Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

European Technical Approval ETA-11/0006

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck Generic type and use of construction product

Geltungsdauer: Validity:

from bis

vom

Herstellwerk

Manufacturing plant

Hilti Ankerschiene - HAC mit Spezialschraube - HBC Hilti Anchor Channel - HAC with special screw - HBC

Hilti AG

Feldkircherstraße 100

9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Einbetonierte Ankerschiene

Cast-in anchor channel

8 February 2011

8 February 2016

Hilti-Werk 6 Hilti-Werk 4828 Hilti-Werk 9223 Hilti-Werk 4345 Hilti-Werk 0199

Diese Zulassung umfasst This Approval contains 37 Seiten einschließlich 28 Anhänge 37 pages including 28 annexes

Page 2 of 37 | 8 February 2011

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 37 | 8 February 2011

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The Hilti Anchor Channel - HAC with special screw - HBC is an anchor channel consisting of a C-shaped resp. V-shaped channel of cold-formed steel and at least two metal anchors non-detachably fixed on the profile back.

The anchor channel is imbedded surface-flush in the concrete. Hilti-special screws (hammerhead or hooked) with appropriate hexagon nuts and washers will be fixed in the channel.

An illustration of the product and intended use is given in Annex 1.

1.2 Intended use

The anchor channel is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences.

The anchor channel may be used for anchorages with requirements related to resistance to fire.

The anchor channel is to be used for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C12/15 at minimum to C90/105 at most according to EN 206-1:2000-12. The anchor channel may be anchored in cracked and non-cracked concrete.

The anchor channel may be used for transmission of tensile loads, shear loads or a combination of tensile and shear loads perpendicular to the longitudinal axis of the channel.

The anchor channels in combination with special screws HBC-B and HBC-C according to Annex 22, Table 23 may also be used under fatigue tension loads.

The intended use of the anchor channel (channel profile, anchor, special screw, washer and nut) concerning corrosion is given in Annex 3, Table 1 depending on the chosen material.

The provisions made in this European technical approval are based on an assumed working life of the anchor channel of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Page 4 of 37 | 8 February 2011

 $N_{Rk,cb}$

 $N_{Rk,re}$, $N_{Rd,a}$

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor channel corresponds to the drawings and information given in Annex 2 to 7. The characteristic material values, dimensions and tolerances of the anchor channel not indicated in the Annexes shall correspond to respective values laid down in the technical documentation⁷ of this European technical approval.

Regarding the requirements concerning safety in case of fire (ER 2) it is assumed that the anchor channel meets the requirements of class A1 in relation to reaction to fire in accordance with the stipulations of the Commission decision 96/603/EC, amended by 2000/605/EC.

The characteristic values for the design of the anchorages for predominantly static or quasistatic loads are given in Annexes 8 to 17. The characteristic values for the design of the anchorages regarding resistance to fire are given in Annex 18 to 20. They are valid for use in a system that is required to provide a specific fire resistance class. The design values for the design of the anchorages for fatigue loads are given in Annexes 21 to 26.

The anchor channel shall be marked with the identifying mark of the producer, the size and with the material finish, e.g. HAC-10 F according to Annex 2. The position of the anchor is marked for anchor channels with weld-on anchors by nail holes in the channel profile.

Each special screw is marked with the identifying mark of the producer, the special screw type, the strength grade and with the material finish according to Annex 2.

2.2 Method of verification

2.2.1 General

The assessment of the fitness of the anchor channel for the intended use with regard to the requirements of mechanical resistance and stability as well as safety in use in the sense of the Essential Requirements 1 and 4 was performed based on the following verifications:

Verifications for tension loads for

1. Distribution of acting tension loads

Steel failure - anchor	$N_{Rk,s,a}$
Steel failure - special screw	$N_{Rk,s,s}$
Steel failure - connection channel/ anchor	$N_{Rk,s,c}$
Steel failure - local flexure of channel lips	$N_{Rk,s,l}$
Steel failure - flexure resistance of channel	$M_{Rk,s,flex}$
Steel failure - transfer of setting torque into prestressing force	T _{inst}
Concrete failure - pullout	$N_{Rk,p}$
Concrete failure - concrete cone	$N_{Rk,c}$
Concrete failure - splitting due to installation	$c_{\text{min}},s_{\text{min}},h_{\text{min}}$
Concrete failure - splitting due to loading	$N_{Rk,sp}$
	Steel failure - special screw Steel failure - connection channel/ anchor Steel failure - local flexure of channel lips Steel failure - flexure resistance of channel Steel failure - transfer of setting torque into prestressing force Concrete failure - pullout Concrete failure - concrete cone Concrete failure - splitting due to installation

14. Displacement under tension loads

12. Concrete failure - blow-out

13. Reinforcement

The technical documentation of this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as it is relevant to the tasks of the approved body involved in the attestation of conformity procedure, is handed over to the approved bodies.

European technical approval ETA-11/0006

Page 5 of 37 | 8 February 2011

English translation prepared by DIBt

Verifications for shear loads for

	1.	Distribution	of	acting	shear	load	S
--	----	--------------	----	--------	-------	------	---

	ŭ	
2.	Steel failure without lever arm - special screw	$V_{Rk,s,s}$
3.	Steel failure without lever arm - flexure channel lips	$V_{Rk,sl}$
4.	Steel failure with lever arm	$M^0_{Rk,s}$
5.	Concrete failure - pry-out	$V_{Rk,cp}$
6.	Concrete failure - concrete edge	$V_{Rk,c}$
7.	Reinforcement	$V_{Rk,c,re}$
8.	Displacement under shear loads	δ_{V}

Verification for fatigue tension loads for

1. Distribution of acting fatigue tension loads

 $\begin{array}{lll} \text{2. Steel failure} & & \Delta N_{\text{Rd,s;0;n}} \\ \text{3. Concrete failure - pullout} & & \Delta N_{\text{Rd,p;0;n}} \\ \text{4. Concrete failure - concrete cone} & & \Delta N_{\text{Rd,c;0;n}} \\ \end{array}$

The assessment of the anchor channel for the intended use in relation to the requirements for resistance to fire has been made in accordance with the Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire".

In addition to the specific clauses relating to dangerous substances contained in this European Technical Approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE-marking

3.1 System of attestation of conformity

According to the Decision 2000/273/EC of the European Commission⁸ system 2(i) (referred to as system 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed test plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

Official Journal of the European Communities L 86 of 07.04.2000

Page 6 of 37 | 8 February 2011

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/ raw/ constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchor channels in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks of the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor channel. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- trade name of the anchor channels and special screws.

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 7 of 37 | 8 February 2011

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data and information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data and information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

4.2.1 Predominantly static load or quasi-static load

The fitness of the anchor channel for the intended use is given under the following condition:

The design of the anchorage is based on the CEN/TS 1992-4:2009 "Design of fastenings for use in concrete", part 1 and 3 under the responsibility of an engineer experienced in anchorages and concrete work.

The verification for shear load with supplementary reinforcement follows CEN/TS 1992-4-3:2009, section 6.3.6 and 6.3.7 or alternatively Annex 16 and 17.

The calculation of $\alpha_{h,v}$ (effect of the thickness of the structural component) for the verification of concrete edge failure is done according Annex 14, Table 16 exceptional to CEN/TS 1992-4-3:2009, section 6.3.5.6, formula (38).

The reduction of the member cross section caused by the anchor channel is taken into account for the verification of the concrete member if necessary.

The member thickness is not less than h_{min} indicated in Annex 8, Table 9.

The edge distance of the anchors on the profile back of the channel is not less than c_{min} indicated in Annex 8, Table 9.

The spacing of the anchors is between s_{min} and s_{max} given in Annex 6, Table 6.

The spacing of the special screws is not less than $s_{min,s}$ given in Annex 9, Table 10.

The effective anchorage depth is not less than min hef according to Annex 8, Table 8.

The characteristic resistances are calculated with the minimum effective anchorage depth.

Taking into account the loads to be anchored verifiable calculation notes and drawings are generated.

The position, the type, the size, the length of the anchor channel, if applicable the spacing of the anchors, and if applicable the position as well as the size of the special screws are indicated on the design drawings. The material of the anchor channel and the special screw is given additionally on the drawings.

4.2.2 Fatigue tension load

The design for fatigue tension loads may be calculated according section 4.2.2.1 for known cycles n and known fatigue load ΔN_{Ed} , for unknown cycles and known fatigue load and for known cycles and unknown fatigue load. It may be calculated according section 4.2.2.2 for unknown cycles and unknown fatigue load.

Page 8 of 37 | 8 February 2011

The partial safety factor for fatigue loads shall be chosen to $\gamma_{F,fat} = 1.0$, if the there is a effective action collective with different level of actions and the anchor channel is verified with the maximum value of fatigue loads. It shall be chosen to $\gamma_{F,fat} = 1.2$, if the effective action collective is actually a one level collective or converted to a collective of one level with an equivalent grade of damage.

4.2.2.1 Design method I for known fatigue load and/ or known load cycles

The verification may be done according Annex 23 if

- (1) a definite allocation of all actions to a static or quasi-static part and a fatigue influenced part is possible and/or
- (2) a upper limit of load cycles n during working life is known.

Three cases have to be divided:

Case 1: condition (1) and (2) is met, Case 1.1: only condition (1) is met, Case 1.2: only condition (2) is met.

The design fatigue resistances $\Delta N_{Rd;0;n}$ due to tension load without static pre-loading are given in Annex 24 and Annex 25 subject to the size of the anchor channel and number of cycles.

For case 1 the verification may be done with the design fatigue resistances $\Delta N_{Rd;E;n}$ due to tension load with static pre-loading and n load cycles. The design fatigue resistances $\Delta N_{Rd;E;n}$ may be calculated according Annex 22 for steel, concrete cone and pull-out failure.

For case 1.1 the verification may be done with the design fatigue resistances $\Delta N_{Rd;E;\infty}$ due to tension load with static pre-loading and $n \ge 10^6$ load cycles. The design fatigue resistances $\Delta N_{Rd;E;\infty}$ may be calculated according Annex 22 for steel, concrete cone and pull-out failure.

For case 1.2 the verification may be done with the total design action and the design fatigue resistances $\Delta N_{Rd;0;n}$ due to tension load without static pre-loading and n load cycles. The design fatigue resistances $\Delta N_{Rd;0;n}$ may be determined for steel, concrete cone and pull-out failure.

4.2.2.2 Design method II for unknown fatigue load and unknown load cycles

The verification may be done according Annex 26 if

- (1) a definite allocation of all actions to a static or quasi-static part and a fatigue influenced part is not possible and
- (2) a upper limit of load cycles n during working life is unknown.

All actions may be assumed to affect fatigue and load cycles $n \ge 10^6$ may be chosen.

The design fatigue resistances $\Delta N_{Rd;0,\infty}$ due to tension load without static pre-loading are given in Annex 26 subject to the size of the anchor channel.

Since pull-out failure is not decisive the design fatigue resistances $\Delta N_{Rd;0;\infty}$ may be determined for steel and concrete cone failure only.

4.2.3 Fire exposure

The design of anchorages under fire exposure has to consider the conditions given in the Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire". The relevant characteristic values are given in Annex 18 to 20. The design method covers anchors with a fire attack from one side only. If the fire attack is from more than one side, the design method may be taken only, if the edge distance of the anchor is $c \ge 300$ mm.

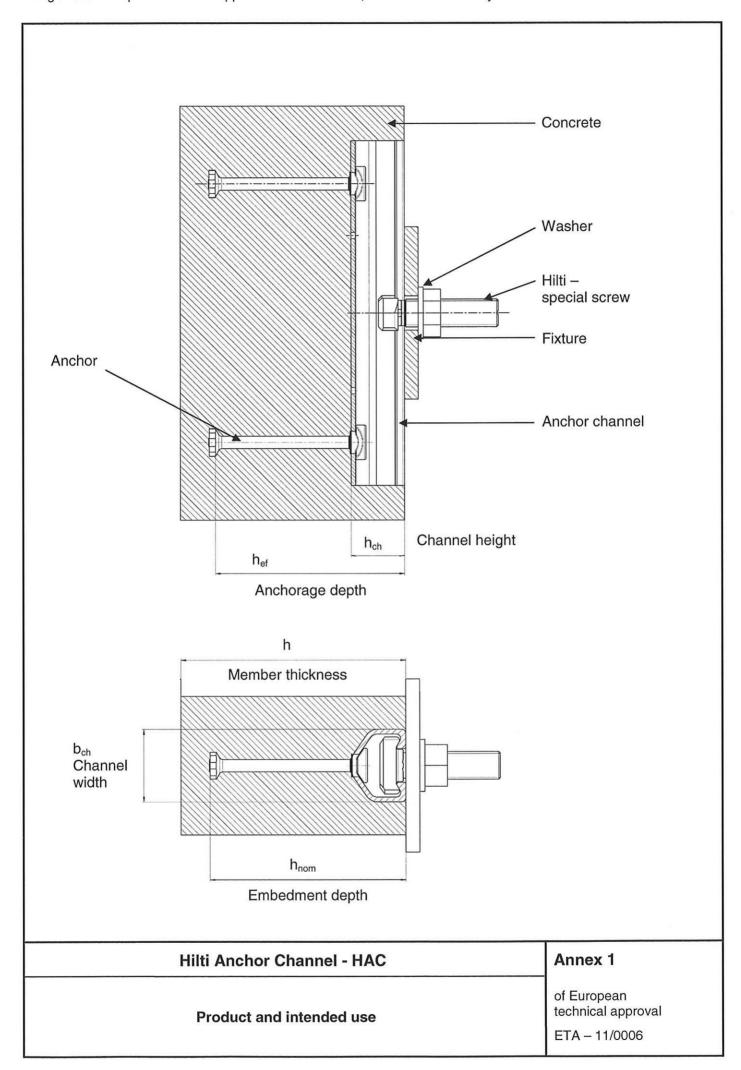
Page 9 of 37 | 8 February 2011

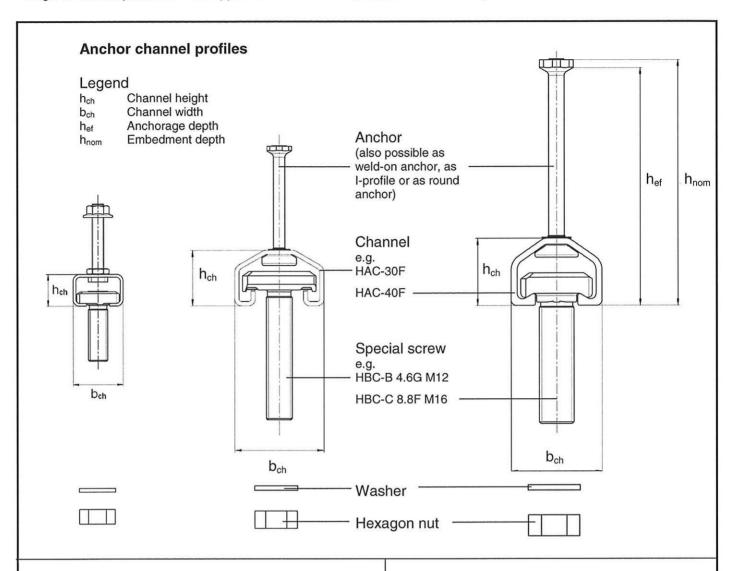
4.3 Installation of the anchor channel

The fitness for use of the anchor channel can only be assumed, if the following installation conditions are observed:

- Installation by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- Use of the anchor channel only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels only if pieces according Annex 6, Table 6 are generated including end spacing and minimum channel length and only for use in dry internal conditions possible.
- Installation in accordance with the manufacturer's specifications given in Annex 27 and 28 and the design drawings.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels arprotected from penetration of concrete into the internal space of the channels.
- Size and spacing of special screws corresponding to the design drawings.
- Washer may be chosen according Annex 3 and provided separately by the user.
- Orientating the special screw (notch according Annex 7) rectangular to the channel axis.
- Observation of the prescribed values (e.g. T_{inst} according Annex 9) of installation.
- The setting torques given in Annex 9 must not be exceeded.

5 Responsibility of the manufacturer


It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to and 4.2 and 4.3 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

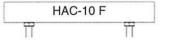

The minimum data required are:

- dimensions of the anchor channel,
- mentioning of the matching screws,
- materials of the anchor channel (channel, anchor, screw, washer, nut)
- details on the installation procedure, preferably by using illustrations,
- maximum setting torque,
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.

Georg Feistel beglaubigt:
Head of Department Müller

Marking of the Hilti – anchor channel: e.g.: HAC-10 F


HAC = Identifying mark of the manufacturer

Hilti Anchor Channel

= Size

F = Material finish = hot-dip galvanized

Close to the anchors a nail hole is positioned

Stamped on channel side

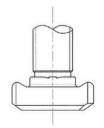
and / or

HAC-10 F

Stamped inside the channel bottom

Material channels: see Annex 3

Marking of the Hilti – special screw: e.g.: HBC-C 4.6F


HBC = Identifying mark of the manufacturer

<u>H</u>ilti <u>B</u>olt <u>C</u>hannel

C = Special screw type

4.6F = Strength grade / material finish

Material/Steel grade special screw

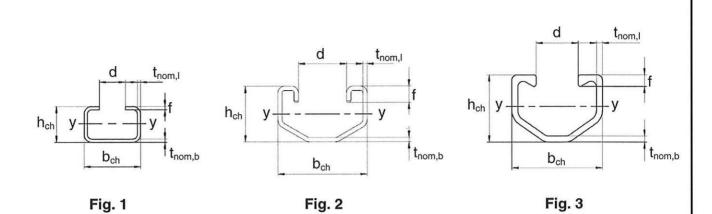
4.6 = Steel grade 4.6 8.8 = Steel grade 8.8

A4-50 = Stainless steel acc. Annex 3

Material finish:

G = Electroplated
F = Hot-dip galvanized
R = Stainless steel

Hilti Anchor Channel - HAC	Annex 2
Product and marking	of European technical approval ETA – 11/0006


Table 1: Materials and intended use

			Intended use		
		1	2	3	
		Dry internal condition	Internal conditions with usual humidity	Medium corrosion exposure	
Item no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions (e.g. accommodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity acc. column 2) Anchor channels may also be used in structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water)		Anchor channels may be used in structures subject to external atmospheric conditions (including industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution e.g. desulphurization plants or road tunnels where deicing materials	
			Materials		
1	Channel profile	Carbon steel acc. E hot-dip galv. ≥ 55 μm ² or acc. EN 10025-2, I (HAC-30 or acc. EN 10025-2, I (HAC-60 a	-		
2	Rivet	(HAC-60 and HAC-70) Carbon steel, hot-dip galv. ≥ 45 μm ³⁾		-	
3	Anchor	Carbon steel, hot-dip galv. <u>></u> 45 μm ³⁾		-	
4	HILTI special screw shaft and thread according to EN ISO 4018	Carbon steel, steel grade 4.6 / 8.8 in dependence on EN ISO 898-1 ⁴⁾ electroplated ≥ 8 µm ¹⁾	Carbon steel, steel grade 4.6 / 8.8 in dependence on EN ISO 898-1 ⁴⁾ hot-dip galv. ≥ 45 µm ³)	Stainless steel steel grade 50 1.4401/ 1.4404/ 1.4571 1.4362/ 1.4578/ 1.4439 EN ISO 3506-1 EN10088-2	
5	Washer EN ISO 7089 and EN ISO 7093-1 production class A, 200 HV	Carbon steel, EN 10025-2 electroplated \geq 5 μ m ¹)	Carbon steel, EN 10025-2 hot-dip galv. ≥ 45 μm ³)	Stainless steel 1.4401/ 1.4404/ 1.4571 1.4362/ 1.4578/ 1.4439 EN 10088	
6	Hexagonal nuts DIN 934 ⁵⁾ EN ISO 4032	Carbon steel, class 5 / 8 EN 20898-2 electroplated ≥ 8 μm ¹⁾	Carbon steel, class 5 / 8 EN 20898-2 hot-dip galv. ≥ 45 μm ³⁾	Stainless steel class 70 1.4401/ 1.4404/ 1.4571 1.4362/ 1.4578/ 1.4439 EN ISO 3506-2 EN 10088-2	

⁵⁾ DIN 934 only for special screw grade 4.6 and stainless steel

Hilti Anchor Channel - HAC	Annex 3
Materials and intended use	of European technical approval ETA – 11/0006

¹⁾ Electroplated according to EN ISO 4042, A3K
2) Hot-dip galv. according to EN ISO 1461:2009-10 (Mean coating thickness (minimum))
3) Hot-dip galv. according to ISO 1461:1999 (Mean coating thickness (minimum))
4) Properties according to EN ISO 898-1 only in threaded part of screw

Marking of the channel according to Annex 2

Table 2: Geometrical profile properties

	ø			Dime	nsions			a	
Anchor channel	Figure	b _{ch}	h _{ch}	t _{nom,b}	t _{nom,I}	d	f	Material	ly
onanio.	正			[m	ım]			W W	[mm ⁴]
HAC-10	4	26.2	16.7	1.60	1.60	12.0	1.60		3643
HAC-20	1	27.5	18.0	2.25	2.25	12.0	2.25]	5775
HAC-30	2	41.3	25.6	2.00	2.00	22.3	7.50] _	15349
HAC-40		40.9	28.0	2.25	2.25	19.5	4.50	Steel	21452
HAC-50] ,	41.9	31.0	2.75	2.75	19.5	5.30] "	33125
HAC-60	3	43.4	35.5	3.50	3.50	19.5	6.30		57930
HAC-70		45.4	40.0	4.50	4.50	19.5	7.40		96736

Hilti Anchor Channel - HAC	Annex 4
Geometrical profile properties	of European technical approval ETA – 11/0006

Table 3: Types of round anchors

Channel	Shaft Ø d₁	Head Ø d₂	Length min I
		[mm]	
HAC-10 1)	5.35	10.0	33.3
HAC-20 1)	7.19	13.0	64.5
HAC-30	5.35	11.5	44.4
HAC-40	7.19	13.5	66.0
HAC-50	7.19	15.5	78.5
HAC-60	9.03	19.5	117.0
HAC-70	10.86	23.0	140.0

Fig. 4

Fig. 5a

Table 4: Types of weld-on round anchors (headed studs) 1)

Channel	Shaft Ø d₁	Shaft Ø d₂	Length min I	
	[mm]			
HAC-10	6	13	35	
HAC-20	10	19	75	
HAC-30	10	19	50	

 d_1 d_2

Fig. 5b

Table 5: Types of weld-onT-anchors 1)

Channel	Head width a	Web thickness t	Length min I
		[mm]	
HAC-40	13	5	70
HAC-50	14	5	80
HAC-60	16	5	120
HAC-70	17	6	135

¹⁾ Not valid for fatigue load

a t

Hilti Anchor Channel - HAC	Annex 5
Types of affection	of European technical approval ETA – 11/0006

Fig. 6
≥ min I

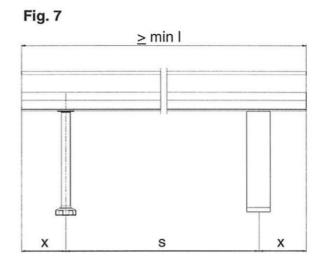


Table 6: Anchor positioning

	Anchor	spacing	End sp	acing x	Min. channel length min l		
Anchor channel	S _{min}	S _{max}	Round Welded anchor anchor Fig. 6 Fig. 7		Round Welde anchor ancho Fig.6 Fig.		
			[m	m]			
HAC-10		200					
HAC-20	50	200			100		
HAC-30			1				
HAC-40			2	5			
HAC-50	250				150		
HAC-60	100				15	50	
HAC-70							

X

Hilti Anchor Channel - HAC	Annex 6
Anchor positioning, channel length	of European technical approval ETA – 11/0006

Table 7: Dimensions of special screw

Anchor	ē	Special	S	Length I			
channel	Figure	screw	b ₁	b ₂	k	Ø	
	ш	type		[m	m]		[mm]
					5.0	8	15-100
HAC-10	8	HBC-A	11.0	22.0	6.0	10	15-175
HAC-20					7.0	12	20-200
		НВС-В	18.0	34.0	7.0	8	15-150
HAC-30	9					10	15-175
			19.0	34.0	9.2	12	20-200
1140 40			14.0		8.5	10	20-200
HAC-40 HAC-50	10	HBC-C	14.0	33.0	0.5	12	20-200
HAC-60	10		10.5		9.5	16	20-300
HAC-70			18.5		12.0	20	20-300
HAC-40	44	HBC-C-E	14.0	22.0	8.5	12	20-200
HAC-50	11	HBC-C-E	17.0	33.0	11.5	16	20-300
HAC-40 HAC-50	12	HBC-C-N	18.5	33.0	9.5	16	20-200
HAC-60 HAC-70	,		10.0	55.5	13.0	20	20-300

Table 8: Steel grade

Special screws	Carbon	Stainless steel 1)	
property class	4.6	8.8	A4-50
f _{uk} [N/mm ²]	400	800	500
f _{yk} [N/mm ²]	240	640	210
Coating		3)	-

Materials according to Annex 3, Table 1
 Electroplated
 Hot-dip galvanized

Fig. 8: HBC-A

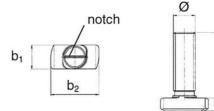


Fig. 9: HBC-B

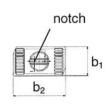


Fig. 10: HBC-C

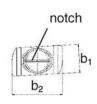
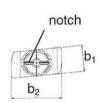



Fig. 11: HBC-C-E

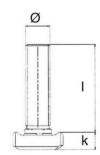
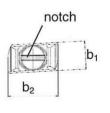
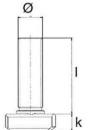




Fig. 12: HBC-C-N

Marking of the special screw according to Annex 2

Hilti Anchor Channel - HAC

Hilti special screw Dimensions and property class

Annex 7

of European technical approval

Fig. 13

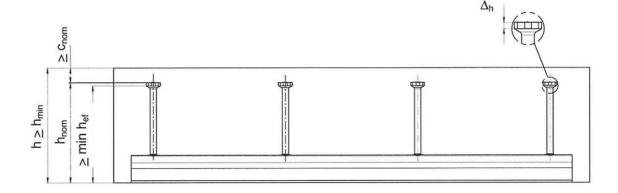


Fig. 14

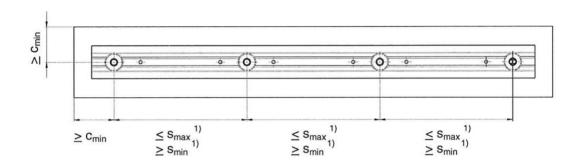


Table 9: Minimum anchorage depth, edge distance and member thickness

Anchor channel			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Min. anchorage depth	min h _{ef}		45	76	68	91	106	148	175
Min. edge distance	C _{min}	[mm]	40		50		75	10	00
Anchor head thickness	Δ_{h}	_ق_	5	6.5	2	3	3.5	4.5	5
Min. member thickness	h _{min} 2)		$h_{ef} + \Delta h + c_{nom}^{2}$						

Hilti Anchor Channel - HAC	Annex 8
Installation parameters	of European technical approval
	ETA - 11/0006

 $^{^{1)}}$ $s_{\text{min}},\,s_{\text{max}}$ acc. to Table 5 Annex 6 $^{2)}$ $c_{\text{nom}} \geq$ 10 mm and acc. to EN 1992-1-1:2005

Table 10: Installation parameter of Hilti special screws

		4	Min spacing	Se	etting torque T _{inst} 1) 4	1)
Anchor	Special screw	Special screw Ø	s _{min,s} 5) of the	General 2)	Steel – steel	contact 3)
channel	type		special screw	4.6; 8.8; A4-50 1)	4.6 A4-50 ¹⁾	8.8 ¹⁾
		[mm]	[mm]		[Nm]	
		8	40	8	8	-
HAC-10		10	50	15	15	•
	HBC-A	12	60	15	25	-
	пвс-А	8	40	8	8	.
HAC-20	-	10	50	15	15	•
		12	60	25	25	
		8	40	8	8	-
HAC-30	HBC-B	10	50	15	15	-
		12	60	30	25	-
HAC-40		10	50	15	15	48
		12	60	25	25	70
		16	80	60	60	200
		20	100	75	120	400
		10	50	15	15	48
HAC-50		12	60	25	25	70
TIAC-50	HBC-C	16	80	60	60	200
	HBC-C-E	20	100	120	120	400
	HBC-C-N	10	50	15	15	48
HAC-60	TIBO-O-IV	12	60	25	25	70
11AC-00		16	80	60	60	200
		20	100	120	120	400
		10	50	15	15	48
HAC-70		12	60	25	25	70
1 IAC-70		16	80	60	60	200
		20	100	120	120	400

¹⁾ Materials according to Tab. 1, Annex 3
2) Acc. to figure 15, Annex 10
3) Acc. to figure 16, Annex 10
4) T_{inst} must not be exceeded
5) See Annex 11, Fig. 17

Hilti Anchor Channel - HAC	Annex 9
Installation parameter of Hilti special screws	of European technical approval ETA – 11/0006

General:

The fixture is fastened to the concrete or to the anchor channel respectively fastened to concrete and anchor channel.

The setting torques acc. to Annex 9, Table 10 shall be applied and must not be exceeded.

Steel to steel contact:

The fixture is fastened to the anchor channel by suitable washer.
The setting torques acc. to Annex 9,
Table 10 shall be applied and must not be exceeded.

Fig. 15

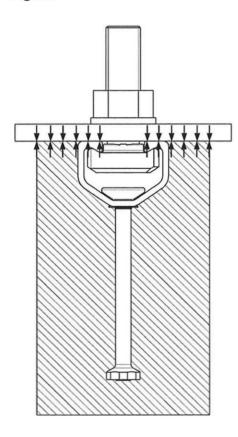
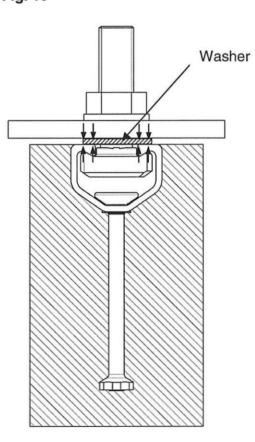



Fig. 16

Hilti Anchor Channel - HAC	Annex 10

Positions of the fixture

of European technical approval

Table 11: Characteristic values for tension loads - steel failure channel

Anchor channel			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure, Anchor										
Characteristic resistance	N _{Rk,s,a}	[kN]	13	29	18	33	33	52	76	
Partial safety factor	γм					1.8				
Steel failure, Connec	ction cha	annel/ a	nchor			general and a second				
Characteristic resistance	N _{Rk,s,c}	[kN]	9	18	18	25	33	52	73	
Partial safety factor	γ _{Ms,ca} 1)			1.8						
Steel failure, Local f	exure o	f chann	el lips for	s _s ≥ s _{slb}						
Spacing of special screw for N _{Rk,s,l}	S _{slb}	[mm]	45	47	71	75	81	90	99	
Characteristic resistance	N _{Rk,s,l}	[kN]	9	18	20	25	35	52	73	
Partial safety factor	γMs		1.8							
Steel failure, Local f	lexure o	f chann	el lips for	$s_{slb} \ge s_s \ge s$	S _{min,s} 2)					
Characteristic resistance	N _{Rk,s,I}	[kN]	$0.5 (1+s_s/s_{slb}) N_{Rk,s,l} \le N_{Rk,s,c}$							
Partial safety factor	γм	1) S				1.8				

 $^{^{1)}}$ In absence of other national regulations $^{2)}\,s_{\text{min,s}}$ acc. to Table 10, Annex 9

Fig. 17: Spacing of special screw

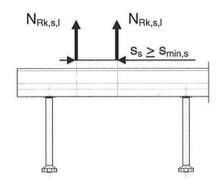


Fig. 18: Assumption of system

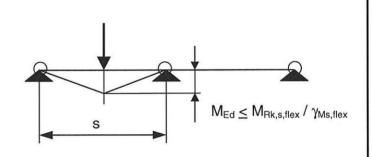


Table 12: Characteristic flexure resistance of channel

Anchor channel			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Characteristic flexure resistance of channel	$M_{Rk,s,flex}$	[Nm]	292	584	708	944	1364	2077	3239
Partial safety factor	γ̃Ms,flex	1)				1.15			

¹⁾ In absence of other national regulations

Hilti Anchor Channel - HAC	Annex 11		
Characteristic values for tension load Steel failure channel	of European technical approval ETA – 11/0006		

Table 13: Characteristic values for tension load – Steel failure Hilti-special screw type HBC-A, HBC-B, HBC-C, HBC-C-E and HBC-C-N

Special screw	Ø				M8	M10	M12	M16	M20
Steel failure									
	N _{Rk,s,s} ²⁾		HBC-A	4.6	14.6	23.2	33.7	-	-
Characteristic resistance			пвс-А	A4-50 1)	18.3	29.0	42.2	-	-
			LIDO D	4.6	14.6	23.2	33.7	-	-
		[kN]	HBC-B	A4-50 1)	18.3	29.0	42.2	-	-
10010101100			HBC-C	4.6	-	23.2	33.7	62.8	98.0
			HBC-C-E	8.8	-	46.4	67.4	125.6	196.0
			HBC-C-N	A4-50 1)	-	29.0	42.2	78.5	122.5
				4.6		 	2.00		
Partial safety factor		γ _{Ms} ³⁾			1.50				
Tactor					2.86				

Materials according to Table 1, Annex 3
 In conformity with EN ISO 898-1
 In absence of other national regulations

Fig. 19 $N_{\text{Rk},s,s}$

Hilti Anchor Channel - HAC	Annex 12
Characteristic values for tension load Steel failure Hilti special screw	of European technical approval ETA – 11/0006

Table 14: Characteristic values for tension load - Concrete failure

Anchor chan	nel			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Pullout failui	re											
Characteristic resistance in cracked concrete C12/15		$N_{Rk,p}$	[kN]	5.0	8.3	7.3	9.2	13.3	21.1	29.1		
	C16/20						1.33					
	C20/25						1.67					
Amplification factor of	C25/30						2.00					
	C30/37	Ψ _c	[-]	2.47								
N _{Rk,p}	C35/45	Ψ _c	ניז	3.00								
	C40/50				3.33							
	C45/55						3.67					
	≥ C50/60						4.00					
		Ψ_{ucr}	,	1.4								
Partial safety		$\gamma_{Mp} =$		1.5								
Concrete co	ne failure l	N ⁰ Rk,c Se	e CEN	I/TS 1992-	4-3: 2009,	section 6.2	2.5					
		α	ch	0.812	0.879	0.864	0.903	0.924	0.971	0.989		
Effective and depth	horage	h _{ef}		45	76	68	91	106	148	175		
Characteristic distance	edge	C _{cr,N}	[mm]	111	171	157	195	216	256	269		
Characteristic	spacing	S _{cr,N}		222	342	314	390	432	512	538		
$\Psi_{\text{ucr,N}}^{2)}$				1.4								
Partial safety factor $\gamma_{Mc}^{1)}$				1.5								
Splitting												
				Verification of splitting is not relevant								

Table 15: Displacements under tension load

Anchor channel			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Tension load	N _{Ek}	[kN]	3.6	7.1	8.3	9.9	13.9	20.6	28.9
Short time displacement 1)	δ_{N0}	[mm]	0.7	1.1	1.5				
Long time displacement 1)	δ _{N∞}	[mm]	1.1	1.7	2.25				

¹⁾ Displacements in midspan of the anchor channel, including channel lip deformation, bending of the channel and slip of the anchor channel in concrete.

Hilti Anchor Channel - HAC	Annex 13
Characteristic values for tension load Concrete failure and displacements	of European technical approval ETA – 11/0006

¹⁾ In absence of other national regulations²⁾ Amplification factor for uncracked concrete

Anchor o	channel		HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel fail	lure, local flexure	of channe	el lip							
Characte	eristic resistance	V _{Rk,s,l}	12	18	19	35	51	67	79	
Partial sa	afety factor	γ _{Ms,I} 1)				1.8				
Pry out f	ailure									
	in equation (31) S 1992-4-3	k ₅ ³⁾				2.0				
Partial sa	afety factor	γ _{Mc} 1)				1.5				
Concrete	e edge failure	-								
Cracked concrete without edge reinforcement or stirrups		$\alpha_p \psi_{\text{re,V}}$	3.0	4.0	3.5	4.0 (3.5) ⁴⁾	4.0 (3.5) ⁴⁾	4.0	4.0	
Product of factor	Cracked concrete with straight edge reinforcement (≥ Ø 12mm)	$\alpha_{p} \psi_{\text{re,V}}$	3.6	4.8	4.2	4.8 (4.2) ⁴⁾	4.8 (4,2) ⁴⁾	4.8	4.8	
α _p and factor Ψ _{re,V} No cra co ed rei an wit	Non-cracked concrete ²⁾ or cracked concrete with edge reinforcement and stirrups with a spacing a ≤ 100mm and a ≤ 2c ₁	α _p ψ _{re,V}	4.2	5.6	4.9	5.6 (4.9) ⁴⁾	5.6 (4.9) ⁴⁾	5.6	5.6	
	thickness of the I component	$\alpha_{h,V}$	(h/h _c	cr,V) ^{2/3}			(h/h _{cr,V}) ^{1/2}			
Characte	eristic height	h _{cr,V}				$2c_1 + 2h_{ch}$				
Characte distance	eristic edge	C _{cr,V}				2c ₁ + b _{ch}				
Characte	eristic spacing	S _{cr,V}		4c ₁ + 2b _{ch}						
		γ _{Mc} 1)		1.5						

⁴⁾ Bracket values are valid for channel/screw combination with the Hilti - special screw HBC-C-E

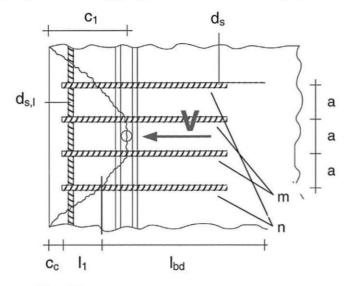
Hilti Anchor Channel - HAC	Annex 14
Characteristic values for shear load	of European technical approval ETA – 11/0006

In absence of other national regulations
 Verification acc. to CEN/TS 1992-4-3: 2009
 Without supplementary reinforcement. In case of supplementary reinforcement the factor k₅ should be multiplied with 0.75

Table 17: Characteristic values for shear load – Steel failure Hilti special screw

Special screw	Ø			M8	M10	M12	M16	M20	
Steel failure	Steel failure								
			HBC-A	4.6 7.3 11.6 16.8		-	-		
Characteristic resistance			пвс-А	A4-50 1)	9.2	14.5	21.1	-	-
			HBC-B	4.6	7.3	11.6	20.2	-	-
	V _{Rk,s} ²⁾	[kN]		24.0	-	-			
			HBC-C	4.6	-	13.9	20.2	37.6	58.8
			HBC-C-E	8.8		23.2	33.7	62.7	97.9
			HBC-C-N	A4-50 1)	-	17.4	25.3	47.0	73.4
			HBC-A	4.6	15	29.9	52.4	-	-
			пвс-а	A4-50 1)	18.7	37.4	65.5 - 52.4 -	•	-
Characteristic			НВС-В	4.6	15	29.9		-	-
flexure	M ⁰ _{Rk,s}	[Nm]	пвс-в	A4-50 1)	18.7	37.4	65.5	-	-
resistance			HBC-C	4.6	1.6 - 29.9 52.	52.4	133.2	259.6	
			HBC-C-E	8.8	-	59.8	104.8	266.4	519.3
			HBC-C-N	A4-50 1)	-	37.4	65.5	166.5	324.5
				4.6			1.67		
Partial safety		γ _{Ms} 3)					1.25		
factor							2.38		

Materials according to Table 1, Annex 3
 In conformity with EN ISO 898-1
 In absence of other national regulations


Table 18: Displacements under shear loads

Anchor channel			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Shear load	V _{Ek}	[kN]	4.7	7.1	7.5	13.9	20.2	26.6	31.3
Short time displacement 1)	δ_{V0}	[mm]	0.3	0.7		•	1.0		
Long time displacement 1) $\delta_{V\infty}$ [mm]			0.4	1.0	1.5				

¹⁾ Displacements in midspan of the anchor channel, including channel lip deformation and slip of the anchor channel in concrete.

Hilti Anchor Channel - HAC	Annex 15
Steel failure Hilti special screw	of European technical approval ETA – 11/0006

Verification for anchor channels for shear loads with reinforcement (only for loading perpendicular to the edge)

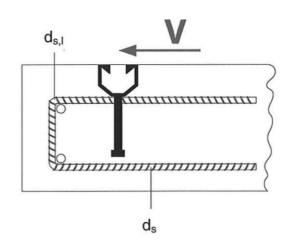


Fig. 20

Fig. 21

$$V_{Ed} \leq V_{Rd,re} = V_{Rk,re}/\gamma_{M} \qquad V_{Ed} = \max(V_{Ed}; V_{Ed}^{a}) \qquad (1)$$

$$V_{Rk,re} = V_{Rk,c,re}/x \qquad (2)$$

$$V_{Rk,c,re} = V_{Rk,c,hook} + V_{Rk,c,bond} \qquad \leq V_{Rk,c,re,max} \qquad (3)$$

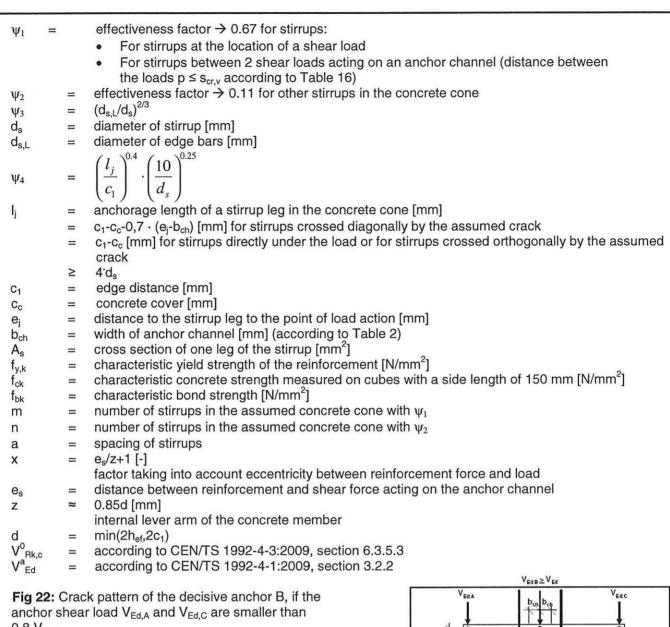
$$\leq \sum_{m+n} A_{s} \cdot f_{y,k}$$

$$V_{\text{Rk,c,hook}} = \sum_{j=1}^{m} \left(\psi_1 \cdot \psi_3 \cdot \psi_4 \cdot A_s \cdot f_{y,k} \cdot \left(\frac{f_{ck}}{30} \right)^{0,1} \right) + \sum_{j=1}^{n} \left(\psi_2 \cdot \psi_3 \cdot \psi_4 \cdot A_s \cdot f_{y,k} \cdot \left(\frac{f_{ck}}{30} \right)^{0,1} \right)$$

$$(4)$$

$$V_{Rk,c,bond} = \sum_{j=1}^{m+n} \left(\pi \cdot d_s \cdot l_j \cdot f_{bk} \right)$$
 (5)

$$V_{Rk,c,re,max} = 4,2 \cdot c_1^{-0,12} \cdot V_{Rk,c}$$
 (6)


$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \alpha_{s,V} \cdot \alpha_{c,V} \cdot \alpha_{h,V}$$
 (7)

Reinforcement requirements

$$50 \text{mm} \le a \le \begin{cases}
8 \\
150 \text{mm} \\
(c_1 - c_c + 0.7b_{ch} - 4d_s)/0.35 \\
c_1 - c_c
\end{cases} (8)$$

$$6mm \le d_s \le 20mm \tag{9}$$

Hilti Anchor Channel - HAC	Annex 16
Design method for shear load with reinforcement	of European technical approval ETA – 11/0006

 $0.8 V_{Ed,B}$

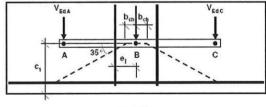


Fig 23: Crack pattern of the decisive anchor B, if the anchor shear load $V_{Ed,c}$ is $\geq 0.8 V_{Ed,B}$ and $V_{Ed,A}$ is $< 0.8 V_{Ed,B}$

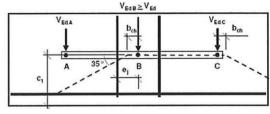
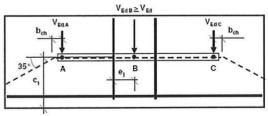



Fig 24: Crack pattern of the decisive anchor B, if the anchor shear load V_{Ed,A} and V_{Ed,C} are equal or higher than the decisive anchor shear load 0.8 V_{Ed,B}

Hilti Anchor Channel - HAC

Annex 17

Design method for shear load with reinforcement

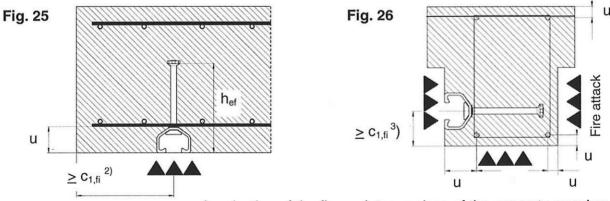

of European technical approval

Table 19: Characteristic tension resistance in cracked concrete C20/25 under fire exposure

Anchor channe	el			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Steel failure, A	nchor,	Connec	ction ch	annel/ and	chor, Loca	l flexure o	f channel	lip				
	R30	$N_{Rk,s,fi}$	[kN]	0.9	1.4	2.5	2.8		5.7			
Characteristic resistance 1)	R60	$N_{Rk,s,fi}$	[kN]	0.7	1.1	1.8	2.3		4.0			
	R90	$N_{Rk,s,fi}$	[kN]	0.5	0.7	1.1	1.7		2.3			
Partial safety factor $\gamma_{Ms,fi}^{4)}$ [-]			[-]	1.0								
Concrete pullo	ut failu	ıre										
Characteristic resistance	R30 R60 R90	N _{Rk,p,fi}	[kN]	1.5	3.1	3.1	3.9	5.6	8.8	12.1		
Partial safety factor $\gamma_{Mc,fi}^{4)}$ [-]			[-]	1.0								
Concrete cone	failure	Individual Control										
Characteristic resistance	R30 R60 R90	N _{Rk,c,fi}	[kN]	1.4	6.8	5.0	12.8	20.8	49.6	67.6		
Partial safety fa	ctor	YMc,fi 4)	[-]	1.0								
		C _{cr,N,fi}	[mm]				2 [·] h _{ef}					
Edge distance		C _{min,fi}	[mm]			max(2 [·] h _{ef} ²⁾ (2 [·] h _{ef} ; 300m	nm) ³⁾				
Anabaranasina	2	S _{cr,N,fi}	[mm]				4 ⁻ h _{ef}					
Anchor spacing		S _{min,fi}	[mm]			according	to Table 6	6, Annex 6				
Axial spacing	R30 R60	u	[mm]		3	5			50			
	R90		[mm]		4	5			50			

¹⁾ Max. resistance in conjunction of biggest Hilti special screw HBC
2) Fire exposure from 1 side only
3) Fire exposure from more than one side

⁴⁾ In absence of other national regulations the safety factor $\gamma_{Mc,fi} = 1.0$ under fire exposure is recommended

A reduction of the fire resistance class of the concrete member due to the anchor channel is not evaluated in this ETA.

Hilti Anchor Channel - HAC	Annex 18
Characteristic tension resistance under fire exposure	of European technical approval ETA – 11/0006

Table 20: Characteristic tension resistance of special screw under fire exposure

Special screw	Special screw Ø						M12	M16	M20
Steel failure									
	R30			0.6	1.3	1.4	-	-	
	HBC-A	R60	N _{Rk,s,s,fi}	[kN]	0.5	1.0	1.1	-	-
Characteristic resistance		R90			0.3	0.6	0.7	-	-
	НВС-В	R30	N _{Rk,s,s,fi}	[kN]	1.0	1.7	2.5	-	-
		R60			0.8	1.3	1.8	-	-
		R90			0.6	0.9	1.1	-	-
	HBC-C	R30		[kN]	-	2.5	3.1	5	.7
		R60	N _{Rk,s,s,fi}		-	1.9	2.5	4	.0
		R90			-	1.3	1.9	2	.3
Partial	safety factor		γ _{Ms,fi} 1)	[-]		,	1.0		

 $^{^{1)}}$ In absence of other national regulations the safety factor $\gamma_{Mc,fi}=1.0$ under fire exposure is recommended

Hilti Anchor Channel - HAC	Annex 19
Characteristic tension resistance under fire exposure	of European technical approval
элагаасын тоогоон тоогоон тоогоон тоогоо	ETA - 11/0006

Table 21: Characteristic shear resistance in cracked concrete C20/25 under fire exposure

Anchor channel			HAC-10	HAC-20	HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure. L	ocal fle	xure of	chann	el lip						
	R30			0.9	1.4	2.5	2.8		5.7	
Characteristic resistance 1)	R60	$V_{Rk,s,l,fi}$	[kN]	0.7	1.1	1.8	2.3		4.0	
10010101100	R90			0.5	0.7	1.1	1.7		2.3	
Partial safety factor γ _{Ms,fi} ²⁾ [-]		1.0								
Concrete pry-	ut failu	ire								
Factor k in equation (D.6) of CEN/TS k ₅ [-] 2.0										
Partial safety factor $\gamma_{\text{Mc,fi}}^{2}$ [-] 1.0										
Concrete edge	failure									
The leader to be	0		•			1 000	/OF d = f			

The initial value V⁰_{Rk,c,fi} of the characteristic resistance in concrete C20/25 under fire exposure may be determined by:

$$V_{Rk,c,fi}^0 = 0.25 \cdot V_{Rk,c}^0 \quad (\leq R90)$$

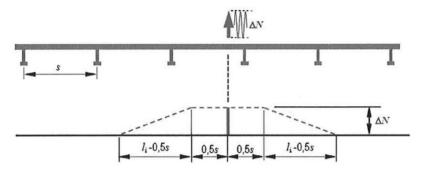
With $V^0_{Rk,c}$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

γ_{Mc,fi} 2) Partial safety factor 1.0 [-]

Table 22: Characteristic shear resistance of special screw

Special screw	Ø			М8	M10	M12	M16	M20	
Steel failure w	ithout lever	arm							
	R30			0.6	1.3	1.4	-	-	
	HBC-A	R60	$V_{Rk,s,fi}$	[kN]	0.5	1.0	1.1	-	-
_		R90			0.3	0.6	0.7	-	-
	HBC-B	R30	V _{Rk,s,fi}	[kN]	1.0	1.7	2.5	-	-
Characteristic resistance		R60			0.8	1.3	1.8	-	-
		R90			0.6	0.9	1.1	-	-
	HBC-C	R30		[kN]	-	2.5	3.1	5	.7
		R60	$V_{Rk,s,fi}$		-	1.9	2.5	4	.0
		R90			-	1.3	1.9	2	.3
Partial safety factor		YMs,fi 2)	[-]			1.0			

 $^{^{1)}}$ Max. resistance in conjunction of biggest Hilti special screw HBC $^{2)}$ In absence of other national regulations the safety factor $\gamma_{\text{Mc,fi}}=1.0$ under fire exposure is recommended


Hilti Anchor Channel - HAC	Annex 20
Characteristic shear resistance under fire exposure	of European technical approval ETA – 11/0006

Fatigue design of anchor channels

Determining the fatigue-relevant loadings

The existing provisions in accordance to CEN/TS 1992-4-3:2009 are used to take the static load into account.

The fatigue loads are distributed in accordance to CEN/TS 1992-4-3:2009 as illustrated in fig. 27.

$$l_{\rm i} = 13 \cdot I_{\rm v}^{0.05} \cdot s^{0.5} \ge s$$
 [mm]

Fig. 27: Distribution of fatigue actions

As an example, fig. 28 illustrates the effects to be taken into account as a result of multiple fatigue loadings combined with static loads.

For the sake of simplicity, the max. equivalent static load $N_{Ed,eq}$ and the max. equivalent fatigue load $\Delta N_{Ed,eq}$ act at each point of the anchor channel within the sphere of the actions.

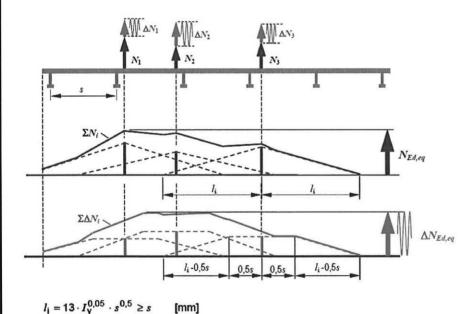


Fig. 28: Addition of the effects of multiple static and fatigue action

The effects of multiple fatigue and static loadings are superimposed as illustrated in fig. 28 and the above mentioned provisions.

Hilti Anchor Channel - HAC	Annex 21
Design procedure for fatigue load	of European technical approval ETA – 11/0006

Table 23: Possible channel / special screw combination under fatigue load

Anchor channel 3)	Special screw type	Ø	steel grade	corrosion class
HAC-30	НВС-В	M10	4.6	
HAC-30	ПВО-В	M12	4.0	
		M12		
HAC-40		M16	4.6	G ¹⁾ F ²⁾
		M20		
HAC-50		M16	4.6	
11AC-30	НВС-С	M20	8.8	
HAC-60		M16	4.6	
1140-00		M20	8.8	
HAC-70		M20	4.6	
11.070		IVILO	8.8	

¹⁾ Electroplated

Design procedure I

General

Verification is provided by the following provisions:

- (1) total loads can be clearly divided into a static load N_{Ed} and a fatigue load ΔN_{Ed} and (or)
- (2) an upper limit to the number of stress cycles *n* over the working life is known.

Case $1 \rightarrow$ the condition (1) and (2) is met:

 $\Delta N_{Rd;E;n}$

design value of fatigue resistance under fatigue loading

with a known static load N_{Ed} after n loading cycles

Case 1.1 \rightarrow only condition (1) is met:

 $\Delta N_{Rd:E:n} = \Delta N_{Rd:E:\infty}$

characteristic value of fatigue resistance under fatigue

loading with a known static load N_{Ed}

Case 1.2 \rightarrow only condition (2) is met:

 $\Delta N_{Ed} = \Delta N_{Ed,tot}$

design value of the total load

 $\Delta N_{Rd:E:n} = \Delta N_{Rd:0:n}$

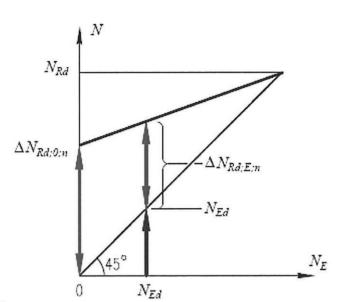
design value of fatigue resistance without static preload

and n loading cycles

Hilti Anchor Channel - HAC	Annex 22
Possible channel / special screw combination Design procedure for fatigue load	of European technical approval ETA – 11/0006

²⁾ Hot-dip galvanized

³⁾ Only with round anchors screwed to the channel according Annex 5, Table 3 resp. Fig. 4


Calculation of fatigue resistance $\Delta N_{Rd;E;n}$

Fatigue loading with static preload ($N_{Ed} \ge 0$)

$$\Delta N_{Rd;E;n} = \Delta N_{Rd;0;n} \cdot \left(1 - \frac{N_{Ed}}{N_{Rd}}\right)$$

respectively

$$\Delta N_{Rd;E;\infty} = \Delta N_{Rd;0;\infty} \cdot \left(1 - \frac{N_{Ed}}{N_{Rd}}\right)$$

with

N_{Ed} design value of static load

 N_{Bd} design value of static resistance (in Tab. 24, 25 and 26 values with $n \le 10$)

 $\Delta N_{Bd:0:n}$ design value of fatigue resistance without static preload and n load cycles

(Tab. 24, 25 and 26)

 $\Delta N_{Rd:E:n}$ design value of fatigue resistance under combined influence of static N_{Ed}

and fatigue ΔN_{Ed} action and n load cycles

 $\Delta N_{Rd:0:\infty}$ design value of continuous fatigue resistance without static preload (in tab.

24, 25 and 26, values with n > 106 load cycles)

 $\Delta N_{Rd:E:\infty}$ design value of continuous fatigue under combined influence of static N_{Ed}

and fatigue ΔN_{Ed} action and n > 10⁶ load cycles

Design procedure I - the required verification

For case 1: For case 1.1: For case 1.2:

Steel failure: $\Delta N_{\text{Ed}} / \Delta N_{\text{Rd,s;E;n}} \leq 1.0$ $\Delta N_{\text{Rd,E,n}} = \Delta N_{\text{Rd,E,n}} = \Delta N_{\text{Rd,E,n}} = \Delta N_{\text{Rd,0,n}}$

Pull-out: $\Delta N_{Ed} / \Delta N_{Rd,p;E;n} \le 1.0$

Concrete cone failure: $\Delta N_{Ed} / \Delta N_{Rd,c;E;n} \le 1.0$

Hilti Anchor Channel - HAC	Annex 23
Design procedure for fatigue load	of European technical approval
	ETA - 11/0006

Table 24: Design fatigue resistance with n load cycles without static preload ($N_{Ed} = 0$)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70	
Steel failure	n	$\Delta N_{\text{Rd,s;0;n}}[kN]$					
	≤ 10 ¹	9.80	12.60	18.30	28.00	39.20	
	≤ 10 ²	9.30	12.33	17.34	27.38	37.23	
	≤ 3·10 ²	8.70	11.84	16.09	26.17	34.53	
	≤ 10 ³	7.67	10.74	13.84	23.38	29.57	
Fatigue design	≤ 3·10 ³	6.39	9.09	11.08	19.14	23.41	
resistance without	≤ 10 ⁴	4.82	6.68	7.75	13.11	16.09	
static preload	≤ 3·10 ⁴	3.46	4.37	5.09	7.85	10.47	
	≤ 10 ⁵	2.31	2.42	3.15	4.17	6.68	
	≤ 3·10 ⁵	1.67	1.49	2.29	2.90	5.22	
	≤ 10 ⁶	1.34	1.16	1.97	2.62	4.77	
	> 10 ⁶	1.20	1.10	1.90	2.60	4.70	

Table 25: Reduction factor $\eta_{c,fat}$ with n load cycles without static preload (N_{Ed} = 0)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70				
Concrete cone failure	n			η _{c,fat} [-]						
Fatigue design	≤ 10 ¹		1.000							
	≤ 10 ²		0.923							
	≤ 3·10 ²		0.888							
	≤ 10 ³	0.851								
	≤ 3·10 ³	0.819								
resistance without static preload:	≤ 10 ⁴	0.785								
$\Delta N_{Rd,c;0;n} = \eta_{c,fat} \cdot N_{Rd,c}^{1)}$	≤ 3·10 ⁴	0.755								
	≤ 10 ⁵	0.723								
	≤ 3·10 ⁵	0.696								
	≤ 10 ⁶	0.667								
	> 10 ⁶	0.667								

 $^{^{1)}~}N_{\text{Rd,c}}~$ Static design resistance according CEN TS 1992-4-3:2009

Hilti Anchor Channel - HAC	Annex 24	
Design fatigue resistance for tension load	of European technical approval ETA – 11/0006	

Table 26: Design fatigue resistance with n load cycles without static preload ($N_{\text{Ed}} = 0$)

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70		
Pullout failure n			ΔN _{Rd,p;0;n} [kN]					
Pullout fatigue design resistance without static preload $ \leq 3.10^{3} $ $ \leq 3.10^{3} $ $ \leq 10^{4} $ $ \leq 3.10^{5} $ $ \leq 3.10^{5} $ $ \leq 10^{6} $		≤ 10 ¹	4.9	6.1	8.9	14.1	19.4	
		≤ 10 ²	4.5	5.7	8.2	13.0	17.9	
		≤ 3 [.] 10 ²	4.3	5.4	7.9	12.5	17.2	
		≤ 10 ³	4.1	5.2	7.5	12.0	16.5	
		≤ 3 [·] 10 ³	4.0	5.0	7.3	11.5	15.9	
		≤ 10 ⁴	3.8	4.8	7.0	11.0	15.2	
		≤ 3 ⁻ 10 ⁴	3.7	4.6	6.7	10.6	14.6	
		≤ 10 ⁵	3.5	4.4	6.4	10.2	14.0	
		≤ 3 ⁻ 10 ⁵	3.4	4.3	6.2	9.8	13.5	
		≤ 10 ⁶	3.2	4.1	5.9	9.4	12.9	
		> 10 ⁶	3.2	4.1	5.9	9.4	12.9	
	C16/20		1.33					
	C20/25		1.67					
	C25/30		2.00					
Amplification factor of $\Delta N_{Rd,p;0;n}$	C30/37	\ \ \	2.47					
	C35/45	Ψc	3.00					
	C40/50		3.33					
	C45/55		3.67					
	≥C50/60				4.00			
		Ψucr,N			1.4			

Hilti Anchor Channel - HAC	Annex 25
Design fatigue resistance for tension load	of European technical approval ETA – 11/0006

Design procedure II

General

Verification is provided in the following provisions:

- (1) total loads can NOT be divided into a static load N_{Ed} and a fatigue load ΔN_{Ed} and
- (2) NO upper limit to the number of stress cycles n over the working life is known.

<u>Case 2</u> \rightarrow the condition (1) and (2) is met:

 $\Delta N_{Ed} = N_{Ed,tot}$

design value for the total load

 $\Delta N_{Rd} = \Delta N_{Rd;0;\infty}$

characteristic value of fatigue resistance without static

preload (tab. 27)

Design procedure II - the required verification

Steel failure:

 $\Delta N_{Ed,tot} / \Delta N_{Rd,s;0;\infty} \leq 1.0$

Pull-out:

not required as this is not decisive

Concrete cone failure:

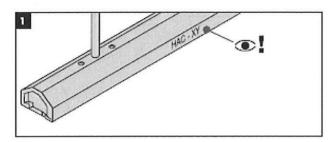
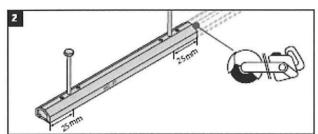
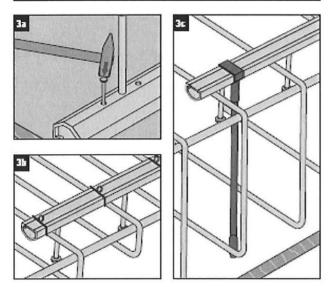

 $\Delta N_{Ed,tot} / \Delta N_{Rd,c;0;\infty} \leq 1.0$

Table 27: Design fatigue resistance with $n \rightarrow \infty$ load cycles without static preload (N_{Ed} = 0)

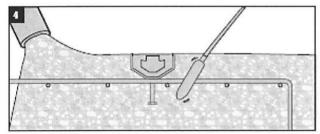

Anchor channel		HAC-30	HAC-40	HAC-50	HAC-60	HAC-70
Steel failure						
$\Delta N_{Rd,s;0;\infty}$	[kN]	1.2	1.1	1.9	2.6	4.7
Concrete cone failure						
$\Delta N_{Rd,c;0;\infty} = \eta_{c,fat} \cdot N_{Rd,c}^{-1)}$	[-]	0.667				

¹⁾ N_{Rd,c} Static design resistance according CEN TS 1992-4-3:2009

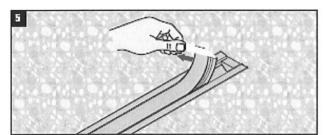
Hilti Anchor Channel - HAC	Annex 26
Design fatigue registence for tancian load	of European technical approval ETA – 11/0006



Selection of anchor channel in accordance to the design specification.


Min. end spacing for cutting anchor channels according Annex 6.

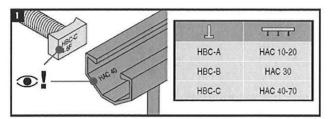
Cut anchor channels only for use in dry internal conditions.



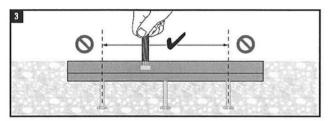
Placing anchor channel into formwork and fixing as follows:

- Fixing to the wood formwork with nails or staples (fig. 3a).
- Fixing to the steel formwork with rivets or Hilti special screw.
- Fixing directly to the reinforcement in the case of positioning top of slab (fig. 3b).
- Fixing directly to the formwork with the Hilti support system (fig. 3c).

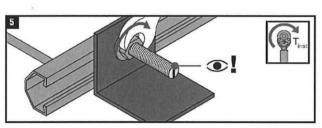
Cast in and compact the concrete.

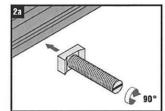

Removing the foam filler after hardening of concrete and striking the formwork.

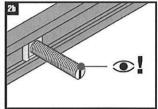
Manufacturer's specification of anchor channel


Hilti Anchor Channel - HAC

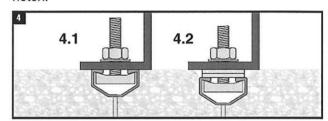
Annex 27


of European technical approval


Selecting of the Hilti special screws in accordance with the design specification.



Positioning of the special screw: Clearance at channel ends: Special screw must be fixed between two anchors or maximum on position of last anchor



Tightening the hexagonal nut to the setting torque acc. Tab. 28. T_{inst} must not be exceeded. After fixing check that the screw is positioned correctly.

Setting the special screw into the channel: After a 90° turn clockwise, the special screw locks into the channel. Checking the position of the screw with the notch.

- 4.1: General setting
- 4.2: Setting with steel to steel contact

Table 28: Setting torque

	Strength	Anchor	T _{inst} [Nm] 1)					
	class	channel	M8	M10	M12	M16	M20	
General 4.6 (acc. 8.8 Fig. 4.1) A4-50		HAC-10	8	15	15	-	-	
		HAC-20	- 8 15	45	25			
	4.6	HAC-30		30				
	8.8	HAC-40	-	15	25	60	75	
		HAC-50					120	
		HAC-60						
		HAC-70						
Steel to 4.6 steel A4-50 contact 8.8 Fig. 4.2)		all anchor	8	15	25	60	120	
	8.8	channels	20 ²⁾	48 ²⁾	70 ²⁾	200	400	

¹⁾ T_{inst} must not be exceeded

²⁾ Values must not be taken for HAC 10, HAC 20 and HAC 30

Hilti	Anchor	Channel	- HAC

Manufacturer's specification of special screw

Annex 28

of European technical approval