Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-05/0158

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity:

from bis to

vom

Herstellwerk

Manufacturing plant

MÜPRO Hochleistungsanker BZ MÜPRO Heavy Duty Anchor BZ

MÜPRO GmbH Hessenstraße 11 65719 Hofheim/Taunus

Kraftkontrolliert spreizender Dübel in den Größen M8, M10, M12, M16, M20 und M24 zur Verankerung im Beton

Torque controlled expansion anchor of sizes M8, M10, M12, M16, M20 and M24 for use in concrete

14. März 2011

30. Januar 2014

MÜPRO Werk 1, Deutschland

Diese Zulassung umfasst This Approval contains

16 Seiten einschließlich 8 Anhänge 16 pages including 8 annexes

Diese Zulassung ersetzt This Approval replaces ETA-05/0158 mit Geltungsdauer vom 09.06.2009 bis 30.01.2014 ETA-05/0158 with validity from 09.06.2009 to 30.01.2014

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Seite 2 von 16 | 14. März 2011

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitaliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 2: Kraftkontrolliert spreizende Dübel", ETAG 001-02.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- 5 Bundesgesetzblatt Teil I 2006, S. 2407, 2416
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 16 | 14. März 2011

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Der MÜPRO Hochleistungsanker BZ ist ein Dübel aus galvanisch verzinktem Stahl in den Größen M8, M10, M12, 70 M12, M16, M20 und M24 oder aus nichtrostendem Stahl oder aus hochkorrosionsbeständigem Stahl in den Größen M8, M10, M12, 70 M12, M16 und M20, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Im Anhang 1 sind Produkt und Einbauzustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt.

Der Dübel darf für Verankerungen, an die Anforderungen an die Feuerwiderstandsfähigkeit gestellt werden, verwendet werden.

Der Dübel darf nur für Verankerungen unter statischer oder quasi-statischer Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden. Er darf im gerissenen und ungerissenen Beton verankert werden.

MÜPRO Hochleistungsanker BZ aus galvanisch verzinktem Stahl

Der MÜPRO Hochleistungsanker BZ aus galvanisch verzinktem Stahl darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

MÜPRO V4A Hochleistungsanker BZ aus nichtrostendem Stahl

Der MÜPRO V4A Hochleistungsanker BZ darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

MÜPRO HCR Hochleistungsanker BZ aus hochkorrosionsbeständigem Stahl

Der MÜPRO HCR Hochleistungsanker BZ darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

Seite 4 von 16 | 14. März 2011

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 2 bis 4. Die in den Anhängen 2 bis 4 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

In Bezug auf die Anforderungen des Brandschutzes kann angenommen werden, dass der Dübel die Anforderungen der Brandverhaltensklasse A1 gemäß den Vorschriften der Entscheidung 96/603/EG der europäischen Kommission (in geänderter Fassung 2000/605/EG), erfüllt.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 5 und 6 angegeben.

Die charakteristischen Werte für die Bemessung der Verankerungen in Bezug auf die Feuerwiderstandsfähigkeit sind in den Anhängen 7 und 8 angegeben. Sie gelten für die Verwendung in einem System, das den Anforderungen einer bestimmten Feuerwiderstandsklasse genügen muss.

Jeder Dübel ist mit dem Herstellerkennzeichen, dem Handelsnamen, der Gewindegröße und der maximalen Dicke des Anbauteils gekennzeichnet. Der MÜPRO V4A Hochleistungsanker BZ ist zusätzlich mit der Bezeichnung "A4" gemäß Anhang 2 gekennzeichnet. Der MÜPRO HCR Hochleistungsanker BZ ist zusätzlich mit der Bezeichnung "HCR" gemäß Anhang 2 gekennzeichnet.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 2 "Kraftkontrolliert spreizende Dübel", auf der Grundlage der Option 1.

Die Beurteilung des Dübels für den vorgesehenen Verwendungszweck in Bezug auf die Feuerwiderstandsfähigkeit erfolgte entsprechend dem Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit".

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Seite 5 von 16 | 14. März 2011

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/ Rohstoffe/ Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt⁹.

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den im Prüfplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung, der nicht zusammen mit der Zulassung veröffentlicht und nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt wird.
Siehe Abschnitt 3.2.2.

Seite 6 von 16 | 14. März 2011

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Zulassungsinhabers (für die Herstellung verantwortliche juristische Person).
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 1),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, für kraftkontrolliert spreizende Dübel unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern, im gerissenen oder ungerissenen Beton usw.) angegeben.

Seite 7 von 16 | 14. März 2011

Bei der Bemessung von Verankerungen unter Brandbeanspruchung sind die Bestimmungen des Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit" zu beachten. Die maßgebenden charakteristischen Dübelkennwerte sind in den Anhängen 7 und 8 angegeben. Die Bemessungsmethode gilt für eine einseitige Brandbeanspruchung des Bauteils. Bei mehrseitiger Brandbeanspruchung kann die Bemessungsmethode nur angewendet werden, wenn der Randabstand des Dübels c ≥ 300 mm beträgt.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

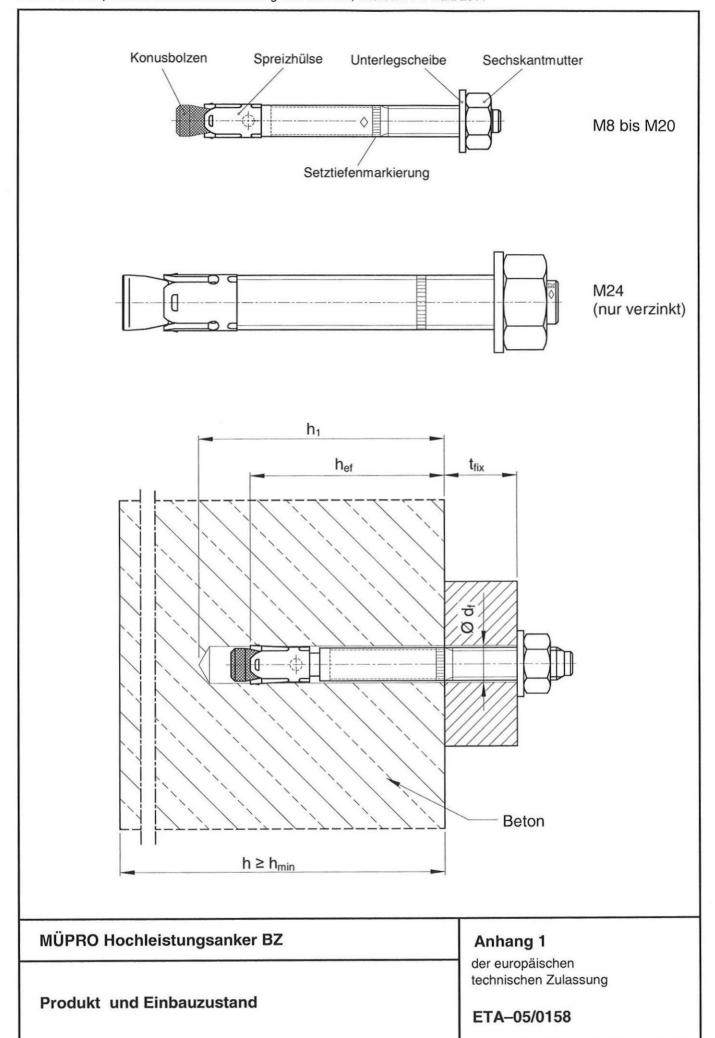
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den angegebenen Werkzeugen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Reinigung des Bohrlochs vom Bohrmehl,
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die Setzmarkierung des Dübels nicht über die Betonoberfläche hinausragt,
- Aufbringen des im Anhang 3 angegebenen Drehmoments mit einem überprüften Drehmomentenschlüssel.

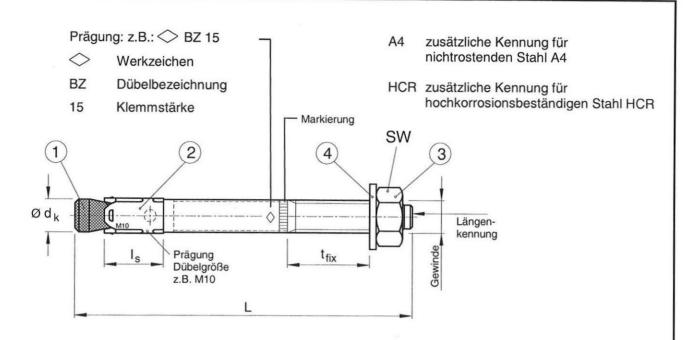
5 Vorgaben für den Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Gewindedurchmesser,
- maximaler Durchmesser des Durchgangslochs im anzuschließenden Bauteil,
- maximale Dicke der Anschlusskonstruktion,
- Mindestverankerungstiefe,
- Mindest-Bohrlochtiefe,
- Drehmoment,


Seite 8 von 16 | 14. März 2011


- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Setzwerkzeuge,
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

Georg Feistel Abteilungsleiter

8.06.01-10/11

Längenkennung ¹			D (d)									
Dübellänge min	≥	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5
Dübellänge max	<	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2

Längenkennung 1)		N (n)	O (o)	P (p)	Q (q)	R (r)	S (s)	T (t)	U (u)	V (v)	W (w)	X (x)	Y (y)	Z (z)
Dübellänge min	≥	203,2	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2
Dübellänge max	<	215,9	228,6	241,3	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	483,0

¹⁾ Für den Dübel 70 M12 ist die Längenkennung in der Klammer maßgebend

Tabelle 1: Dübelabmessungen

	Dübelgröße			M8	M10	M12	70 M12	M16	M20	M24
1	Konusbolzen	Gewinde		M8	M10	M12	M12	M16	M20	M24
		$\emptyset d_k$	=	7,9	9,8	11,8	12,0	15,7	19,7	24
		t _{fix} max	≤	3000	3000	3000	3000	3000	3000	3000
		L max		3065	3080	3095	3095	3120	3137	3161
2	Spreizblech	Is	=	14,5	18,5	22	22	24,3	28	32
3	Sechskantmutter	SW		13	17	19	19	24	30	36

Maße in mm

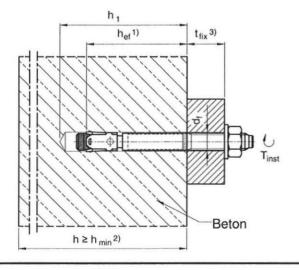

MÜPRO Hochleistungsanker BZ	Anhang 2
	der europäischen technischen Zulassung
Dübelabmessungen	ETA-05/0158

Tabelle 2: Benennung und Werkstoffe

Teil	Dübelgröße	Stahl galvanisch verzinkt M8 bis M20	Stahl galvanisch verzinkt M24	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl (HCR)
1	Konusbolzen	Kunststoffüberzug Spreizkonus, Stahl,		Nichtrostender Stahl 1.4401, 1.4404, 1.4571 oder 1.4578, EN 10088	Hochkorrosions- beständiger Stahl 1.4529 oder 1.4565, EN 10088
		(M8 bis M20)	Spreizkonus, Stahl, Festigkeitsklasse 8, nach EN 20898-2	Konus mit Kunststoffüberzug	Konus mit Kunststoffüberzug
2	Spreizblech	Stahl nach EN 1008 1.4301 oder 1.4401 Stahl EN 10139 für	für M8-M20;	Nichtrostender Stahl 1.4401 oder 1.4571, EN 10088	Nichtrostender Stahl 1.4401 oder 1.4571, EN 10088
3	Sechskantmutter	Festigkeitsklasse 8 galvanisch verzinkt,		ISO 3506, Festigkeitskasse 70, nichtrostender Stahl 1.4401 oder 1.4571, EN 10088, beschichtet	ISO 3506, Festig- keitskasse 70, hoch- korrosionsbeständi- ger Stahl 1.4529 oder 1.4565, EN 10088, beschichtet
4	Unterlegscheibe nach EN ISO 7089, oder EN ISO 7093, oder EN ISO 7094	Stahl, galvanisch ve	rzinkt	Nichtrostender Stahl 1.4401 oder 1.4571, EN 10088	Hochkorrosions- beständiger Stahl 1.4529 oder 1.4565, EN 10088

Tabelle 3: Montagedaten

Dübelgröße				M8	M10	M12	70 M12	M16	M20	M24
Bohrernenndurchme	esser	d_0	[mm]	8	10	12	12	16	20	24
Bohrerschneidendur	rchmesser	$d_{cut} \le$	[mm]	8,45	10,45	12,5	12,5	16,5	20,55	24,55
Bohrlochtiefe		h₁ ≥	[mm]	60	75	90	90	110	125	145
Effektive Verankeru	ngstiefe	h _{ef}	[mm]	46	60	65	70	85	100	115
Drehmoment beim	Stahl, galvanisch verzinkt	T_{inst}	[Nm]	20	25	45	45	90	160	200
Verankern	Nichtrostender Stahl A4, HCR	T _{inst}	[Nm]	20	35	50	50	110	200	-
Durchgangsloch im anzuschließenden B	Bauteil	$d_f \leq$	[mm]	9	12	14	14	18	22	26

- 1) effektive Verankerungstiefe h_{ef} 2) Mindestbauteildicke h_{min}
- 3) Anbauteildicke tfix

MÜPRO Hochleistungsanker BZ

Benennung und Werkstoffe, Montage- und Dübelkennwerte

Anhang 3

der europäischen technischen Zulassung

Tabelle 4: Standardbauteildicke und zugehörige minimale Achs- und Randabstände

Dübelgröße		M8	M10	M12	70 M12	M16	M20	M24
Stahl galvanisch verzinkt								
Mindestbauteildicke	h _{std} [mm]	100	120	130	140	170	200	230
gerissener Beton								
minimaler Achsabstand	s _{min} [mm]	40	45	60	60	60	95	100
	für c ≥ [mm]	70	70	100	100	100	150	180
minimaler Randabstand	c _{min} [mm]	40	45	60	60	60	95	100
	für s ≥ [mm]	80	90	140	140	180	200	220
ungerissener Beton								
minimaler Achsabstand	s _{min} [mm]	40	45	60	60	65	90	100
	für c ≥ [mm]	80	70	120	120	120	180	180
minimaler Randabstand	c _{min} [mm]	50	50	75	75	80	130	100
	für s ≥ [mm]	100	100	150	150	150	240	220
Nichtrostender Stahl A4, H	ICR							
Mindestbauteildicke	h _{std} [mm]	100	120	130	140	160	200	-
gerissener Beton								
minimaler Achsabstand	s _{min} [mm]	40	50	60	60	60	95	-
	für c ≥ [mm]	70	75	100	100	100	150	-
minimaler Randabstand	c _{min} [mm]	40	55	60	60	60	95	-
	für s ≥ [mm]	80	90	140	140	180	200	-
ungerissener Beton								
minimaler Achsabstand	s _{min} [mm]	40	50	60	60	65	90	-
	für c ≥ [mm]	80	75	120	120	120	180	-
minimaler Randabstand	c _{min} [mm]	50	60	75	75	80	130	-
	für s ≥ [mm]	100	120	150	150	150	240	-

Zwischenwerte dürfen interpoliert werden.

Tabelle 5: Mindestbauteildicke und zugehörige minimale Achs- und Randabstände

Dübelgröße			M8	M10	M12	70 M12	M16	M20	M24
Stahl galvanisch verzinkt	und nichtro	stende	r Stahl	A4, HCR					
Mindestbauteildicke	h _{min}	[mm]	80	100	110	120	140	-	-
gerissener Beton									
minimaler Achsabstand	S _{min}	[mm]	40	45	60	60	70	-	-
	für c ≥	[mm]	70	90	100	100	160	-	-
minimaler Randabstand	C _{min}	[mm]	40	50	60	60	80	-	-
	für s ≥	[mm]	80	115	140	140	180	-	-
ungerissener Beton									
minimaler Achsabstand	S _{min}	[mm]	40	60	60	60	80	-	-
	für c ≥	[mm]	80	140	120	120	180	-	-
minimaler Randabstand	C _{min}	[mm]	50	90	75	75	90	-	-
	fürs≥	[mm]	100	140	150	150	200	-	-

Zwischenwerte dürfen interpoliert werden.

MÜPRO	Hochleistungsanl	ker	BZ
--------------	------------------	-----	----

Mindestbauteildicke, minimale Achs- und Randabstände

Anhang 4

der europäischen technischen Zulassung

Tabelle 6:	Bemessungsverfahren A,	Charakteristische Werte bei Zugbeanspruchung
------------	------------------------	--

Dübelgröße			BAO	1440	1440	70 8440	1440	1400	1101
			M8	M10	M12	70 M12	M16	M20	M24
Stahlversagen, Stahl galvanisch verz		FL 5 17	10	07		1 40			
charakteristische Zugtragfähigkeit Teilsicherheitsbeiwert	N _{Rk,s}	[kN]	16	27	39	40	60	86	126
	IMs	[-]	L	1,53		1,5		1,6	1,5
Stahlversagen , Nichtrostender Stahl									
charakteristische Zugtragfähigkeit	N _{Rk,s}	[kN]	16	27	40	40	64	108	-
Teilsicherheitsbeiwert	γ _{Ms}	[-]			1,5			1,68	-
Herausziehen									
charakteristische Tragfähigkeit im	N	[kN]	5	9	12	16	25	1)	1)
gerissenen Beton C20/25	$N_{Rk,p}$	[KIN]	5	9	12	16	25		
charakteristische Tragfähigkeit im	$N_{Rk,p}$	[kN]	12	16	20	25	35	1)	1)
ungerissenen Beton C20/25	™Rk,p	[KI4]	12	10	20	25	33		
Spalten bei Standardbauteildicke									
Der höhere der beiden maßgebenden						,			
Standard- Stahl galvanisch verzinkt	h _{std} ≥	[mm]	100	120	130	140	170	200	230
bauteildicke Nichtrostender Stahl A4, HCF	R h _{std} ≥	[mm]	100	120	130	140	160	200	-
Fall 1								,	
charakteristische Tragfähigkeit	1 ⁰ Rk,sp 4)	[kN]	9	12	16	20	30	40	1)
IIII Beton 626/25		0.8% 5850						10	
zugehöriger Achsabstand	S _{cr,sp}	[mm]				3 h _{ef}			
zugehöriger Randabstand	[mm]				1,5 h _{ef}				
Fall 2									
Stahl galvanisch verzinkt									
charakteristische Tragfähigkeit	1 ⁰ Rk,sp 4)	[kN]	12	16	20	25	35	1)	1)
IIII Detoil 020/23			12	10		25	00		
zugehöriger Achsabstand	S _{cr,sp} ⁵⁾	[mm]			4 h _{ef}			4,4 h _{ef}	3 h _{ef}
zugehöriger Randabstand	C _{cr,sp} 5)	[mm]			2 h _{ef}			2,2 h _{ef}	1,5 h _{ef}
Nichtrostender Stahl A4, HCR						,			
charakteristische Tragfähigkeit	1 ⁰ Rk,sp 4)	[kN]	12	16	20	25	35	1)	-
IIII Delon 020/23	111111111111111111111111111111111111111		N-2-4	19/1535					
zugehöriger Achsabstand	S _{cr,sp} ⁵⁾	[mm]	230	250	260	280	400	440	-
Zugerioriger Haridabstaria	C _{cr,sp} 5)	[mm]	115	125	130	140	200	220	-
Spalten bei Mindestbauteildicke									
Mindestbauteildicke	h _{min} ≥	[mm]	80	100	110	120	140	-	-
charakteristische Tragfähigkeit	J ⁰ Rk,sp ⁴⁾	[kN]	12	16	20	25	35	-	-
	• nk,sp								
zugehöriger Achsabstand	S _{cr,sp} 5)	[mm]			5 h _{ef}			-	-
zugehöriger Randabstand	C _{cr,sp} 5)	[mm]			2,5 h _{ef}			-	-
	C30/37	[-]				1,22			
1111100	C40/50	[-]				1,41			
	C50/60	[-]				1,55			
Betonausbruch									
effektive Verankerungstiefe	h _{ef}	[mm]	46	60	65	70	85	100	115
Achsabstand	S _{cr,N}	[mm]				3 h _{ef}			
Randabstand	C _{cr,N}	[mm]				1,5 h _{ef}			
Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma_{Ms}$	$_{\rm sp} = \gamma_{\rm Mc}^{(3)}$	[-]				1,5 ²⁾			

¹⁾ Herausziehen ist nicht maßgebend

MÜPRO Hochleistungsanker BZ

Bemessungsverfahren A, Charakteristische Werte bei Zugbeanspruchung

Anhang 5

der europäischen technischen Zulassung

²⁾ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2 = 1,0$ enthalten

³⁾ Sofern andere nationale Regelungen fehlen

⁴⁾ Beim Nachweis gegen Spalten nach ETAG 001 Anhang C, ist in Gleichung (5.3) bei Einhaltung der zugehörigen Bauteilabmessungen für $N_{Rk,c}^0$ der hier angegebenen Wert $N_{Rk,sp}^0$ zu verwenden ($\psi_{ucr,N} = 1,0$).

⁵⁾ Die Werte $s_{cr,sp}$ und $c_{cr,sp}$ dürfen für Bauteildicken $h_{min} < h < h_{std}$ (Fall 2) linear interpoliert werden ($\psi_{h,sp}$ = 1,0).

Tabelle 7: Verschiebung unter Zugbeanspruchung

Dübelgröße			M8	M10	M12	70 M12	M16	M20	M24
Stahl galvanisch verzinkt									
Zuglast im gerissenen Beton	N	[kN]	2,4	4,3	5,7	7,6	11,9	17,1	21,1
zugehörige Verschiebungen	δ_{N0}	[mm]	0,6	1,0	0,7	0,4	1,0	0,9	0,7
	δ_{N^∞}	[mm]	1,4	1,2	1,0	1,4	1,3	1,0	1,2
Zuglast im ungerissenen Beton	N	[kN]	5,7	7,6	9,5	11,9	16,7	23,8	29,6
zugehörige Verschiebungen	δ_{N0}	[mm]	0,4	0,5	0,3	0,7	0,3	0,4	0,5
	$\delta_{N\infty}$	[mm]		0,8		1,4		0,8	
Nichtrostender Stahl A4, HCR									
Zuglast im gerissenen Beton	N	[kN]	2,4	4,3	5,7	7,6	11,9	17,1	-
zugehörige Verschiebungen	δ_{N0}	[mm]	0,7	1,8	0,8	0,4	0,7	0,9	-
	$\delta_{N\infty}$	[mm]	1,2	1,4	1,4	1,4	1,4	1,0	-
Zuglast im ungerissenen Beton	N	[kN]	5,8	7,6	9,5	11,9	16,7	23,8	-
zugehörige Verschiebungen	δ_{N0}	[mm]	0,6	0,5	0,5	0,7	0,2	0,4	-
	$\delta_{N^{\infty}}$	[mm]	1,2	1,0	1,0	1,4	0,4	0,8	-

Tabelle 8: Bemessungsverfahren A, Charakteristische Werte bei Querbeanspruchung

Dübelgröße			M8	M10	M12	70 M12	M16	M20	M24
Stahlversagen ohne Hebelarm, Stahl g	alvanisch	verzink	t						
charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	15	22	33	30	60	69	114
Teilsicherheitsbeiwert	YMs 1)	[-]			1,25			1,33	1,25
Stahlversagen ohne Hebelarm, Nichtro	stender S	Stahl A4,	, HCR						
charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	13	20	30	30	55	86	-
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,25			1,4	-
Stahlversagen mit Hebelarm, Stahl galv		erzinkt							
charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	23	47	82	82	209	363	898
Teilsicherheitsbeiwert	YMs 1)	[-]			1,25			1,33	1,25
Stahlversagen mit Hebelarm, Nichtroste		hl A4, F	ICR						
charakteristisches Biegemoment	M ⁰ _{Rk,s}	[Nm]	26	52	92	92	233	454	-
Teilsicherheitsbeiwert	YMs 1)	[-]			1,25			1,4	-
Betonausbruch auf der lastabgewandt	en Seite								
Faktor in Gleichung (5.6) ETAG 001, Anhang C, 5.2.3.3	k	[-]	2,0	2,0	2,0	2,0	2,0	2,0	2,0
Teilsicherheitsbeiwert	γ _{Mcp} 1)	[-]				1,5 ²⁾			
Betonkantenbruch									
wirksame Dübellänge bei Querlast	l _f	[mm]	46	60	65	70	85	100	115
wirksamer Außendurchmesser	d _{nom}	[mm]	8	10	12	12	16	20	24
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]				1,5 ²⁾			

¹⁾ Sofern andere nationale Regelungen fehlen

Tabelle 9: Verschiebung unter Querlast

Dübelgröße			M8	M10	M12	70 M12	M16	M20	M24
Stahl galvanisch verzinkt									
Querlast im gerissenen und ungerissenen Beton	V	[kN]	8,6	12,6	18,9	17,1	34,3	36,8	64,9
zugehörige Verschiebungen	δ_{V0}	[mm]	2,3	2,2	3,0	2,2	4,0	1,8	3,5
	δ _{V∞}	[mm]	3,5	3,3	4,6	3,4	6,0	2,7	5,3
Nichtrostender Stahl A4, HCR									
Querlast im gerissenen und ungerissenen Beton	V	[kN]	7,3	11,6	16,9	16,9	31,3	43,8	-
zugehörige Verschiebungen	δ_{V0}	[mm]	3,2	4,4	5,2	5,2	6,5	2,9	-
	δ _{V∞}	[mm]	4,8	6,6	7,8	7,8	9,8	4,3	-

MÜPRO Hochleistungsanker BZ

Bemessungsverfahren A, Charakteristische Werte bei Querbeanspruchung, Dübelverschiebungen

Anhang 6

der europäischen technischen Zulassung

²⁾ In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_1 = \gamma_2 = 1,0$ enthalten

Charakteristische Zugtragfähigkeit unter Brandbeanspruchung	im gerissenen und ungerissenen Beton C20/25 to C50/60
Tabelle 10:	

11.				5 5				lissellell Detail		2000	3 3	2000	3 5	-	1	4			1	١,	\vdash		3		
	Dubelgroise			M8	_	7		O D		\dashv	ZIM	M12, 70 M12	7	4	≥	9LW	٦		MZO		\dashv		M24		
blete	R Feuerwiderstandsdauer [min]	: <u>[</u>	30	09	06	120	30	6 09	90	120 30	09 0	06	120	30	09	90	120	30	09	90 1	120 3	30 6	6 09	90 120	20
	Stahlversagen, stahl galvanisch verzinkt	ınisch	verzi	nkt																					
	charakteristische N _{Rks} Tragfähigkeit [kN]	N _{Rk,s,fi} [KN]	1,4	1,4 1,1 0,8		0,7	2,2	1,8	1,4 1,2	,2 3,2	2 2,8	8 2,4	1 2,2	6,0	5,2	4,4 4,0		9,4	8,2	6,9	6,3	3,6 1	1,8	13,6 11,8 10,0 9,1	-
	Stahlversagen, Nichtrostender Stahl A4, HCR	nder S	tahl,	A4, F	1CR																				
D7	charakteristische N _{Pk.s} Tragfähigkeit [kN]	y ,	3,8	2,9	2,0	1,6	6,9	5,2 3	3,5 2	2,7 11	11,5 8,6	6 5,6	3 4,2	_	21,5 16,0 10,5 7,8	10,5		33,5	33,5 25,0 16,4 12,1	6,4 1.			,	1	
	Herausziehen																								
	charakteristische Tragfähigkeit in Beton (KN)25 bis C50/60	N _{Rk,p,fi} [kN]		1,3		1,0		2,3		1,8	3,0	0	2,4		6,3		5,0		0,6		7,2	<u>+</u>	11,0	8,8	ω
	Betonversagen																								
	charakteristische Tragfähigkeit in Beton C20/25 bis C50/60	N ^o Rk,c,fi [KN]		2,6		2,1	4,	5,0	4	4,0	6,1	-	4,9		12,0		9,6	-	18,0	-	14,4	22	25,5	20,4	4,
	Achsabstand S _{cr}	S _{cr,N,fi}											4	$4 \times h_{ef}$											
	Randabstand C _{cr}	Ccr,N,fi											2	2x h_{ef}											
	Minimale Achs- und Randabstände unter Brandbeanspruchung von einer Seite											c	ach /	nach Anhang 4	4 gr										
	Minimale Achs- und Randabstände unter Brandbeanspruchung von mehr als einer Seite									u,	Smin Nã	ach A	nhar	s _{min} nach Anhang 4; c _{min} ≥ 300 mm	Min VI	300 n	Æ								
1																									ĺ

MÜPRO Hochleistungsanker BZ

Charakteristische Zugtragfähigkeit unter Brandbeanspruchung

Anhang 7

der europäischen technischen Zulassung

Sofern andere nationale Regelungen fehlen, wird für Brandbeanspruchung ein Sicherheitsbeiwert von m.f. = 1,0 empfohlen.

Tabelle 11: Charakteristische Quertragfähigkeit unter Brandbeanspruchung im gerissenen und ungerissenen Beton C20/25 bis C50/60

Betonausbruch auf der lastabgewandten Seite

Nach Gleichung (5.6) der ETAG 001, Annex C, 5.2.3.3 muss der k-Wert 2,0 und der maßgebende Wert N⁰ RK, G, in aus Tabelle 10 berücksichtigt werden.

Betonkantenbruch

Der Ausgangswert V^o_{Rk.c.fi} für die Charakteristische Tragfähigkeit in Beton C20/25 bis C50/60 unter Brandbeanspruchung lässt sich wie folgt berechnen:

mit V0 Rk.c charakteristische Tragfähigkeit im gerissenen Beton C20/25 bei normaler Temperatur. $V_{Rk,c,fi}^0 = 0,20 \times V_{Rk,c}^0$ (R120) $V_{Rk,c,fi}^{0} = 0,25 \times V_{Rk,C}^{0}$ (R30, R60, R90)

Sofern andere nationale Regelungen fehlen, wird für Brandbeanspruchung ein Sicherheitsbeiwert von 2011 = 1,0 empfohlen.

MÜPRO H

Charakteristische Quertragfähigkeit unter Brandbeanspruchung

Anhang 8

der europäischen technischen Zulassung