

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA und der UEAtc

Datum:

Geschäftszeichen:

11.08.2010

122-1.21.8-64/10

Zulassungsnummer:

Z-21.8-1900

Antragsteller:

Hilti Deutschland GmbH

Hiltistraße 2 86916 Kaufering Geltungsdauer bis:


31. Januar 2015

Zulassungsgegenstand:

Hilti Schubverbinder HCC-K

Deutsches Institut für Bautechnik

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst sieben Seiten und vier Anlagen. Diese allgemeine bauaufsichtliche Zulassung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-21.8-1900 vom 26. Januar 2010. Der Gegenstand ist erstmals am 26. Januar 2010 allgemein bauaufsichtlich zugelassen worden.

Deutsches Institut

Allgemeine bauaufsichtliche Zulassung Nr. Z-21.8-1900

Seite 2 von 7 | 11. August 2010

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Allgemeine bauaufsichtliche Zulassung Nr. Z-21.8-1900

Seite 3 von 7 | 11. August 2010

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Zulassungsgegenstand ist die Beton-Beton Verbindung mittels Hilti Schubverbinder HCC-K 10, HCC-K 12, HCC-K 14 und HCC-K 16 und Injektionsmörtel Hilti HIT-RE 500-SD nach europäischer technischer Zulassung ETA-07/0260 oder Injektionsmörtel Hilti HIT-HY 150 MAX nach europäischer technischer Zulassung ETA-08/0352.

Der Hilti Schubverbinder HCC-K besteht aus einem Betonstabstahl mit aufgestauchtem Kopf. Er wird in ein mit Injektionsmörtel gefülltes Bohrloch im bestehenden Beton (Altbeton) gesteckt und durch Verbund zwischen dem Hilti Schubverbinder HCC-K, dem Injektionsmörtel und dem Beton verankert. Im Bereich des Neubetons (Aufbeton) erfolgt die Verankerung über den Kopf des Hilti Schubverbinders HCC-K durch Formschluss (Kopfbolzenverbindung).

Auf der Anlage 1 ist der Hilti Schubverbinder HCC-K im eingebauten Zustand dargestellt.

1.2 Anwendungsbereich

Die Beton-Beton Verbindung mittels Hilti Schubverbinder HCC-K darf für die Verbindung von Neubeton auf Altbeton verwendet werden.

Der Hilti Schubverbinder HCC-K darf in bewehrtem und unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach DIN EN 206-1:2001-07 "Beton - Teil 1: Festlegung, Eigenschaften, Herstellung und Konformität" verankert werden; die Verankerung im Altbeton darf auch in Beton der Festigkeitsklasse von mindestens B 25 und höchstens B 55 nach DIN 1045:1988-07 "Beton und Stahlbeton, Bemessung und Ausführung" erfolgen.

Der Hilti Schubverbinder HCC-K darf im gerissenen und ungerissenen Beton verankert werden.

Für die Verankerung im bestehenden Beton (Altbeton) ist ETA-07/0260, Abschnitt 1.2 bzw. ETA-08/0352, Abschnitt 1.2 maßgebend.

Werden Anforderungen hinsichtlich dynamischer Beanspruchungen oder Beanspruchungen durch Erdbeben gestellt, sind gesonderte Nachweise erforderlich.

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

Der Hilti Schubverbinder HCC-K muss in seinen Abmessungen und Werkstoffeigenschaften den Angaben der Anlagen entsprechen.

Die in dieser allgemeinen bauaufsichtlichen Zulassung nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Hilti Schubverbinders HCC-K müssen den beim Deutschen Institut für Bautechnik, bei der Zertifizierungsstelle und der fremdüberwachenden Stelle hinterlegten Angaben entsprechen.

Der Injektionsmörtel Hilti HIT-RE 500-SD entspricht der europäischen technischen Zulassung ETA-07/0260 und der Injektionsmörtel Hilti HIT-HY 150 MAX entspricht der europäischen technischen Zulassung ETA-08/0352. Abweichend zu den europäischen technischen Zulassungen wird der Betonstahl durch den Hilti Schubverbinders HCC-K ersetzt.

Deutsches Institut (für Bautechnik)

Allgemeine bauaufsichtliche Zulassung

Nr. Z-21.8-1900

Seite 4 von 7 | 11. August 2010

2.2 Verpackung, Lagerung und Kennzeichnung

2.2.1 Verpackung und Lagerung

Die zwei Komponenten des Injektionsmörtels werden ungemischt in Kartuschen zum Mischen entsprechend ETA-07/0260 bzw. ETA-08/0352 geliefert und gelagert.

2.2.2 Kennzeichnung

Verpackung, Beipackzettel oder Lieferschein des Schubverbinders muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Zusätzlich ist das Werkzeichen, die Zulassungsnummer und die vollständige Bezeichnung des Schubverbinders anzugeben. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.

Die Injektionsmörtel-Kartuschen sind entsprechend ETA-07/0260 bzw. ETA-08/0352 zu kennzeichnen.

Jeder Hilti Schubverbinders HCC-K ist mit dem Werkzeichen nach Anlage 2 dauerhaft zu kennzeichnen.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des Hilti Schubverbinders HCC-K mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung des Hilti Schubverbinders HCC-K nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Hilti Schubverbinders HCC-K eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Für Umfang, Art und Häufigkeit der werkseigenen Produktionskontrolle ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüfplan maßgebend.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials
- Ergebnis der Kontrolle und Prüfungen und, soweit zutreffend, Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

für Bautechnik

Allgemeine bauaufsichtliche Zulassung

Nr. Z-21.8-1900

Seite 5 von 7 | 11. August 2010

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die bestehende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch einmal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung des Hilti Schubverbinders HCC-K durchzuführen und es sind Stichproben zu entnehmen. Die Probennahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Für Umfang, Art und Häufigkeit der Fremdüberwachung ist der beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegte Prüfplan maßgebend.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Entwurf

Die Zulassung regelt nur die durch den Hilti Schubverbinder HCC-K übertragbaren Widerstände in der Fuge zwischen Altbeton und Neubeton. Das jeweilige Gesamtbauteil ist nicht Gegenstand dieser Zulassung.

Die Beton-Beton Verbindungen mittels Hilti Schubverbinder HCC-K sind ingenieurmäßig zu planen. DIN 1045-1:2008-08 ist zu berücksichtigen. Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.

Die Mindestbauteildicken und minimalen Rand- und Achsabstände für die Verankerung im Altbeton sind in den europäischen technischen Zulassungen ETA-07/0260 und ETA-08/0352 angegeben.

Die Verankerungstiefe $h_{\text{ef,neu}}$ im Neubeton (siehe Anlage 1 und Anlage 3) ist unter Beachtung der Dicke des Neubetons und Einhaltung der erforderlichen Betondeckung zu wählen.

Der minimale Randabstand der Verankerung im Neubeton darf folgenden Wert nicht unterschreiten: $c_{min} \ge 0.5 \cdot h_{ef,neu}$.

3.2 Bemessung

3.2.1 Verankerung im Altbeton (bestehendes Betonbauteil)

Die Verankerung des Hilti Schubverbinder HCC-K mit Injektionsmörtel Hilti HIT-RE 500-SD im Altbeton ist nach den Besonderen Bestimmungen, Abschnitt 2.1 und Abschnitt 4.2.1 der europäischen technischen Zulassung ETA-07/0260 zu bemessen. Die charakteristischen Dübelkennwerte für die Bemessung sind in der europäischen technischen Zulassung ETA-07/0260 angegeben.

Die Verankerung des Hilti Schubverbinder HCC-K mit Injektionsmörtel Hilti HIT-HY 150 MAX im Altbeton ist nach den Besonderen Bestimmungen, Abschnitt 2.1 und 4.2.1 der europäischen technischen Zulassung ETA-08/0352 zu bemessen. Die charakteristischen Dübelkennwerte für die Bemessung sind in der europäischen technischen Zulassung ETA-08/0352 angegeben.

1.21.8-64/10

Allgemeine bauaufsichtliche Zulassung

Nr. Z-21.8-1900

Seite 6 von 7 | 11. August 2010

Bei Verankerungen in Beton nach DIN 1045:1988-07 ist für den Nachweis des Betonausbruchs bei Zugbeanspruchung und des Betonkantenbruchs bei Querbeanspruchung in den Gleichungen (5.2.a) des Abschnittes 5.2.2.4 und (5.7a) des Abschnittes 5.2.3.4 im Anhang C der Leitlinie ETAG 001 der Wert für $f_{ck.cube}$ durch 0,97x β_{wN} zu ersetzen.

3.2.2 Verankerung im Neubeton (Aufbeton)

Die Verankerung im Neubeton (Aufbeton) ist nach dem Anhang C der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton, ETAG 001" (im folgenden Anhang C der Leitlinie genannt) unter Berücksichtigung der nachfolgenden Hinweise und Ergänzungen zu bemessen:

- Die charakteristischen Dübelkennwerte und die charakteristischen Achs- und Randabstände für den Nachweis nach dem Bemessungsverfahren A sind in Anlagen 3 und 4 angegeben.
- Für den Nachweis Betonausbruch (Abschnitt 5.2.2.4, Anhang C der Leitlinie) ist N⁰_{Rk,c} wie folgt zu ermitteln:

 $N_{Rk,c}^0 = 8.5 \cdot f_{ck,cube}^{0.5} \cdot h_{ef,neu}^{1.5}$

 $h_{ef,neu}$ = Verankerungstiefe im Neubeton, siehe Abschnitt 3.1, Anlage 1 und Anlage 3

• Ein Spalten des Betonbauteils bei Belastung kann ausgeschlossen werden, wenn der charakteristische Widerstand für Versagen bei Herausziehen und Betonausbruch für gerissenen Beton berechnet wird und eine Bewehrung vorhanden ist, die die Spaltkräfte aufnimmt und die Rissweite auf $w_k \leq 0,3$ mm begrenzt. Der erforderliche Querschnitt A_S der Bewehrung ist wie folgt zu berechnen:

$$A_{S,erf} = 0.5 \cdot \frac{\sum N_{Sd}}{f_{yk} / \gamma_{MS}} \ [mm^2]$$

 ΣN_{Sd} = Summe der Bemessungszugkraft der beanspruchten Dübel unter dem Bemessungswert der Einwirkungen [N]

 f_{vk} = Streckgrenze der Bewehrung [N/mm²]

 γ_{MS} = Teilsicherheitsbeiwert für die Bewehrung: 1,15

• Der Nachweis der unmittelbaren örtlichen Krafteinleitung in den Beton gilt als erbracht. Die Weiterleitung der zu verankernden Lasten im Bauteil ist nachzuweisen.

4 Bestimmungen für die Ausführung

4.1 Allgemeines

Die Herstellung der Beton-Beton Verbindung ist nach den gemäß Abschnitt 3.1 gefertigten Konstruktionszeichnungen vorzunehmen.

4.2 Einbau

Für die Verankerung im Altbeton (bestehendes Betonbauteil) mittels Injektionsmörtel Hilti HIT-RE 500-SD bzw. Hilti HIT-HY 150 MAX gelten die Besonderen Bestimmungen, Abschnitt 4.2.2 der europäischen technischen Zulassungen ETA-07/0260 bzw. ETA-08/0352.

Die Montagekennwerte sind in der jeweiligen europäischen technischen Zulassung angegeben.

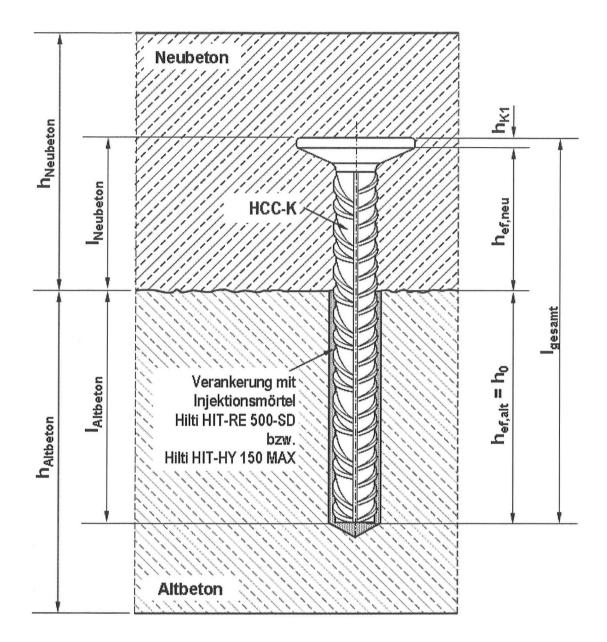
Deutsches Institut

Allgemeine bauaufsichtliche Zulassung Nr. Z-21.8-1900

Seite 7 von 7 | 11. August 2010

4.3 Kontrolle der Ausführung

Bei der Herstellung von Verankerungen muss der mit der Verankerung von Dübeln betraute Unternehmer oder der von ihm beauftragte Bauleiter oder ein fachkundiger Vertreter des Bauleiters auf der Baustelle anwesend sein. Er hat für die ordnungsgemäße Ausführung der Arbeiten zu sorgen.


Während der Herstellung der Verankerungen sind Aufzeichnungen über den Nachweis der vorhandenen Betonfestigkeitsklasse und die ordnungsgemäße Montage der Dübel vom Bauleiter oder seinem Vertreter zu führen.

Die Aufzeichnungen müssen während der Bauzeit auf der Baustelle bereitliegen und sind dem mit der Kontrolle Beauftragten auf Verlangen vorzulegen. Sie sind ebenso wie die Lieferscheine nach Abschluss der Arbeiten mindestens 5 Jahre vom Unternehmen aufzubewahren.

Andreas Kummerow Referatsleiter Berlin, 11. August 2010

Produkt und Einbauzustand

Erforderliche Länge im Neubeton: erf $I_{Neubeton} = h_{ef,neu} + h_{K1}$

Bemessung der Verankerung im Altbeton:

- gemäß ETA-07/0260 für Hilti HIT-RE 500-SD
- gemäß ETA-08/0352 für Hilti HIT-HY 150 MAX

Hilti Deutschland GmbH Hiltistraße 2 86916 Kaufering

Telefon (08191) 90-0 Telefax (08191) 90-1122 Hilti Schubverbinder HCC-K

Produkt und Einbauzustand

Anlage 1

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-21.8-1900

vom 11. August 2010

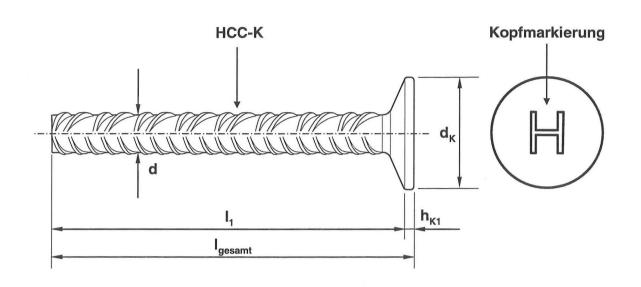


Tabelle 1: Dübelabmessungen

HCC-K			10	12	14	16
Nenndurchmesser	d	[mm]	10	12	14	16
Durchmesser des Ankerkopfes	d _K	[mm]	30	36	42	48
Maß des Ankerkopfes	h _{K1}	[mm]	3	3	3	3
Gesamtlänge	I _{gesamt}	[mm]	< 650	< 650	< 650	< 650

Tabelle 2: Werkstoff

HCC-K	10	12	14	16
Werkstoff		gemäß DIN 4	I BSt 500 S 188-1:1984-09 38-2:1986-06	

Hilti Deutschland GmbH

Telefon (08191) 90-0 Telefax (08191) 90-1122

Hiltistraße 2

86916 Kaufering

Hilti Schubverbinder HCC-K

Dübelabmessungen und Werkstoffe

Anlage 2

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-21.8-1900 vom 11. August 2010

Deutsches Instit für Bautechnik

Tabelle 3: Charakteristische Werte bei Zugbeanspruchung für die Verankerung im Neubeton

нсс-к			10	12	14	16
Stahlversagen						
Charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	43	62	85	111
Teilsicherheitsbeiwert	γ _{Ms,N}	[-]	1,4			
Herausziehen						
Charakteristische Zugtragfähigkeit im gerissenen Beton C20/25	$N_{Rk,p}$	[kN]	94	136	185	241
Charakteristische Zugtragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	132	190	259	338
Erhöhungsfaktoren für die charakt. Tragfähigkeit N _{Rk,p} im gerissenen und ungerissenen Beton	Ψc _	C30/37 C40/50 C50/60	1,48 2,00 2,40			
Teilsicherheitsbeiwert	γмр	[-]	1,5 ¹⁾			
Betonausbruch 2) und Spalten 3)						
Effektive Verankerungstiefe	h _{ef,neu}	[mm]	≥ 40	≥ 40	≥ 40	≥ 40
kritischer Randabstand c _{cr,N} =	C _{cr,sp}	[mm]	1,5 ⋅ h _{ef,neu}			
kritischer Achsabstand s _{cr,N} =	S _{cr,sp}	[mm]	3,0 ⋅ h _{ef,neu}			
Teilsicherheitsbeiwert	γмс	[-]	1,5 ¹⁾			

¹⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten.

Deutsches Institu für Bautechnik

5

Hilti Deutschland GmbH Hiltistraße 2 86916 Kaufering

Telefon (08191) 90-0 Telefax (08191) 90-1122 Hilti Schubverbinder HCC-K

Verankerung im Neubeton
Charakteristische Werte bei
Zugbeanspruchung

Anlage 3

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-21.8-1900 vom 11. August 2010

²⁾ Für den Nachweis Betonausbruch (Abschnitt 5.2.2.4, Anhang C, ETAG 001) ist $N^0_{Rk,C}$ wie folgt zu ermitteln: $N^0_{Rk,C} = 8.5 \cdot f_{ck,cube}^{0.5} \cdot h_{ef,neu}^{1.5}$ (siehe Abschnitt 3.2.2)

³⁾ Der Nachweis Spalten bei Belastung kann entfallen, wenn die Bedingungen in Abschnitt 3.2.2 eingehalten werden.

Tabelle 4: Charakteristische Werte bei Querbeanspruchung für die Verankerung im Neubeton

HCC-K			10	12	14	16		
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	22	31	42	55		
Teilsicherheitsbeiwert	γ̃Ms,V	[-]	1,5					
Stahlversagen mit Hebelarm								
Charakteristische Quertragfähigkeit	M ⁰ _{Rk,s}	[Nm]	65	112	178	265		
Teilsicherheitsbeiwert	γ̃Ms,V	[-]	1,5					
Betonausbruch auf der lastabgewa	ındten Se	ite						
Faktor k gem. Gleichung (5.6) ETAG 001, Anhang C	k	[-]		1,0 für h _{ef,neu} < 60mm 2,0 für h _{ef,neu} ≥ 60mm				
Teilsicherheitsbeiwert	γмср	[-]	1,5 ¹⁾					
Betonkantenbruch								
Wirksame Dübellänge bei Querlast	I _f	[-]	h _{ef,neu}					
Wirksamer Durchmesser	d_{nom}	[-]	10	12	14	16		
Teilsicherheitsbeiwert	γмс	[-]		1,	5 ¹⁾	Manager Annual Property of the Parket of the		

¹⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ ist enthalten.

Deutsches Institut für Bautechnik

Hilti Deutschland GmbH Hiltistraße 2 86916 Kaufering

Telefon (08191) 90-0 Telefax (08191) 90-1122 Hilti Schubverbinder HCC-K

Verankerung im Neubeton Charakteristische Werte bei Querbeanspruchung Anlage 4

zur allgemeinen bauaufsichtlichen Zulassung Nr. Z-21.8-1900 vom 11. August 2010