Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +493078730-0 Fax: +493078730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA Member of EOTA

Europäische Technische Zulassung ETA-10/0261

Handelsbezeichnung Trade name

SIKLA Injektionssystem VMU für Beton SIKLA Injection system VMU for concrete

Zulassungsinhaber Holder of approval

Sikla Holding Ges.m.b.H. Kornstraße 14

4614 MARCHTRENK

ÖSTERREICH

Zulassungsgegenstand und Verwendungszweck

Verbunddübel mit Ankerstange in den Größen M8, M10, M12, M16, M20, M24 und M30 zur Verankerung im ungerissenen Beton

Generic type and use of construction product

Bonded anchor with anchor rod of sizes M8, M10, M12, M16, M20, M24 and M30 for use in non-cracked concrete

Geltungsdauer: vom

9. Juli 2010

Validity:

19. Januar 2011

from bis to

19. Januar 2011

verlängert vom extended

19. Januar 2016

from bis

to

Sikla Herstellwerk 1

Herstellwerk Manufacturing plant

Diese Zulassung umfasst This Approval contains

17 Seiten einschließlich 8 Anhänge 17 pages including 8 annexes

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Seite 2 von 17 | 19. Januar 2011

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitaliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung genannten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- 5 Bundesgesetzblatt Teil I 2006, S. 2407, 2416
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 17 | 19. Januar 2011

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der SIKLA Injektionssystem VMU für Beton ist ein Verbunddübel, der aus einer Mörtelkartusche mit SIKLA Injektionsmörtel VMU und einer Ankerstange mit Sechskantmutter und Unterlegscheibe in den Größen M8, M10, M12, M16, M20, M24 und M30 besteht. Die Ankerstange (einschließlich Mutter und Unterlegscheibe) besteht aus galvanisch verzinktem oder aus feuerverzinktem Stahl (VMU-A oder V-A), aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571 oder 1.4362 (VMU-A A4 oder V-A A4) oder aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565 (VMU-A HCR oder V-A HCR).

Der Dübel wird durch Verbund zwischen Ankerstange, Injektionsmörtel und Beton verankert. Im Anhang 1 sind das Produkt und der Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender oder quasi-ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf nur im ungerissenen Beton verankert werden.

Der Dübel darf in trockenem oder nassem Beton, auch in mit Wasser gefüllte Bohrlöcher, gesetzt werden.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

Temperaturbereich I: -40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und

max. Kurzzeit-Temperatur +80 °C)

Temperaturbereich II: -40 °C bis +120 °C (max. Langzeit-Temperatur +72 °C und

max. Kurzzeit-Temperatur +120 °C)

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

Galvanisch verzinkter oder feuerverzinkter Stahl (VMU-A oder V-A)

Ankerstange, Mutter und Scheibe aus galvanisch verzinktem oder feuerverzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Seite 4 von 17 | 19. Januar 2011

Nichtrostender Stahl 1.4401, 1.4404, 1.4571 oder 1.4362 (VMU-A A4 oder V-A A4)

Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Hochkorrosionsbeständiger Stahl 1.4529, 1.4565 (VMU-A HCR oder V-A HCR)

Der Dübel darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 4. Die in den Anhängen 1 bis 4 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 5, 7 und 8 angegeben.

Jede Mörtelkartusche ist mit dem Aufdruck SIKLA Injektionsmörtel VMU, Verarbeitungshinweisen, Sicherheitshinweisen, dem Haltbarkeitsdatum, der Aushärtezeit und der Verarbeitungszeit entsprechend Anhang 4 gekennzeichnet.

Jede Ankerstange ist mit dem Werkzeichen, der Markierung für die Verankerungstiefe und mit der Dübelgröße gemäß Anhang 2 gekennzeichnet. Die Ankerstangen für die Größe M12 sind zusätzlich mit der Längenkennung entsprechend Anhang 2 gekennzeichnet. Zusätzlich ist jeder Dübel aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571 oder 1.4362 mit der Bezeichnung "A4" und jeder Dübel aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565 mit der Bezeichnung "HCR" gekennzeichnet.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 7.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 5 von 17 | 19. Januar 2011

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - (2) zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe / Rohstoffe / Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁵

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 6 von 17 | 19. Januar 2011

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den im Prüfplan durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Zulassungsinhabers (für die Herstellung verantwortliche juristische Person).
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, für Verbunddübel unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Seite 7 von 17 | 19. Januar 2011

Für die nachstehend aufgeführten Nachweise nach Anhang C der Leitlinie ist folgendes zu beachten:

- Für den Nachweis Betonausbruch (Abschnitt 5.2.2.4, Anhang C der Leitlinie) ist N_{Rk,c} entsprechend (1) und (2) zu ermitteln: Der kleinere der Werte nach (1) und (2) ist maßgebend.
 - (1) N_{Rk,c} nach Gleichung (5.2), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^0$$
 nach Anhang 7
 $s_{cr,N}$ nach Anhang 7
 $c_{cr,N}$ nach Anhang 7
 $\psi_{ucr,N} = 1,0$

Für die in ETAG 001, Anhang C Abschnitt 5.2.2.4 g) aufgeführten Sonderfälle ist die dort angegebene Methode gültig. Allerdings ist der Wert N_{Rkc}^0 wie folgt abzumindern:

$$N_{Rk,c}^0 = N_{Rk,c}^0$$
 (Anhang 7) $\times \frac{h'_{ef}}{h_{ef}}$

(2) N_{Rk,c} nach Gleichung (5.2), Anhang C der Leitlinie

$$\begin{array}{ll} \text{mit:} & N_{\text{Rk,c}}^{0} &= 0.75 \times 15.5 \times h_{\text{ef}}^{1.5} \times f_{\text{ck,cube}}^{0.5} \\ & s_{\text{cr,N}} &= 3 \; h_{\text{ef}} \\ & c_{\text{cr,N}} &= 1.5 \; h_{\text{ef}} \\ & \psi_{\text{ucr,N}} &= 1.0 \end{array}$$

- Für den Nachweis Versagen durch Spalten bei Belastung (Abschnitt 5.2.2.6, Anhang C der Leitlinie) ist N_{Rk,sp} entsprechend (3) zu ermitteln.
 - (3) N_{Rk,sp} nach Gleichung (5.3), Anhang C der Leitlinie

mit:
$$N_{Rk,c}^{0}$$
 nach Anhang 7
 $s_{cr,sp}$ nach Anhang 7
 $c_{cr,sp}$ nach Anhang 7
 $\psi_{ucr,N} = 1,0$
 $\psi_{h,sp} = 1,0$

Für den Nachweis Betonausbruch auf der lastabgewandten Seite (Abschnitt 5.2.3.3, Anhang C der Leitlinie) ist N_{Rk,c} für Gleichung (5.6), Anhang C der Leitlinie entsprechend (1) zu ermitteln.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

Seite 8 von 17 | 19. Januar 2011

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Es dürfen auch handelsübliche Gewindestangen, Scheiben und Muttern verwendet werden, wenn die nachfolgend aufgeführten Anforderungen erfüllt sind:
 - Werkstoff, Abmessungen und mechanische Eigenschaften entsprechend den Anhängen 2 und 3,
 - Nachweis des Werkstoffs und der mechanischen Eigenschaften der Stahlteile durch ein Abnahmeprüfzeugnis gemäß EN 10204:2004, die Nachweise sind aufzubewahren,
 - Markierung der Gewindestange mit der erforderlichen Verankerungstiefe gemäß Anhang 5. Dies kann durch den Hersteller oder vom Baustellenpersonal erfolgen.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der effektiven Verankerungstiefe,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Bohrlochlochreinigung und Einbau gemäß Anhang 6,
- Die Temperatur der Dübelteile muss beim Einbau mindestens +5 °C betragen,
- Die Temperatur im Beton darf während Einbau und Aushärtung des Injektionsmörtels -5 °C nicht unterschreiten,
- Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 3,
- Befestigung des Anbauteils nach der Wartezeit mit einem Drehmomentenschlüssel unter Einhaltung der in Anhang 5 angegebenen Drehmomente.

5 Vorgaben für den Hersteller

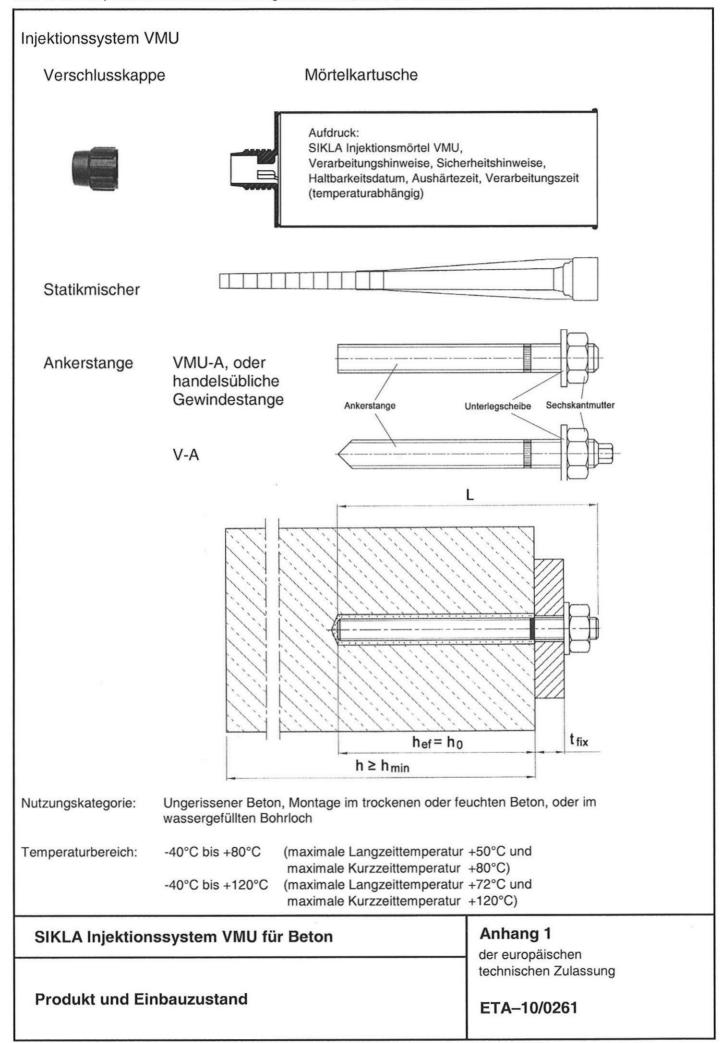
5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2, 4.3 und 5.2 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Seite 9 von 17 | 19. Januar 2011

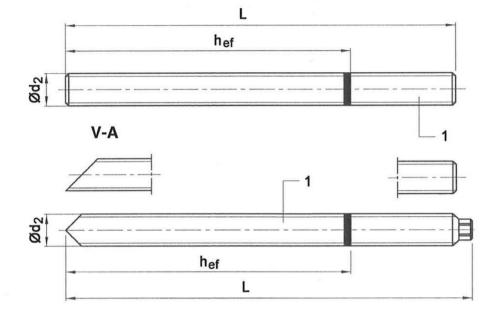
Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Bohrlochtiefe,
- Ankerstangendurchmesser,
- Mindestverankerungstiefe,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau,
- Temperatur im Verankerungsgrund beim Setzen des Dübels,
- Verarbeitungszeit,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- Drehmoment.
- Herstelllos.


Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Verpackung, Transport und Lagerung

Die Mörtelkartuschen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern. Mörtelkartuschen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden. Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelkartuschen sind separat von den Ankerstangen (inklusive Sechskantmuttern und Unterlegscheiben) verpackt.


Georg Feistel Abteilungsleiter Beglaubigt

für Bautechnik

Ankerstange

VMU-A, oder handelsübliche Gewindestange

	- 3	_2
\downarrow		<u></u>
#	\mathcal{L}	
Ц		

Prägung: z.B.: (H) M12

Werkzeichen

zusätzliche Längenkennung z.B. für Dübelgröße M12

H Längenkennung (Tabelle Anlage 2)

M12 Gewindegröße

 zusätzliche Kennung der Festigkeitsklasse 8.8

M12 A4

A4 zusätzliche Kennung für nichtrostenden Stahl A4

HCR zusätzliche Kennung für hoch korrosionsbebeständigen Stahl

Längenkennung		D	E	F	G	Н	1	J	K
Dübellänge min	≥	76.2	88.9	101.6	114.3	127.0	139.7	152.4	165.1
Dübellänge max	<	88.9	101.6	114.3	127.0	139.7	152.4	165.1	177.8

Längenkennung		L	M	N	0	Р	Q	R	S
Dübellänge min	≥	177.8	190.5	203.2	215.9	228.6	241.3	254.0	279.4
Dübellänge max	<	190.5	203.2	215.9	228.6	241.3	254.0	279.4	304.8

Längenkennung		Т	U	V	W	Х	Υ	Z
Dübellänge min	≥	304.8	330.2	355.6	381.0	406.4	431.8	457.2
Dübellänge max	<	330.2	355.6	381.0	406.4	431.8	457.2	483.0

Tabelle 1: Abmessungen

Dübelgröß	Зе	М8	M10	M12	M12 M16 M20		M24	M30
Ø d ₂	[mm]	8	10	12	16	20	24	30
L	[mm]	≥ 90	≥ 101	≥ 124	≥ 143	≥ 190	≥ 235	≥ 300

SIKLA Injektionssystem VMU für Beton

Anhang 2

der europäischen technischen Zulassung

Abmessungen

Tabelle 2: Werkstoffe

Teil	Benennung	Stahl, galvanisch verzinkt ≥ 5 μm, nach EN ISO 4042	Stahl, feuerverzinkt ≥ 40 μm nach EN ISO 1461				
1	Ankerstange	Stahl, Festigkeitsklasse 5.8, 8.8, nach EN ISO 898-1	Stahl, Festigkeitsklasse 5.8, 8.8, nach EN ISO 898-1				
2	Sechskantmutter DIN 934	Festigkeitsklasse 8 nach EN 20898-2	Festigkeitsklasse 8 nach EN 20898-2				
3	Unterlegscheibe	Stahl	Stahl				
4	Mörtelkartusche	Vinylesterharz, styrolfrei					

Teil	Benennung	Nichtrostender Stahl A4	Hochkorrosionsbeständiger Stahl (HCR)				
1	Ankerstange	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088, ≤ M24: Festigkeitsklasse 70, > M24: Festigkeitsklasse 50, nach EN ISO 3506	Hochkorrosionsbeständiger Stahl, 1.4529, 1.4565, EN 10088, ≤ M24: Festigkeitsklasse 70, > M24: Festigkeitsklasse 50, nach EN ISO 3506				
2	Sechskantmutter DIN 934	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088, ≤ M24: Festigkeitsklasse 70, > M24: Festigkeitsklasse 50, nach EN ISO 3506	Hochkorrosionsbeständiger Stahl, 1.4529, 1.4565, EN 10088, ≤ M24: Festigkeitsklasse 70, > M24: Festigkeitsklasse 50, nach EN ISO 3506				
3	Unterlegscheibe	Nichtrostender Stahl, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088	Hochkorrosionsbeständiger, 1.4529, 1.4565, EN 10088				
4	Mörtelkartusche	Vinylesterharz, styrolfrei					

Anforderungen an handelsübliche Gewindestangen:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle 2
- Abnahmeprüfzeugnis 3.1 nach EN 10204
- Markierung der Setztiefe anbringen

Tabelle 3: Verarbeitungszeiten und Aushärtezeiten bis zum Aufbringen der Last

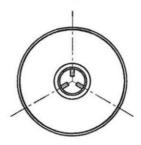
Temperatur [°C]	Maximale	Minimale A	ushärtezeit
im Bohrloch	Verarbeitungszeit	Trockener Beton	Feuchter Beton
+ 40 °C	1,4 min	15 min	30 min
+ 35 °C	2 min	20 min	40 min
+ 30 °C	4 min	25 min	50 min
+ 20 °C	6 min	45 min	1:30 h
+ 10 °C	12 min	1:20 h	2:40 h
+ 5 °C	20 min	2:00 h	4:00 h
0 °C	45 min	3:00 h	6:00 h
- 5 °C	1:30 h	5:30 h	11:00 h 1)

¹⁾ Es ist sicherzustellen, dass kein Eisansatz im Bohrloch entsteht. Das Bohrloch muss unmittelbar vor dem Setzen des Dübels erstellt und gereinigt werden.

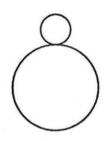
SIKLA Injektionssystem VMU für Beton	Anhang 3
Werkstoffe, Verarbeitungszeiten und Aushärtezeiten	der europäischen technischen Zulassung ETA-10/0261

Mörtelkartuschen VMU

(Verschiedene Gebindegrößen)


Aufdruck: SIKLA Injektionsmörtel VMU, Verarbeitungshinweise, Sicherheitshinweise, Haltbarkeitsdatum, Aushärtezeit, Verarbeitungszeit (temperaturabhängig)

Schlauchfolie


Aufdruck: SIKLA Injektionsmörtel VMU, Verarbeitungshinweise, Sicherheitshinweise, Haltbarkeitsdatum, Aushärtezeit, Verarbeitungszeit (temperaturabhängig)

Coaxial

Aufdruck: SIKLA Injektionsmörtel VMU, Verarbeitungshinweise, Sicherheitshinweise, Haltbarkeitsdatum, Aushärtezeit, Verarbeitungszeit (temperaturabhängig)

Side-by-side

Verschlusskappe

Statikmischer

Statiluminahar

Statikmischer

Einwegteil, bei Arbeitsunterbrechung auswechseln.

SIKLA Injektionssystem VMU für Beton

Anhang 4

der europäischen technischen Zulassung

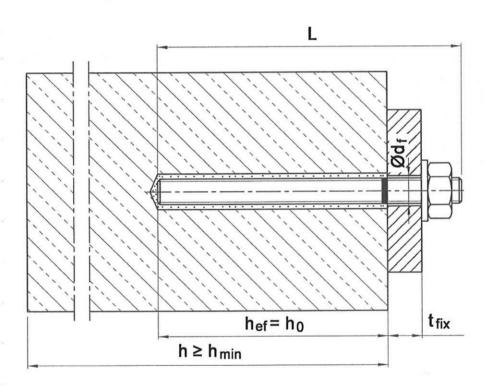

Mörtelkartuschen

Tabelle 4: Montagekennwerte

Dübelgröße			M8	M10	M12	M16	M20	M24	M30
Bohrernenndurchmesser	d ₀ =	[mm]	10	12	14	18	22	26	32
Bohrlochtiefe	h ₀ ≥	[mm]	80	90	110	125	170	210	270
Durchgangsloch im anzuschließenden Bauteil	d _f ≤	[mm]	9	12	14	18	22	26	33
Bürstendurchmesser	D≥	[mm]	11	13	15	19	23	27	34
Drehmoment beim Verankern	T _{inst} ≤	[Nm]	10	20	40	60	120	150	300
Verankerungstiefe	h _{ef} =	[mm]	80	90	110	125	170	210	270
Mindestbauteildicke	h _{min} =	[mm]	100	130	160	200	220	280	350
Reduzierte Mindestbauteildicke	h _{min,red} =	[mm]	-	120	140	160	-	-	: -
Minimaler Achsabstand	S _{min} =	[mm]	40	45	55	65	85	105	135
Minimaler Randabstand	C _{min} =	[mm]	40	45	55	65	85	105	135

SIKIA	Iniektionssystem	VMII :	für Beton
	IIIICKIIUIISSVSICIII	VIVIO	IUI DELUI

Montagekennwerte, Bohrlochreinigung

Anhang 5

der europäischen technischen Zulassung

Montageanweisung Bohrloch senkrecht zur Oberfläche des Verankerungsgrunds mit Hammerbohrer oder Pressluftbohrer erstellen 1 Bohrloch muss unmittelbar vor der Montage des Ankers gereinigt werden. VMU M8 - M16: 2a Bohrloch vom Grund her mit SIKLA Ausblaspumpe VM-AP mindestens zweimal ausblasen. Bei der Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden. VMU M20 - M30: SIKLA Ausblaspistole VM-ABP an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und 2b Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen. Durchmesser der SIKLA Reinigungsbürste RB kontrollieren. Wenn sich Bürste ohne Widerstand in das Bohrloch schieben lässt, neue Bürste verwenden. Bürste in Bohrmaschine einspannen. 3 Bohrmaschine einschalten und erst dann mit rotierender Bürste das Bohrloch bis zum Grund in einer Vor- und Rückwärtsbewegung mindestens zweimal ausbürsten. VMU M8 - M16: Bohrloch vom Grund her mit SIKLA Ausblaspumpe VM-AP mindestens zweimal ausblasen. Bei der 4a Größe M8 muss der Reduzierschlauch für die Ausblaspumpe verwendet werden. VMU M20 - M30: SIKLA Ausblaspistole VM-ABP an Druckluft (min. 6 bar, ölfrei) anschließen. Ventil öffnen und 4b Bohrloch entlang der gesamten Tiefe in einer Vor- und Rückwärtsbewegung mindestens zweimal ausblasen. Mindesthaltbarkeitsdatum auf Mörtelkartusche VMU überprüfen. Niemals abgelaufenen Mörtel verwenden. Verschlusskappe von Mörtelkartusche entfernen. Bei VMU 300 Folienverschluss 5 abschneiden. Statikmischer VM-X auf Mörtelkartusche aufschrauben. Für jede neue Kartusche einen neuen Statikmischer verwenden. Kartusche niemals ohne Statikmischer und Statikmischer niemals ohne Mischwendel verwenden. Mörtelkartusche in Auspresspistole einsetzen und Mörtelverlauf solange auspressen (ca. 2 volle 6 Hübe oder einen ca. 10 cm langen Mörtelstrang), bis der austretende Injektionsmörtel eine gleichmäßig graue Farbe aufweist. Dieser Vorlauf darf nicht verwendet werden. Prüfen, ob Statikmischer bis zum Bohrlochgrund reicht. Falls nicht, Mischerverlängerung VM-XE auf Ма 7 Statikmischer stecken. Das gereinigte Bohrloch luftfrei vom Grund her mit ausreichend gemischtem Injektionsmörtel verfüllen. Ankerstange innerhalb der Verarbeitungszeit von Hand, drehend bis zur Verankerungstiefenmarkierung in das vermörtelte Bohrloch eindrücken. Ankerstange ist richtig gesetzt, wenn um die Ankerstange am Bohrlochmund Mörtel austritt. Wird kein Mörtel an der Betonoberfläche sichtbar, 8 Ankerstange sofort herausziehen, Mörtel aushärten lassen, Loch aufbohren und erneut bei Schritt 2 beginnen. Aushärtezeit entsprechend Tabelle 5 einhalten. Während der Aushärtezeit darf die Ankerstange 9 nicht bewegt oder belastet werden. 10 Ausgetretenen Mörtel entfernen. Anbauteil nach Ablauf der Aushärtezeit montieren. Montagedrehmoment Tinst gemäß Tabelle 4 mit [] <u>\$</u> 11 einem Drehmomentschlüssel aufbringen.

SIKLA Injektionssystem VMU für Beton

Montageanweisung

Anhang 6

der europäischen technischen Zulassung

Tabelle 5: Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24	M30
Stahlversagen									
Charakteristische Tragfähigkeit, Festigkeitsklasse 5.8 nach EN ISO 898-1	$N_{Rk,s}$	[kN]	18	29	42	78	123	176	280
Charakteristische Tragfähigkeit, Festigkeitsklasse 8.8 nach EN ISO 898-1		[kN]	29	46	67	126	196	282	449
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]				1,5			
Charakteristische Tragfähigkeit, Festigkeitsklasse 70 (≤ M24) und 50 (>M	24) N _{Rk,s}	[kN]	26	41	59	110	172	247	280
Teilsicherheitsbeiwert VMU-A, V-A	γ _{Ms} 1)	[-]			1,5	1			2,4
Teilsicherheitsbeiwert handelsübliche Gewindestange	γ _{Ms} 1)	[-]			1,87				2,86
Herausziehen und Betonausbruch									
Verankerungstiefe	h _{ef}	[mm]	80	90	110	125	170	210	270
Ungerissener Beton C20/25 (50°C / 80°C) 4)	$N^0_{Rk,c} = N_{Rk,p}$	[kN]	16	25	35	50	95	115	170
Ungerissener Beton C20/25 (72°C / 120°C) 4)	$N^0_{Rk,c} = N_{Rk,p}$	[kN]	12	16	25	40	60	75	115
Erhöhungsfaktor für	C30/37	[-]	1,12						
ernonungstaktor für ungerissenen Beton ψc	C40/50	[-]				1,23			
	C50/60	[-]			y	1,30	<u> </u>		,
Randabstand	C _{cr,N}	[mm]	80	90	110	125	170	210	270
Achsabstand	S _{cr,N}	[mm]	160	180	220	250	340	420	540
Teilsicherheitsbeiwert	$\gamma_{Mc} = \gamma_{Mp}^{1)}$	[-]		1,	5 ²⁾		1,5 /	1,8 ³⁾	1,5 ²⁾
Spalten									
Mindestbauteildicke	h _{min}	[mm]	100	130	160	200	220	280	350
Randabstand	C _{cr,sp}	[mm]	80	90	110	125	170	210	270
Achsabstand	S _{cr,sp}	[mm]	160	180	220	250	340	420	540
Reduzierte Mindestbauteildicke	h _{min,red}	[mm]	-	120	140	160	-	-	-
Randabstand	C _{cr,sp}	[mm]	-	145	180	200	-	-	-
Achsabstand	S _{cr,sp}	[mm]	-	290	360	400	7=1	-	-
Teilsicherheitsbeiwert	γ _{Msp} 1)	[-]		1,	5 ²⁾		1,5 /	1,8 ³⁾	1,5 ²⁾

Tabelle 6: Verschiebungen unter Zugbeanspruchung

Dübelgröße			M8	M10	M12	M16	M20	M24	M30
Zugtragfähigkeit	N	[kN]	7,6	11,9	16,7	23,8	42,9	54,8	81
7 h z.d V hish	δηο	[mm]	0,1	0,1	0,1	0,1	0,1	0,3	0,5
Zugehörige Verschiebungen	δ _{N∞}	[mm]			0,2	No.		0,6	1,0

SIKLA Injektionssystem VMU für Beton

Bemessungsverfahren A Charakteristische Werte bei Zugbeanspruchung Verschiebungen

Anhang 7

der europäischen technischen Zulassung

¹⁾ Sofern andere nationale Regelungen fehlen
2) In diesem Wert ist der Teilsicherheitswert $\gamma_2=1,0$ enthalten
3) $\gamma_{Mc}=\gamma_{Mp}=1,5$ im trockenen und nassen Beton, $\gamma_{Mc}=\gamma_{Mp}=1,8$ im wassergefüllten Bohrloch

⁴⁾ Maximale Langzeittemperatur / maximale Kurzzeittemperatur

Tabelle 7: Bemessungsverfahren A Charakteristische Wert bei Querbeanspruchung

Dübelgröße				М8	M10	M12	M16	M20	M24	M30
Stahlversagen ohne l	-lebelarm								,	
Charakteristische	Festigkeitsklasse 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	140
Quertragfähigkeit Fe	Festigkeitsklasse 8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	224
Teilsicherheitsbeiwert		γ _{Ms} 1)	[-]				1,25		(a)	•
Charakteristische Quertragfähigkeit, Festigkeitsklasse 70 (≤ M24) und 50 (>M24)		$V_{Rk,s}$	[kN]	13	20	30	55	86	123	140
Teilsicherheitsbeiwert VMU-A, V-A		γ _{Ms} 1)	[-]	1,25						
Teilsicherheitsbeiwert handelsübliche Gewindestange		γ _{Ms} 1)	[-]	1,56						2,38
Stahlversagen mit He	belarm									
Charakteristische Biegemomente	Festigkeitsklasse 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	165	325	561	1124
	Festigkeitsklasse 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	898	1799
Teilsicherheitsbeiwert		γ _{Ms} 1)	[-]	1,25						
Charakteristische Biegemomente, Festigkeitsklasse 70 (≤ M24) und 50 (>M24)		$M^0_{Rk,s}$	[Nm]	26	52	92	233	454	784	1123
Teilsicherheitsbeiwert VMU-A, V-A γ _{Ms} ¹⁾		[-]	1,25						2,0	
Teilsicherheitsheiwert handelsühliche		γ _{Ms} 1)	[-]	1,56						2,38
Betonausbruch auf de	er lastabgewandten S	eite								
Faktor in Gleichung (5.6) ETAG Anhang C, 5.2.3.3		16,600	[-]	2						
Teilsicherheitsbeiwert γ _{Mc} ¹⁾		[-]	1,5 ²⁾							
Betonkantenbruch										
Wirksame Dübellänge bei Querlast		I _f	[mm]	80	90	110	125	170	210	270
Wirksamer Außendurchmesser		d _{nom}	[mm]	10	12	14	18	22	26	32
Teilsicherheitsbeiwert γ _N		γ _{Mc} ¹⁾	[-]	1,5 ²⁾						

Verschiebungen unter Querbeanspruchung Tabelle 8:

Dübelgröße			М8	M10	M12	M16	M20	M24	M30
Querlast, Festigkeitsklasse 5.8	٧	[kN]	5,1	8,3	12,1	22,4	34,9	50,3	80
Zugehörige Verschiebungen	δ_{V0}	[mm]	0,5	0,4	0,8	1,2	1,4	1,4	1,4
	δ_{V_∞}	[mm]	0,8	0,7	1,2	1,8	2,1	2,1	2,1
Querlast, Festigkeitsklasse 8.8	V	[kN]	8,6	13,2	19,3	35,9	56	81	128
Zugehörige Verschiebungen	δ_{V0}	[mm]	0,8	0,7	1,2	1,9	2,2	2,2	2,2
	δ_{V_∞}	[mm]	1,3	1,1	1,9	2,8	3,4	3,4	3,4
Querlast, Festigkeitsklasse 70 (≤ M24) und 50 (>M24)	V	[kN]	7,3	11,6	16,9	31,4	49	70	50
Zugehörige Verschiebungen –	δ_{V0}	[mm]	0,7	0,6	1,1	1,7	2,0	2,0	0,8
Zugenonge verschiebungen	δ_{V_∞}	[mm]	1,0	0,9	1,7	2,6	2,9	2,9	1,3

SIKLA Injektionssystem VMU für Beton

Bemessungsverfahren A Charakteristische Werte bei Querbeanspruchung, Verschiebungen

Anhang 8

der europäischen technischen Zulassung

Sofern andere nationale Regelungen fehlen In diesem Wert ist der Teilsicherheitsbeiwert $\gamma_2=1,0$ enthalten