | ac                | 1,69       | ac             | 1,69          | ac | 1,69            | ac          |    | _  | <del>-</del> | _  | <b>—</b> |    |
|                                       | 0,55   | 2,27                                   | ac             | 2,27               | ac                | 2,27       | ac             | 2,27          | ac | 2,27            | ac          |    | _  |              | _  |          | _  |
|                                       | 0,63   | 2,28                                   | ac             | 2,28               | ac                | 2,28       | ac             | 2,28          | ac | 2,28            | ac          | _  |    | —            |    | —        | _  |
| Ħ                                     | 0,75   | 3,24                                   | ac             | 3,42               | ac                | 3,42       | ac             | 3,42          | ac | 3,42            | ļа          | _  |    | —            |    | —        | -  |
| ž                                     | 0,88   | 3,24                                   | ac             | 3,77               | ac                | 3,77       | ac             | 3,77          | ac | 3,77            | а           | _  | _  | <u> </u>     |    | -        |    |
| N <sub>R,k</sub> for t <sub>n,i</sub> | 1,00   | 3,24                                   | ac             | 4,11               | ac                | 4,11       | ac             | 4,11          | ac | 4,11            | а           | —  |    | —            |    | —        |    |
| Ä,×                                   | 1,13   | 3,24                                   | ac             | 4,19               | ac                | 5,13       | ac             | 5,33          | ac | 5,33            | а           | _  | _  | -            | _  | -        | _  |
| _                                     | 1,25   | 3,24                                   | ac             | 4,19               | ac                | 5,13       | ac             | 6,55          | а  | 6,55            | а           |    |    | —            |    | _        |    |
|                                       | 1,50   | 3,24                                   | ac             | 4,19               | ac                | 5,13       | ac             | 6,55          | а  | —               |             | _  |    | _            |    | _        |    |
|                                       | 1,75   | 3,24                                   | ac             | 4,19               | ac                | 5,13       | а              | 6,55          | а  | —               |             | _  |    | _            |    | _        |    |
|                                       | 2,00   | 3,24                                   | ac             | 4,19               | а                 | 5,13       | a              | 6,55          | а  |                 |             |    |    |              |    |          |    |

| Self drilling screw                         | Annex 35                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0313CF - 6,3 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |

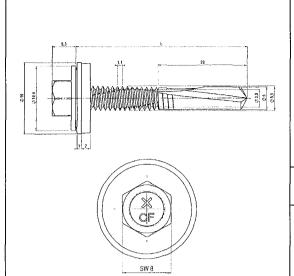


Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

Drilling capacity


 $\Sigma t_i \leq 13,0 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| ti                                    | v,   = | 4,0  | 00 | 5,0  | 00 | 6,0  | 00 | 7,0  | 00  | 8,0  | 00        | 10,  | 00 | 12,00 |    | 14,00 |   |
|---------------------------------------|--------|------|----|------|----|------|----|------|-----|------|-----------|------|----|-------|----|-------|---|
| Mt                                    | ,nom = |      |    |      |    |      |    | 5 N  | lm_ |      |           |      |    |       |    |       | _ |
|                                       | 0,50   | 1,48 | ac | 1,48 | ac | 1,48 | ac | 1,48 | ac  | 1,48 | ac        | 1,48 | ac | 1,48  | ac |       | _ |
|                                       | 0,55   | 1,63 | ac | 1,63 | ac | 1,63 | ac | 1,63 | ac  | 1,63 | ac        | 1,63 | ac | 1,63  | а  |       | _ |
|                                       | 0,63   | 1,86 | ac | 1,86 | ac | 1,86 | ac | 1,86 | ac  | 1,86 | ac        | 1,86 | ac | 1,86  | а  |       | _ |
| П                                     | 0,75   | 2,24 | ac | 2,24 | ac | 2,24 | ac | 2,24 | ac  | 2,24 | ac        | 2,24 | ac | 2,24  | а  |       | _ |
| ž                                     | 0,88   | 3,01 | ac | 3,01 | ac | 3,01 | ac | 3,01 | ac  | 3,01 | ac        | 3,01 | ac | 3,01  | а  | -     | _ |
| VR,k for tn,1                         | 1,00   | 3,78 | ac | 3,78 | ac | 3,78 | ac | 3,78 | ac  | 3,78 | ac        | 3,78 | ac | 3,78  | а  |       | _ |
| /R,k                                  | 1,13   | 3,93 | ac | 4,05 | ac | 4,18 | ac | 4,31 | ac  | 4,43 | ac        | 4,44 | ac | 4,44  | а  | —     |   |
|                                       | 1,25   | 4,06 | ac | 4,3  | ac | 4,55 | ac | 4,79 | ac  | 5,03 | ac        | 5,04 | ac | 5,05  | а  | _     |   |
|                                       | 1,50   | 4,34 | ac | 4,83 | ac | 5,31 | ac | 5,80 | ac  | 6,28 | ac        | 6,30 | ac | 6,32  | а  | _     |   |
|                                       | 1,75   | 4,34 | ac | 4,83 | ac | 5,31 | ac | 5,80 | а   | 6,28 | а         | 6,30 | а  | 6,32  | а  |       | _ |
|                                       | 2,00   | 4,34 | ac | 4,83 | a  | 5,31 | а  | 5,80 | a   | 6,28 | а         | 6,30 | a  | 6,32  | а  |       |   |
|                                       | 0,50   | 1,69 | ac | 1,69 | ac | 1,69 | ac | 1,69 | ac  | 1,69 | ac        | 1,69 | ac | 1,69  | ac |       | _ |
|                                       | 0,55   | 2,27 | ac | 2,27 | ac | 2,27 | ac | 2,27 | ac  | 2,27 | ac        | 2,27 | ac | 2,27  | а  | _     |   |
|                                       | 0,63   | 2,28 | ac | 2,28 | ac | 2,28 | ac | 2,28 | ac  | 2,28 | ac        | 2,28 | ac | 2,28  | а  | -     | _ |
| lt                                    | 0,75   | 3,42 | ac | 3,42 | ac | 3,42 | ac | 3,42 | ac  | 3,42 | ac        | 3,42 | ac | 3,42  | а  | _     | _ |
| ţ,                                    | 0,88   | 3,77 | ac | 3,77 | ac | 3,77 | ac | 3,77 | ac  | 3,77 | ac        | 3,77 | ac | 3,77  | а  | _     |   |
| N <sub>R,k</sub> for t <sub>N,1</sub> | 1,00   | 4,11 | ac | 4,11 | ac | 4,11 | ac | 4,11 | ac  | 4,11 | ac        | 4,11 | ac | 4,11  | а  |       | _ |
| Ä,'n                                  | 1,13   | 5,33 | ac | 5,33 | ac | 5,33 | ac | 5,33 | ac  | 5,33 | ac        | 5,33 | ac | 5,33  | а  |       |   |
| _                                     | 1,25   | 6,46 | ac | 6,46 | ac | 6,55 | ac | 6,55 | ac  | 6,55 | ac        | 6,55 | ac | 6,55  | а  |       |   |
|                                       | 1,50   | 6,46 | ac | 6,46 | ac | 6,55 | ac | 6,55 | ac  | 6,55 | ac        | 6,55 | ac | 6,55  | a  | _     |   |
|                                       | 1,75   | 6,46 | ac | 6,46 | ac | 6,55 | ac | 6,55 | а   | 6,55 | а         | 6,55 | a  | 6,55  | а  | _     | _ |
|                                       | 2,00   | 6,46 | ac | 6,46 | ac | 6,55 | а  | 6,55 | а   | 6,55 | <u>a_</u> | 6,55 | a  | 6,55  | _a |       |   |

| Self drilling screw                                          | Annex 36                       |
|--------------------------------------------------------------|--------------------------------|
| IPEX - 0315BI - 5,5 x L                                      | of European technical approval |
| with hexagon head and seal washer $\geq$ $\varnothing$ 16 mm | ETA-10/0020                    |



Fastener: carbon steel

case hardened and galvanized

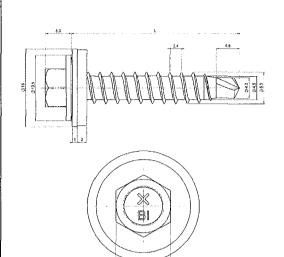
Washer: carbon steel, galvanized

stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

**Drilling capacity** 


 $\Sigma t_i \leq 13,0 \text{ mm}$ 

# Timber substructures

for timber substructures no performance determined

| <del></del> :                         |        |                |    |      |    |      |    |      |           |      |    |                                         |      |       |    | <del></del> |   |
|---------------------------------------|--------|----------------|----|------|----|------|----|------|-----------|------|----|-----------------------------------------|------|-------|----|-------------|---|
|                                       | N,II = | 4,00 5,00 6,00 |    |      |    |      |    |      | 7,00 8,00 |      |    | 10,00                                   |      | 12,00 |    | 14,00       |   |
| M                                     | ,nom = | 5 Nm           |    |      |    |      |    |      |           |      |    | 100000000000000000000000000000000000000 | _    |       |    |             |   |
| II                                    | 0,50   | 1,48           | ac | 1,48 | ac | 1,48 | ac | 1,48 | ac        | 1,48 | ac | 1,48                                    | ac   | 1,48  | ac |             | _ |
|                                       | 0,55   | 1,63           | ac | 1,63 | ac | 1,63 | ac | 1,63 | ac        | 1,63 | ac | 1,63                                    | ac   | 1,63  | а  |             |   |
|                                       | 0,63   | 1,86           | ac | 1,86 | ac | 1,86 | ac | 1,86 | ac        | 1,86 | ac | 1,86                                    | ac   | 1,86  | а  |             | _ |
|                                       | 0,75   | 2,24           | ac | 2,24 | ac | 2,24 | ac | 2,24 | ac        | 2,24 | ac | 2,24                                    | ac   | 2,24  | а  | _           |   |
| ž                                     | 0,88   | 3,01           | ac | 3,01 | ac | 3,01 | ac | 3,01 | ac        | 3,01 | ac | 3,01                                    | ac   | 3,01  | а  | _           |   |
| V <sub>R,k</sub> for                  | 1,00   | 3,78           | ac | 3,78 | ac | 3,78 | ac | 3,78 | ac        | 3,78 | ac | 3,78                                    | ac   | 3,78  | а  |             |   |
| ,<br>Ä,                               | 1,13   | 3,93           | ac | 4,05 | ac | 4,18 | ac | 4,31 | ac        | 4,43 | ac | 4,44                                    | ac   | 4,44  | а  | <u> </u>    | _ |
|                                       | 1,25   | 4,06           | ac | 4,3  | ac | 4,55 | ac | 4,79 | ac        | 5,03 | ac | 5,04                                    | ac   | 5,05  | а  | _           |   |
|                                       | 1,50   | 4,34           | ac | 4,83 | ac | 5,31 | ac | 5,80 | ac        | 6,28 | ac | 6,30                                    | ac   | 6,32  | а  | _           | _ |
|                                       | 1,75   | 4,34           | ac | 4,83 | ac | 5,31 | ac | 5,80 | а         | 6,28 | а  | 6,30                                    | а    | 6,32  | а  |             | _ |
|                                       | 2,00   | 4,34           | ac | 4,83 | a  | 5,31 | a  | 5,80 | a         | 6,28 | a  | 6,30                                    | а    | 6,32  | а  |             |   |
|                                       | 0,50   | 1,69           | ac | 1,69 | ac | 1,69 | ac | 1,69 | ac        | 1,69 | ac | 1,69                                    | ac   | 1,69  | ac | _           | _ |
|                                       | 0,55   | 2,27           | ac | 2,27 | ac | 2,27 | ac | 2,27 | ac        | 2,27 | ac | 2,27                                    | ac   | 2,27  | а  |             | _ |
|                                       | 0,63   | 2,28           | ac | 2,28 | ac | 2,28 | ac | 2,28 | ac        | 2,28 | ac | 2,28                                    | ac   | 2,28  | а  | _           |   |
| II                                    | 0,75   | 3,42           | ac | 3,42 | ac | 3,42 | ac | 3,42 | ac        | 3,42 | ac | 3,42                                    | ac . | 3,42  | а  |             | _ |
| ž                                     | 0,88   | 3,77           | ac | 3,77 | ac | 3,77 | ac | 3,77 | ac        | 3,77 | ac | 3,77                                    | ac   | 3,77  | а  | <u> </u>    |   |
| for                                   | 1,00   | 4,11           | ac | 4,11 | ac | 4,11 | ac | 4,11 | ac        | 4,11 | ac | 4,11                                    | ac   | 4,11  | а  |             | _ |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13   | 5,33           | ac | 5,33 | ac | 5,33 | ac | 5,33 | ac        | 5,33 | ac | 5,33                                    | ac   | 5,33  | а  | _           |   |
|                                       | 1,25   | 6,55           | ac | 6,55 | ac | 6,55 | ac | 6,55 | ac        | 6,55 | ac | 6,55                                    | ac   | 6,55  | a  | _           |   |
|                                       | 1,50   | 6,55           | ac | 6,55 | ac | 6,55 | ac | 6,55 | ac        | 6,55 | ac | 6,55                                    | ac   | 6,55  | а  | _           |   |
|                                       | 1,75   | 6,55           | ac | 6,55 | ac | 6,55 | ac | 6,55 | а         | 6,55 | а  | 6,55                                    | а    | 6,55  | а  | _           | _ |
|                                       | 2,00   | 6,55           | ac | 6,55 | а  | 6,55 | а  | 6,55 | а         | 6,55 | a  | 6,55                                    | a    | 6,55  | а  |             |   |

| Self drilling screw                         | Annex 37                       |
|---------------------------------------------|--------------------------------|
| IPEX - 0315CF - 5,5 x L                     | of European technical approval |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |



Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

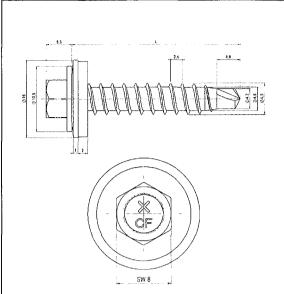
Component II: structural timber - EN 14081

**Drilling capacity** 

 $\Sigma t_i \le 2,00 \text{ mm}$ 

#### Timber substructures

for timber substructures performance determined with


 $M_{y,Rk} = 9,528$  Nm

 $f_{ax,k} = 9,621$  N/mm<sup>2</sup> for  $l_{ef} \ge 33$  mm

|                                       |                      |      |      |      |      | <u> </u> |      |      |      |      |      |      |                                        |  |
|---------------------------------------|----------------------|------|------|------|------|----------|------|------|------|------|------|------|----------------------------------------|--|
| $I_g =$                               |                      | 38   | 42   | 44   | 50   | 54       | 58   | 62   | 66   | 70   | 74   |      |                                        |  |
| M                                     | M <sub>t,nom</sub> = |      | _    |      |      |          |      |      |      |      |      |      |                                        |  |
|                                       | 0,50                 | 1,55 | 1,55 | 1,55 | 1,55 | 1,55     | 1,55 | 1,55 | 1,55 | 1,55 | 1,55 | 1,55 | 뒫                                      |  |
|                                       | 0,55                 | 1,73 | 1,73 | 1,73 | 1,73 | 1,73     | 1,73 | 1,73 | 1,73 | 1,73 | 1,73 | 1,73 | ner                                    |  |
|                                       | 0,63                 | 2,01 | 2,01 | 2,01 | 2,01 | 2,01     | 2,01 | 2,01 | 2,01 | 2,01 | 2,01 | 2,01 | 6                                      |  |
| 11                                    | 0,75                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,46 | 2,46 | 2,46 | 2,46 | 2,46 | 5                                      |  |
| ž                                     | 0,88                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,51 | 2,57 | 2,63 | 2,68 | 2,78 | jo                                     |  |
| V <sub>R,k</sub> for t <sub>N,l</sub> | 1,00                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,51 | 2,57 | 2,63 | 2,68 | 3,09 | JOE                                    |  |
| /R,k                                  | 1,13                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,51 | 2,57 | 2,63 | 2,68 | 3,19 | ista                                   |  |
| -                                     | 1,25                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,51 | 2,57 | 2,63 | 2,68 | 3,29 | res                                    |  |
|                                       | 1,50                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,51 | 2,57 | 2,63 | 2,68 | 3,48 | bearing resistance of component        |  |
|                                       | 1,75                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,51 | 2,57 | 2,63 | 2,68 | 3,48 |                                        |  |
|                                       | 2,00                 | 2,18 | 2,23 | 2,29 | 2,34 | 2,40     | 2,46 | 2,51 | 2,57 | 2,63 | 2,68 | 3,48 |                                        |  |
|                                       | 0,50                 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67     | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 |                                        |  |
|                                       | 0,55                 | 1,86 | 2,08 | 2,15 | 2,15 | 2,15     | 2,15 | 2,15 | 2,15 | 2,15 | 2,15 | 2,15 | of                                     |  |
|                                       | 0,63                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 2,93 | 2,93 | 2,93 | 2,93 | 2,93 | es (                                   |  |
| П                                     | 0,75                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,48 | 3,48 | tan -                                  |  |
| , Ž                                   | 0,88                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,88 | 3,96 | ssis                                   |  |
| for                                   | 1,00                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,88 | 4,44 | h re                                   |  |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,88 | 5,45 | ough resista                           |  |
| _                                     | 1,25                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,88 | 6,46 | th o                                   |  |
|                                       | 1,50                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,88 | 7,68 | pull-through resistance<br>component l |  |
|                                       | 1,75                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,88 | 7,68 | <u>.</u>                               |  |
|                                       | 2,00                 | 1,86 | 2,08 | 2,31 | 2,53 | 2,76     | 2,93 | 3,21 | 3,43 | 3,48 | 3,88 | 7,68 |                                        |  |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                         | Annex 38                       |  |  |
|---------------------------------------------|--------------------------------|--|--|
| IPEX - 0319BI - 6,5 x L                     | of European technical approval |  |  |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |  |  |



Fastener: carbon steel

case hardened and galvanized

carbon steel, galvanized Washer:

stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: structural timber - EN 14081

**Drilling capacity** 

 $\Sigma t_i \le 2,00 \text{ mm}$ 

# Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 12,033$ 

 $N/mm^2$  for  $I_{ef} \ge 33$  mm

|                                       |               |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | <del></del> |      |      |      |      |      |                                           |
|---------------------------------------|---------------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|------|------|------|------|------|-------------------------------------------|
| l <sub>g</sub> =                      |               | 38   | 42   | 44   | 50_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 54   | 58          | 62   | 66   | 70   | 74   |      |                                           |
| M                                     | $M_{t,nom} =$ |      | I    |      | I and the state of | _    | _           |      |      | T    |      |      |                                           |
|                                       | 0,50          | 1,55 | 1,55 | 1,55 | 1,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,55 | 1,55        | 1,55 | 1,55 | 1,55 | 1,55 | 1,55 | nt -                                      |
|                                       | 0,55          | 1,73 | 1,73 | 1,73 | 1,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,73 | 1,73        | 1,73 | 1,73 | 1,73 | 1,73 | 1,73 | nei                                       |
|                                       | 0,63          | 2,01 | 2,01 | 2,01 | 2,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,01 | 2,01        | 2,01 | 2,01 | 2,01 | 2,01 | 2,01 | ubc                                       |
| 11                                    | 0,75          | 2,39 | 2,44 | 2,46 | 2,46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,46 | 2,46        | 2,46 | 2,46 | 2,46 | 2,46 | 2,46 | COL                                       |
| ± <u>z</u>                            | 0,88          | 2,39 | 2,44 | 2,50 | 2,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,61 | 2,67        | 2,73 | 2,78 | 2,78 | 2,78 | 2,78 | o of                                      |
| for                                   | 1,00          | 2,39 | 2,44 | 2,50 | 2,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,61 | 2,67        | 2,73 | 2,78 | 2,84 | 2,89 | 3,09 | nce                                       |
| V <sub>R,k</sub> for t <sub>N,I</sub> | 1,13          | 2,39 | 2,44 | 2,50 | 2,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,61 | 2,67        | 2,73 | 2,78 | 2,84 | 2,89 | 3,19 | resistance of component                   |
|                                       | 1,25          | 2,39 | 2,44 | 2,50 | 2,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,61 | 2,67        | 2,73 | 2,78 | 2,84 | 2,89 | 3,29 | bearing res                               |
|                                       | 1,50          | 2,39 | 2,44 | 2,50 | 2,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,61 | 2,67        | 2,73 | 2,78 | 2,84 | 2,89 | 3,48 |                                           |
|                                       | 1,75          | 2,39 | 2,44 | 2,50 | 2,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,61 | 2,67        | 2,73 | 2,78 | 2,84 | 2,89 | 3,48 |                                           |
|                                       | 2,00          | 2,39 | 2,44 | 2,50 | 2,56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,61 | 2,67        | 2,73 | 2,78 | 2,84 | 2,89 | 3,48 | Q                                         |
|                                       | 0,50          | 1,67 | 1,67 | 1,67 | 1,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,67 | 1,67        | 1,67 | 1,67 | 1,67 | 1,67 | 1,67 |                                           |
| ļ                                     | 0,55          | 1,86 | 2,08 | 2,15 | 2,15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,15 | 2,15        | 2,15 | 2,15 | 2,15 | 2,15 | 2,15 | <u>ا</u>                                  |
|                                       | 0,63          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 2,93 | 2,93 | 2,93 | 2,93 | 2,93 | e<br>Se                                   |
|                                       | 0,75          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,48 | 3,48 | tan<br>t I                                |
| , Z                                   | 0,88          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,88 | 3,96 | ssis                                      |
| for                                   | 1,00          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,88 | 4,44 | h re<br>por                               |
| N <sub>R,k</sub> for t <sub>N,I</sub> | 1,13          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,88 | 5,45 | ough resista<br>component l               |
| ~                                     | 1,25          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,88 | 6,46 | pull-through resistance of<br>component l |
|                                       | 1,50          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,88 | 7,68 | -Inc                                      |
|                                       | 1,75          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,88 | 7,68 | <u></u>                                   |
|                                       | 2,00          | 1,86 | 2,08 | 2,31 | 2,53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2,76 | 2,93        | 3,21 | 3,43 | 3,48 | 3,88 | 7,68 |                                           |

If component I is made of S320GD or S350GD, the grey highlighted values may be increased by 8,3%.

| Self drilling screw                         | Annex 39                       |  |  |  |  |  |
|---------------------------------------------|--------------------------------|--|--|--|--|--|
| IPEX - 0319CF - 6,5 x L                     | of European technical approval |  |  |  |  |  |
| with hexagon head and seal washer ≥ Ø 16 mm | ETA-10/0020                    |  |  |  |  |  |