

European Technical Approval ETA-11/0191

Englis	ansiation propared by Dibt - original version in Corman language
Handelsbezeichnung <i>Trade name</i>	TDBL-T-8,6xL und TDBL-T-10,6xL TDBL-T-8,6xL and TDBL-T-10,6xL
Zulassungsinhaber Holder of approval	SFS intec AG FasteningSystems Rosenbergsaustraße 10 9435 HEERBRUGG SCHWEIZ
Zulassungsgegenstand und Verwendungszweck	Gewindefurchende Schrauben TDBL-T-8,6xL und TDBL-T-10,6xL
Generic type and use of construction product	Self tapping screws TDBL-T-8,6xL and TDBL-T-10,6xL
Geltungsdauer: vo Validity: fro	28 June 2011
bis to	28 June 2016
Herstellwerk Manufacturing plant	SFS intec AG Heerbrugg Switzerland

English translation prepared by DIBt - Original version in German language

Diese Zulassung umfasst This Approval contains

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

25 Seiten einschließlich 18 Anhänge

25 pages including 18 annexes

Page 2 of 25 | 28 June 2011

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12

² Official Journal of the European Communities L 220, 30 August 1993, p. 1 ³ Official Journal of the European Union L 2004 24 October 2002, p. 25

³ Official Journal of the European Union L 284, 31 October 2003, p. 25

Bundesgesetzblatt Teil I 1998, p. 812
 Bundesgesetzblatt Teil I 2006, p. 2407

⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

⁵ Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 25 | 28 June 2011

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the product and intended use

1.1 Definition of the construction product

The fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L are self tapping screws made of case hardened carbon steel with a Cr. VI free zinc- coating. For details and dimensions see Annex 1.

Examples of connections with the fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L are shown in Annexes 2 to 4.

The fastening screws and the corresponding connections are subject to tension and shear forces.

1.2 Intended use

The fastening screws are intended to be used for fastening steel members as purlins or sheeting to steel members, steel substructures or sheeting. The types of connections with sheeting are shown in Annex 5.

The component to be fastened (adjacent to the screw-head) is component I and the substructure is component II.

The intended use comprises indoor and outdoor applications of the fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L up to corrosion category C3 according to EN ISO 12944-2.

The fastening screws are intended to be used for connections with predominantly static loads (e.g. wind loads, dead loads).

The provisions made in this European technical approval are based on an assumed working life of the fastening screws of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L shall correspond to the drawings given in Annex 1.

The characteristic material values, dimensions and tolerances of the fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L neither indicated in this section nor in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ to this European technical approval.

The characteristic values of the shear and tension resistance of the connections made with the fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L are given in the Annexes 6 to 18 or in section 4.2.

The fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L are considered to satisfy the requirements of performance class A1 of the characteristic reaction to fire.

7

The technical documentation to this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as relevant fort the tasks of the approved bodies involved in the attestation of conformity procedure is handed over to the approved bodies.

Page 4 of 25 | 28 June 2011

2.2 Methods of verification

The assessment of the fitness of the fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L for the intended use in relation to the Essential Requirements ER 1 (Mechanical resistance and stability), ER 2 (Safety in case of fire), ER 4 (Safety in use) and additional aspects of durability has been made in accordance with section 3.2 of the Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.

The assessment of the resistance to fire performance is only relevant to the assembled system (fastening screws, steel members, substructure) which is not part of the ETA.

The fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L are considered to satisfy the requirements of performance class A 1 of the characteristic reaction to fire, in accordance with the provisions of the EC Decision 96/603/EC (as amended) without the need for testing on the basis of its listing in that decision.

Concerning Essential Requirements No. 1 (Mechanical resistance and stability) and No. 4 (Safety in use) the following applies:

The characteristic values of resistance given in the Annexes were determined by shear and tension tests.

The formulas to calculate the design resistance are given in clause 4.2.1.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 99/92 of the European Commission⁸ system 3 of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 3: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - Tasks for the approved body:
 - (2) initial type-testing of the product.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

(b)

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial materials stated in the technical documentation of this European technical approval.

8

Page 5 of 25 | 28 June 2011

The factory production control shall be in accordance with the "control plan of June 2011 relating to the European technical approval ETA-11/0191 issued on 28 June 2011" which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of fastening screws in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of the European technical approval ETA-11/0191 issued on 28 June 2011.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in written reports.

3.3 CE marking

The CE marking shall be affixed on each packaging of fastening screws. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the European technical approval,
- the name of the product.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L are manufactured in accordance with the provisions of the European technical approval using the manufacturing process as laid down in the technical documentation.

9

The "control plan" is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 25 | 28 June 2011

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design

4.2.1 General

Fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L may completely or partly exposed to external weather or similar conditions up to corrosion category C3 according to EN ISO 12944-2 as long as the influence of sulphur dioxide is avoided.

For the types of connection (a, b, c, d) listed in the Annexes it is not necessary to take into account the effect of constraints due to temperature. For other types of connection it shall be considered for design as long as constraining forces due to temperature do not occur or are not significant (e. g. sufficient flexibility of the structure).

The loading is predominantly static. (Remark: Wind loads are regarded as predominantly static.)

Dimensions, material properties, torque moments $M_{t,norm}$, minimum effective screw-in length I_{ef} and nominal material thicknesses t_N as stated in the ETA or in the Annexes are observed.

The verification concept stated in EN 1990:2002 is used for the design of the connections made with the fastening screws. The characteristic values (shear and tension resistance) stated in the Annexes are used for the design of the entire connections.

The following formulas are used to calculate the values of design resistance:

$$N_{Rd} = \frac{N_{Rk}}{\gamma_M}$$

$$V_{Rd} = \frac{V_{Rk}}{\gamma_M}$$

The recommended partial safety factor $\gamma_M = 1.33$ is used in order to determine the corresponding design resistances, provided no values are given in national regulations of the member state in which the fastening screws are used or in the respective National Annex to Eurocode 3.

In case of combined tension and shear forces the linear interaction formula according to EN 1993-1-3:2006, section 8.3 (8) is taken into account.

 $\frac{N_{Sd}}{N_{Rd}} \! + \! \frac{V_{Sd}}{V_{Rd}} \! \leq \! 1.0$

The possibly required reduction of the tension resistance due to the position of the fastener is taken into account in accordance with EN 1993-1-3:2006, section 8.3 (7) and Fig. 8.2.

4.3 Installation

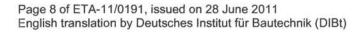
The installation is only carried out according to the manufacturer's instructions. The manufacturer hands over the assembly instructions to the assembler.

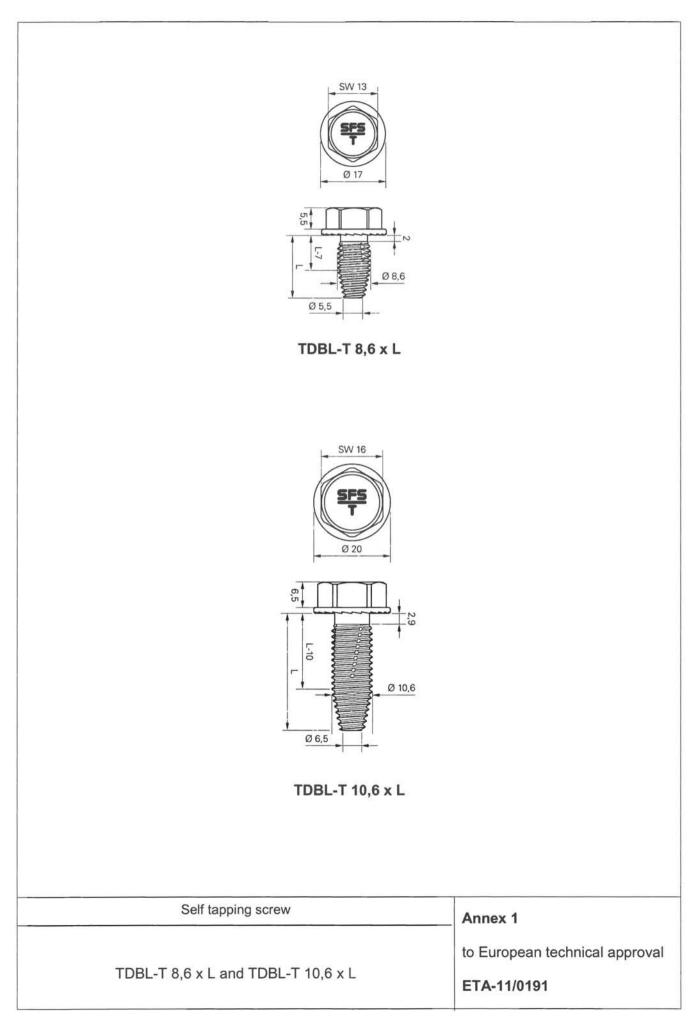
It is guaranteed by the execution that no bimetallic corrosion will occur.

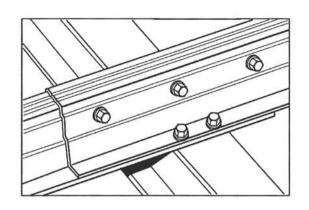
Page 7 of 25 | 28 June 2011

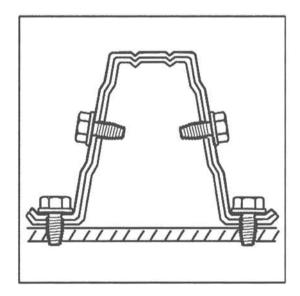
For regular shear forces the components I and II are directly connected to each other so that the fastening screws do not get additional bending. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

The fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L are fixed rectangular to the surface of the components to guarantee a correct load bearing and if necessary rain-proof connection.

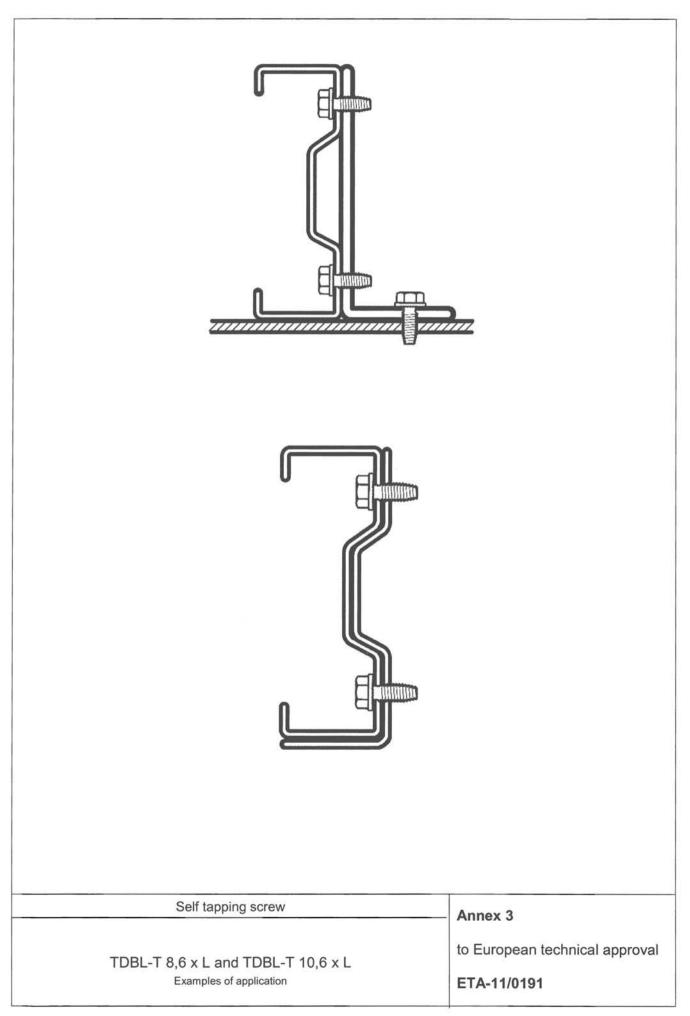

The conformity of the installed fastening screws TDBL-T 8,6 x L and TDBL-T 10,6 x L with the provisions of the ETA is attested by the executing company.

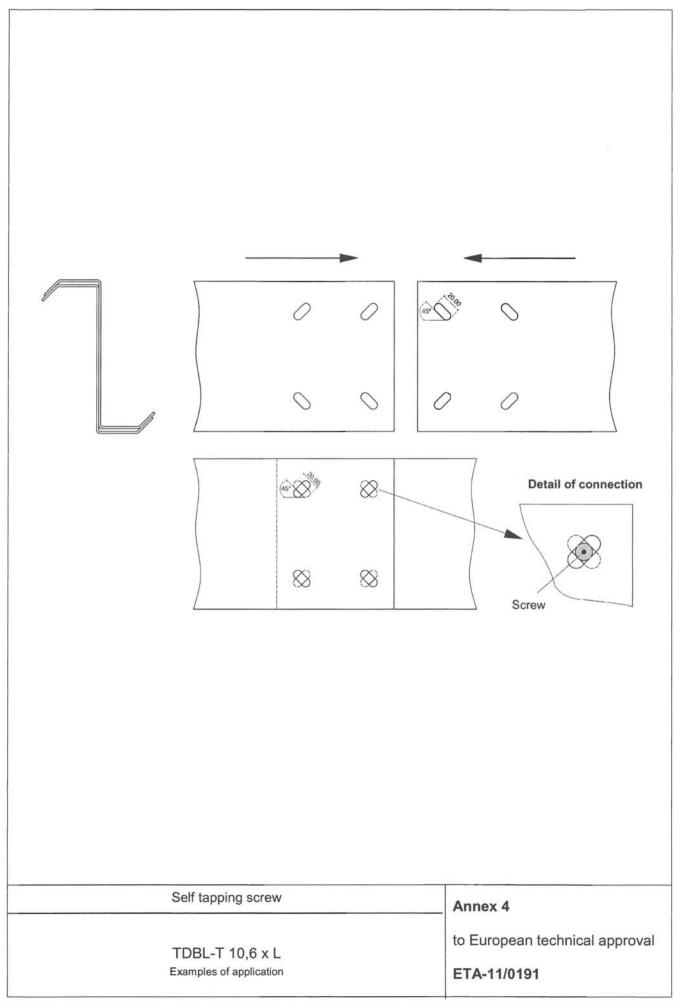

5 Indications to the manufacturer

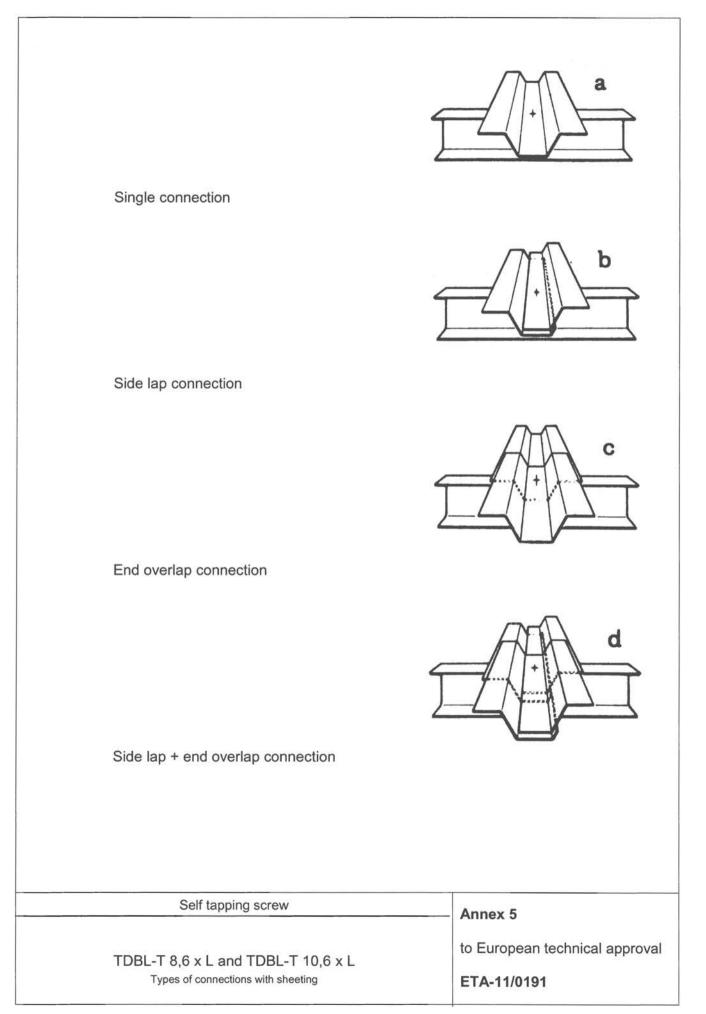

It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1, 2, 4.2 and 4.3 (including Annexes referred to) is given to those who are concerned. This information may be given by reproduction of the respective parts of the European technical approval.

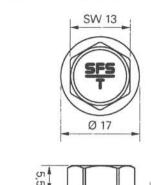

In addition all installation data (predrill diameter, torque moment, application limits) shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

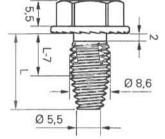
Georg Feistel Head of Department beglaubigt: Ulbrich










Self tapping screw	Annex 2
TDBL-T 8,6 x L and TDBL-T 10,6 x L	to European technical approval
Examples of application	ETA-11/0191

Materials	and the second second for
Fastener:	carbon steel
	quenched, tempered and coated
Component I:	S235 – EN 10025-1
	S280GD or S320GD - EN 10346
Component II	: S235 – EN 10025-1
<i>.</i>	S280GD or S320GD - EN 10346
Predrill diame	ter d _{pd} see table below

Timber substructures

for timber substructures no performance determined

d _{pd} M _{t,nd}		0,8	38	0,9	90	1,0	00	1,2	25	1,5	50	2,0	00	3,0	00	4,0	0	6,0	00	8,0	00	10,	00
	, =						7,5	mm										8,0 r	nm				
	0,88	2,37	-	2,40	—	2,56		2,94	-	3,33		4,11	ac	4,11	ас	4,11	ac	4,11	ac	4,11	ac	4,11	a
	0,90	2,37		2,62	—	2,62	\rightarrow	3,04	-	3,47	-	4,31	-	4,95	ac	4,95	ac	4,95	ac	4,95	ac	4,95	a
	1,00	2,37		2,45		2,84	-	3,36		3,89	<u> </u>	4,93		7,02	ac	7,02	ac	7,02	ac	7,02	ac	7,02	â
1	1,13	2,37	1.11	2,45	~ -1	2,84	-	3,77	<u></u>	4,32		4,93	-	7,62		8,73	ac	8,73	ac	8,73	ac	8,73	2
VR.K IOF IN.	1,25	2,37		2,45	-	2,84	~ -1	4,14	-	4,71	-	5,86	-	8,14		10,4	ac	10,4	ac	10,4	ac	10,4	
н. Ж.	1,50	2,37	-	2,45		2,84	_	4,14		5,52		6,15	- <u></u> -	8,14	<u></u>	10,4		11,2	ac	11,2	ac	11,2	
2	1,75	2,37		2,45	_	2,84	\rightarrow	4,14	-	5,52	-	8,00	_	8,96		10,4	-	11,9	ac	12,8	ac	12,8	ä
	2,00	2,37	_	2,45	—	2,84	-	4,14	-	5,52	-	9,99	_	10,7	-	11,5	-	13,0	-	14,5	ac	14,5	-
	3,00	2,37	_	2,45	—	2,84	_	4,14	\simeq	5,52	<u> </u>	9,99	_	14,0		15,5		18,5	_	21,6		24,6	
	4,00	2,37		2,45	_	2,84	-	4,14	-	5,52	_	9,99		14,0	-	16,8	-	19,4	_	22,0		24,6	ć
	0,88	1,10		1,13	-	1,29	-	1,84	-	2,59	-	3,11	ac	3,11	ac	3,11	ac	3,11	ac	3,11	ac	3,11	2
	0,90	1,10		1,13	—	1,29	-	1,84		2,59		3,17		3,17	ac	3,17	ac	3,17	ac	3,17	ac	3,17	ä
	1,00	1,10	_	1,13	_	1,29	-	1,84	-	2,59	_	3,47	-	3,47	ac	3,47	ac	3,47	ac	3,47	ac	3,47	3
	1,13	1,10	_	1,13	—	1,29	—	1,84	-	2,59	—	3,88	—	4,29	_	4,29	ac	4,29	ac	4,29	ac	4,29	
NR.K 101 WI	1,25	1,10	\rightarrow	1,13	-	1,29	$\sim - c$	1,84	-	2,59	-	3,88	\sim	5,11		5,11	ac	5,11	ac	5,11	ac	5,11	
R.K. IC	1,50	1,10	—	1,13	—	1,29	—	1,84	-	2,59	-	3,88	—	7,86	-	9,06	-	9,06	ac	9,06	ac	9,06	2
	1,75	1,10	-	1,13	_	1,29	-	1,84	-	2,59	_	3,88	_	7,86	-	10,1	-	10,1	ac	10,1	ac	10,1	-
	2,00	1,10	_	1,13	_	1,29	_	1,84	_	2,59	_	3,88	_	7,86	_	11,1	_	11,1	-	11,1	ac	11,1	
	3,00	1,10	_	1,13	_	1,29	_	1,84	-	2,59	-	3,88	_	7,86	_	11,1	_	11,1	_	11,1	-	11,1	
	4,00	1,10		1,13		1,29	_	1,84		2,59		3,88	_	7,86		11,1	-	11,1		11,1		11,1	

TDBL-T 8,6xL

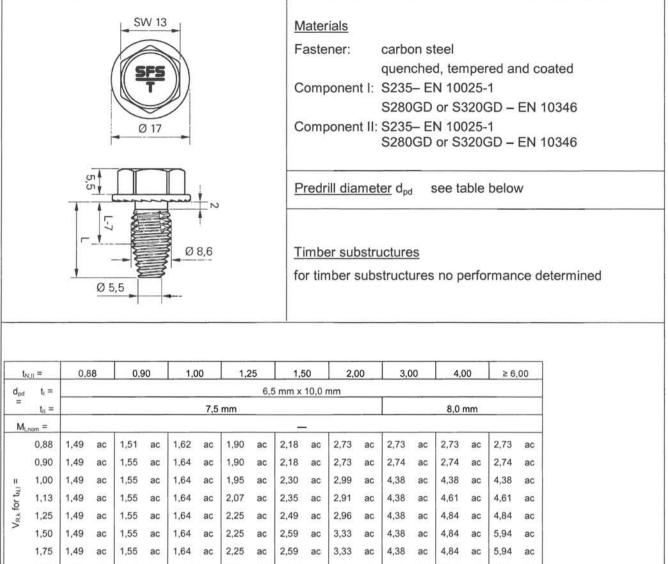
to European technical approval

ETA-11/0191

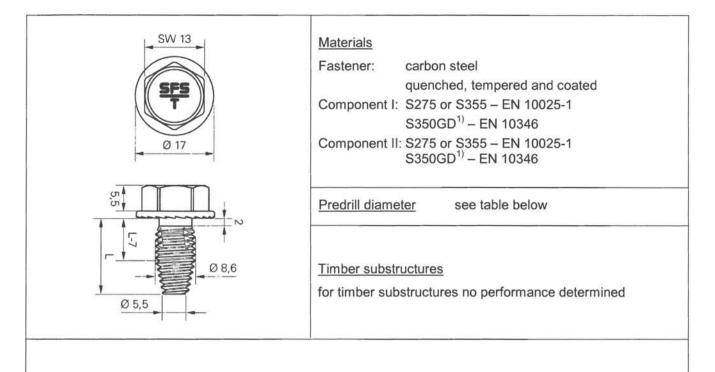
				SI	W 13				-	1.00	<u>later</u> aste	rials ener:		carbo	on s	teel							
				U	5 FS T						,	ooner ooner	nt II:	S275 S350	or GD	S355 ¹⁾ – E S355	– E N 1(– E	N 100 0346 N 100	025-		ł		
		4	ת שיי עול	\prod_{k}	~		2			P	redr	ill dia	met	<u>er</u> d _{pc}	1	see ta	able	belov	N				
			Q 5	1		0	1 <u>8,6</u>					er sut		nar a		no p	erfo	rman	ce d	letern	nine	d	
	_	0,8		0,9	20	1.0	0	1,2	25	1.5	50	2.0	20	3.0	0	4.0	20	6.0	0	8.0	20	10	00
	_{N,II} = I _{pd} =	0,0	00	0,8	0	1 1,0		mm	20	1.3	50	2,0		3,0	0	4,0		8,01		1 8,0		10,	10
	.nom =						.,0						-					-,0					
	0,88	2,38	_	2,41	-	2,57	-	2,96	-	3,35	-	4,14	ac	4,14	ac	4,14	ac	4,14	ac	4,14	ac	4,14	ac
	0,90	2,38	-	2,50	—	2,68	-	3,12	-	3,56	-	4,44	-	4,73	ac	4,73	ac	4,73	ac	4,73	ac	4,73	ac
	1,00	2,38	\sim	2,50	-	3,11	-	3,68	-	4,25	-	5,40		7,68	ac	7,68	ac	7,68	ас	7,68	ac	7,68	ac
11	1,13	2,38	-	2,50	-	3,11	—	4,17	-	4,73	_	5,85	_	8,08	-	9,19	ac	9,19	ac	9,19	ac	9,19	ac
VR.k for the	1,25	2,38	-	2,50	—	3,11	-	4,68	—	5,23	\neg	6,32	-	8,51	-	10,7	ac	10,7	ac	10,7	ac	10,7	ac
VR.k	1,50	2,38	-	2,50	-	3,11	-	4,68	-	6,14	-	6,87		8,51	-	10,7		10,7	ac	12,8	ac	12,8	ac
	1,75	2,38		2,50	—	3,11	_	4,68	—	6,14	_	8,33	_	9,38	_	10,7		10,7	ac	12,8	ac	13,6	ac
	2,00	2,38	-	2,50	-	3,11	_	4,68	-	6,14	-	9,99	-	10,7	-	11,5		11,5	-	13,0	ac	14,5	ac

5	1,20	2,00		2,50		3,11	_	4,00		0,20		0,52	_	0,51	_	10,7	au	10,7	ac	10,7	ac	10,7	ac
V _{R.k} for	1,50	2,38	-	2,50	-	3,11	-	4,68	-	6,14	-	6,87	-	8,51	_	10,7		10,7	ac	12,8	ac	12,8	ac
>	1,75	2,38		2,50	-	3,11	_	4,68	-	6,14	_	8,33	_	9,38	_	10,7		10,7	ac	12,8	ac	13,6	ac
	2,00	2,38	-	2,50	-	3,11	—	4,68	-	6,14	-	9,99	—	10,7	—	11,5		11,5	-	13,0	ac	14,5	ac
	3,00	2,38	-	2,50	-	3,11	-	4,68	-	6,14	\rightarrow	9,99	-	14,0	-	15,5		15,5	-	18,5	-	24,6	ac
	4,00	2,38	-	2,50	_	3,11	_	4,68	-	6,14	-	9,99	-	14,0	_	19,2		19,2	-	21,0	-	24,6	ac
	0,88	1,11	-	1,16		1,42	-	1,88	-	2,66	-	3,12	ac	3,12	ac	3,12	ac	3,12	ac	3,12	ac	3,12	ac
	0,90	1,11	\rightarrow	1,16	_	1,42	_	1,88	-	2,66	-	3,23	-	3,23	ac	3,23	ac	3,23	ac	3,23	ac	3,23	ac
	1,00	1,11		1,16	-	1,42	-	1,88	-	2,66	-	3,80	-	3,80	ac	3,80	ac	3,80	ac	3,80	ac	3,80	ac
ш	1,13	1,11	-	1,16	-	1,42	_	1,88	-	2,66	_	4,42	_	4,52	-	4,52	ac	4,52	ac	4,52	ac	4,52	ac
or tw.	1,25	1,11	—	1,16	—	1,42	—	1,88	—	2,66	—	4,42	-	5,23	—	5,23	ac	5,23	ac	5,23	ac	5,23	ac
NR.k for tw.	1,50	1,11		1,16		1,42	_	1,88	-	2,66	-	4,42	-	8,96	-	9,29		9,29	ac	9,29	ac	9,29	ac
z	1,75	1,11	—	1,16	-	1,42	—	1,88	=	2,66	-	4,42	-	8,96	—	10,2	$\frac{1}{1}$	10,2	ac	10,2	ac	10,2	ac
	2,00	1,11	-	1,16	-	1,42	-	1,88	-	2,66	-	4,42	-	8,96		11,1		11,1	-	11,1	ac	11,1	ac
	3,00	1,11	_	1,16	-	1,42	—	1,88	_	2,66	_	4,42	-	8,96	_	11,1	<u></u>	11,1	_	11,1	—	11,1	ac
	4,00	1,11	-	1,16	_	1,42		1,88	-	2,66	-	4,42		8,96	_	11,1		11,1	-	11,1	_	11,1	ac

¹⁾ including S350GD with increased yield strength, for instance	e f _{yk} = 380 N/mm²
Self tapping screw	Annex 7
TDBL-T 8,6xL	to European technical approval ETA-11/0191

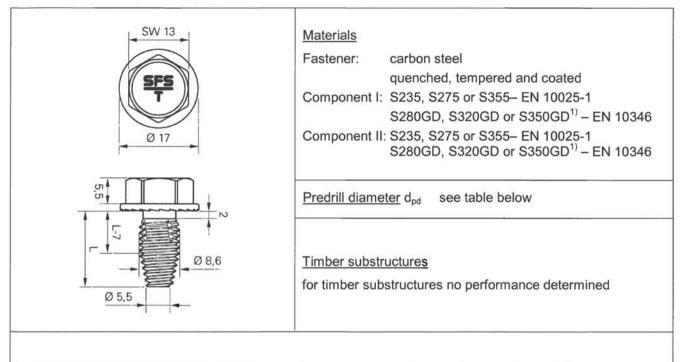

SFS Ø 17	Materials Fastener: carbon steel quenched, tempered and coated Component I: S235, S275 or S355– EN 10025-1 S280GD, S320GD or S350GD ¹⁾ – EN 10346 Component II: S235, S275 or S355– EN 10025-1
	S280GD, S320GD or S350GD ¹⁾ – EN 10346 <u>Predrill diameter</u> d _{pd} see table below
Ø 8,6	Timber substructures for timber substructures no performance determined

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		t _{N,II} =	0,	88	0,	90	1,	00	1	25	1	50	2,	00	3,0	00	4,0	00	≥ 6	,00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		d _{pd} =						7,5	mm								8,0	mm		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	M _{t,nom} =										_								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 x 0,88	-	_	-			· *	~ -1	_		-	$\sim - 1$	_	6,90	ac	6,90	ac	6,90	ac
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2 x 0,90	-	—	-		-	—	-	—	-	—	-	—	7,43	ac	7,43	ac	7,43	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E,	2 x 1,00	-	-	-	_	-	\rightarrow	$c \rightarrow c$	_	-	_	-	-	10,1	ac	10,1	ac	10,1	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 x 1,13	-	-	-		-	—	-	_		-	-	—	10,1	_	14,5	ac	14,5	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	× ×	2 x 1,25		-	-			\rightarrow	$\sim - 1$	_	-	-	~ -1	_	13,9	_	18,9	ac	18,9	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	2 x 1,50		_	-	-		<u> </u>	1	<u> </u>		_	-		13,9	<u>. </u>	18,9	ac	22,7	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 x 1,75		-	-	-		-	~ -1	-		-	-	-	13,9	-	18,9	ac	22,7	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 x ≥ 2,00		_	-	_	-	_	_	-		_		<u> </u>	13,9	-	18,9	ac	22,7	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 x 0,88		-	-	-	-	-	-			-	\rightarrow	_	3,11	ac	3,11	ac	3,11	ac
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2 x 0,90	-	_	_	_	-		\sim	_		_	-		3,17	ac	3,17	ac	3,17	ac
2 x 1,50 7,86 - 9,06 ac 9,06 ac 2 x 1,75 7,86 - 10,1 ac 10,1 ac		2 x 1,00	-	_	-		-	-	-	_	-		-	_	3,47	ac	3,47	ac	3,47	ac
2 x 1,50 7,86 - 9,06 ac 9,06 ac 2 x 1,75 7,86 - 10,1 ac 10,1 ac	1.1	2 x 1,13	-	-	-	_	-	_	\sim	2 		_	\sim	_	4,29	-	4,29	ac	4,29	ac
2 x 1,50 7,86 - 9,06 ac 9,06 ac 2 x 1,75 7,86 - 10,1 ac 10,1 ac	N,K	2 x 1,25	-	_	-	_	-	-	-			-	-	_	5,11		5,11	ac	5,11	ac
	2	2 x 1,50	-	_	-	_	-	_		_		-	-	-	7,86	-	9,06	ac	9,06	ac
2 x ≥ 2,00 7,86 - 11,1 ac 11,1 ac		2 x 1,75	-	_			-	-	-		-	-		_	7,86	_	10,1	ac	10,1	ac
		2 x ≥ 2,00		-	-	-	-	-	-		-	-	-	-	7,86	-	11,1	ac	11,1	ac
			_	_	-		-	_	_				-		100 A 10 Part 1					
						Sel	t tap	ping	scre	W						- 1	nne	x 8		
Self tapping screw Annex 8						т	BRI	-T 8	671							t	o Eu	rope	ean t	ech


Deutsches Institut für Bautechnik

ETA-11/0191

TDBL-T 8,6xL



						Self ta	appi	ng so	rew							An	nex	9				
												_										
																10,0 mm		6,	5 mr	n .	directi shear	
	2,00	1,10		1,10		1,20	au	1,04	au	2,00	au	0,00	ac	1,00	ac	1,00	ac	1 1,00	ac			
	1,75 2,00	1,10	ac ac	1,13	ac ac	1,29	ac ac	1,84	ac ac	2,59 2,59	ac ac	3,88	ac ac	7,63 7,63	ac ac	7,63 7,63	ac ac	7,63	ac ac			
	1,50	1,10	ac	1,13	ac	1,29	ac	1,84	ac	2,59	ac	3,88	ac	7,63	ac	7,63	ac	7,63	ac			
NR.k	1,25	1,10	ac	1,13	ac	1,29	ac	1,84	ac	2,59	ac	3,88	ac	5,60	ac	5,60	ac	5,60	ac			
N _{R,k} for t _{N,i} =	1,13	1,10	ac	1,13	ac	1,29	ac	1,84	ac	2,59	ac	3,88	ac	4,56	ac	4,56	ac	4,56	ac			
11_	1,00	1,10	ac	1,13	ac	1,29	ac	1,84	ac	2,59	ac	3,52	ac	3,52	ac	3,52	ac	3,52	ac			
	0,90	1,10	ac	1,13	ac	1,29	ac	1,84	ac	2,59	ac	3,45	ac	3,45	ac	3,45	ac	3,45	ac			
	0,88	1,10	ac	1,13	ac	1,29	ac	1,84	ac	2,59	ac	3,43	ac	3,43	ac	3,43	ac	3,43	ac			
	2,00	1,49	ac	1,55	ac	1,64	ac	2,25	ac	2,59	ac	3,33	ac	4,38	ac	4,84	ac	5,94	ac			
	1,75	1,49	ac	1,55	ac	1,64	ac	2,25	ac	2,59	ac	3.33	ac	4,38	ac	4,84	ac	5.94	ac			
<r.< td=""><td>1,50</td><td>1,49</td><td>ac</td><td>1,55</td><td>ac</td><td>1,64</td><td>ac</td><td>2,25</td><td>ac</td><td>2,49</td><td>ac</td><td>3,33</td><td>ac</td><td>4,38</td><td>ac</td><td>4,84</td><td>ac</td><td>5,94</td><td>ac</td><td></td><td></td><td></td></r.<>	1,50	1,49	ac	1,55	ac	1,64	ac	2,25	ac	2,49	ac	3,33	ac	4,38	ac	4,84	ac	5,94	ac			
V _{R.k} for t _{N.I}	1,15	1,49	ac	1,55	ac ac	1,64	ac	2,07	ac	2,35	ac	2,91	ac	4,38	ac	4,84	ac	4,84	ac			
= 17	1,00 1,13	1,49	ac ac	1,55 1,55	ac	1,64 1,64	ac ac	1,95 2,07	ac ac	2,30 2,35	ac ac	2,99 2,91	ac ac	4,38	ac ac	4,38 4,61	ac ac	4,38	ac ac			
	0,90	1,49	ac	1,55	ac	1,64	ac	1,90	ac	2,18	ac	2,73	ac	2,74	ac	2,74	ac	2,74	ac			
	0,88	1,49	ac	1,51	ac	1,62	ac	1,90	ac	2,18	ac	2,73	ac	2,73	ac	2,73	ac	2,73	ac			

t _{N,I}	=	0,	88	0,9	90	1,0	00	1,:	25	1,	50	2,0	00	3,0	00	4,0	00	≥ 6	,00
d _{pd} =	t, =	-								6,5 x 10),0 mm								
	t _{ti} =		_		_	_	7,5	mm			-					8,0	mm		
M _{t,n}	- m									-	-								
	0,88	1,70	ac	1,73	ac	1,85	ac	2,17	ac	2,48	ac	3,11	ac	3,11	ac	3,11	ac	3,11	ac
	0,90	1,70	ac	1,76	ac	1,89	ac	2,22	ac	2,55	ac	3,20	ac	3,42	ac	3,42	ac	3,42	ac
11	1,00	1,70	ac	1,76	ac	1,89	ac	2,22	ac	2,61	ac	3,41	ac	4,99	ac	4,99	ac	4,99	ac
V _{R.k} for t _{N.I}	1,13	1,70	ac	1,76	ac	1,89	ac	2,37	ac	2,69	ac	3,41	ac	4,99	ac	5,26	ac	5,26	ac
R.k fo	1,25	1,70	ac	1,76	ac	1,89	ac	2,59	ac	2,86	ac	3,41	ac	4,99	ac	5,52	ac	5,52	ac
>	1,50	1,70	ac	1,76	ac	1,89	ac	2,59	ac	2,94	ac	3,41	ac	4,99	ac	5,52	ac	6,77	ac
	1,75	1,70	ac	1,76	ac	1,89	ac	2,59	ac	2,94	ac	3,41	ac	4,99	ac	5,52	ac	6,77	ac
	2,00	1,70	ac	1,76	ac	1,89	ac	2,59	ac	2,94	ac	3,41	ac	4,99	ac	5,52	ac	6,77	ac
	0,88	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,00	ac	4,00	ac	4,00	ac	4,00	ac
	0,90	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,02	ac	4,02	ac	4,02	ac	4,02	ac
н	1,00	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,11	ac	4,11	ac	4,11	ac	4,11	ac
N _{R.k} for t _{N.I} =	1,13	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,42	ac	5,32	ac	5,32	ac	5,32	ac
8, k fo	1,25	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,42	ac	6,53	ac	6,53	ac	6,53	ac
z	1,50	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,42	ac	8,90	ac	8,90	ac	8,90	ac
	1,75	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,42	ac	8,90	ac	8,90	ac	8,90	ac
	2,00	1,11	ac	1,16	ac	1,42	ac	1,88	ac	2,66	ac	4,42	ac	8,90	ac	8,90	ac	8,90	ac
¹⁾ ir fo	ncludi or ins	ing S3 tance	350G f _{yk} =	D with 380 N	incre I/mm	eased	yield	stren	gth,					10,0 mm	6	,5 mm		directi shear	
					Self t	appin	g scr	ew		-			-	Annex	(10				
					TD	BL-T	8,6x	L						to Euro ETA-1			hnica	al app	rov

Page 18 of ETA-11/191, issued on 28 June 2011 English translation by Deutsches Institut für Bautechnik (DIBt)

	t _{N,II} =	0,	88	0,	90	1,	00	1,	25	1,	50	2,	00	3,0	00	4,0	00	≥ 6	.00	
d _{pd} ≕	t _i =								6,5	5 mm x	10,0 1	nm								
2	t _{ii} =	<u> </u>					7,5	mm								8,0	mm			
1	M _{t,nom} =									-	-									
	2 x 0,88	1	-		-		-	-	-	-	\sim	-	-	4,91	ac	4,91	ac	4,91	ac	
	2 x 0,90				-	-	-				—	-		5,64	ac	5,64	ac	5,64	ac	
11	2 x 1,00	-	_		-		-	() ,			-	-	-	6,37	ac	6,37	ac	6,37	ac	
V _{R.k} for t _{N,I}	2 x 1,13	-	—	-	_	-	—	-		-	_	-		5,54	ac	7,66	ac	7,66	ac	
R.k fo	2 x 1,25	-	—	-		-	-	-	5775	-		-		6,76	ac	8,95	ac	8,95	ac	
>	2 x 1,50	-	-			-	-	-		-	-	-	_	5,69	ac	7,42	ac	10,9	ac	
	2 x 1,75	—	-	-		-	—	-	-	-	—	-	_	5,69	ac	7,42	ac	10,9	ac	
	2 x ≥ 2,00	-	_	_		-	_	_			_	_		5,69	ac	7,42	ac	22,7	ac	
	2 x 0,88			-	0.00	-	-			<u></u>	_			3,43	ac	3,43	ac	3,43	ac	
	2 x 0,90		-	-		-	_	-		-	_	-	_	3,45	ac	3,45	ac	3,45	ac	
п	2 x 1,00		-	-		-			1000		_	-	_	3,52	ac	3,52	ac	3,52	ac	
	2 x 1,13	_	_	-	_	_	_				_	_	_	4,56	ac	4,56	ac	4,56	ac	
NR.k for thui	2 x 1,25		-	-		-	_	_	-	-				5,60	ac	5,60	ac	5,60	ac	
R R	2 x 1,50	-	_	-			_	-		-	_	-	_	7,63	ac	7,63	ac	7,63	ac	
	2 x 1,75	-	_	-			· _ ·	-			_	-	_	7,63	ac	7,63	ac	7,63	ac	
	2 x ≥ 2,00						-							7,63	ac	7,63	ac	7,63	ac	
	2,00		<u></u>				<u></u>			1	_			17,05	au	1,05	au	1,05	au	
1)	including for insta	g S3 nce	50GI f _{yk} =	D wit 380	h inc N/mr	reas n²	ed y	ield s	stren	igth,						10,0 mm		6,5 m	hm	directior shear fo
					Self	ftapp	oing	scre	W			5.5			A	nne	x 1 [.]	1		
					т	DBL	-T 8	,6xL								o Eu	0		echn	ical appro

SFS Ø 17 N									onent	que I: S23 S28 II: S23 S28 <u>neter</u> d	85 – E 80GD 85 – E 80GD _{pd} \$	d, temp N 1002 or S32	25-1 0GD- 25-1 0GD-	- EN 10 - EN 10)346		
		-	+ WWW	-	Ø 8,6					<u>structu</u> ubstruc		no per	forma	ance de	etermi	ned	
		<u>Ø</u> 5	, ⁰ -														
									0.5							1	
	N,II =	0,8	38	0,9	90	1,0	00		25	1,		2,0	00	3,0	00	≥ 4	,00
	d _{pd} =							0,5	1000.2	(10,0 r							
101	0,88	1,49	_	1,49		1,49		1,49	-	1,49	_	1,49	_	1,49	_	1,49	
	0,90	1,49	_	1,55	_	1,53		1,55	_	1,55	_	1,55	_	1,55	-	1,55	
н	1,00	1,49	_	1,55	—	1,60	_	1,60	—	1,60	—	1,60	_	1,60	-	1,60	-
$V_{R,k}$ for $t_{N,I} =$	1,13	1,49		1,55	_	1,60	_	1,93	-	1,93	—	1,93	_	1,93	_	1,93	23 <u></u> 2
R.k fc	1,25 1,49 — 1,55 — 1,60							2,25	—	2,25	—	2,25	\rightarrow	2,25	—	2,25	10-10
>	1,50							2,25	—	2,59	-	2,59	-	2,59	_	2,59	
	1,75	1,49	—	1,55	-	1,60	—	2,25	—	2,59	_	2,59	—	2,59	—	2,59	—
	2 00	1 10		1 55		1 60		2.25		2 50		2 50		2 50		2 50	

	1,50	1,49		1,55	_	1,60		2,25	_	2,59	_	2,59	-	2,59	_	2,59	_
[]	1,75	1,49	_	1,55	-	1,60	—	2,25	—	2,59	_	2,59	—	2,59	—	2,59	_
	2,00	1,49	_	1,55	—	1,60	_	2,25	_	2,59	_	2,59	_	2,59	—	2,59	2 <u> </u>
	0,88	0,87	_	0,88	-	0,94		1,37	—	1,73	-	1,73	—	1,73	_	1,73	-
	0,90	0,87	_	0,88		0,94	-	1,37	_	1,73	$\sim - 1$	1,73	_	1,73	-	1,73	-
1	1,00	0,87		0,88		0,94	_	1,37	_	1,73	_	1,73	_	1,73	—	1,73	_
N _{R.k} for t _{N.I} =	1,13	0,87	_	0,88	_	0,94	—	1,37		1,73		1,73	$\sim - 1$	1,73	_	1,73	
R.k fo	1,25	0,87		0,88	_	0,94	_	1,37	_	1,73	_	1,73	_	1,73	_	1,73	_
Z	1,50	0,87		0,88		0,94	—	1,37		1,73	-	1,73	_	1,73		1,73	
	1,75	0,87	-	0,88		0,94	_	1,37	_	1,73	\sim	1,73		1,73		1,73	
	2,00	0,87	-	0,88	-	0,94		1,37	_	1,73	_	1,73	-	1,73	—	1,73	-
												*				-	
							10.4 8.4					10,0 mm		6,5 mm	1	directio shear fo	
				Self	tappi	ng scre	ew					10,0 mm	•		1		

Page 20 of ETA-11/191, issued on 28 June 2011 English translation by Deutsches Institut für Bautechnik (DIBt)

SW 13 SFS 0 17 0 17 0 8,6 0 5,5								Comp Predri Timbe	ner: onent onent II dian	que I: S27 S35 II: S27 S35 <u>neter</u> d	75 or \$ 60GD ¹ 75 or \$ 60GD ¹ pd \$	d, temp 5355 – ⁽⁾ – EN 5355 – ⁽⁾ – EN see tab	EN 1 1034 EN 1 1034	0025-1 6 ow		ned	
		\$ 5,5	-	-				for timber substructures no performance determined									
t	_{4,11} =	0,88		0,90		1,0	00	1,2	25	1,	50	2,0	00	3,0	00	≥ 4	.00
	_{pd} =									: 10,0 r				1		1	
	nom =																
$N_{R,k}$ for $t_{N,l} = V_{R,k}$ for $t_{N,l} =$	0,88 0,90 1,00 1,13 1,25 1,50 1,75 2,00 0,88 0,90 1,00 1,13 1,25 1,50 1,75 2,00	1,70 - 1,70 - 1,70 - 1,70 - 1,70 - 0,99 - 0,99 - 0,99 - 0,99 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,69 - 1,69 - 1,69 - 1,69 - 1,69 - 1,00 - 1,00 - 1,00 - 1,00 - 1,00 - 1,00 - 1,00 -		1,70 1,76 1,82 1,82 1,82 1,82 1,82 1,82 1,82 1,07 1,07 1,07 1,07 1,07 1,07 1,07 1,07		$\begin{array}{c} 1,70\\ 1,76\\ 1,82\\ 2,21\\ 2,59\\ 2,59\\ 2,59\\ 2,59\\ 1,56\\$		1,70 1,76 1,82 2,21 2,59 2,94 2,94 2,94 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97		1,70 1,76 1,82 2,21 2,59 2,94 2,94 2,94 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97		1,70 1,76 1,82 2,21 2,59 2,94 2,94 2,94 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97		1,70 1,76 1,82 2,21 2,59 2,94 2,94 2,94 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,97	

ETA-11/0191

2 x 0,88

2 x 0,90

2 x 1,00

2 x 1,13

2 x 1,25

2 x 1,50

2 x 1,75

2 x ≥ 2,0

N_{R,k} for t_{N,I} =

$\frac{\text{Materials}}{\text{particular}} = 0.88 0.90 1.00 1.25 1.50 2.00 3.00 \ge 4.00 1.89 - 1.89 - 1.89 - 2.21, 13 - 2.21, 25 - 2.21,$							-										
$\frac{1}{0} = \frac{1}{0} = \frac{1}$			SF				F	Fasten Compo	er: onent	que I: S23 S28 II: S23	ncheo 35, S2 30GD, 35, S2	d, tem 75 or S320 75 or	S355 GD o S355	– EN 1 r S350 – EN 1	0025 GD ¹⁾ 0025	-1 – EN 1 -1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ភូ,ភ				E	Predrill diameter d _{pd} see table below										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-7 		3,6			-				no pe	erform	ance d	leterm	nined	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		t _{N,II} =	0,88	0,9	90	1,	00	1,	25	1,	50	2,	00	3,0	00	≥ 4	,00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								6,5	5 mm	x 10,0) mm						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_	, <u> </u>	-	::	_	_	_	<u></u>	1,89	_	1,89	s <u>-</u> a
2 x 1,75 3,08 - 3,08 -		2 x 0,90					-	_	_		_	-	—	1,89		1,89	-
2 x 1,75 3,08 - 3,08 -	" <u>-</u> 2 x 1,00 -							—	_	—	_	-	_		_		_
2 x 1,75 3,08 - 3,08 -	rt			_		_			_	5. 			1.122				
2 x 1,75 3,08 - 3,08 -	0			-	_	-	—	-	_	-	-		_	100 C	_		
	t,k fo				—	-	—	-	—		—		—	1.1.1.1			-
$2 \times \ge 2,0$ 3,08 - 3,08 -	V _{R,k} fo				—	-	_	-	—	-	—		—	121212		102201000000	_
	V _{R.k} fo													0 00			

1,73

1,73

1,73

1,73

1,73

1,73

1,73

1,73

_

-

-

_

_

1,73

1,73

1,73

1,73

1,73

1,73

1,73

1,73

_

_

_

-

-

-

_

-

_

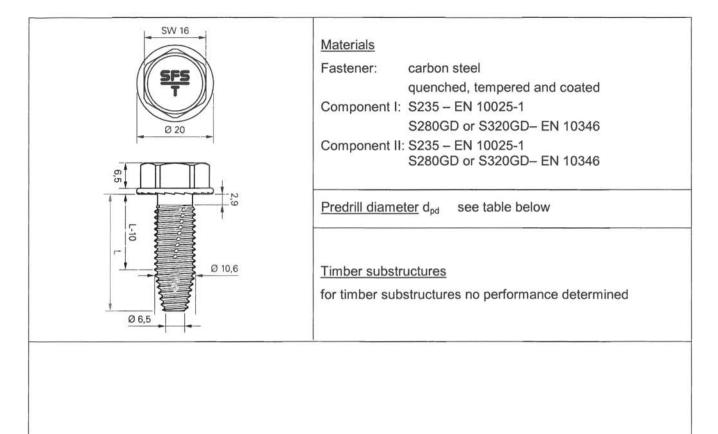
¹⁾ including S350GD with increased yield strength, for instance f_{yk} = 380 N/mm²

_

Self tapping screw	Annex 14
TDBL-T 8,6xL	to European technical approval
	ETA-11/0191

	,	6,5			5					Mater Faste Comp Comp	oone	nt I: S s nt II: S	quen S235 S280 S235 S280)GD o 5 – EN)GD o	tem I 100 I 53 I 100 I 100 I 53	025-1 20GE 025-1 20GE)– E)– E	N 103 N 103	346		
											er su	bstrue subst	cture			ble be		in the	ermi	ned	
t	_{1,11} =	1,0	00	1,2	25	1,5	50	2,0	00	3,00 4,00 5,00 6,00 8,00 ≥ 10,0									00	≥ 10	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																					
	d _{pd} = 9,0 mm														10,0) mm					
d	_{pd} = nom =				9,0	mm						_			10,0) mm		1			
d	_{nom} = 1,00	2010	_	3,57	-	4,17		5,38	_	5,38	ac	5,38	ac	5,38	10,0 ac	5,38	ас	5,38	ас	5,38	ac
d	_{nom} = 1,00 1,13	2,96	_	4,13	-	4,17 4,72		5,90	_	5,38 7,08		5,38 7,08	ac	7,08		5,38 7,08	ac ac	7,08	ac ac	7,08	ac ac
d Mt	nom = 1,00 1,13 1,25	2,96 2,96		4,13 4,72		4,17 4,72 5,30		5,90 6,46		5,38 7,08 8,79		5,38 7,08 8,79	ac ac	7,08 8,79	ac ac ac	5,38 7,08 8,79	ac ac	7,08 8,79	ac ac	7,08 8,79	ac ac
d Mt	nom = 1,00 1,13 1,25 1,50	2,96 2,96 2,96	-	4,13 4,72 4,72	1 1 1	4,17 4,72 5,30 6,48	1 1	5,90 6,46 7,62		5,38 7,08 8,79 9,91	ac — —	5,38 7,08 8,79 12,2	ac ac ac	7,08 8,79 12,2	ac ac ac ac	5,38 7,08 8,79 12,2	ac ac ac	7,08 8,79 12,2	ac ac ac	7,08 8,79 12,2	ac ac ac
d Mt	nom = 1,00 1,13 1,25 1,50 1,75	2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72		4,17 4,72 5,30 6,48 6,48		5,90 6,46 7,62 8,63		5,38 7,08 8,79 9,91 10,3	ac — — —	5,38 7,08 8,79 12,2 12,2	ac ac ac ac	7,08 8,79 12,2 12,2	ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5	ac ac ac ac	7,08 8,79 12,2 13,5	ac ac ac ac	7,08 8,79 12,2 13,5	ac ac ac ac
d Mt	nom = 1,00 1,13 1,25 1,50 1,75 2,00	2,96 2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72 4,72 4,72		4,17 4,72 5,30 6,48 6,48 6,48		5,90 6,46 7,62 8,63 10,0		5,38 7,08 8,79 9,91 10,3 11,2	ac 	5,38 7,08 8,79 12,2 12,2 12,4	ac ac ac ac	7,08 8,79 12,2 12,2 12,4	ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5 14,8	ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8	ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8	ac ac ac ac ac
d Mt	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00	2,96 2,96 2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72 4,72 4,72 4,72		4,17 4,72 5,30 6,48 6,48 6,48 6,48		5,90 6,46 7,62 8,63 10,0 10,0		5,38 7,08 8,79 9,91 10,3 11,2 13,8	ac 	5,38 7,08 8,79 12,2 12,2 12,4 15,6	ac ac ac ac	7,08 8,79 12,2 12,2 12,4 15,6	ac ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5 14,8 19,2	ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8	ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8	ac ac ac ac
d Mt	nom = 1,00 1,13 1,25 1,50 1,75 2,00	2,96 2,96 2,96 2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72 4,72 4,72 4,72 4,72		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48		5,90 6,46 7,62 8,63 10,0 10,0 10,0		5,38 7,08 8,79 9,91 10,3 11,2 13,8 13,8	ac 	5,38 7,08 8,79 12,2 12,2 12,4 15,6 21,4	ac ac ac ac — —	7,08 8,79 12,2 12,2 12,4 15,6 21,4	ac ac ac ac ac 	5,38 7,08 8,79 12,2 13,5 14,8 19,2 21,4	ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8	ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8	ac ac ac ac ac
d Mt	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00	2,96 2,96 2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72 4,72 4,72 4,72 4,72		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48		5,90 6,46 7,62 8,63 10,0 10,0 10,0		5,38 7,08 8,79 9,91 10,3 11,2 13,8	ac 	5,38 7,08 8,79 12,2 12,2 12,4 15,6 21,4	ac ac ac ac — —	7,08 8,79 12,2 12,2 12,4 15,6	ac ac ac ac ac 	5,38 7,08 8,79 12,2 13,5 14,8 19,2	ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8	ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8	ac ac ac ac ac ac
d Mt	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00 4,00	2,96 2,96 2,96 2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72 4,72 4,72 4,72 4,72 2,39		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48		5,90 6,46 7,62 8,63 10,0 10,0 10,0		5,38 7,08 8,79 9,91 10,3 11,2 13,8 13,8 4,29	ac 	5,38 7,08 8,79 12,2 12,2 12,4 15,6 21,4	ac ac ac ac — —	7,08 8,79 12,2 12,2 12,4 15,6 21,4	ac ac ac ac ac 	5,38 7,08 8,79 12,2 13,5 14,8 19,2 21,4	ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8	ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8	ac ac ac ac ac ac ac ac
= V _{R,k} for t _{N,I} = Z	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00 4,00 1,00	2,96 2,96 2,96 2,96 2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72 4,72 4,72 4,72 4,72 2,39 2,39		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48 6,48 2,55		5,90 6,46 7,62 8,63 10,0 10,0 10,0 4,02		5,38 7,08 8,79 9,91 10,3 11,2 13,8 13,8 4,29 5,71	ac 	5,38 7,08 8,79 12,2 12,2 12,4 15,6 21,4 4,29	ac ac ac — — — ac ac	7,08 8,79 12,2 12,2 12,4 15,6 21,4 4,29	ac ac ac ac ac ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5 14,8 19,2 21,4 4,29	ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29	ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29	ac ac ac ac ac ac ac ac
= V _{R,k} for t _{N,l} = Z	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00 4,00 1,00 1,13	2,96 2,96 2,96 2,96 2,96 2,96 2,96 2,96		4,13 4,72 4,72 4,72 4,72 4,72 4,72 2,39 2,39 2,39		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48 2,55 2,55		5,90 6,46 7,62 8,63 10,0 10,0 4,02 4,02		5,38 7,08 8,79 9,91 10,3 11,2 13,8 13,8 4,29 5,71 7,13	ac 	5,38 7,08 8,79 12,2 12,2 12,4 15,6 21,4 4,29 5,71	ac ac ac — — — ac ac	7,08 8,79 12,2 12,2 12,4 15,6 21,4 4,29 5,71	ac ac ac ac ac ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5 14,8 19,2 21,4 4,29 5,71	ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71	ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71	ac ac ac ac ac ac ac ac ac ac
= $V_{R,k}$ for $t_{N,l} = \frac{1}{2}$	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00 4,00 1,00 1,13 1,25	2,96 2,96 2,96 2,96 2,96 2,96 2,96 2,22 2,22		4,13 4,72 4,72 4,72 4,72 4,72 4,72 2,39 2,39 2,39 2,39		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48 2,55 2,55 2,55		5,90 6,46 7,62 8,63 10,0 10,0 10,0 4,02 4,02 4,02		5,38 7,08 8,79 9,91 10,3 11,2 13,8 13,8 4,29 5,71 7,13 7,64	ac 	5,38 7,08 8,79 12,2 12,4 15,6 21,4 4,29 5,71 7,13	ac ac ac — — ac ac ac ac	7,08 8,79 12,2 12,4 15,6 21,4 4,29 5,71 7,13	ac ac ac ac ac ac ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5 14,8 19,2 21,4 4,29 5,71 7,13	ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71 7,13	ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71 7,13	ac ac ac ac ac ac ac ac ac ac ac
= $V_{R,k}$ for $t_{N,l} = \frac{1}{2}M_{D}$	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00 4,00 1,00 1,13 1,25 1,50	2,96 2,96 2,96 2,96 2,96 2,96 2,96 2,22 2,22		4,13 4,72 4,72 4,72 4,72 4,72 4,72 2,39 2,39 2,39 2,39		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48 2,55 2,55 2,55 2,55		5,90 6,46 7,62 8,63 10,0 10,0 10,0 4,02 4,02 4,02 4,02		5,38 7,08 8,79 9,91 10,3 11,2 13,8 13,8 4,29 5,71 7,13 7,64 7,64	ac 	5,38 7,08 8,79 12,2 12,2 12,4 15,6 21,4 4,29 5,71 7,13 9,96	ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 12,4 15,6 21,4 4,29 5,71 7,13 9,96	ac ac ac ac ac ac ac ac ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5 14,8 19,2 21,4 4,29 5,71 7,13 9,96	ac ac ac ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71 7,13 9,96	ac ac ac ac ac ac ac ac ac ac ac ac ac a	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71 7,13 9,96	ac ac ac ac ac ac ac ac ac ac ac
d	nom = 1,00 1,13 1,25 1,50 1,75 2,00 3,00 4,00 1,00 1,13 1,25 1,50 1,75 1,50 1,75	2,96 2,96 2,96 2,96 2,96 2,96 2,96 2,22 2,22		4,13 4,72 4,72 4,72 4,72 4,72 4,72 2,39 2,39 2,39 2,39 2,39 2,39		4,17 4,72 5,30 6,48 6,48 6,48 6,48 6,48 2,55 2,55 2,55 2,55 2,55		5,90 6,46 7,62 8,63 10,0 10,0 4,02 4,02 4,02 4,02 4,02 4,02		5,38 7,08 8,79 9,91 10,3 11,2 13,8 13,8 4,29 5,71 7,13 7,64 7,64 7,64	ac 	5,38 7,08 8,79 12,2 12,4 15,6 21,4 4,29 5,71 7,13 9,96 11,3	ac ac ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 12,4 15,6 21,4 4,29 5,71 7,13 9,96 12,2	ac ac ac ac ac ac ac ac ac ac ac ac	5,38 7,08 8,79 12,2 13,5 14,8 19,2 21,4 4,29 5,71 7,13 9,96 12,2	ac ac ac ac ac ac ac ac ac ac ac ac ac	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71 7,13 9,96 12,2	ac ac ac ac ac ac ac ac ac ac ac ac ac a	7,08 8,79 12,2 13,5 14,8 22,8 22,8 4,29 5,71 7,13 9,96 12,2	ac ac ac ac ac ac ac ac ac ac ac ac ac

Self tapping screw	Annex 15
TDBL-T 10,6xL	to European technical approval
	ETA-11/0191


Page 23 of ETA-11/0191, issued on 28 June 2011 English translation by Deutsches Institut für Bautechnik (DIBt)

SFS T										<u>Mater</u> Faste Comp	ner:	c nt I: S	quen S275	or S	tem 355 ·	- EN	1002	d coat 25-1	ed		
									Comp	one	nt II: S	5275	or S	355 -	N 103 – EN N 103	1002	25-1				
2.9 L-10								_	Predrill diameter d _{pd} see table below												
Ø 10,6									<u>Timbe</u> for tin					io pe	erform	ianc	e dete	ermir	ned		
tr	=	1,0	0	1,2	25	1,5	0	2,0	00	3,0	00	4,0	00	5,0	00	6,0	00	8,0	00	≥ 1(0,0
	_{pd} =			•	9,0	mm									10,0) mm					
Mt	nom =										-										
	1,00	3,24	—	3,90	_	4,56		5,88		5,88	ac	5,88	ac	5,88	ac	5,88	ac	5,88	ac	5,88	ac
	1,13	3,24	—	4,44	—	5,06	-	6,30	_	7,54	—	7,54	ac	7,54	ac	7,54	ac	7,54	ac	7,54	ac
" ⊋	1,25	3,24	—	5,03	_	5,41	-	7,68		9,19	_	9,19	ac	9,19	ac	9,19	ac	9,19	ac	9,19	ac
V _{R,k} for t _{N,I} =	1,50	3,24	—	5,03	—	6,81		7,95		10,2	-	12,5	ac	12,5	ac	12,5	ac	12,5	ac	12,5	ac
V _{R,k}	1,75	3,24	-	5,03	_	6,81	-	8,82	_	10,4	-	12,5	ac	12,5	ac	13,7	ac	13,7	ac	13,7	ac
	2,00	3,24	_	5,03	_	6,81		10,0		11,2	-	12,5	_	12,5		14,8	ac	14,8	ac	14,8	ac
	3,00	3,24	—	5,03	—	6,81		10,0	_	13,8	-	15,6	—	15,6	_	19,2	_	22,8	ac	22,8	ac
	4,00	3,24	-	5,03		6,81		10,0		13,8	-	25,0	-	25,0	-	25,0		25,0	ac	25,0	ac
	1,00	2,43	_	2,53	-	2,62		4,58		4,69		4,69	ac	4,69	ac		ac	0.0001000	ac	4,69	ac
	1,13	2,43		11,10,000	_	2,62		4,58	-	6,07		6,07	ac	6,07	ac	6,07	ac	6,07	ac	6,07	ac
							_	7,45 8,70	_	7,45 10,2	ac	7,45	ac	7,45	ac	7,45	ac	7,45	ac		
Q								_	8,70	_	12,0	ac	12,3	ac	12,3	ac ac	10,2 12,3	ac	10,2	ac	
N _R ,	$\stackrel{*}{\simeq}$ 1,75 2,43 — 2,53 — 2,62 — 4,58 $\stackrel{*}{\simeq}$ 2,00 2,43 — 2,53 — 2,62 — 4,58								Concernant I	_	12,0	ac	14,4	ac	14,4	ac	14,4	ac ac	12,3	ac	
									_	1.1		12,0		14,4		14,4	ac	14,4	ac	14,4	ac
												12,0		14,4		14,4		14,4	ac	14,4	ac ac
	4,00	2,40		2,00	100	2,02	<u></u>	4,00	0	0,10		12,0	_	1-4,44		14,4		14,4	au	14,4	au

 $^{\rm 1)}$ including S350GD with increased yield strength, for instance f_{yk} = 380 N/mm^2

Self tapping screw	Annex 16
TDBL-T 10,6xL	to European technical approval
	ETA-11/0191

Page 24 of ETA-11/0191, issued on 28 June 2011 English translation by Deutsches Institut für Bautechnik (DIBt)

tr	4,II =	1,0	3,0	3,00								
d	_{pd} =			8,0	mm >	(20,0 m	.0 mm					
Mt	nom =				53-							
11	1,00	1,41	<u></u>	1,41	_	1,41	<u> </u>	1,41	<u></u>			
V _{R,k} for t _{N,I} =	1,50	1,41	_	2,75	_	2,75	_	2,75				
k fo	2,00	1,41	_	2,75		4,01	_	4,01	_			
\leq	3,00	1,41	_	2,75	_	4,01	-	10,2	_			
11	1,00	<u></u> 2:	_	-	_	_	· <u> </u>	_				
N _{R,k} for t _{N,I} =	1,50		_		_			-				
k fo	2,00				_	_	_	-	<u></u>			
NR,	3,00		-	_		<u></u>	·					

direction of shear force
Annex 17
to European technical approval ETA-11/0191

Page 25 of ETA-11/0191, issued on 28 June 2011 English translation by Deutsches Institut für Bautechnik (DIBt)

6,5								or S35 GD ¹⁾ – or S35 GD ¹⁾ –	empere 55 – EN EN 103 55 – EN EN 103	10025 346 10025 346	i-1					
	L-10							Predrill diameter d _{pd} see table below								
Ø 6,5		Ø 10,6	19 19 19		<u>Timber substructures</u> for timber substructures no performance determined											
	tr	N,II =	1.	00	1,	50	2,0	00	3,0	00						
		_{pd} =			8,0 mm x 20,0 mm											
		, _{nom} =				÷										
	 ⇒	1,00	1,61	_	1,61	-	1,61	—	1,61	-						
	V _{R.k} for t _{N.I} =	1,50	1,61		3,13	—	3,13	_	3,13							
	R.k f	2,00	1,61	_	3,13	_	4,57	_	4,57							
	>	3,00	1,61		3,13	_	4,57		11,9							
		1,00 1,50			_	_	_	_		_						
	N _{R,k} for t _{N,I}	2,00			_				<u></u>							
	N _{R,k}	3,00	_		_	-	_		-	_						
¹⁾ including S350GE for instance f _{yk} = 3	0 with 380 N	increas /mm²	ed yiel	d strer	ngth,				×	20.0 mm	direction of shear force					

Self tapping screw	Annex 18
TDBL-T 10,6xL	to European technical approval
	ETA-11/0191