Deutsches Institut für Bautechnik

Anstalt des öffentlichen Rechts

Kolonnenstr. 30 L 10829 Berlin Deutschland

Tel.: +49(0)30 787 30 0 Fax: +49(0)30 787 30 320 E-mail: dibt@dibt.de Internet: www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-10/0255

Handelsbezeichnung

Trade name

Zulassungsinhaber *Holder of approval*

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis

Herstellwerk

Manufacturing plant

Würth Schwerlastanker W-TM Würth Heavy-duty Anchor W-TM

Adolf Würth GmbH & Co. KG Reinhold-Würth-Straße 12-17 74653 Künzelsau DEUTSCHLAND

Kraftkontrolliert spreizender Dübel in den Größen M6, M8, M10 und M12 zur Verankerung im ungerissenen Beton

Torque controlled expansion anchor of sizes M6, M8, M10 and M12 for use in non-cracked concrete

13. Juli 2010

27. August 2014

Werk 18

Diese Zulassung umfasst This Approval contains

14 Seiten einschließlich 7 Anhänge 14 pages including 7 annexes

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des Europäischen Parlaments und des Rates³:
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 2: Kraftkontrolliert spreizende Dübel", ETAG 001-02.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.

_

¹ Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12

² Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1

³ Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25

⁴ Bundesgesetzblatt Teil I 1998, S. 812

⁵ Bundesgesetzblatt Teil I 2006, S. 2407, 2416

⁶ Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der Würth Schwerlastanker W-TM (Typ W-TM / W-TM A4, Typ W-TM S / W-TM S A4, Typ W-TM SD) in den Größen M 6, M 8, M 10 und M 12 ist ein Dübel aus galvanisch verzinktem Stahl oder nichtrostendem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

In den Anhängen 1 und 2 sind die verschiedenen Dübeltypen im eingebauten Zustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf nur im ungerissenen Beton verankert werden.

<u>Dübel W-TM, W-TM S, W-TM SD aus galvanisch verzinktem Stahl:</u>

Der Dübel darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Dübel W-TM A4, W-TM S A4 aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571:

Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben in den Anhängen 3 und 4. Die in den Anhängen 3 und 4 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

-

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 5 und 6 angegeben.

Jeder Dübel ist mit dem Herstellerkennzeichen, dem Handelsnamen, dem Bohrlochdurchmesser und mit der Dübelgröße entsprechend Anhang 3 gekennzeichnet.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 2 "Kraftkontrolliert spreizende Dübel", auf der Grundlage der Option 7.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - (2) zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte" Stellen genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/ Rohstoffe/ Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

-

⁸ Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt⁹.

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit dem Prüfplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle,

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Zulassungsinhabers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.

Siehe Abschnitt 3.2.2.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung, der nicht zusammen mit der Zulassung veröffentlicht und nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt wird.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerung

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern) angegeben.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Sechskantschraube und Scheibe für Typ W-TM / W-TM A4 dürfen nur verwendet werden, wenn die folgenden Bedingungen erfüllt sind:
 - Werkstoff, Abmessungen und mechanische Eigenschaften der Metallteile entsprechend Anhang 3 und 4,
 - Nachweis von Werkstoff und mechanischen Eigenschaften durch ein Abnahmeprüfzeugnis 3.1 nach EN 10204:2004, die Dokumente sind zu den Bauakten zu nehmen,
 - Länge der Sechskantschraube muss entsprechend Anhang 4, Tabelle 2 eingehalten sein.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,

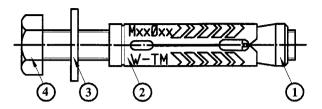
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Reinigung des Bohrlochs vom Bohrmehl entsprechend Anhang 7,
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die Vorderkante der Spreizhülse nicht über die Betonoberfläche hinausragt,
- Aufbringen des im Anhang 4 angegebenen Drehmoments mit einem überprüften Drehmomentenschlüssel.

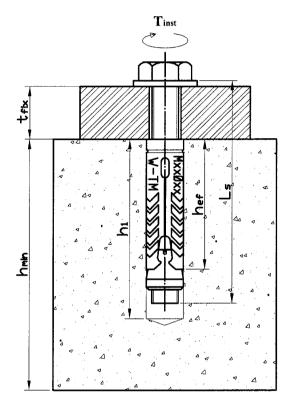
5 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Gewindedurchmesser,
- maximale Dicke der Anschlusskonstruktion,
- Mindestverankerungstiefe,
- Mindest-Bohrlochtiefe,
- Drehmoment.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Setzwerkzeuge,
- Herstelllos.


Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.


Dipl.-Ing. A. Kummerow Deutsches Institut für Bautechnik Berlin, 13. Juli 2010

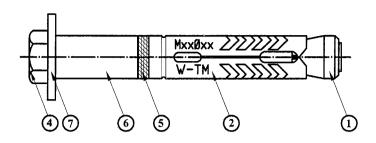
Doutschos Institut

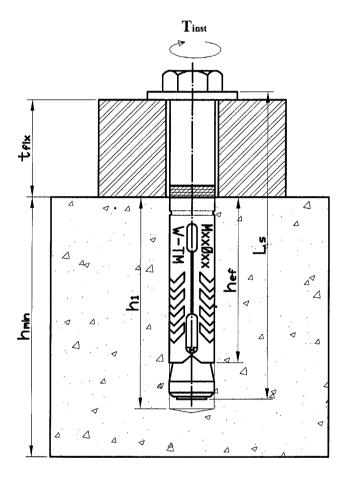
Vorsteckmontage:

Typ W-TM (A4) $^{1)}$ und Typ W-TM S (A4) $^{2)}$

- ① Konusbolzen
- 2 Spreizhülse
- ③ Unterlegscheibe
- Sechskantschraube
 - ¹⁾ Die Sechskantschraube und die Unterlegscheibe müssen nach den Spezifikationen aus Tabelle 1 und 2 vom Verarbeiter zugekauft werden
 - ²⁾ Die Sechskantschraube und die Unterlegscheibe werden vom Hersteller zusammen mit dem Dübel geliefert

Würth Schwerlastanker W-TM


Produkt und Einbauzustand


Anhang 1

der europäischen technischen Zulassung

Durchsteckmontage:

Typ W-TM SD

- ① Konusbolzen
- ② Spreizhülse
- Sechskantschraube
- S Zwischenring
- 6 Distanzhülse
- ① Unterlegscheibe

Würth Schwerlastanker W-TM

Produkt und Einbauzustand

Anhang 2

der europäischen technischen Zulassung

Typ W-TM (A4) / W-TM S (A4) / W-TM SD

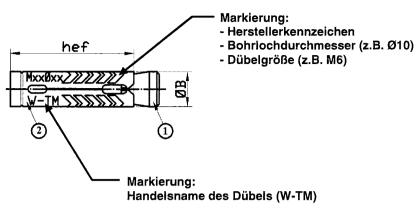


Tabelle 1: Werkstoffe

Teil	Benennung	Dübeltyp	Werkstoff					
1	Konusbolzen	W-TM W-TM S W-TM SD	Stahl, EN 10087 Galvanisch verzinkt, EN ISO 4042 min. 5 µm					
!		W-TM A4 W-TM S A4	Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571 EN 10088					
2	Spreizhülse	W-TM W-TM S W-TM SD	Kaltumformter Stahl, EN 10111 Galvanisch verzinkt, EN ISO 4042 min. 5 µm					
		W-TM A4 W-TM S A4	Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571 EN 10088					
W-TM W-TM S 3 / 7 Unterlegscheibe W-TM SD		W-TM S	Stahl min. 140 HV Galvanisch verzinkt, EN ISO 4042 min. 5 µm					
		W-TM A4 W-TM S A4	Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571 EN 10088					
4	Sechskantschraube	W-TM W-TM S W-TM SD	Stahl, Festigkeitsklasse 8.8 Galvanisch verzinkt, EN ISO 4042 min. 5 µm					
		W-TM A4 W-TM S A4	Nichtrostender Stahl 1.4401, 1.4404 oder 1.4571 EN 10088					
5	Zwischenring	W-TM SD	Polypropylen					
6	Distanzhülse	W-TM SD	Kaltumformter Stahl, EN 10111 oder kaltgezogenes Rohr E235 +C, EN 10305-2 Galvanisch verzinkt, EN ISO 4042 min. 5 µm					

Würth Schwerlastanker W-TM	Anhang 3
	der europäischen technischen Zulassung
Kennzeichnung, Benennung und Werkstoffe	ETA-10/0255

Tabelle 2: Montagekennwerte

Dübelgröße		`		М6	M8	M10	M12
Effektive Verankerungstiefe			[mm]	39,5	44,5	51,5	63,0
Bohrnenndurchmess	er	d₀	[mm]	10	12	14	18
Bohrschneidendurch	nesser	d _{cut} ≤	[mm]	10,45	12,50	14,50	18,50
Bohrlochtiefe		h₁≥	[mm]	$L_S - t_{fix} + 10$			
Durchgangsloch im anzuschließenden	W-TM (A4) W-TM S (A4)	d _f ≤	[mm]	7	9	12	14
Bauteil	W-TM SD	d _f ≤	[mm]	12	12 14		20
Drehmoment		T _{inst}	[Nm]	10	25	40	75
Min. Anbauteildicke	W-TM (A4) W-TM S (A4) W-TM SD	t _{fix.min}	[mm]	1	1	1	1
	W-TM	t _{fix.max}	[mm]	150	200	250	300
Max. Anbauteildicke	W-TM A4	t _{fix.max}	[mm]	50	65	85	70
Max. Alibautelluicke	W-TM S(A4)	t _{fix,max}	[mm]	10	14	20	25
	W-TM SD	t _{fix,max}	[mm]	30	35	38	43
l änge der	W-TM (A4)	l _S ≥	[mm]	t _{fix} +45	t _{fix} +51	t _{fix} +60	t _{fix} +75
Länge der Sechskantschraube	W-TM S(A4)	ls	[mm]	55	65	80	100
	W-TM SD	ls	[mm]	80	90	100	120

Tabelle 3: Mindestbauteildicke, minimale Achs- und Randabstände

Dübelgröße			М6	M8	M10	M12
Mindestbauteildicke	h _{min}	[mm]	135	135	140	160
Minimaler Achsabstand	S _{min}	[mm]	65	90	135	165
Minimaler Randabstand	C _{min}	[mm]	45	70	85	115

Turn Commonatament in the
Montagekennwerte,
Mindestbauteildicke,
minimale Achs- und Randabstände

Würth Schwerlastanker W-TM

Anhang 4

der europäischen technischen Zulassung

Tabelle 4: Bemessungsverfahren A,
Charakteristische Werte bei Zugbeanspruchung

Dübelgröße				М6	M8	M10	M12
Stahlversagen		··· · · · · · · · · · · · · · · · · ·		·	·	<u> </u>	
Charakteristische Zugtragfähigkeit, Dübeltyp W-TM, W-TM S, W-TM SD		$N_{Rk,s}$	[kN]	16,1	29,3	46,4	67,4
Teilsicherheitsbeiwert		γ _{Ms} 1)	[-]		1	,5	
Charakteristische Zugtragfähigkeit, Dübeltyp W-TM A4, W-TM S A4		$N_{Rk,s}$	[kN]	14,1	25,6	40,6	59,0
Teilsicherheitsbeiwert		γ _{Ms} 1)	[-]		1,	87	
Herausziehen							
Charakteristische Zugtragfähigkeit im ungerissenen Beton C20/25, Dübeltyp W-TM, W-TM S, W-TM SD		$N_{Rk,p}$	[kN]	9	12	16	20
Charakteristische Zugtragfähigkeit im ungerissenen Beton C20/25, Dübeltyp W-TM A4, W-TM S A4		$N_{Rk,p}$	[kN]	7,5	9	12	16
		C30/37	[-]	1,17	1,08		1,22
Erhöhungsfaktoren für N _{Rk,p}	Ψc	C40/50	[-]	1,33	1,15		1,41
		C50/60	[-]	1,50	1,23		1,55
Betonausbruch							
Effektive Verankerungstiefe		h _{ef}	[mm]	39,5	44,5	51,5	63,0
Achsabstand		S _{cr,N}	[mm]		3	h _{ef}	
Randabstand		C _{cr,N}	[mm]	1,5 h _{ef}			
Spalten						•	
Achsabstand		S _{cr,sp}	[mm]	160	200	260	280
Randabstand		C _{cr,sp}	[mm]	80	100	130	140
Teilsicherheitsbeiwert, Dübeltyp W-TM, W-TM S, W-TM SD	γм _г	$_{0}=\gamma_{\rm Msp}=\gamma_{\rm Mc}^{1)\ 2)$	[-]	1,8	2,1	2,1	1,5
Teilsicherheitsbeiwert, Dübeltyp W-TM A4, W-TM S A4	γм	$_{0}=\gamma_{\rm Msp}=\gamma_{\rm Mc}^{-1)(2)}$	[-]	1,5	1,8	1,8	1,8

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 5: Verschiebung unter Zuglast

Dübelgröße			M6	M8	M10	M12
Zuglast	N	[kN]	3,6	4,1	5,4	9,5
Verschiebung	δ_{N0}	[mm]	0,4	0,3	0,3	0,3
	$\delta_{N_{m{\omega}}}$	[mm]	1,2			

Bemessungsverfahren A,
· · · · · · · · · · · · · · · · · · ·
Charakteristische Werte bei Zugbeanspruchung,
Dübelverschiebungen

Würth Schwerlastanker W-TM

Anhang 5

der europäischen technischen Zulassung

 $^{^{2)}}$ Der Montagesicherheitsfaktor γ_2 ist enthalten

Tabelle 6: Bemessungsverfahren A,
Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M6	М8	M10	M12		
Stahlversagen ohne Hebelarm			<u> </u>	I				
Charakteristische Quertragfähigkeit, Dübeltyp W-TM, W-TM S, W-TM SD	$V_{Rk,s}$	[kN]	8,0	14,6	23,2	33,7		
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]		1,	25	-		
Charakteristisches Quertragfähigkeit, Dübeltyp W-TM A4, W-TM S A4	$V_{Rk,s}$	[kN]	7,0	12,8	20,3	29,5		
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]		1,	56			
Stahlversagen mit Hebelarm								
Charakteristisches Biegemoment, Dübeltyp W-TM, W-TM S, W-TM SD	$M_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,8		
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	1,25					
Charakteristisches Biegemoment, Dübeltyp W-TM A4, W-TM S A4	M _{Rk,s}	[Nm]	10,7	26,2	52,3	91,7		
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]		1,	56			
Betonausbruch auf der lastabgewand	ten Seite							
Faktor in Gleichung (5.6), ETAG 001, Anhang C, 5.2.3.3	k	[-]	1,0	1,0	1,0	2,0		
Teilsicherheitsbeiwert γ _{Mcp} ¹⁾ [-]				1,5				
Betonkantenbruch		-						
Wirksame Dübellänge unter Querlast	l _f	[mm]	39,5	44,5	51,5	63,0		
Wirksamer Dübelaußendurchmesser	d _{nom}	[mm]	10	12	14	18		
Teilsicherheitsbeiwert	γ _{Mc} ^{1) 2)}	[-]		1	,5			

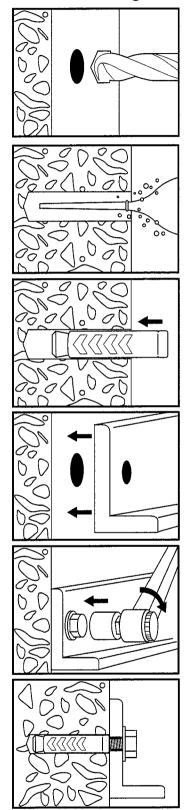
¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 7: Verschiebung unter Querlast

Dübelgröße			М6	М8	M10	M12
Querlast	Q	[kN]	5,1	6,9	7,6	9,5
\/	δ_{V0}	[mm]	6,0	5,3	5,3	5,0
Verschiebung	δ _{V∞}	[mm]	9,0	8,0	8,0	7,5

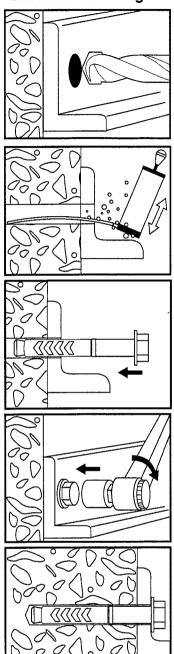
Würth Schwerlastanker W-TM

Bemessungsverfahren A, Charakteristische Werte bei Querbeanspruchung, Dübelverschiebungen


Anhang 6

der europäischen technischen Zulassung

²⁾ Der Montagesicherheitsfaktor γ_2 ist enthalten


Montageanweisung für Typ W-TM (A4) / W-TM S (A4)

Vorsteckmontage

Montageanweisung für Typ W-TM SD

Durchsteckmontage

Würth Schwerlastanker W-TM

Montageanweisungen

Anhang 7

der europäischen technischen Zulassung