

European Technical Approval ETA-10/0199

English translation prepared by DIBt - Original version in German language Handelsbezeichnung Befestigungsschrauben MAGE TOPEX Trade name Fastening screws MAGE TOPEX Zulassungsinhaber MAGE AG Industriestraße 191 Holder of approval 1781 Courtaman SCHWEIZ Zulassungsgegenstand Befestigungsschrauben für Bauteile und Bleche aus Metall und Verwendungszweck Generic type and use Fastening screws for metal members and sheeting of construction product 17 August 2010 Geltungsdauer: vom Validity: from bis 17 August 2015 to Werk 1 Shinjo; OSAKA, JAPAN Herstellwerke Manufacturing plants Werk 2 Mage AG; 1791 COURTAMAN; SCHWEIZ Plant 1 Shinjo; OSAKA, JAPAN Plant 2 Mage AG; 1791 COURTAMAN; SCHWEIZ

Diese Zulassung umfasst This Approval contains

52 Seiten einschließlich 43 Anhänge 52 pages including 43 annexes

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Т LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³:
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12 1

Official Journal of the European Communities L 220, 30 August 1993, p. 1 2

Official Journal of the European Union L 284, 31 October 2003, p. 25 3 4

Bundesgesetzblatt Teil I 1998, p. 812

Bundesgesetzblatt Teil I 2006, p. 2407, 2416 5

⁶ Official Journal of the European Communities L 17, 20 January 1994, p. 34

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the product and intended use

1.1 Definition of the construction product

The fastening screws MAGE TOPEX are self drilling and self tapping screws listed in Table 1. The fastening screws are made of stainless steel or case hardened carbon steel. They are partly completed with metallic washers and EPDM sealing rings. For details see the appropriate Annexes.

Examples of fastening screws and the corresponding connections are shown in Annex 1. The fastening screws and the corresponding connections are subject to tension and shear forces.

No.	Fastening screw	Description	Annex
1	MAGE TOPEX 7510	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 6
2	MAGE TOPEX 7510	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 7
3	MAGE TOPEX 7520	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 8
4	MAGE TOPEX 7530	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 9
5	MAGE TOPEX 7550 4,8	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 10
6	MAGE TOPEX 7550 5,5	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 11
7	MAGE TOPEX 7550 6,3	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 12
8 ^{*)}	MAGE TOPEX 7565	bimetal with hexagon head and sealing washer ≥ Ø16 mm	Annex 13
9	MAGE TOPEX 7310	with hexagon head and sealing washer ≥ Ø16 mm	Annex 14
10	MAGE TOPEX 7320	with hexagon head and sealing washer ≥ Ø16 mm	Annex 15
11	MAGE TOPEX 7325	with hexagon head and sealing washer ≥ Ø16 mm	Annex 16
12	MAGE TOPEX 7330	with hexagon head and sealing washer ≥ Ø16 mm	Annex 17
13	MAGE TOPEX 7340	with hexagon head and sealing washer ≥ Ø16 mm	Annex 18
14	MAGE TOPEX 7340 - 4,8 x L	with hexagon head	Annex 19
15	MAGE TOPEX 7342	with hexagon head and flange Ø15 mm	Annex 20
16	MAGE TOPEX 7344	with hexagon head and flange Ø15 mm	Annex 21
17	MAGE TOPEX 7346	with hexagon head and flange Ø15 mm	Annex 22
18	MAGE TOPEX NYCO 7810	with polyamide bihexagon head and sealing washer ≥ Ø16 mm	Annex 23

 Table 1
 Different types of the fastening screws

19	MAGE TOPEX NYCO 7820	with polyamide bihexagon head and sealing washer $\ge \emptyset16 \text{ mm}$	Annex 24
20	MAGE TOPEX NYCO 7825	with polyamide bihexagon head and sealing washer $\ge \emptyset16$ mm	Annex 25
21	MAGE TOPEX NYCO 7870	bimetal with polyamide bihexagon head and sealing washer ≥ Ø16 mm	Annex 26
22	MAGE TOPEX NYCO 7880	bimetal with polyamide bihexagon head and sealing washer ≥ Ø16 mm	Annex 27
23	MAGE TOPEX UFO 7110	bimetal with rounded flat head and sealing ring ≥ Ø10 mm	Annex 28
24	MAGE TOPEX UFO 7120	bimetal with rounded flat head and sealing ring ≥ Ø10 mm	Annex 29
25	MAGE TOPEX UFO 7140	bimetal with rounded flat head and sealing ring ≥ Ø10 mm	Annex 30
26 ^{*)}	MAGE TOPEX UFO 7160	bimetal with rounded flat head and sealing ring ≥ Ø10 mm	Annex 31
27	MAGE TOPEX UFO 7515 - 5,5 x L	bimetal with rounded flat head and sealing washer $\ge \emptyset16$ mm	Annex 32
28	MAGE TOPEX UFO 7010	with rounded flat head and sealing ring $\ge \emptyset 10 \text{ mm}$	Annex 33
29	MAGE TOPEX UFO 7040	with rounded flat head and sealing ring $\ge \emptyset 10 \text{ mm}$	Annex 34
30 ^{*)}	MAGE TOPEX 7653	with hexagon head and sealing washer ≥ Ø16 mm	Annex 35
31	MAGE TOPEX 7673	with hexagon head and sealing washer ≥ Ø16 mm	Annex 36
32	MAGE TOPEX 7335	with hexagon head and sealing washer ≥ Ø16 mm	Annex 37
33	MAGE TOPEX 7339	with hexagon head	Annex 38
34 ^{*)}	MAGE TOPEX 7641	with hexagon head and sealing washer ≥ Ø16 mm	Annex 39
35 ^{*)}	MAGE TOPEX 7641	with hexagon head and sealing washer ≥ Ø19 mm	Annex 40
36 ^{*)}	MAGE TOPEX 7642	with hexagon head and sealing washer ≥ Ø16 mm	Annex 41
37 ^{*)}	MAGE TOPEX 7642	with hexagon head and sealing washer ≥ Ø19 mm	Annex 42
38 ^{*)}	MAGE TOPEX 7653	with hexagon head and sealing washer ≥ Ø19 mm	Annex 43
*)	1	1	1

^{*)} These fastening screws are applicable for fastening to timber substructures

1.2 Intended use

The fastening screws are intended to be used for fastening steel sheeting to steel substructures and as far as stated in Table 1 to timber substructures. The sheeting can either be used as wall or roof cladding or as load bearing wall and roof element.

The fastening screws can also be used for the fastening of other thin gauge steel members.

The component to be fastened is component I and the substructure is component II.

The intended use comprises fastening screws and connections for indoor and outdoor applications. Fastening screws which are made of stainless steel are intended to be used in external environments with a high or very high corrosion category.

The intended use comprises connections with predominantly static loads (e.g. wind loads, dead loads).

The provisions made in this European technical approval are based on an assumed working life of the fastening screws of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The fastening screws shall correspond to the drawings given in the appropriate Annexes (see Table 1).

The characteristic material values, dimensions and tolerances of the fastening screws neither indicated in this section nor in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ to this European technical approval.

The characteristic values of the shear and tension resistance of the connections made with the fastening screws are given in the appropriate Annexes or in section 4.2.

The fastening screws are considered to satisfy the requirements of performance class A1 of the characteristic reaction to fire.

2.2 Methods of verification

The assessment of the fitness of the fastening screws for the intended use in relation to the Essential Requirements ER 1 (Mechanical resistance and stability), ER 2 (Safety in case of fire), ER 4 (Safety in use) and additional aspects of durability has been made in accordance with section 3.2 of the Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision $94/23/EC^6$.

The assessment of the resistance to fire performance is only relevant to the assembled system (fastening screws, sheeting, substructure) which is not part of the ETA.

The fastening screws are considered to satisfy the requirements of performance class A 1 of the characteristic reaction to fire, in accordance with the provisions of the EC Decision 96/603/EC (as amended) without the need for testing on the basis of its listing in that decision.

Concerning Essential Requirements No. 1 (Mechanical resistance and stability) and No. 4 (Safety in use) the following applies:

The characteristic values of resistance given in the Annexes were determined by shear and tension tests.

The formulas to calculate the design resistance are given in clause 4.2.1.

7

The technical documentation to this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as relevant fort the tasks of the approved bodies involved in the attestation of conformity procedure is handed over to the approved bodies.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 99/92 of the European Commission⁸ system 3 of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 3: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
- (b) Tasks for the approved body:
 - (2) initial type-testing of the product.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

- 3.2.1 Tasks for the manufacturer
- 3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the "control plan of September 2010 relating to the European technical approval ETA-10/0199 issued on 17 August 2010" which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of fastening screws in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of the European technical approval ETA-10/0199 issued on 17 August 2010.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in written reports.

⁸ Official Journal of the European Communities L 80 of 18.03.1998.

⁹ The "control plan" is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

3.3 CE marking

The CE marking shall be affixed on each packaging of fastening screws. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the European technical approval,
- the name of the product.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The fastening screws are manufactured in accordance with the provisions of the European technical approval using the manufacturing process as laid down in the technical documentation.

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design

4.2.1 General

Fastening screws completely or partly exposed to external weather or similar conditions are made of stainless steel or are protected against corrosion. For the corrosion protection the rules given in EN 1090-2:2008, EN 1993-1-3:2006 and EN 1993-1-4:2006 are taken into account.

For the types of connection (a, b, c, d) listed in the Annexes it is not necessary to take into account the effect of constraints due to temperature. For other types of connection it shall be considered for design as long as constraining forces due to temperature do not occur or are not significant (e. g. sufficient flexibility of the structure).

The loading is predominantly static. (Remark: Wind loads are regarded as predominantly static.)

Dimensions, material properties, torque moments $M_{t,norm}$, minimum effective screw-in length I_{ef} and nominal material thicknesses t_N as stated in the ETA or in the Annexes are observed.

The verification concept stated in EN 1990:2002 is used for the design of the connections made with the fastening screws. The characteristic values (shear and tension resistance) stated in the Annexes are used for the design of the entire connections.

The following formulas are used to calculate the values of design resistance:

$$N_{Rd} = \frac{N_{Rk}}{\gamma_M}$$

$$V_{Rd} = \frac{V_{Rk}}{\gamma_M}$$

The recommended partial safety factor $\gamma_M = 1.33$ is used in order to determine the corresponding design resistances, provided no values are given in national regulations of the member state in which the fastening screws are used or in the respective National Annex to Eurocode 3.

In case of combined tension and shear forces the linear interaction formula according to EN 1993-1-3:2006, section 8.3 (8) is taken into account.

 $\frac{N_{Sd}}{N_{Rd}} + \frac{V_{Sd}}{V_{Rd}} \leq 1.0$

The possibly required reduction of the tension resistance due to the position of the fastener is taken into account in accordance with EN 1993-1-3:2006, section 8.3 (7) and Fig. 8.2.

4.2.2 Additional rules for connections with timber substructures

As far as no other provisions are made in the following EN 1995-1-1:2004 + A1:2008 applies.

Drill points of self drilling screws are not taken into account for the effective screw-in length. The following terms are used:

I_g - Screw-in length - part of thread screwed into component II including drill point.

 I_b - Length of unthreaded part of the drill-point.

 I_{ef} - effective screw-in length $I_{ef} = I_{g} - I_{b}$

 $N_{R,k}$ = $F_{ax,Rk} \cdot k_{mod}$

 $V_{R,k}$ = $F_{v,Rk} \cdot k_{mod}$

F_{ax,Rk} according to EN 1995-1-1:2004 + A1:2008, equation (8.40a)

Remark: $F_{ax,Rk} = F_{ax,\alpha,Rk}$ with $\alpha = 90^{\circ}$

F_{v,Rk} according to EN 1995-1-1:2004 + A1:2008, clause 8.2.3

k_{mod} according to EN 1995-1-1:2004 + A1:2008, Table 3.1

 $M_{y,Rk}$ in equation (8.9) of EN 1995-1-1:2004 + A1:2008 and $f_{ax,k}$ in equation (8.40a) of EN 1995-1-1:2004 + A1:2008 are given in the Annexes of this ETA.

The characteristic values for pullout and bearing resistance (timber substructure) calculated according to EN 1995-1-1:2004 + A1:2008 are compared with the characteristic values for component I (pull over and bearing resistance) stated in the right column of the table in the appropriate Annexes. The lower value is used for further calculations.

4.2.3 Special application for perforated sheets

For the fastening of perforated sheets according to Annexes 2, 3, 4 and 5 the characteristic values given in these annexes apply.

4.3 Installation

The installation is only carried out according to the manufacturer's instructions. The manufacturer hands over the assembly instructions to the assembler.

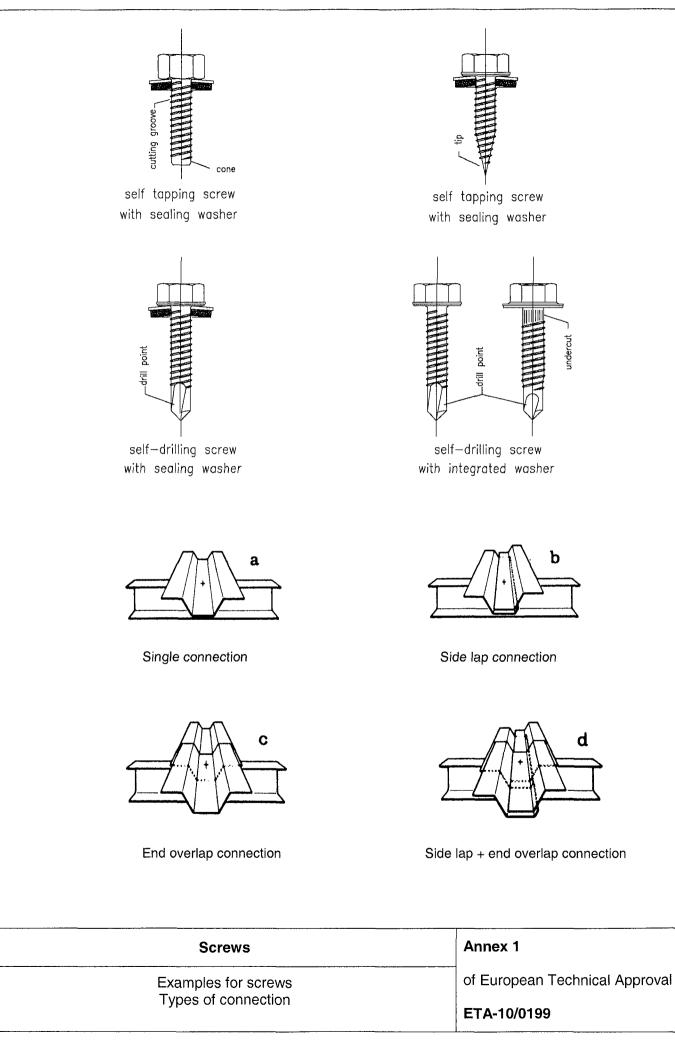
It is guaranteed by the execution that no bimetalic corrosion will occur.

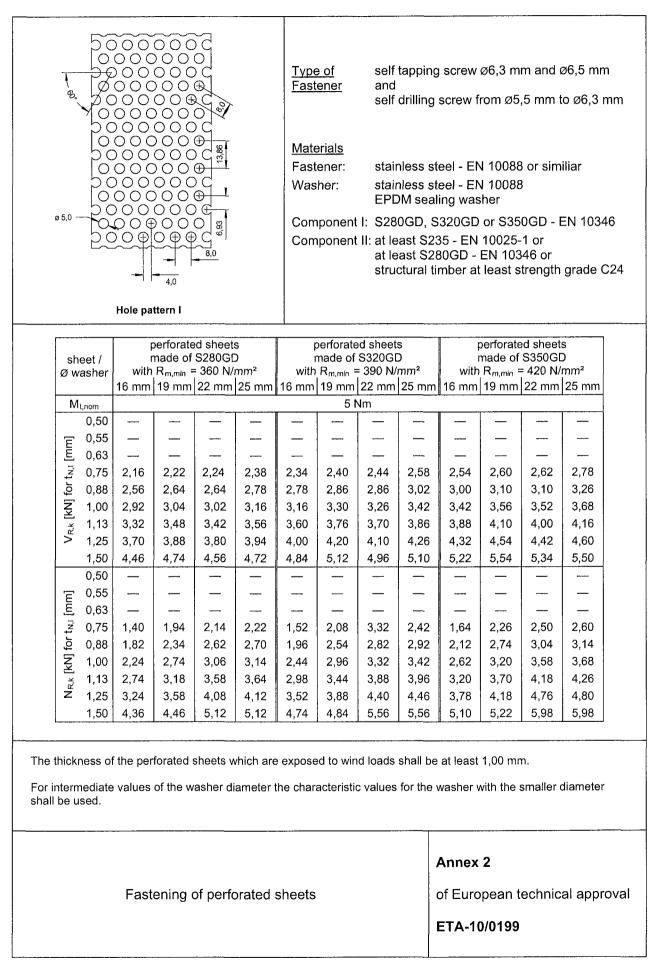
For regular shear forces the components I and II are directly connected to each other so that the fastening screws do not get additional bending. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

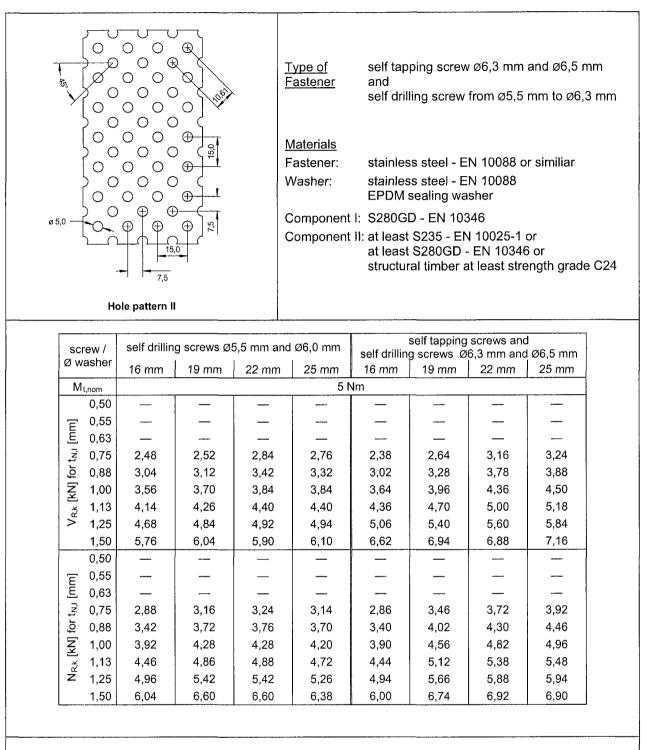
The fastening screws are fixed rectangular to the surface of the components to guarantee a correct load bearing and if necessary rain-proof connection.

Fastening screws for steel substructures are screwed in with the cylindrical part of the thread at least 6 mm if the substructure has a thickness over 6 mm unless otherwise declared in the manufacturer's instruction. Welded drill points are not taken into account for the screw-in length.

The conformity of the installed fasteners with the provisions of the ETA is attested by the executing company.

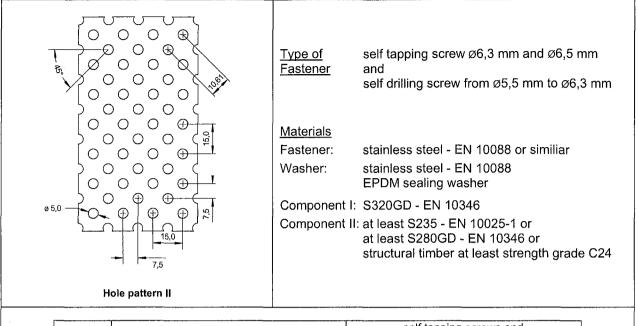

5 Indications to the manufacturer


It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1, 2, 4.2 and 4.3 (including Annexes referred to) is given to those who are concerned. This information may be given by reproduction of the respective parts of the European technical approval.


In addition all installation data (predrill diameter, torque moment, application limits) shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

Georg Feistel Head of Department *beglaubigt:* Ulbrich

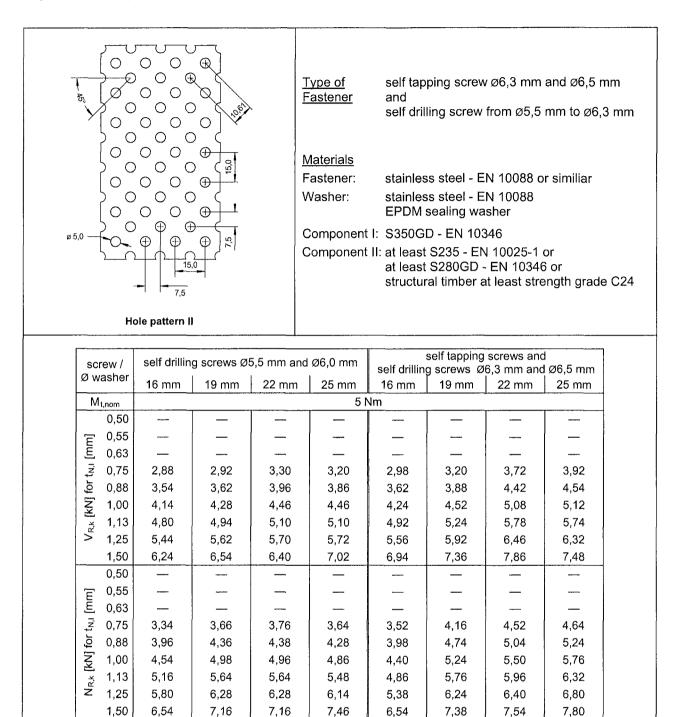
Page 10 ETA-10/0199, issued on 17 August 2010 English translation by Deutsches Institut für Bautechnik (DIBt)



The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.

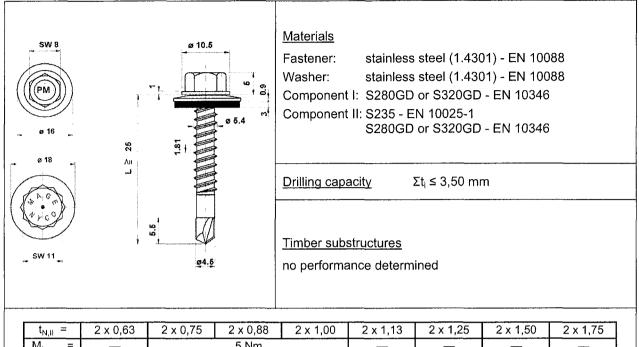
	Annex 3
Fastening of perforated sheets	of European technical approval
	ETA-10/0199



	rew /	self drillin	g screws Ø	5,5 mm and	Ø6,0 mm		self tapping g screws Ø		
Øw	asher	16 mm	19 mm	22 mm	25 mm	16 mm	19 mm	22 mm	25 mm
Μ	t,nom		·		51	Nm	<u> </u>		*
	0,50					—		—	
Ē	0,55	—		_				_	
[mm]	0,63		—	-			—		
ť'n,i	0,75	2,68	2,74	3,08	3,00	2,68	2,88	3,42	3,50
for	0,88	3,30	3,38	3,70	3,60	3,36	3,60	4,10	4,22
[Ŋ	1,00	3,86	4,00	4,16	4,16	4,02	4,30	4,72	4,88
V _{R,k} [kN] for	1,13	4,48	4,62	4,76	4,76	4,76	5,08	5,42	5,60
>	1,25	5,06	5,24	5,32	5,36	5,50	5,84	6,08	6,30
	1,50	6,24	6,54	6,40	6,60	7,10	7,52	7,46	7,76
	0,50				-		—	_	
[mm]	0,55		—		—	<u> </u>		—	
Ē	0,63	—		_	—	—	-		
ťn,i	0,75	3,12	3,42	3,50	3,40	3,12	3,68	4,06	4,26
for	0,88	3,70	4,04	4,08	4,00	3,70	4,32	4,68	4,86
ξŊ]	1,00	4,24	4,64	4,64	4,54	4,24	4,92	5,24	5,40
N _{R.k} [kN] for	1,13	4,84	5,26	5,28	5,12	4,84	5,54	5,86	5,96
ž	1,25	5,38	5,88	5,88	5,70	5,38	6,14	6,40	6,48
	1,50	6,54	7,16	7,16	6,92	6,54	7,38	7,54	7,52

The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.


	Annex 4
Fastening of perforated sheets	of European technical approval
	ETA-10/0199

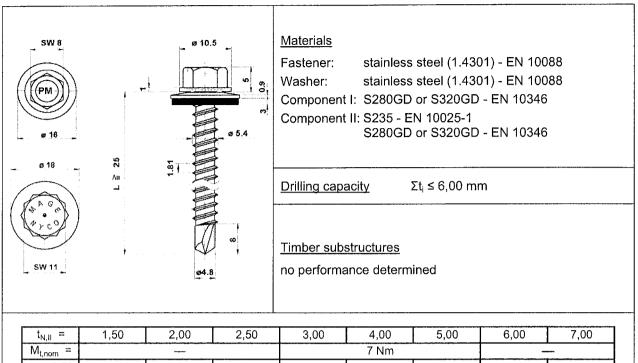
The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.

Annex 5
of European technical approval
ETA-10/0199

۱ ۲	4,11	2 ^	5,05	2.10	5,15	2. ^ (,00	<u> </u>	1,00	~ ^	1,10	~ ~	1,20	4 ^	1,00	<u> </u>	1,70
M _{t,}	nom =					5 N	lm			-		-		_		-	-
	0,50	—	—		—			-	—		—				—		
	0,55	-				-								—	*******	-	
[mm]	0,63	—		2,30	—	2,40	ac	2,50	ac		—	—			—		
<u> </u>	0,75		—	2,40		2,90		2,90	—							-	
t _{N,I}	0,88	—		2,40	—	2,90		2,90									
for	1,00			2,40		2,90		2,90	—			—		—			—
V _{R,k} [kN]	1,13			2,40		2,90		2,90	—	~						—	
Z,k [1,25			2,40		2,90		2,90								-	
>	1,50			2,40		2,90		2,90				—	~	—		—	
	1,75			2,40		2,90		—			—					—	
	2,00			2,40					_			—				-	
	0,50	—		0,92		1,03	ac	1,08	ac			—		—			—
	0,55			1,16		1,30	ac	1,36	ac						—		
Ē	0,63		—	1,70		1,90	ac	2,00	ac			—					
<u> </u>	0,75			1,70	—	1,90		2,00	—			—	~	—	—	-	
for t _{N,i} [mm]	0,88		—	1,70		1,90		2,00							—		
	1,00	—		1,70	—	1,90		2,00	—			—					—
Ξ	1,13	_		1,70		1,90		2,00			—	—				—	
N _{R.k} [kN]	1,25	—		1,70		1,90		2,00	—			—					—
z	1,50		—	1,70		1,90		2,00					—		—		
}	1,75		—	1,70		1,90						—					—
	2,00	—		1,70		—									_		

Annex 6

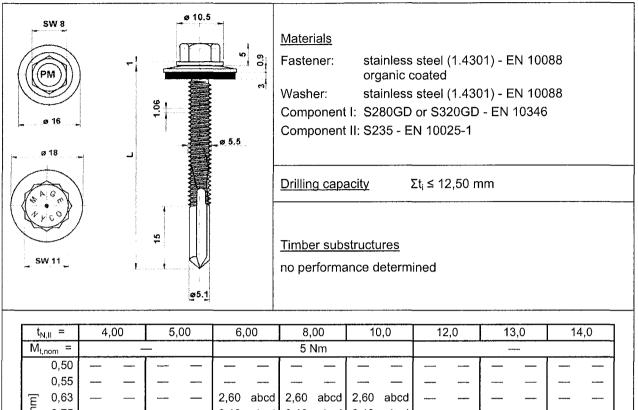

MAGE TOPEX 7510

bimetal with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$

ETA-10/0199

of European technical approval

			L ≩ 26	5.6 1.81	¢ 10.5	\$ 5.4	0, 1 07 0	Comp Drilling	ner: er: onent onent g cap	sta t I: S2t t II: S2t S2t <u>acity</u> structu	inless 80GD 35 - E 80GD	N 100 or S3 Σt _i ≤ 3	(1.430 20GD 25-1 20GD	01) - E - EN - EN	N 100 10346	88	
Γ t _h	N,II =	1,0	00	1,2	25	1,	L 50	2,0		3,0	00	-					
	,nom =			.00 mm		.	-	Σt = 2,0								I	
	0,50					<u> </u>		T —				_					
	0,55			_					—	_				—			
V _{R.k} [kN] for t _{N,I} [mm]	0,63 0,75	1,90 2,10	ac	2,10 2,40	ac ac	2,40 2,60	ac ac	2,60 3,00	ac ac	2,60	ac				_		
ť _{N,I} [0,75	2,10		2,60	<u> </u>	2,00	ac	3,40	ac		_	_			_	_	_
for	1,00	2,50		2,80		3,20		3,70	_	_			_				—
Ţ	1,13	2,70		3,00		3,40		4,10	—	—			—				—
R.k [1,25	2,80	—	3,20		3,60		4,30				—					-
>	1,50 1,75			-					-	-						—	-
	2,00	_	_											_		_	_
	0,50	0,49	ac	0,70	ac	0,92	ac	1,35	ac	1,57	ac			—	_	—	
	0,55	0,61	ac	0,89	ac	1,16	ac	1,71	ac	1,98	ac	—			—		—
Ē	0,63	0,90	ac	1,30	ac	1,70	ac	2,50	ac	2,90	ac				-	—	-
<u>1</u>	0,75	0,90		1,30	ac	1,70	ac	2,50	ac				—		—	-	
N _{R,k} [kN] for t _{N,i} [mm]	0,88 1,00	0,90 0,90	_	1,30 1,30		1,70 1,70	ac 	2,50 2,50	ac		_			_			_
N] ¥	1,13	0,90 0,90		1,30		1,70	_	2,50									
× ×	1,25	0,90		1,30		1,70		2,50			_	_					_
Z Z	1,50				_	_	—	-						_	—	_	
	1,75							-			—			-	—		—
	2,00							<u> </u>									
		bimetal		MAGE	Ε ΤΟ		'510	her≥Ø1	6 mm			of E	nex 7 Europe	ean te	echnic	al ap	proval


t _N	1,11 =	1,	50	2,	00	2,	50	3,	00	4,	00	5,	00	6,	00	7,	00
M _{t,}	nom ≔									71	Nm				-		
	0,50	_		—		—	—	_			_	_					
	0,55								—				_		—		
3	0,63	_		—		-		2,60	abcd	3,00	abcd	3,00	abcd				
V _{R,k} [kN] for t _{N,i} [mm]	0,75	—				—		3,00	ac	3,40	ac	3,40	ac	—			
t _{n.1}	0,88	—						3,40	ac	3,80	ac	3,80	ас			—	_
for	1,00			_		_	_	3,70	ac	4,30	ac	4,30	ac				-
Ê	1,13	—	_					4,00	ac	4,70	ac	—	_	_	_	—	-
	1,25	—			—	—	—	4,40	а	5,10	а					—	_
<u>ج</u>	1,50	—	_				—	5,00	_	5,30			_				
	1,75				_	_		5,00	—	5,30					—	—	
	2,00	_	_					5,00		5,30				******			
	0,50	_	I		[-		1,57	abcd	1,57	abcd	1,57	abcd				
	0,55							1,98	abcd	1,98	abcd	1,98	abcd		_	—	
Ξ	0,63	—	—					2,90	abcd	2,90	abcd	2,90	abcd				
<u></u>	0,75			—			—	3,40	ac	3,40	ac	3,40	ac	_			
t _{n,i}	0,88		_				—	4,00	ac	4,00	ac	4,00	ac	—			
for	1,00			—				4,30	ac	4,50	ас	4,50	ac				_
ΙĴ	1,13			—	_	—		4,30	ac	5,00	ac	—		_	—		
N _{R,k} [kN] for t _{N,i} [mm]	1,25	—						4,30	а	5,10	а					_	_
ž	1,50			—		—	—	4,30	-	5,10	_	—	_		_		
	1,75			—		—	_	4,30		5,10						_	_
	2,00		—	_	_			4,30		5,10	_	_	_	_			_

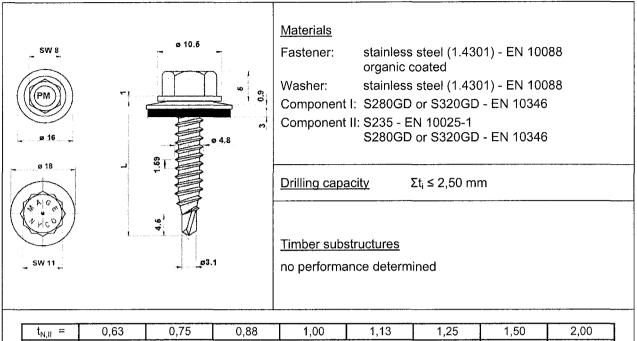
Annex 8

MAGE TOPEX 7520

bimetal with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$

of European technical approval

	0,55		—								_				_			
	0,63	-	—		—	2,60	abcd	2,60	abcd	2,60	abcd			—				
[mm]	0,75	-			_	3,10	abcd	3,10	abcd	3,10	abcd	—		—				
+	<u>-</u> z 0,88					3,60	ac	3,60	ac	3,60	ac	·	—		—		—	
Ę	2 1,00	_	-			4,10	ac	4,10	ac	4,10	ac			—	_	_	_	
ĮĘ	5 1,13	-				4,60	ac	4,60	ac	4,60	ac		—	—		_	_	
V_ IKNI	1,25		_	—		5,10	ac	5,10	ac	5,10	ac	—	—	—	—			
>	5 1,50				—	6,00	—	6,00	—	6,00			—	—			—	
	1,75	-	—			6,00	—	6,00		6,00	_				—	-		
	2,00			_	—	6,00	—	6,00	—	6,00			—					
	0,50					1,35	abcd	1,35	abcd	1,35	abcd		-	—	—	—		
	0,55	-			—	1,71	abcd	1,71	abcd	1,71	abcd		—					
Ī	0,63		—			2,50	abcd	2,50	abcd	2,50	abcd	—	—				—	
[mm]	L 0,75	-				2,90	abcd	2,90	abcd	2,90	abcd		—			—	—	
+		—				3,70	ac	3,70	ac	3,70	ac		—					
ţ						4,50	ac	4,50	ac	4,50	ac	—				—	—	
E N	1,13	-				5,00	ac	5,00	ac	5,00	ac		_	—	—			
	1,25 1,50			—		5,50	ac	5,50	ac	5,50	ac				—	—		
Ż	1,50					5,70		5,70	—	5,70	—		_					
	1,75			—	<u> </u>	5,70		5,70	—	5,70	—		-					
L	2,00	<u> </u>				5,70		5,70	—	5,70	—							

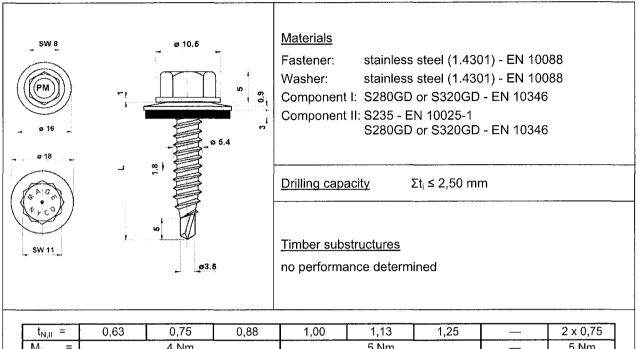

Annex 9

ETA-10/0199

of European technical approval

MAGE TOPEX 7530

bimetal with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$


t _N	,11 =	0,6	53	0,7	75	0,8	38	1,0	00	1,1	13	1,2	25	1,	50	2,	00	
M _{t,r}	nom =						5 I	Nm						-	_	-	-	
	0,50			—	_	—				—		—	_	—]
	0,55						—	—				—			—	—	—	
ਵ	0,63	0,90		0,90		1,50		2,10	ac	2,10	ac	2,10	ac	—				
t _{N,I} [mm]	0,75	0,90		0,90		1,50		2,10	ac	2,10	а	2,10	а					
t _{N,I}	0,88	0,90		0,90		1,70		2,40		2,40	. <u> </u>	2,40				—	_	
for	1,00	0,90		0,90		1,90		2,80	—	2,80		2,80	—					
	1,13	0,90		0,90		1,90		2,80		2,80		2,80				—	—	
V _{R,k} [kN]	1,25	0,90		0,90		1,90		2,80	_	2,80		2,80						
\geq	1,50	—	_												—	_	_	
	1,75				_						_		—				—	
	2,00					—	_	—	_			—				_		
	0,50	0,38		0,38	—	0,54	—	0,70	ac	0,86	ac	1,03	ac				_	1
	0,55	0,48		0,48		0,68		0,89	ac	1,09	ac	1,30	ac				—	
ਵ	0,63	0,70		0,70	—	1,00	—	1,30	ac	1,60	ас	1,90	ac				—	
t _{n,I} [mm]	0,75	0,70	_	0,70		1,00		1,30	ac	1,60	а	1,90	а	_	_	_		
t _{n,1}	0,88	0,70		0,70		1,00		1,30	_	1,60		1,90			—			
for	1,00	0,70		0,70		1,00	_	1,30		1,60		1,90	_			_	_	
Z	1,13	0,70		0,70	_	1,00		1,30		1,60		1,90			_			
N _{R,k} [kN]	1,25	0,70		0,70		1,00		1,30		1,60	_	1,90	—					
Z R	1,50					·							_					
	1,75							_					_			_		
	2,00			—											_	—		

Annex 10

MAGE TOPEX 7550 4,8

bimetal with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$

of European technical approval


4	N,8 -	Į 0,0	55	0,,	10] 0,0	50	1,0		١,	10	1,4	20		_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
M	,nom =			4 N	lm i					5 N	١m			-		5 N	lm
	0,50	-			_			-		-							
	0,55						—	I —	_							—	—
[mm]	0,63	1		1,50		1,50		1,50	ac	1,50	ac	1,50	ac			1,80	ac
<u> </u>	0,75			1,50		1,50		1,50		1,50		1,50				1,80	—
t _{n,r}		1		1,50		1,90		2,30		2,30		2,40				2,40	
for	1,00	1,30		1,50		2,30		3,00	—	3,10		3,20				3,00	—
V _{R.k} [kN]	1,13									-	—						—
,×.	1,25	-				-	—					-				—	
^ی د	1,50	—					·		_	-			—				
	1,75			-	—						—					—	
	2,00				. <u> </u>				—				_				
	0,50	0,38		0,54	•	0,70		0,86	ac	1,03	ac	1,13	ac	—		1,13	ac
	0,55			0,68	—	0,89		1,09	ac	1,30	ac	1,43	ac			1,43	ac
[mm]	0,63	0,70		1,00		1,30		1,60	ac	1,90	ac	2,10	ac	—	—	2,10	ac
<u> </u>	0,75	0,70		1,00	—	1,30	—	1,60		1,90		2,20				2,30	—
t _{N,I}	0,88	0,70		1,00	—	1,30		1,60	—	1,90	—	2,20	—	—		2,30	—
for	1,00	0,70		1,00		1,30		1,60		1,90		2,20				2,30	
[kN]	1,13							—	—		—		—	—		—	
N _{R,k} [1,25			—	—	-	—	-							—	—	—
z	1,50	—						-	—	-							
	1,75							-	_				—			-	
	2,00											1 —					

Annex 11

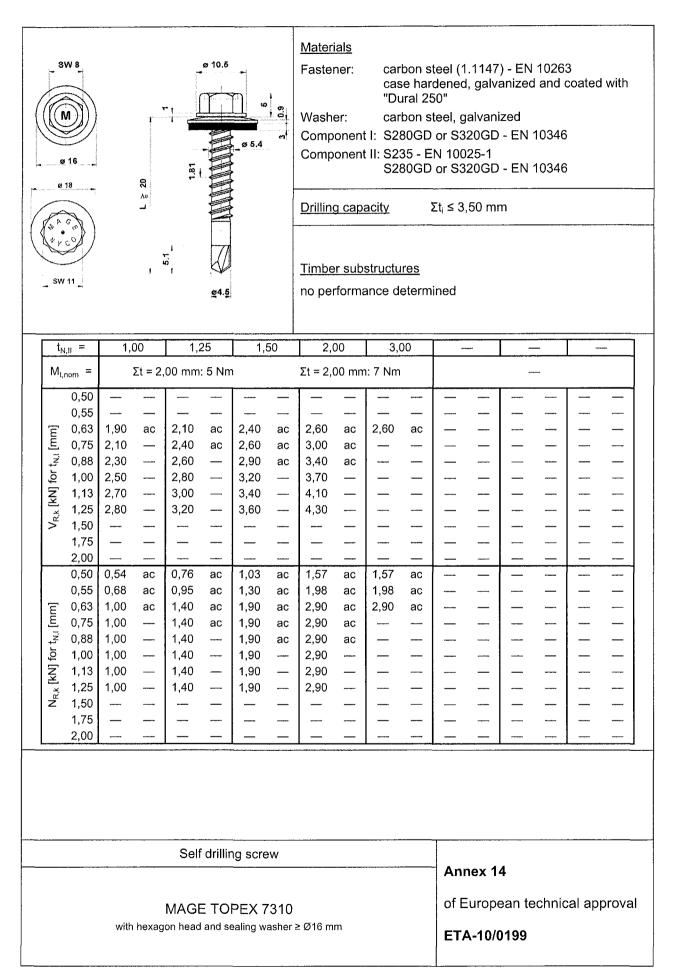
MAGE TOPEX 7550 5,5

bimetal with hexagon head and sealing washer $\geq \varnothing 16 \text{ mm}$

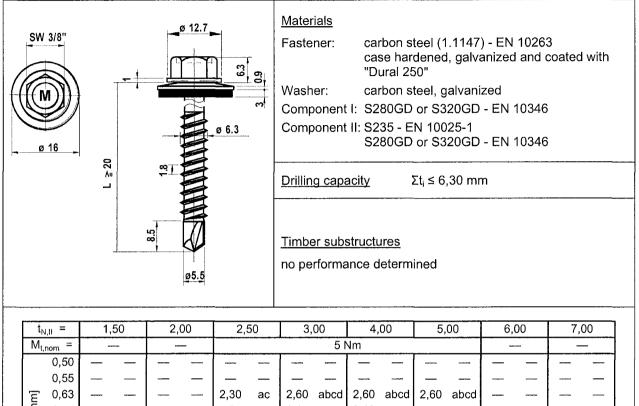
of European technical approval

•N	,n	<u>, م</u>		, o, i	, O	0,0	50	, i i i i i i i i i i i i i i i i i i i	50	· · ·	10	, · · ·				1 2 ~ ~	,,, 0
M _{t,i}	nom =			4 N	١m					5 N	١m				-	5 N	lm
	0,50		—	—				-	—			—				—	
	0,55					-	—	—			—				_	—	
Έ	0,63	1,60		1,60		1,60	_	1,60	ac	1,60	ac	1,60	ac		—	1,80	ac
[mm]	0,75	1,60		1,60	—	1,60		1,60		1,60		1,60			—	1,80	
ţ,	0,88	1,60		1,60		1,90	·	2,30		2,30		2,40		—		2,40	
for	1,00	1,60	_	1,60		2,30	—	3,00		3,10		3,20		—		3,00	—
Ź	1,13		—								_				—		
V _{R,k} [kN]	1,25					—	—	—					—	—			
>	1,50	—	—	—	—						—	—		—		—	—
	1,75							_	—					—			
	2,00							—	—			—		—		—	
	0,50	0,43		0,54		0,70		0,86	ac	1,03	ac	1,19	ac			1,30	ac
	0,55	0,55		0,68	—	0,89		1,09	ac	1,30	ac	1,50	ac			1,64	ac
Ē	0,63	0,80		1,00		1,30		1,60	ac	1,90	ac	2,20	ac		—	2,40	ac
[mm]	0,75	0,80	—	1,00	—	1,30		1,60		1,90		2,20		-		2,60	—
t _{N,I}	0,88	0,80		1,00		1,30		1,60		1,90	—	2,20			—	2,60	
for	1,00	0,80		1,00		1,30		1,60		1,90		2,20	—			2,60	—
Ŝ	1,13	_	—	—				—	—	—				—	—		
N _{R.k} [kN]	1,25			—	—	—	_					—				_	—
ž	1,50			—	<u> </u>			—	—	—			—	—			·
	1,75							—	—	—	·	—	_		—		
	2,00				_						_			—	_		

Annex 12


ETA-10/0199

of European technical approval


MAGE TOPEX 7550 6,3

bimetal with hexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$

SW 8 (PM)	¢ 10.5	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
$\frac{t_{N,II}}{M_{t,nom}} = \frac{1,50}{5 \text{ Nm}}$	2,00 2,50	3,00 4,00 5,00 6,00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		ew-in length l _{ef} are valid for k _{mod} = 0,90 and timber strengt id timber strength grades see section 4.2.2.	h grade C24
bimetal with	Self drilling screw MAGE TOPEX 756 nexagon head and sealing w		al approval

	SW 8 M Ø 16 0 18 0 18 0 10 0 10 0 10 0 10 0 10 0 10			9	© 10.5	¢ 5.4	60 8	Mater Faster Wash Comp Comp Drilling	ner: onent onent g cap	cas "Du car : I: S28 : II: S28 : II: S28 : S : S28 : S : S : S28 :	se har ural 25 bon s 80GD 35 - E 80GD	teel, g or S3 N 100 or S3 Σt _i ≤ 3,	, galva alvani 20GD 25-1 20GD	anizec zed - EN - EN	1 and 0 10346	coated	l with	
t,	≃ ۱۱,۷	1,	00	1,2	25	1,	50	2,0	00	3,0	00	-	_	~		-		
M _t	$t_{N,II}$ = 1,00 1,25 1,50 $M_{t,nom}$ = Σt = 2,00 mm: 5 Nm								00 mm	1: 7 Nm								
	0,50							<u> </u>			_							
	0,55		—		_			-	—	—		—					—	
ุ โมน	0,63	1,90	ac	2,10	ac	2,40	ac	2,60	ac	2,60	ac	-	—			—	—	
V _{R,k} [kN] for t _{N,I} [mm]	0,75 0,88	2,10 2,30		2,40 2,60	ac 	2,60 2,90	ac ac	3,00 3,40	ac ac									
for t	1,00	2,50	_	2,80		3,20		3,70	_							_		
Γ. Σ	1,13	2,70		3,00		3,40		4,10	—		<u> </u>	—			—	—		
/R,k [1,25	2,80	—	3,20	_	3,60		4,30		—		—	—				—	
	1,50 1,75			_										_	_			
	2,00																	
	0,50	0,54	ac	0,76	ac	1,03	ac	1,57	ac	1,57	ac		_					
	0,55 0,63	0,68 1,00	ac	0,95 1,40	ac ac	1,30 1,90	ac ac	1,98 2,90	ac ac	1,98 2,90	ac				_			
N _{R.k} [kN] for t _{N,I} [mm]	0,63	1,00	ac 	1,40	ac ac	1,90	ac ac	2,90	ac ac	2,90	ac 							
t _{n,i}	0,88	1,00		1,40		1,90	ac	2,90	ac	—		_				—		
] for	1,00	1,00		1,40	—	1,90		2,90		—						—		
[KN	1,13	1,00		1,40	—	1,90		2,90				—		—				
Z _{R,k}	1,25 1,50	1,00		1,40		1,90	_	2,90					_					1
	1,75			_						_						_	_	
	2,00								-							L		
		with		MAG	E TO		'320	≥ Ø16 m	m			of E	nex 1 Europe	ean te	echnic	cal ap	prova	

	Ē	0,63			-		2,30	ac	2,60	abcd	2,60	abcd	2,60	abcd				
	[mm]	0,75		—			2,80	ac	3,10	ac	3,10	ac	3,10	abcd			—	_
	t _{N,1}	0,88					3,40	ac	3,60	ac	3,60	ac	3,60	ac				
	for	1,00	—	—			4,00	ac	4,10	ac	4,10	ac	4,10	ac	<u></u>			
	Ŝ	1,13	—	—			4,00	ac	4,50	ac	4,80	ac	5,10	ac		—		—
	V _{R.k} [kN]	1,25				—	4,00	ac	5,70	ac	6,00	ac	6,20	ac				-
	>	1,50		—	—		4,00	ac	5,70	ac	6,00					—	—	
		1,75					4,00	ac	5,70	ac	6,00			—				
		2,00		—			4,00	ac	5,70	ac	6,00	—				—	_	
] [0,50	-	—	—		1,51	ac	1,51	abcd	1,51	abcd	1,51	abcd		—	—]
		0,55					1,91	ac	1,91	abcd	1,91	abcd	1,91	abcd			·	-
	[mm]	0,63		—			2,80	ac	2,80	abcd	2,80	abcd	2,80	abcd		—		
	<u> </u>	0,75					3,50	ac	3,50	ac	3,50	ac	3,50	abcd		[-
	ť,	0,88			—	—	4,40	ac	4,40	ac	4,40	ac	4,40	ac				_
	for	1,00					5,20	ac	5,20	ac	5,20	ac	5,20	ac				
	Ŝ	1,13				—	5,70	ac	6,10	ac	6,10	ac	6,10	ac			—	
	N _{R,k} [kN]	1,25	—	—			5,70	ac	6,40	ac	7,00	ac	7,00	ac	—			
	ž	1,50	—				5,70	ac	6,40	ac	7,00		—					_
		1,75			—		5,70	ac	6,40	ac	7,00		—		—	—		—
		2,00					5,70	ac	6,40	ac	7,00	_	_				—	—

Annex 16

MAGE TOPEX 7325

with hexagon head and sealing washer ≥ Ø16 mm

of European technical approval

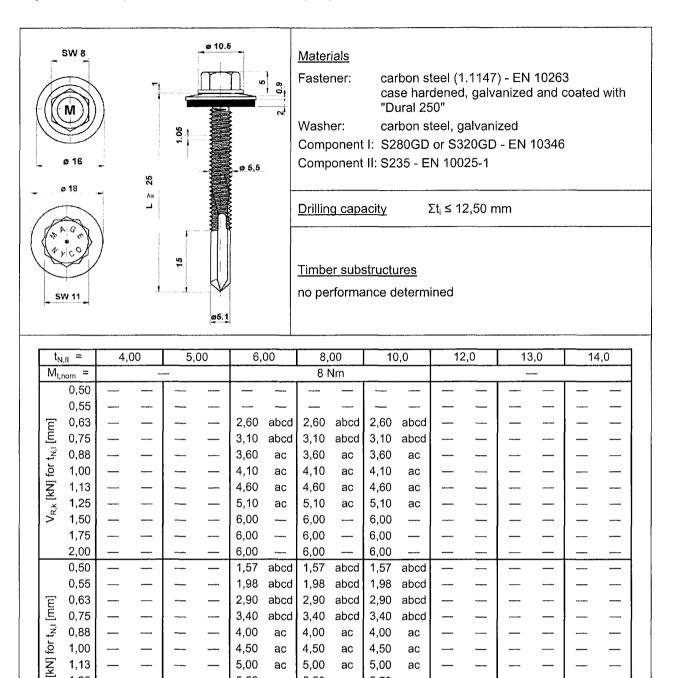
1,00

1,13

1,25

1,50

1,75


2,00

N_{R,k} |

.....

Self drilling screw	
	Annex 17
MAGE TOPEX 7330	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0199

4,50

5,00

5,50

6,60

6,60

6,60

ac

ac

ac

4,50

5,00

5,50

6,60

6,60

6,60

4,50

5,00

5,50

6,60

6,60

6,60

ac

ac

ac

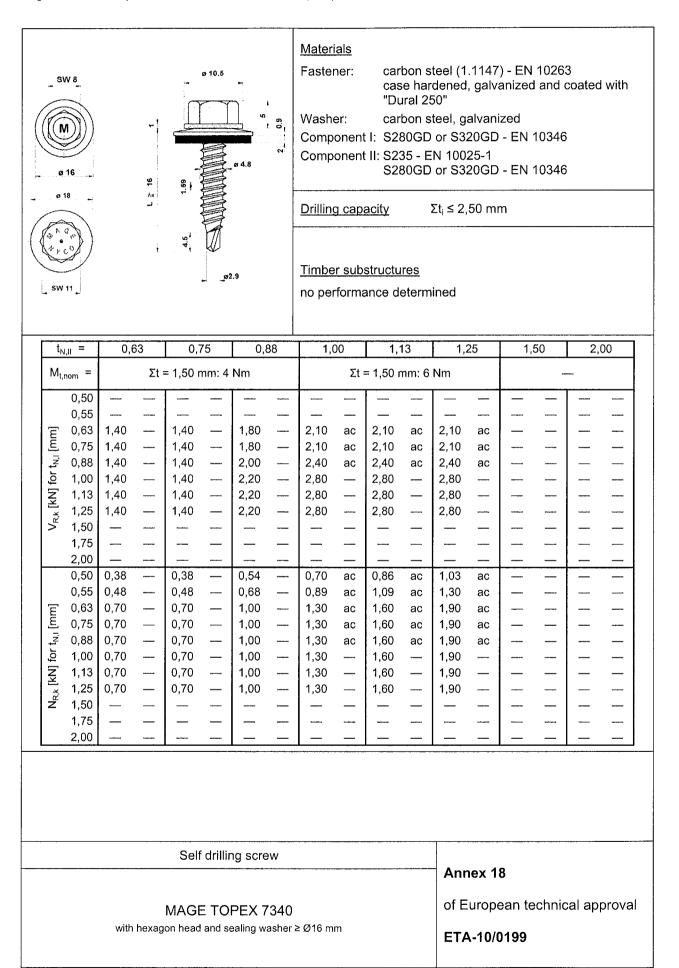
ac

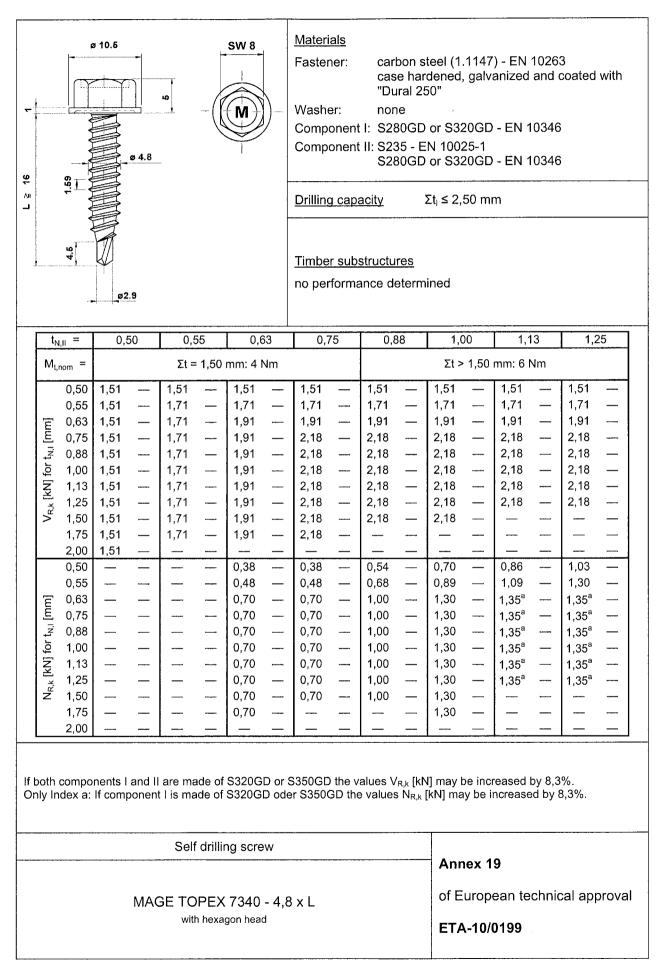
ac

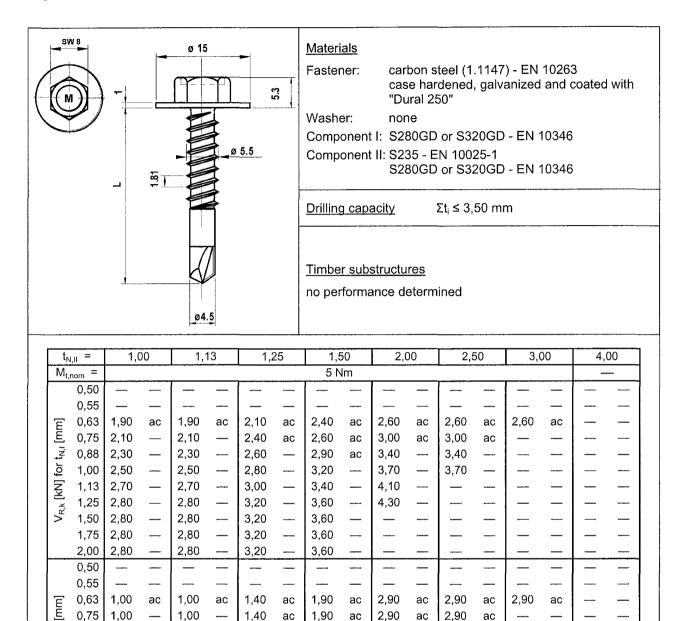
ac

.....

_







.....

Annex 20

MAGE TOPEX 7342

with hexagon head and flange Ø15 mm

1,40

1,40

1,40

1,40

1,40

1,40

1,40

1,40

ac

1.90

1,90

1,90

1,90

1,90

1,90

1,90

1,90

ac

ac

2.90

2,90

2,90

2,90

2,90

2,90

2,90

2,90

ac

ac

0,75

0,88

1,00

1,13

1,25

1,50

1,75

2,00

ţ

[kN] for t

 $\mathsf{N}_{\mathsf{R},\mathsf{k}}$

1.00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

1,00

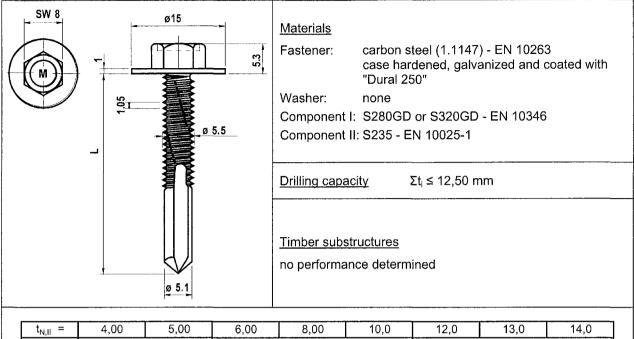
1,00

1,00

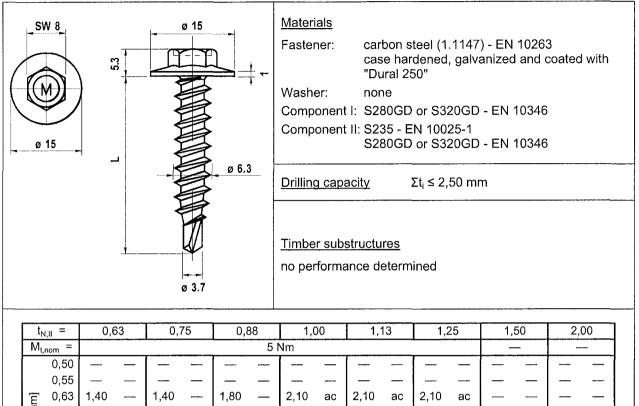
1,00

1,00

.....



of European technical approval

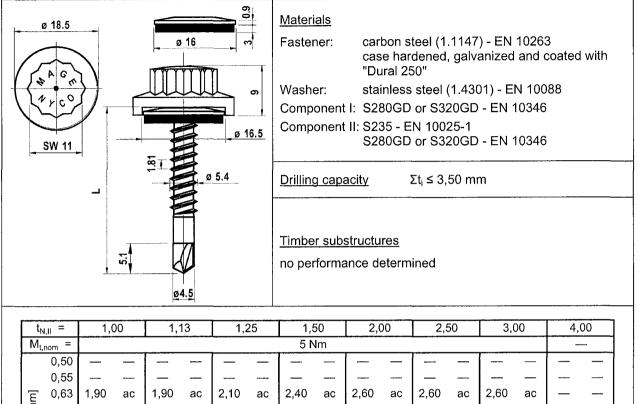

	t _{N,II}	=	4,0	00	5,	00	6,	00	8,	00	10),0	12	2,0	13	3,0	14	,0
	M _{t,no}	-m =		_	_				5	Nm					_	_		
		0,50					—	—	_	_								
	1	0,55										_			_			
7	Ē	0,63	·		_		2,60	abcd	2,60	abcd	2,60	abcd	_	—				
<u> </u>	Ē	0,75					3,10	abcd	3,10	abcd	3,10	abcd	-		_			
,	ľ ^r	0,88	_		_	_	3,60	ac	3,60	ac	3,60	ac		-		_	—	_
1	þ	1,00		—			4,10	ac	4,10	ac	4,10	ac	—			—		
	Ξ	1,13	—	_	-		4,60	ac	4,60	ac	4,60	ac			—	_		
1	vr,k [kiv] tor t _{n,i} [mm]	1,25				—	5,10	ac	5,10	ac	5,10	ac	_					_
>	2	1,50	—	—			6,00		6,00	—	6,00	-			—	—		
		1,75				—	6,00	_	6,00	—	6,00		—			—	—	_
		2,00	—				6,00	—	6,00		6,00	—			—			
		0,50	—					-		-	—	-			—	—		–]
	(0,55				_	—	—		—			—					
1	Ē	0,63	—	—			2,50	abcd	2,50	abcd	2,50	abcd						
3	fuuul (_{N1}	0,75	—	-			2,90	abcd	2,90	abcd	2,90	abcd					—	
-	Ľ,	0,88	—	—			3,70	ac	3,70	ac	3,70	ac				_		
1		1,00	—	—			4,50	ac	4,50	ac	4,50	ac	<u> </u>	—	—	—		
	NR,K [KN]	1,13		—			5,00	ac	5,00	ac	5,00	ac	—			-		-
	,×	1,25	_				5,50	ac	5,50	ac	5,50	ac			—	—		-
Z	Ž	1,50					6,60	—	6,60		6,60							-
		1,75					6,60	—	6,60		6,60		—				—	-
		2,00					6,60		6,60	—	6,60				_			

Annex 21

MAGE TOPEX 7344

with hexagon head and flange Ø15 mm

of European technical approval


Ē	0,63	1,40		1,40		1,80		2,10	ac	2,10	ac	2,10	ac				
[mm]	0,75	1,40		1,40		1,80		2,10	ac	2,10	—	2,10			—	—	
t _{N,1}	0,88	1,40		1,40		2,00		2,40	—	2,40		2,40	—				
र्षु	1,00	1,40		1,40		2,20		2,80	•	2,80	—	2,80				—	
ΣΝ.	1,13	1,40		1,40		2,20	—	2,80	—	2,80		2,80					—
	1,25	1,40		1,40		2,20		2,80		2,80		2,80		—			
< R,k	1,50			—	—						. <u> </u>	—			—	—	
	1,75						—		—				—				_
	2,00	—	—	—						—				_	—	_	
	0,50	1	—		_	—							_		—		
	0,55																
	0,55	_	—							—	—			—		—	
Ē	0,63	0,70	_	 0,70		 1,00		 1,30	ac	— 1,60	<u>—</u> ас	 1,90	— ac	_			
[mm]		 0,70 0,70	_	 0,70 0,70	_	 1,00 1,00		 1,30 1,30	 ac ac	— 1,60 1,60	 	1,90 1,90	 ac				
t ^t	0,63												ac 				
for t _{N,i}	0,63 0,75	0,70	—	0,70	_	1,00		1,30	ac	1,60	—	1,90	ac 				
for t _{N,i}	0,63 0,75 0,88	0,70 0,70	_	0,70 0,70		1,00 1,00		1,30 1,30	ас —	1,60 1,60		1,90 1,90	ac 				
[kN] for t _{N,i}	0,63 0,75 0,88 1,00	0,70 0,70 0,70		0,70 0,70 0,70		1,00 1,00 1,00		1,30 1,30 1,30	ac 	1,60 1,60 1,60		1,90 1,90 1,90	ac				
for t _{N,i}	0,63 0,75 0,88 1,00 1,13	0,70 0,70 0,70 0,70		0,70 0,70 0,70 0,70		1,00 1,00 1,00 1,00		1,30 1,30 1,30 1,30	ac 	1,60 1,60 1,60 1,60		1,90 1,90 1,90 1,90	ac 				
[kN] for t _{N,i}	0,63 0,75 0,88 1,00 1,13 1,25	0,70 0,70 0,70 0,70		0,70 0,70 0,70 0,70		1,00 1,00 1,00 1,00		1,30 1,30 1,30 1,30	ac 	1,60 1,60 1,60 1,60		1,90 1,90 1,90 1,90	ac				

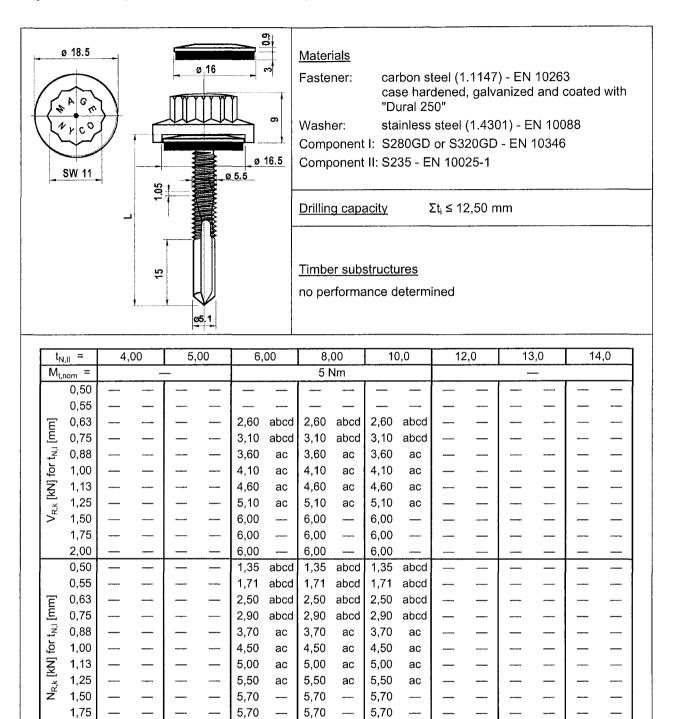
Annex 22

MAGE TOPEX 7346

with hexagon head and flange Ø15 mm

of European technical approval

	0 7 6							1		1							
	0,50	—	—			-	—	-			—		—		—		—
1	0,55			—				—				—					
3	0,63	1,90	ac	1,90	ac	2,10	ac	2,40	ac	2,60	ac	2,60	ac	2,60	ac	—	
[mm]	0,75	2,10		2,10		2,40	ac	2,60	ac	3,00	ac	3,00			—		
rt z	0,88	2,30		2,30		2,60		2,90	ac	3,40	—	3,40					—
for	1,00	2,50		2,50		2,80		3,20	—	3,70		3,70			—		
	1,13	2,70		2,70		3,00	_	3,40		4,10	—	—					
V _{R,k} [kN]	1,25	2,80		2,80		3,20		3,60		4,30							
× ۲	1,50	2,80		2,80		3,20		3,60	—	4,30	—					—	
	1,75	2,80		2,80		3,20	—	3,60				—					
	2,00	2,80		2,80		3,20		3,60	—	—			—			—	—
	0,50	0,54	ac	0,54	ac	0,76	ac	1,03	ac	1,57	ac	1,57	ac	1,57	ac	—	—
	0,55	0,68	ac	0,68	ac	0,95	ac	1,30	ac	1,98	ac	1,98	ac	1,98	ac		—
E	0,63	1,00	ac	1,00	ac	1,40	ac	1,90	ac	2,90	ac	2,90	ac	2,90	ac		
for t _{N,i} [mm]	0,75	1,00		1,00	—	1,40	ac	1,90	ac	2,90	ac	2,90					—
t,	0,88	1,00		1,00		1,40	******	1,90	ac	2,90		2,90			—		
for	1,00	1,00		1,00		1,40	—	1,90		2,90		2,90			—	—	····-
Ź	1,13	1,00		1,00	—	1,40		1,90		2,90	—		—	—			
N _{R.k} [kN]	1,25	1,00		1,00	—	1,40		1,90	—	2,90			—			—	
ع ۳	1,50	1,00	—	1,00		1,40		1,90	—	2,90							
	1,75	1,00	_	1,00		1,40		1,90				—		_		_	
	2,00	1,00		1,00		1,40		1,90			—						


Annex 23

MAGE TOPEX NYCO 7810

with polyamide bihexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$

ETA-10/0199

of European technical approval

.....

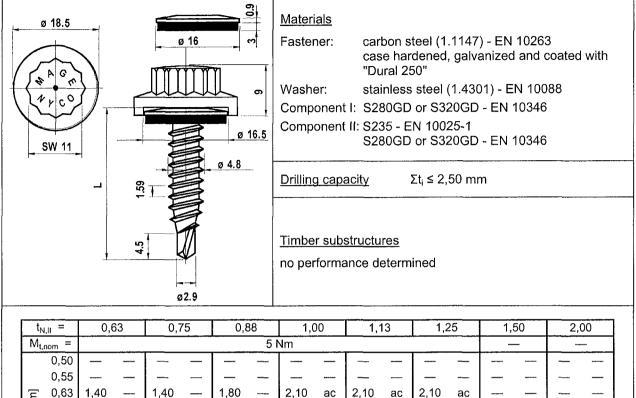
5,70

5,70

_

5,70

2,00

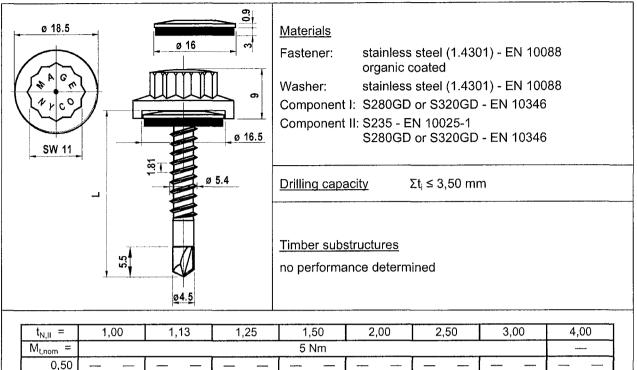

Annex 24

MAGE TOPEX NYCO 7820

with polyamide bihexagon head and sealing washer ≥ Ø16 mm

ETA-10/0199

of European technical approval

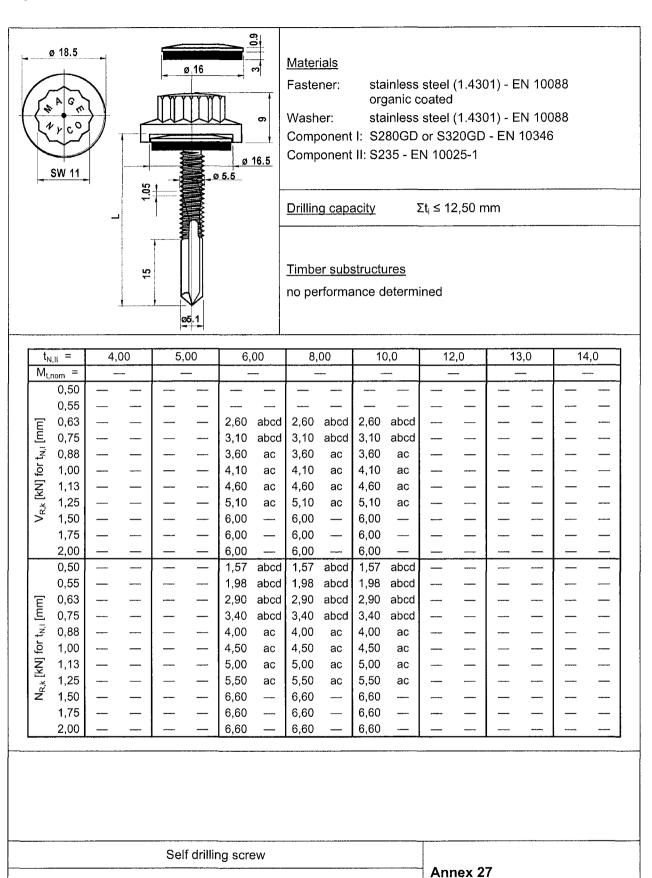

	0,55				—	—	 		I		—					—
E	0,63	1,40		1,40		1,80	 2,10	ac	2,10	ac	2,10	ac		_		
[mm]	0,75	1,40		1,40		1,80	 2,10	ac	2,10	ac	2,10	ac	—			1
rt z	0,88	1,40		1,40	_	2,00	 2,40		2,40		2,40			—		
fo	1,00	1,40	—	1,40		2,20	 2,80	—	2,80		2,80		—	_		
ĮŜ	1,13	1,40		1,40		2,20	 2,80		2,80		2,80			—		
V _{R,k} [kN]	1,25	1,40		1,40		2,20	 2,80	.	2,80		2,80		—			
>"	1,50	—			_		 	_		—						
	1,75						 									[
	2,00	—	_		—		 	—					_	_		
	0,50	0,38	_	0,38	_	0,54	 0,70	ac	0,86	ac	1,03	ac	_		-	—
	0,55	0,48		0,48		0,68	 0,89	ac	1,09	ac	1,30	ac	—	—		
Ξ	0,63	0,70		0,70		1,00	 1,30	ac	1,60	ac	1,90	ac	—			
[mm]	0,75	0,70	—	0,70		1,00	 1,30	ac	1,60	ac	1,90	ac				
t,	0,88	0,70		0,70	—	1,00	 1,30	—	1,60		1,90					-
Ę	1,00	0,70		0,70		1,00	 1,30		1,60	—	1,90			_		
[kN]	1,13	0,70		0,70	—	1,00	 1,30		1,60		1,90		_	-		
	1,25	0,70		0,70		1,00	 1,30		1,60		1,90			—		
Z	1,50	—					 —	—								
J	1,75						 I									_
	1,75															

Annex 25

MAGE TOPEX NYCO 7825

with polyamide bihexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$

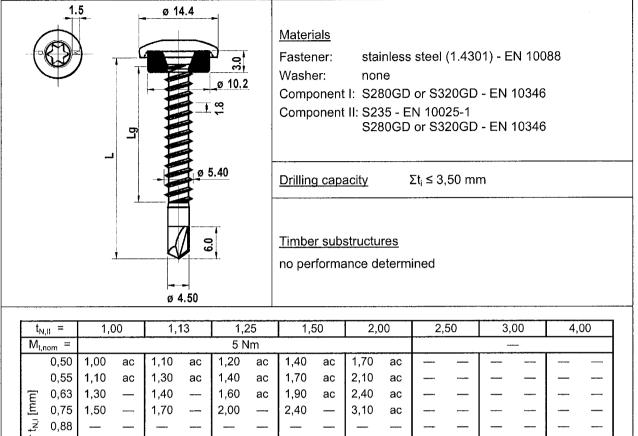
of European technical approval


M _{t,}	nom ≕							5 N	١m								
	0,50			-	_	—			_	—		—					
	0,55					_				—						—	
12	0,63	1,90	ac	1,90	ac	2,10	ac	2,40	ac	2,60	ac	2,60	ac	2,60	ac	-	
Ē	0,75	2,10	—	2,10		2,40	ac	2,60	ac	3,00	ac	2,60	—			-	_
t _{n,i} [mm]	0,88	2,30		2,30	—	2,60		2,90	ac	3,40			_			—	
Ę	1,00	2,50		2,50	—	2,80	_	3,20		3,70			_		—		
Ţ	1,13	2,70	<u> </u>	2,70		3,00		3,40		4,10	—		—			-	-
V _{R,k} [kN]	1,25	2,80	_	2,80		3,20		3,60		4,30		—			—	—	
2	1,50				—	—				<u> </u>	—			_			—
	1,75							—								_	
	2,00		_							_			_			—	_
	0,50	0,49	ac	0,49	ac	0,70	ac	0,92	ac	1,35	ac	1,35	ac	1,57	ac	. —	_
	0,55	0,61	ac	0,61	ac	0,89	ac	1,16	ac	1,71	ac	1,71	ac	1,98	ac	—	
E	0,63	0,90	ac	0,90	ac	1,30	ac	1,70	ac	2,50	ac	2,50	ac	2,90	ac		
Ē	0,75	0,90	_	0,90		1,30	ac	1,70	ac	2,50	ac	2,50			_		—
t _{n,I} [mm]	0,88	0,90		0,90		1,30	—	1,70	ac	2,50		2,50			—	_	
for	1,00	0,90		0,90	_	1,30		1,70		2,50		2,50		—			
	1,13	0,90		0,90		1,30		1,70		2,50							_
N _{R.k} [kN]	1,25	0,90		0,90	_	1,30		1,70	_	2,50		—					—
ž	1,50	—	_	_				—				_				_	
	1,75	—	_	—				—								-	-
	2,00					_										-	

Annex 26

MAGE TOPEX NYCO 7870

bimetal with polyamide bihexagon head and sealing washer $\ge \emptyset 16 \text{ mm}$

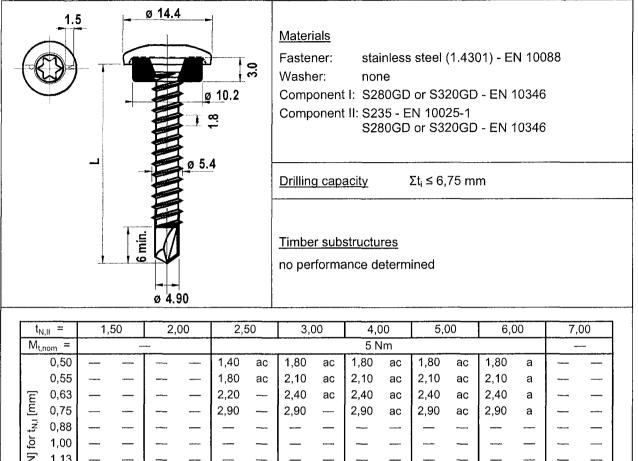

of European technical approval

MAGE TOPEX NYCO 7880

bimetal with polyamide bihexagon head and sealing washer ≥ Ø16 mm

of European technical approval

r,	0,88			—				—		-			—					
for	1,00	—	—								_	—	—		-			
Ĩ	1,13												—	—	—	—	—	
V _{R,k} [kN]	1,25			—	—	—	—	—	—	—							—	
<u>~</u>	1,50												_					
	1,75	—			—	—		—	—						—	—		
	2,00	—	—	_	—	—	—	—	—	—	—	—				-	—	
	0,50	0,90	ac	1,10	ac	1,30	ac	1,70	ac	1,90	ac		-		-	_	—	
	0,55	0,90	ac	1,10	ac	1,30	ac	1,70	ac	2,30	ac	—						
Ē	0,63	0,90		1,10		1,30	ac	1,70	ac	2,50	ac							
t _{N,I} [mm]	0,75	0,90	—	1,10	—	1,30	—	1,70	—	2,50	ac				_	—		
	0,88							—	—				—	—	—			
و۲	1,00									—		—			—			
Ź	1,13		—				—	—	—	—	—					—	—	
N _{R,k} [kN]	1,25							—					—	—			—	
z	1,50				•						_						—	
	1,75	-				-		-										
	2,00					<u> </u>												


Annex 28

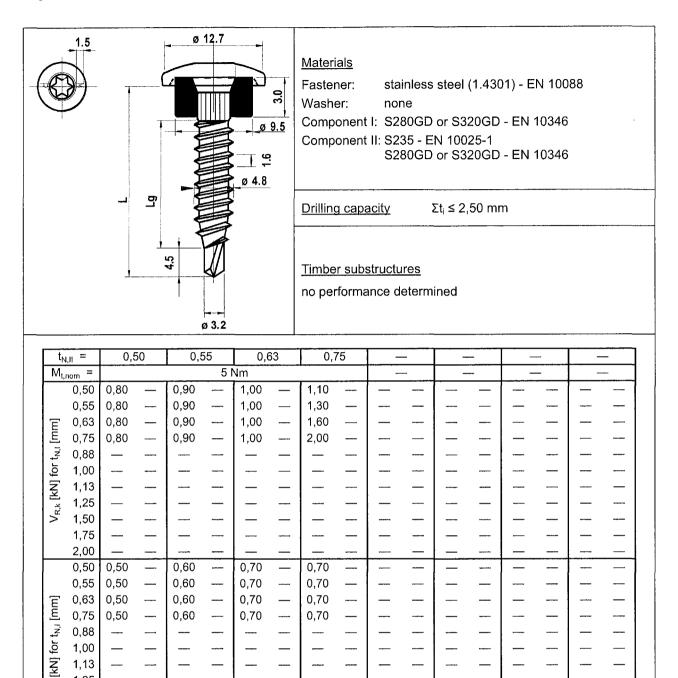
MAGE TOPEX UFO 7110

bimetal with rounded flat head and sealing ring $\ge \emptyset 10 \text{ mm}$

ETA-10/0199

of European technical approval

fo	1,00		—				——	—							—		—	
Ŝ	1,13								_					<u> </u>				
V _{R,k} [kN]	1,25														—			
>	1,50	—]]		j				—	—			
	1,75			-		—									—		-	
	2,00		—			—		—	—					—	—		—	
	0,50		ł			1,90	ac	1,90	ac	1,90	ac	1,90	ac	1,90	а		_	
	0,55	—	—		—	2,30	ac	2,30	ac	2,30	ac	2,30	ac	2,30	а			
Έ	0,63		—			2,80		2,80	ac	2,80	ac	2,80	ac	2,80	а			
[mm]	0,75					3,00		3,80		3,80	ac	3,80	ac	3,80	а		—	
t _{n,I}	0,88	—	—	-				—			—			—				
for	1,00		—	-	—							—	~		—			
Ŝ	1,13		—											i		•	_	
N _{R,k} [kN]	1,25				—	—			—		<u> </u>	—			—			
ž	1,50		-					_			_			—				
	1,75								_								_	
	2,00		_									—			—	_		


Annex 29

ETA-10/0199

of European technical approval

MAGE TOPEX UFO 7120

bimetal with rounded flat head and sealing ring $\ge \emptyset 10 \text{ mm}$

_

N_{R,k} [

1,25

1,50

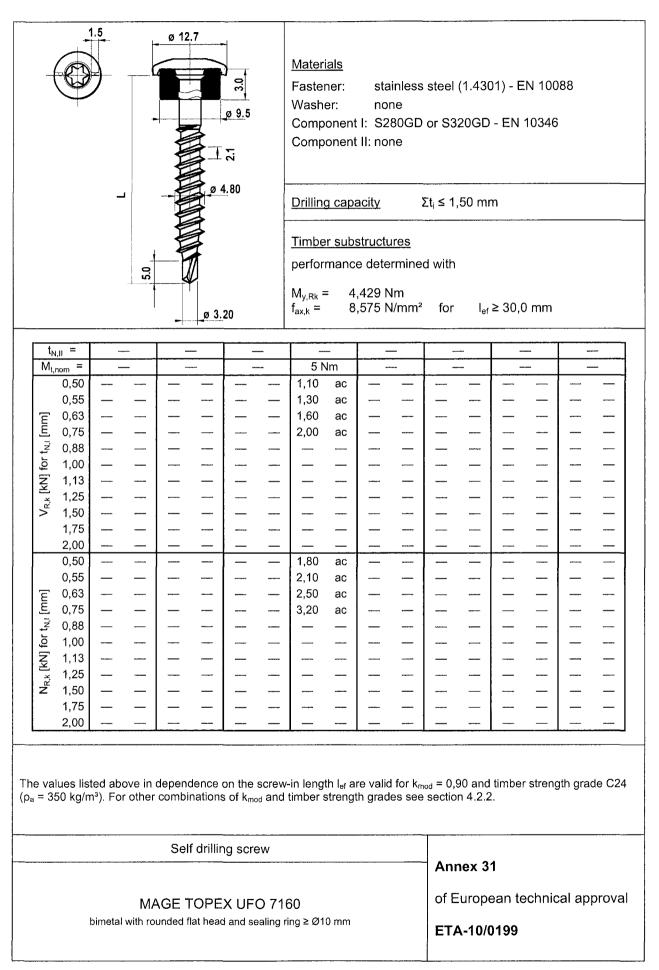
1,75

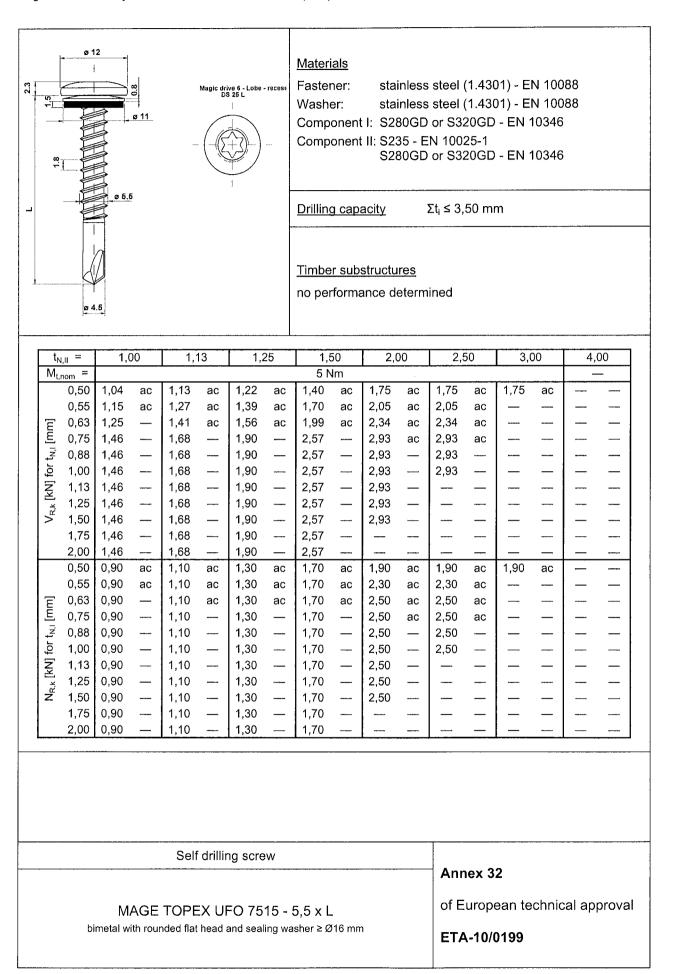
2,00

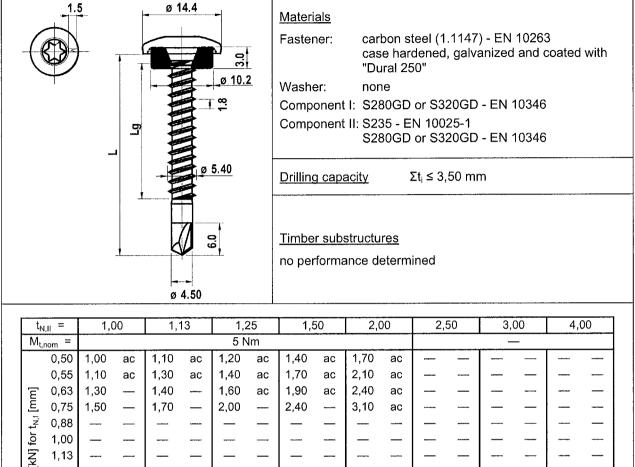
Annex 30

MAGE TOPEX UFO 7140

bimetal with rounded flat head and sealing ring $\ge \emptyset 10 \text{ mm}$

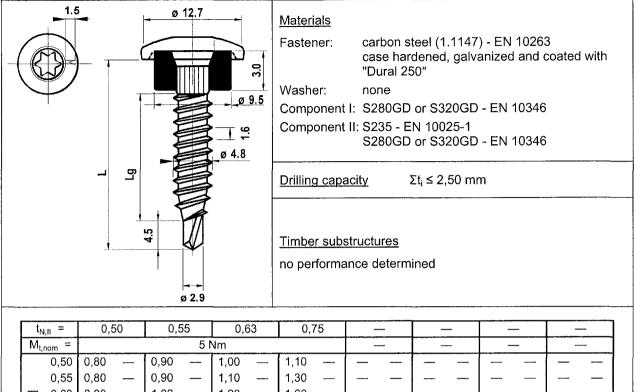

ETA-10/0199


of European technical approval



ť	0,88		-			—	—	-	—			—					—	
for	1,00	—				-					—			—				
Ŝ	1,13			—	—	—	—	—				—	—					
V _{R,k} [kN]	1,25	—									—				—			
>	1,50			—	—	—	—	1 —	—				—			—		
	1,75					—					—	—				—		
	2,00	—		—			—					1	—	_	—			
	0,50	0,90	ac	1,10	ac	1,30	ac	1,70	ac	1,90	ac		-	_				
	0,55	0,90	ac	1,10	ac	1,30	ac	1,70	ac	2,30	ac			—	—		—	
Ē	0,63	0,90		1,10		1,30	ac	1,70	ac	2,80	ac	—		—	—			
[mm]	0,75	0,90	—	1,10		1,30		1,70		2,90	ac		—	—				
ť _{n,i}	0,88	—									—						—	
for	1,00			—	—	—	—	_	—	_				—	—		-	
N _{R,k} [kN]	1,13							—				—						
L Y	1,25					—	—	I —	—		-	—			—	—		
z	1,50							-				—						
	1,75					-					—	—		_		—		

2,00


Annex 33

MAGE TOPEX UFO 7010

with rounded flat head and sealing ring $\ge \emptyset 10 \text{ mm}$

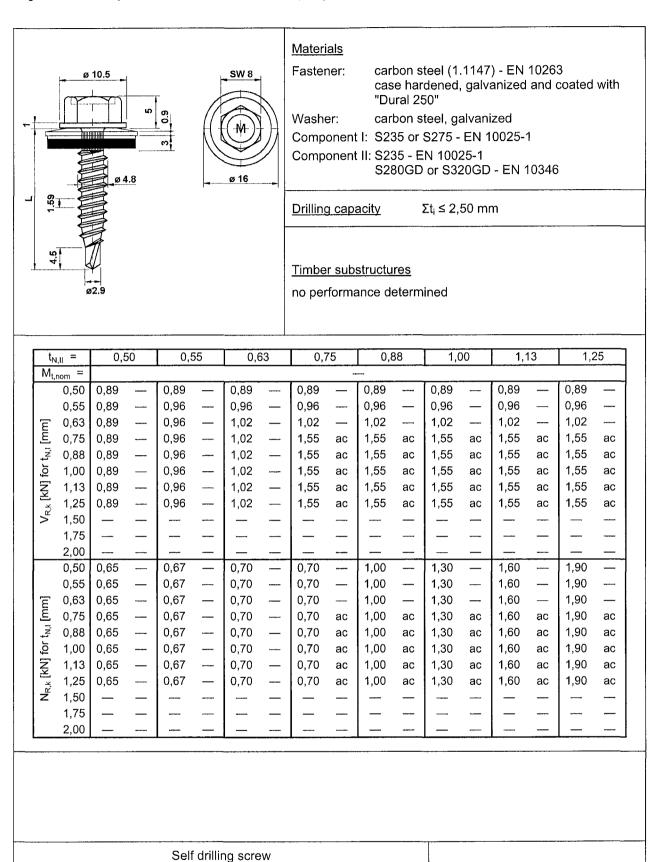
of European technical approval

ETA-10/0199

M _{t,r}	nom =				51	Nm								-	-	-	-
	0,50	0,80		0,90		1,00		1,10	I	-		_		-		-	
	0,55	0,80		0,90		1,10		1,30					-		_	_	_
Ē	0,63	0,80		1,00		1,20		1,60								_	_
Ē	0,75	0,80		1,00	—	1,30		2,00	—	—			—			_	
V _{R,k} [kN] for t _{N,I} [mm]	0,88	—					_	_		*****	—			—			-
for	1,00	****	—			—		_	—			—			—	—	
Ŝ	1,13	—				—					—		—				—
t l	1,25			—					—		_	—			—		
>	1,50				—	—	—	—			—			_	—		
	1,75	—	—							—						—	_
	2,00				—		—			+	—	—		_			
	0,50	0,50		0,60		0,70	—	0,70				—		—		—	
	0,55	0,50		0,60	—	0,70		0,70		—			'				
Ē	0,63	0,50		0,60		0,70		0,70				—			_		
<u> </u>	0,75	0,50		0,60		0,70		0,70									-
ťn,	0,88	—	—			—						—					—
for	1,00				—	—				—				—			-
Ž	1,13	—	—						—						—	—	
N _{R,k} [kN] for t _{N,I} [mm]	1,25				—	—			-		—				—		
ž	1,50	—	—					—				—			—		
	1,75	—	—	—		—	—	—		—		—		_	—	—	-
	2,00	—								—			—				

Annex 34

MAGE TOPEX UFO 7040


with rounded flat head and sealing ring $\ge \emptyset 10 \text{ mm}$

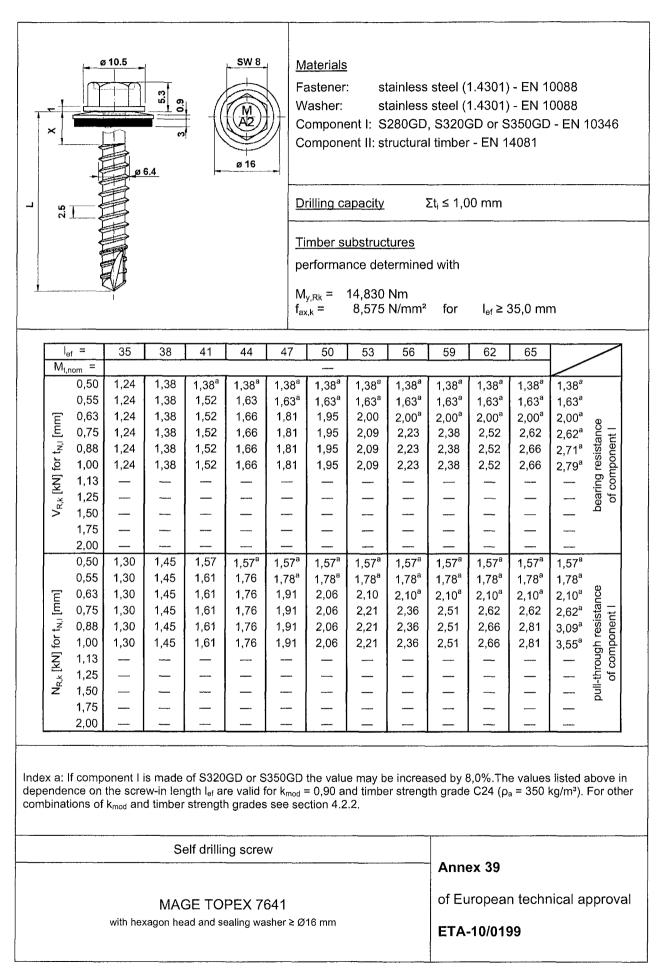
of European technical approval

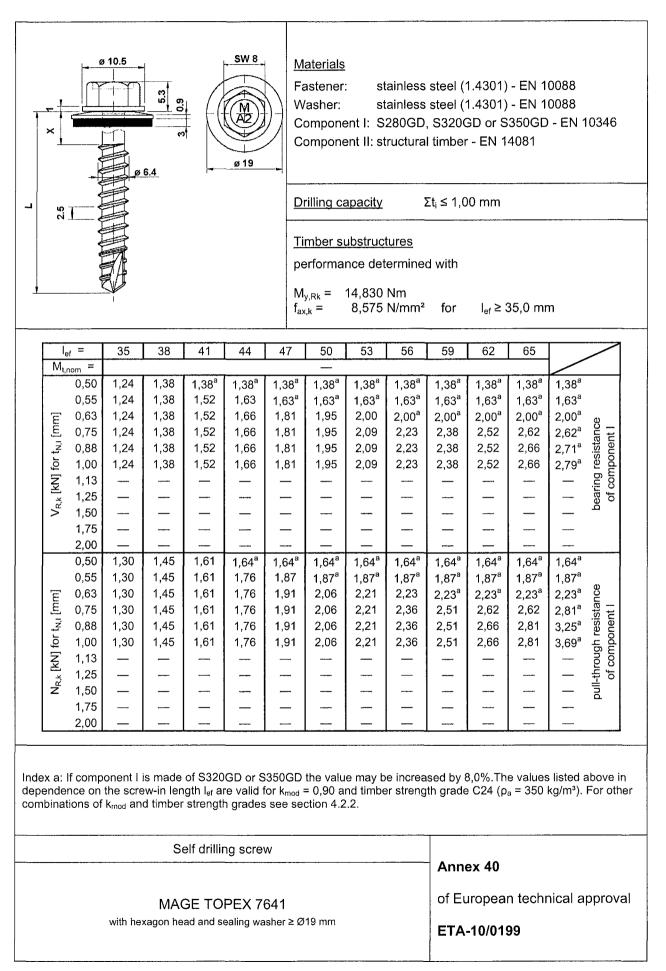
ETA-10/0199

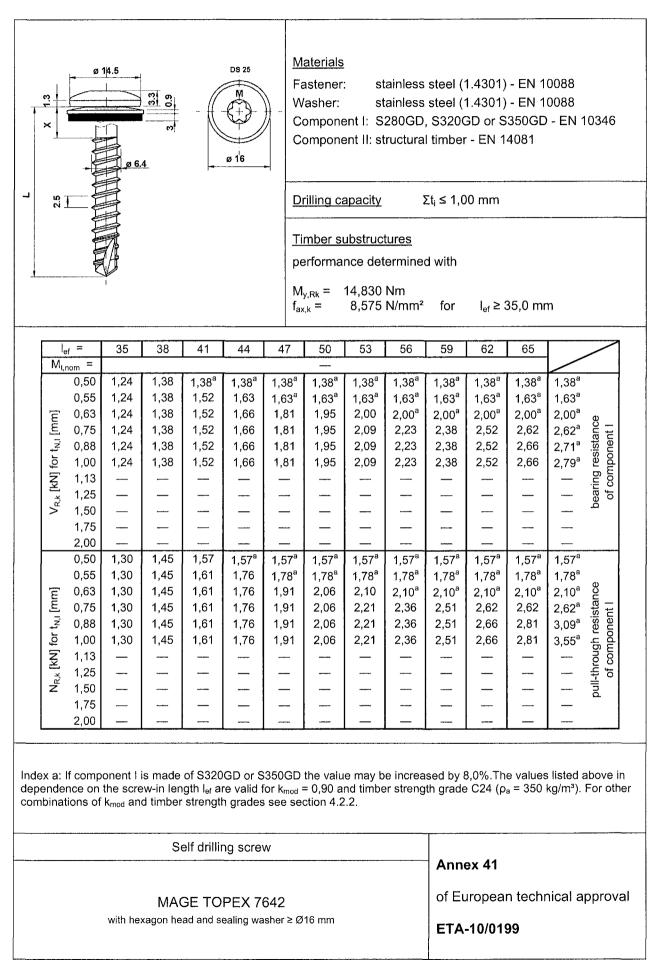
Materials Fastener: Washer: Component II Component II Predrill diame Timber subst performance My,Rk = 9,7 f _{ax,k} = 8,5													ss s iD o EN iD o se	10025 r S320 e table	430 ⁻ GD - GD -	1) - EN EN 1(EN 1(0346	88	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $															7			
	u _{pd}	-	Ø 4	.,0	3	3 Nm	<u> </u>	Ø 4,5		 		[,/		
	0,5	0 –	-				-	_						—		—			
	0,5 5 0,6			 1,50	 1,80	 2,00		 2,30		 2,50		 2,90		2,90		2,90		 2,90	
Vev [kN] for two [mm]	0,0		- 1	1,60	1,80	2,00	ac ac	2,50	ac ac	2,60	ac ac	2,90 3,10	ac ac	3,20	ac ac	3,20	ac ac	3,20	bearing resistance of component l
4		8 1,8	50	1,70	2,00	2,30		2,60		2,80	ac	3,20	ac	3,40	ac	3,40	ac	3,40	ing resistand component l
1 for	2 1,0			1,80	2,10	2,50	_	2,80		3,10		3,60		3,50		3,50	ac	3,50	g re: mpc
	1,1 1,2		- (1,80 1,90	2,20 2,30	2,60 2,70	_	2,90 3,00		3,20 3,30		3,80 4,00	-	3,80		3,80 4,00	ac ac	3,80 4,00	earin of co
	,2 1,5			1,90	2,40	2,80	_	3,20		3,50		4,00		4,30		4,30	ac	4,30	pe
	1,7		60	1,90	2,40	2,80	-	3,20		3,50		4,00		4,30		4,30		4,30	
	2,0	_		1,90 0,59	2,40 0,70	2,80 0,76	ac	3,20 0,86	ac	3,50 0,97	 ac	4,00 1,13	ac	4,30	 ac	4,30 1,19	 ac	4,30 1,19	
	0,5			0,75	0,70	0,70	ac	1,09	ac	1,23	ac	1,13	ac	1,19	ac	1,15	ac	1,19	
l m				1,10	1,30	1,40	ас	1,60	ac	1,80	ac	2,10	ac	2,20	ac	2,20	ac	2,20	nce
<u> </u>	0,7			1,10	1,30	1,40	ac	1,60	ас	1,80	ac	2,10	ac	2,80	ac	2,80	ac	2,80	
ortw	₹ 0,8 2 1,0			1,10 1,10	1,30 1,30	1,40 1,40		1,60 1,60		1,80 1,80	ac 	2,10 2,20	ac 	3,50 3,60	ас —	3,50 3,60	ac ac	3,50 3,60	n res
NI fe	, 1,0 , 1,1			1,20	1,30	1,50	_	1,00		1,90		2,20		3,60	_	3,60	ac	3,60	rough resista component
No v [kN] for two [m	1,2	5 1,0		1,20	1,40	1,50	_	1,70	·	1,90		2,30		3,60		3,60	ac	3,60	pull-through resista of component l
Ż	, -			1,20	1,40	1,50 1,50	—	1,70	—	1,90		2,30		3,60		3,60	ac	3,60	Ind
	1,7 2,0			1,20 1,20	1,40 1,40	1,50	_	1,70 1,70	_	1,90 1,90		2,30 2,30		3,60 3,60		3,60 3,60		3,60 3,60	
														= 0,90 ection 4		imber s	strenç	oth grad	de C24
					Self	tappin	ig sc	rew						Anne	x 35				
		v	with I			E TOF and se			≥Ø16	3 mm				of Eur ETA- 1	•		hnic	al ap	prova

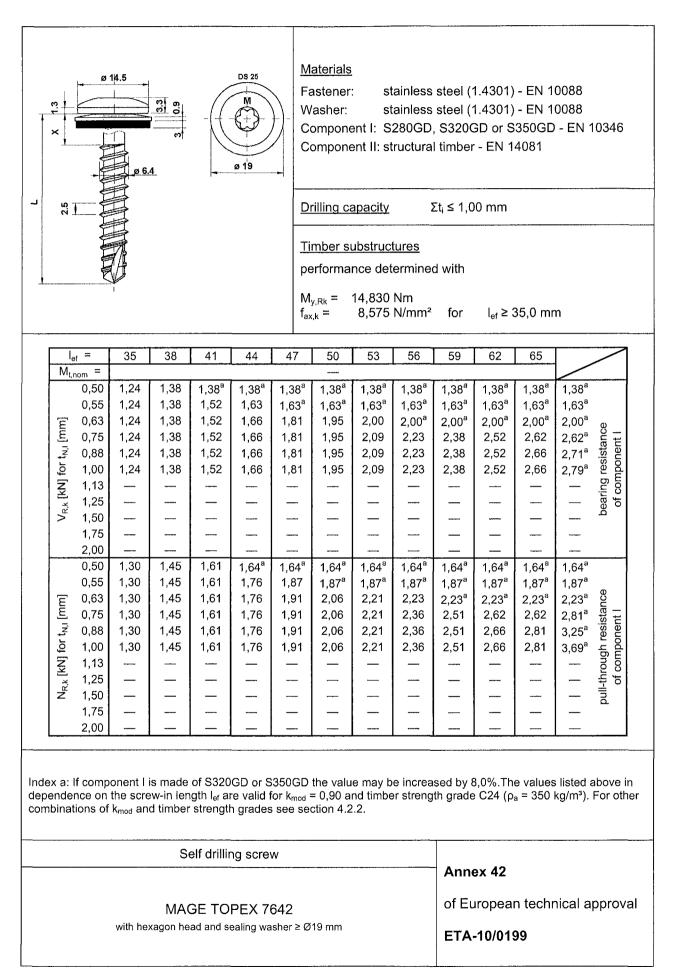
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 010.5 - 010.5 - 010.5 - 06.2		ł	8 8 1 1 1	1 ¹⁸	8005 010.5 010.2		Comp Predr Timbe	ner:	sta I: S2 II: S2 S2 <u>neter</u>	inless 80GD 35 - E 80GD s	steel or S3 N 100 or S3 see tal	(1.430 20GD 25-1)1) - E - EN - EN	N 100 N 100 10346	88	
t _N	,11 =	1,2	25	1,5	50	2,	00	3,	00	4,	00	6,00		≥ 7	<i>'</i> ,00	8,	00
dp	_{od} =		Ø	5,0					5,3			ø	5,5	ø	5,7	_	
M	om =					1		51	١m								
	0,50 0,55					-		-	_	_			_				_
-	0,55	2,50	ac	2,70	ac	2,90	abcd	3,00	abcd	3,10	abcd	3,10	abcd	3,10	abcd	_	
L m m	0,75	2,60	ac	3,10	ac	3,30	ac	3,60	ac	3,70	abcd	3,70	abcd	3,70	abcd		
V _{R.k} [kN] for t _{N.i} [mm]	0,88	2,80	ac	3,20	ac	3,80	ac	4,10	ac	4,30	ac	4,40	ac	4,40	ac	_	_
for	1,00	3,20		3,60	ac	4,10	ac	4,80	ac	4,90	ac	5,10	ac	5,10	ac		
Σ	1,13	3,40		4,00		4,60	ac	5,40	ac	5,60	ac	5,80	ac	5,80	ac		
7,¥	1,25	3,60	—	4,20		5,00	ac	6,10	ac	6,30	ac	6,50	ac	6,50	ac		
>	1,50	3,70		4,40		5,70	_	6,80	—	7,10		7,30		7,30			
	1,75	3,70 3,80	_	4,70 4,90		6,20		7,60	-	7,70		8,10		8,10	_	—	
	2,00 0,50	0,97	ac	4,90	ac	6,90 1,51	abcd		7,80 — 7,90 — 8,10 — 8,10 — 1,51 abcd 1,51 abcd 1,51 abcd 1,51 abcd								
	0,55	1,23	ac	1,71	ac	1,91	abcd		abcd		abcd	1,91	abcd		abcd		
F	0,63		ac	2,50	ac	2,80		2,80				2,80			abcd		
Ĩ.	0,75	2,00	ac	2,60	ac	3,10	ac	3,60	ac	3,60	abcd	3,60	abcd	3,60	abcd	—	-
t _{n,1}	0,88	2,00	ac	2,70	ac	3,30	ac	3,80	ac	3,80	ac	3,80	ac	3,80	ac		*
] for	1,00	2,00		2,70	ac	3,40	ac	4,00	ac	4,00	ac	4,00	ac	4,00	ac		
N¥.	1,13	2,00		2,70		3,60	ac	4,40	ac	4,40	ac	4,40	ac	4,40	ac		
N _{R.k} [kN] for t _{N,I} [mm]	1,25 1,50	2,00 2,00		2,70 2,70	_	3,60 3,60	ac	4,80	ac —	4,90 5,90	ac 	4,90 5,90	ас —	4,90 5,90	ac 		
	1,75	2,00		2,70		3,60		5,80	_	6,90	_	7,10		7,10			
	2,00	2,00		2,70	—	3,60	_	6,00		7,30		7,60		7,60			
				Self	tappi	ng scr	ew					Anı	nex 3	6			
		with		MAGE on head				≥ Ø16 m	ım		of European technical approval ETA-10/0199						

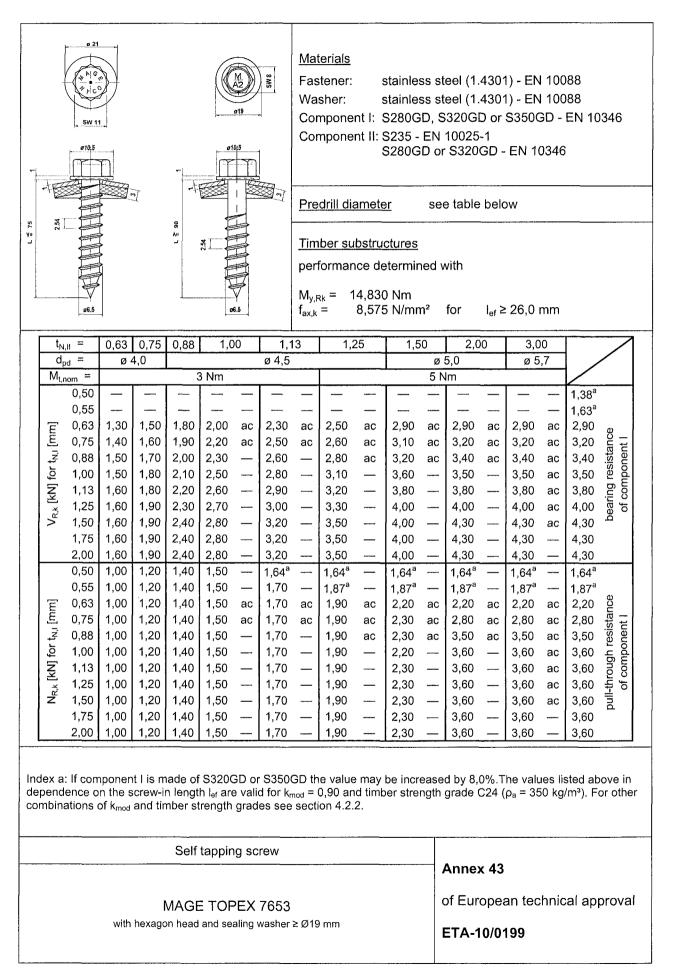
MAGE TOPEX 7335


with hexagon head and sealing washer ≥ Ø16 mm


Annex 37


ETA-10/0199


of European technical approval


- 7.5 - L		ø 15	ø 6.	<u>ن</u> ع	(SW 8		Comp Drilling	ner: onent onent g cap: er sub	cas "Du nor : I: S28 : II: S28 : S28	res	dened 50" or S3: N 100: or S3: Σt _i ≤ 2,	, galv 20GD 25-1 20GD	- EN -	and 10346	coated	with
	_ =	0,5	50	0,5	55	0,6	3	0,	75	0,8	38	1,0	00	1,	13	1,2	25
N _{R,k} [kN] for t _{N,I} [mm] V _{R,k} [kN] for t _{N,I} [mm]	om = 0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 1,75 2,00 0,55 0,63 0,75 0,63 0,75 0,63 0,75 0,88 1,00 1,13 1,25 1,00 1,13 1,25 1,50 1,75 2,00					 1,80 1,80 1,80 1,80 1,80 1,80 0,70 0,70 0,70 0,70 0,70 0,70 0,70 0,70 -											
						ng screi PEX 7						ofE	nex 3 urop \10/	ean te	chnic	cal app	proval

