Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-10/0258

Handelsbezeichnung

Trade name

Zulassungsinhaber *Holder of approval*

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

> bis to

Herstellwerk

Manufacturing plant

SIKLA Schlaganker AN / AN ES

SIKLA Drop-In Anchor AN / AN ES

Sikla Holding Ges.m.b.H. Kornstraße 14 4614 MARCHTRENK ÖSTERREICH

Wegkontrolliert spreizender Dübel aus galvanisch verzinktem Stahl in den Größen M6, M8, M10 und M12 für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen in Beton

Deformation-controlled expansion anchor made of galvanised steel of sizes M6, M8, M10 and M12 for multiple use for non-structural applications in concrete

9. September 2010

16. August 2015

Sikla Herstellwerk 1

Diese Zulassung umfasst This Approval contains

13 Seiten einschließlich 6 Anhänge

13 pages including 6 annexes

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶:
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 6: Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen", ETAG 001-06.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

.

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25

⁴ Bundesgesetzblatt Teil I 1998, S. 812

⁵ Bundesgesetzblatt Teil I 2006, S. 2407, 2416

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der SIKLA Schlaganker AN bzw. AN ES in den Größen M6, M8, M8 x 40, M10 und M12 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Im Anhang 1 ist das Produkt (Typen, Größen) und der Dübel im eingebauten Zustand dargestellt.

Das Anbauteil ist mit einer Befestigungsschraube oder einer Gewindestange entsprechend Anhang 4 zu befestigen.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderung 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen des zu befestigenden Bauteils eine unmittelbare Gefahr für Leben oder Gesundheit von Menschen darstellt. Der Dübel darf nur für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen verwendet werden. Die Definition der Mehrfachbefestigung für die Mitgliedsstaaten ist im informativen Anhang 1 der ETAG 001, Teil 6 angegeben.

Der Dübel darf für Verankerungen, an die Anforderungen an die Feuerwiderstandsfähigkeit gestellt werden, verwendet werden.

Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206-1:2000-12 verwendet werden.

Der Dübel darf im gerissenen oder ungerissenen Beton verankert werden.

Der Dübel darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben in Anhang 2. Die in Anhang 2 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

In Bezug auf die Anforderungen des Brandschutzes kann angenommen werden, dass der Dübel die Anforderungen der Brandverhaltensklasse A1 gemäß den Vorschriften der Entscheidung 96/603/EG der Europäischen Kommission (in geänderter Fassung 2000/605/EG), erfüllt.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in Anhang 5, Tabelle 5 angegeben.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen in Bezug auf die Feuerwiderstandsfähigkeit sind in Anhang 5, Tabelle 6 angegeben. Sie gelten für die Verwendung in einem System, das den Anforderungen einer bestimmten Feuerwiderstandsklasse genügen muss.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

Jeder Dübel ist mit dem Werkzeichen, der Dübelbezeichnung und der Gewindegröße entsprechend Anhang 2 zu kennzeichnen.

Die Größe M8x40 ist zusätzlich auf der Stirnfläche der Spreizhülse gekennzeichnet.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 6 "Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen".

Die Beurteilung des Dübels für den vorgesehenen Verwendungszweck in Bezug auf die Feuerwiderstandsfähigkeit erfolgte entsprechend dem Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit".

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 97/161/EG der Europäischen Kommission⁸ ist das System 2(ii) (bezeichnet als System 2+) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 2+: Konformitätserklärung des Herstellers für das Produkt aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) Erstprüfung des Produkts;
 - (2) werkseigener Produktionskontrolle;
 - (3) Prüfung von im Werk entnommenen Proben nach festgelegtem Prüfplan.
- (b) Aufgaben der zugelassenen Stelle:
 - (4) Zertifizierung der werkseigenen Produktionskontrolle aufgrund von:
 - Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

-

⁸ Amtsblatt der Europäischen Gemeinschaften L 67 vom 03.02.1997

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/ Rohstoffe/ Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.3 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser erteilten europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den im Prüfplan für diese europäische technische Zulassung durchzuführen:

- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE Kennzeichnung

Die CE Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für die werkseigene Produktionskontrolle,

_

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-6),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich die Gültigkeit der CE Kennzeichnung aufgrund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren B, für wegkontrolliert spreizende Dübel unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern) angegeben.

Die Festigkeitsklasse und die Länge der Befestigungsschraube oder der Gewindestange müssen vom Planer festgelegt werden. Bei der Wahl der Länge sind die vorhandene Gewindelänge, die minimalen Einschraubtiefe, die Anbauteildicke und die Bauteiltoleranzen zu berücksichtigen. Die Festigkeitsklasse und die minimale Einschraubtiefe der Befestigungsschraube oder der Gewindestange müssen den Angaben nach Anhang 4 entsprechen.

Bei der Bemessung von Verankerungen unter Brandbeanspruchung sind die Bestimmungen des Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit" zu beachten. Die maßgebenden charakteristischen Werte sind in den Anhang 5 angegeben. Das Bemessungsverfahren gilt für eine einseitige Brandbeanspruchung des Bauteils. Bei mehrseitiger Brandbeanspruchung kann das Bemessungsverfahren nur angewendet werden, wenn der Randabstand des Dübels $c \geq 300 \ mm$ beträgt.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile.
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den angegebenen Werkzeugen.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten.

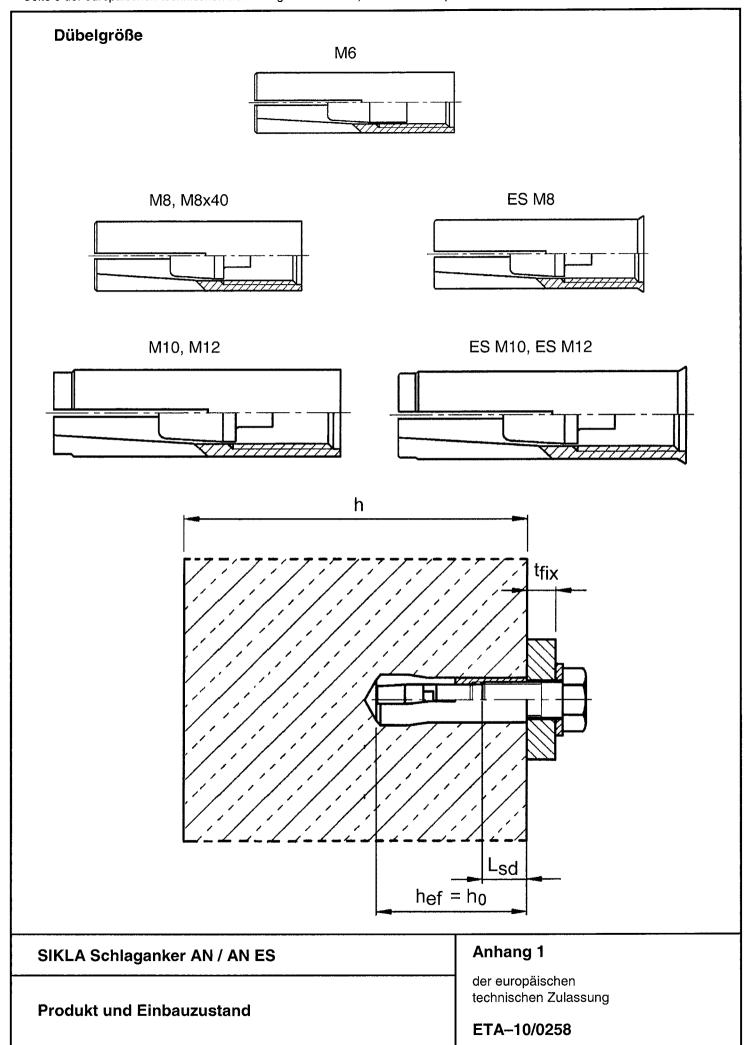
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume.
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen.
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Reinigung des Bohrlochs.
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn der Dübel vollständig im Bohrloch sitzt.
- Verspreizung durch Schläge auf den Konus mit Hilfe der in Anhang 3 dargestellten Spreizwerkzeuge. Der Dübel ist ordnungsgemäß verspreizt, wenn das Spreizwerkzeug auf der Spreizhülse aufliegt und bei Verwendung des Markierungs-Spreizwerkzeugs die in Anhang 3 dargestellte Markierung auf der Spreizhülse sichtbar ist.
- Die Befestigungsschraube oder Gewindestange muss den Anforderungen nach Anhang 4 entsprechen.
- Aufbringen des im Anhang 4 angegebenen Drehmoments mit einem überprüften Drehmomentenschlüssel.

5 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Gewindedurchmesser,
- Mindestverankerungstiefe,
- vorhandene Gewindelänge und minimale Einschraubtiefe der Befestigungsschraube bzw. Gewindestange,
- Minimale Bohrlochtiefe,
- Drehmoment.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Spreizwerkzeuge,
- Herstelllos.


Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

Georg Feistel Abteilungsleiter Beglaubigt

Centsches Institut

für Bautechnik

5

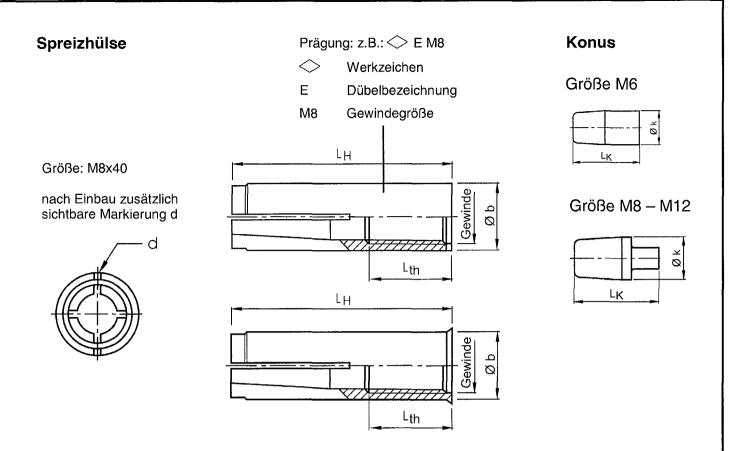


Tabelle 1: Dübelabmessungen [mm]

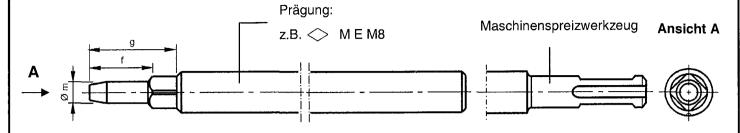
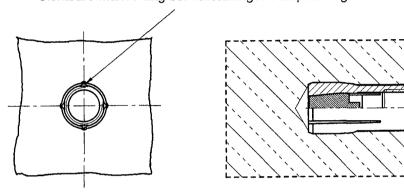

		Spreizhülse		Koı	านร	
Dübelgröße	Gewinde	Øb	L _H	L _{th}	Øk	L _K
M6	M6	8	30	13	5,0	13
M8	M8	10	30	13	0.5	40
M8x40	M8	10	40	20	6,5	12
M10	M10	12	40	15	8,2	16
M12	M12	15	50	18	10,3	20

Tabelle 2: Benennung und Werkstoffe

Teil	Benennung	Werkstoffe, galvanisch verzinkt ≥ 5 μm, nach EN ISO 4042	
1	Spreizhülse	Automatenstahl nach DIN EN 10087	
2	Konus	Kaltstauchstahl nach DIN EN 10263	


SIKLA Schlaganker AN / AN ES	Anhang 2
Dübelabmessungen, Benennung und Werkstoffe	der europäischen technischen Zulassung
benefititing and werkstone	ETA-10/0258

Markierungs- Spreizwerkzeug

Montagekontrolle

Sichtbare Markierung bei vollständiger Verspreizung

Spreizwerkzeug

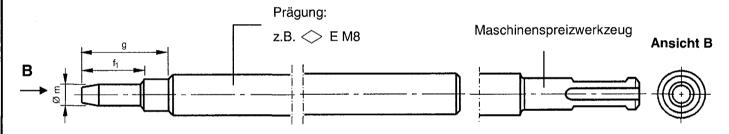
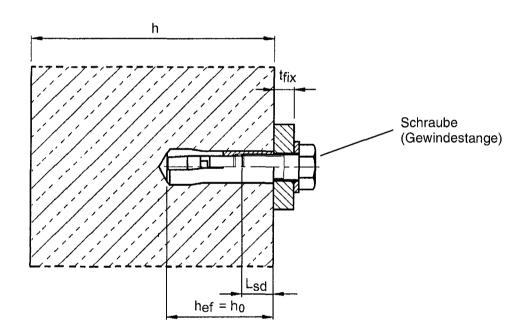


Tabelle 3: Abmessungen der Spreizwerkzeuge [mm]

Dübelgröße	Øm	f	f ₁	g
M6	4,9	-	17	27
M8	6,4	18,2	18	28
M8x40	6,4	28,2	28	38
M10	8,0	24,2	24	34
M12	10,0	30,4	30	40

SIKLA Schlaganker AN / AN ES

Abmessungen der Spreizwerkzeuge und Montagekontrolle


Anhang 3

der europäischen technischen Zulassung

Tabelle 4: Montage- und Dübelkennwerte

Dübelgröße			М6	M8	M8x40	M10	M12
Bohrernenndurchmesser	$d_0 =$	[mm]	8	10	10	12	15
Bohrerschneidendurchmesser	d _{cut} ≤	[mm]	8,45	10,45	10,45	12,5	15,5
Bohrlochtiefe	h ₀	[mm]	30	30	40	40	50
Drehmoment beim Verankern	T _{inst} ≤	[Nm]	4	8	8	15	35
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	7	9	9	12	14
Gewindelänge	L _{th}	[mm]	13	13	20	15	18
Mindesteinschraubtiefe	L _{sdmin}	[mm]	7	9	9	11	13
Mindestbauteildicke	h _{min}	[mm]	100	100	100	120	130
Minimaler Achsabstand	S _{min}	[mm]	55	60	80	100	120
Minimaler Randabstand	C _{min}	[mm]	95	95	95	135	165
Achsabstand	S _{cr}	[mm]	130	180	210	170	170
Randabstand	C _{cr}	[mm]	65	90	105	85	85

Bei Anforderungen an den Feuerwiderstand siehe Anhang 5.

Anforderungen an die Befestigungsschraube bzw. Gewindestange entsprechend Planungsunterlagen:

- Festigkeitsklasse 4.6, 5.6, 5.8 oder 8.8 nach EN ISO 898-1;
- Minimale Einschraubtiefe L_{sdmin} siehe Tabelle 4;
- Die Länge der Befestigungsschraube muß in Abhängigkeit von der Anbauteildicke t_{fix}, den zulässigen Toleranzen, der vorhandenen Gewindelänge L_{th} (= maximale Einschraubtiefe) und der minimalen Einschraubtiefe L_{sdmin}. festgelegt werden.

SIKLA Schlaganker AN / AN ES	SI	KLA	Schlad	ıanker	AN/	AN ES
------------------------------	----	-----	--------	--------	-----	-------

Montage- und Dübelkennwerte

Anhang 4

der europäischen technischen Zulassung

Tabelle 5: Bemessungsverfahren B – Charakteristische Werte für die Widerstände

Dübelgröße			M6	M8	M8x40	M10	M12
Für alle Richtungen							***
Charakteristischer Widerstand in Beton C20/25 bis C50/60	F ⁰ _{Rk} 1)	[kN]	3	5	6	6	6
Teilsicherheitsbeiwert	γ _{Ms} ²⁾	[-]	1,8 ³⁾ 2,16 ³⁾ 1,				
Stahlversagen mit Hebelarm		\. \?\.					
Charakteristischer Widerstand (Stahl 4.6)	M ⁰ _{Rk,s} ⁴⁾	[Nm]	6,1	15	15	30	52
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}^{(2)}$	[-]	1,67				
Charakteristischer Widerstand (Stahl 5.6)	M ⁰ _{Rk,s} ⁴⁾	[Nm]	7,6	19	19	37	65
Teilsicherheitsbeiwert	Y _{Ms} ²⁾	[-]	1,67				
Charakteristischer Widerstand (Stahl 5.8)	M ⁰ _{Rk,s} ⁴⁾	[Nm]	7,6	19	19	37	65
Teilsicherheitsbeiwert	γ _{Ms} ²⁾	[-]	1,25				
Charakteristischer Widerstand (Stahl 8.8)	M ⁰ _{Rk,s} 4)	[Nm]	12	30	30	60	105
Teilsicherheitsbeiwert	$\gamma_{\sf Ms}^{\ 2)}$	[-]			1,25		

¹⁾ Nur für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen, zur Definition der Mehrfachbefestigung für die Mitgliedsstaaten siehe ETAG 001, Teil 6, informativer Anhang 1

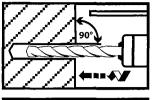
²⁾ Sofern andere nationale Regelungen fehlen

Tabelle 6: Charakteristische Werte unter Brandbeanspruchung in Beton C20/25 bis C50/60

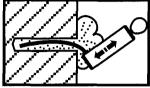
Dübelgröße					М6	М8	M8x40	M10	M12
Feuerwider- standsklasse Für alle Lastrichtungen									
	R 30			[kN]	0,2	0,4	0,4	0,9	1,7
Stahl	R 60	Charakteristischer Widerstand	F ⁰ Rk,fi	[kN]	0,2	0,3	0,3	0,8	1,3
4.6	R 90	Charakteristischer Widerstand	'Rk,fi	[kN]	0,1	0,3	0,3	0,6	1,1
	R 120]		[kN]	0,1	0,2	0,2	0,5	0,8
Stahl ≥ 5.6	R 30			[kN]	0,8	0,9	0,9	1,5	1,7
	R 60	Charakteristischer Widerstand	F ⁰ _{Rk,fi} 1)	[kN]	0,8	0,9	0,9	1,5	1,5
	R 90			[kN]	0,4	0,9	0,9	1,5	1,5
	R 120			[kN]	0,2	0,4	0,4	1,0	1,2
R 30 bis		Achsabstand	S _{cr,fi}	[mm]	130	180	210	170	200
			S _{min}	[mm]	55	60	80	100	120
		Randabstand	C _{cr,fi}	[mm]	65	90	105	85	100
R1	120		C _{min}	[mm]	95	95	95	135	165
L		Der Randabstand muss ≥ 300 mm b	etragen, w	enn der l	Brand von	mehr als	einer Seite	e angreift.	

sofern andere nationale Regelungen fehlen, wird der Teilsicherheitsbeiwert für den Widerstand unter Brandbeanspruchung $\gamma_{M,fi} = 1,0$ empfohlen.

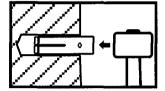
SIKLA Schlaganker AN / AN ES Bemessungsverfahren B, Charakteristische Werte für die Widerstände, Charakteristische Werte unter Brandbeanspruchung in Beton C20/25 bis C50/60

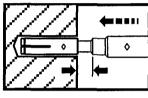

Anhang 5

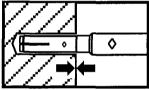
der europäischen technischen Zulassung

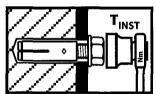

 $^{^{3)}}$ In diesem Wert ist der Teilsicherheitsbeiwert γ_2 enthalten

⁴⁾ Charakteristische Biegemomente M⁰_{Rk,s} für Gleichung (5.5) in ETAG 001, Anhang C


Montageanweisung


Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds erstellen.


Bohrloch vom Grund her ausblasen.


Anker einschlagen.

Konus mit Spreizwerkzeug eintreiben.

Der Anschlag des Spreizwerkzeugs muss auf dem Ankerrand aufsetzen.

Montagemoment T_{inst} mit Drehmomentschlüssel aufbringen.

SIKLA Schlaganker AN / AN ES

Montageanweisung

Anhang 6

der europäischen technischen Zulassung