

European Technical Approval ETA-11/0418

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung <i>Trade nam</i> e	Upat Injektionssystem UPM 55 Upat injection system UPM 55
Zulassungsinhaber Holder of approval	Upat Vertriebs GmbH Otto-Hahn Straße 15 79211 Denzlingen DEUTSCHLAND
Zulassungsgegenstand und Verwendungszweck	Verbunddübel in den Größen Ø 8 mm bis Ø 40 mm zur Verankerung im Beton
Generic type and use of construction product	Bonded anchor in the size of Ø 8 mm to Ø 40 mm for use in concrete
Geltungsdauer: vom Validity: from bis to	28 September 2011 16 February 2015
Herstellwerk Manufacturing plant	Upat

Diese Zulassung umfasst This Approval contains

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

26 Seiten einschließlich 17 Anhänge

26 pages including 17 annexes

Page 2 of 26 | 28 September 2011

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12
- ² Official Journal of the European Communities L 220, 30 August 1993, p. 1
- ³ Official Journal of the European Union L 284, 31 October 2003, p. 25
- 4 Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

⁶ Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 26 | 28 September 2011

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The Upat injection system UPM 55 is a bonded anchor consisting of a cartridge with injection mortar UPM 55 and a steel element. The steel elements are either

- anchor rods in the range of M8 to M30 or
- internal threaded anchor in the range of M8 to M20 or
- Reinforcing bar in the range of Ø 8 to Ø 40 or
- rebar anchor FRA in the range of 12 to 24.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

An illustration of the product and intended use is given in Annexes 1 and 2.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval. The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be used in cracked or non-cracked concrete.

The anchor may be installed in dry or wet concrete.

The anchor may be used in the following temperature ranges:

Temperature range I:	-40 °C to +60 °C	(max
		max
Temperature range II:	-40 °C to +72 °C	(max

(max long term temperature +35 °C and max short term temperature +60 °C) (max long term temperature +50 °C and max short term temperature +72 °C)

Elements made of zinc coated steel:

The element made of zinc plated or hot dipped galvanised steel may only be used in structures subject to dry internal conditions.

Elements made of stainless steel:

The element made of stainless steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure to permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Page 4 of 26 | 28 September 2011

Elements made of high corrosion resistant steel:

The element made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of reinforcing bars:

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 only. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with post-installed reinforcing bars in concrete structures designed in accordance with EN1992-1-1: 2004 are not covered by this European technical approval.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and provisions given in Annexes 1 to 7. The characteristic material values, dimensions and tolerances of the anchor not indicated in Annex 1 to 7 shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic values for the design of anchorages are given in Annexes 10 to 17.

The two components of the injection mortar are delivered in unmixed condition in side-by side-cartridges of sizes 390 ml, 585 ml or 1100 ml according to Annex 1. Each cartridge is marked with the imprint "UPM 55", with processing notes, shelf life, curing time, processing time (depending on temperature), hazard code.

Each anchor rod is marked with the identifying mark of the producer and property class in accordance with Annex 3.

Each internal threaded anchor is marked with the marking of steel grade and length in accordance with Annex 4. Each internal threaded anchor made of stainless steel is marked with the additional letter "A4". Each internal threaded anchor made of high corrosion resistant steel is marked with the additional letter "C".

Each rebar anchor FRA is marked with the identifying mark of the producer and the trade name according to Annex 7.

Elements made of reinforcing bars shall comply with the specifications given in Annex 6.

The marking of embedment depth may be done on jobsite.

7

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 26 | 28 September 2011

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors", on the basis of Option 1.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 96/582/EG of the European Commission⁸ system 2(i) (referred to as System 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

8

Page 6 of 26 | 28 September 2011

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2 For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the holder of the approval (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1, Option 1),
- size.

⁹

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 7 of 26 | 28 September 2011

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited at Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors"¹⁰ under the responsibility of an engineer experienced in anchorages and concrete work.

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 only. The basic assumptions for the design according to anchor theory shall be observed. This includes the consideration of tension and shear loads and the corresponding failure modes as well as the assumption that the base material (concrete structural element) remains essentially in the serviceability limit state (either non-cracked or cracked) when the connection is loaded to failure. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with reinforcing bars in concrete structures designed in accordance with EN 1992-1-1:2004 (e.g. connection of a wall loaded with tension forces in one layer of the reinforcement with the foundation) are not covered by this European technical approval.

Anchor rods may be replaced by commercial standard threaded rods, washers and hexagon nuts made of galvanised steel or stainless steel if the following requirements are fulfilled:

- material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 5, Table 3,
- confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
- marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or the person on jobsite.

For the internal threaded anchor fastening screws or threaded rods made of appropriate steel and strength class acc. to Annex 5 shall be specified. The minimum and maximum thread engagement length I_E of the fastening screw or the threaded rod for installation of the fixture shall be met the requirements according to Annex 4, Table 2. The length of the fastening screw or the threaded rod shall be determined depending on thickness of fixture, admissible tolerances, available thread length and minimum and maximum thread engagement length I_E .

The Techncial Report TR 029 "Design of bonded anchors" is published in English on EOTA website www.eota.eu.

Page 8 of 26 | 28 September 2011

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- use of the anchor only as supplied by the manufacturer without exchanging the components,
- reinforcing bars shall comply with specifications given in Annex 6,
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- marking and keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drilling by hammer-drilling,
- in case of aborted drill hole: the drill hole shall be filled with mortar,
- cleaning the drill hole and installation in accordance with Annexes 8 and 9,
- during installation and curing of the chemical mortar the anchor component installation temperature shall be at least 5 °C;
- during curing of the chemical mortar the temperature of the concrete must not fall below +5 °C; observing the curing time according to Annex 5, Table 4 until the anchor may be loaded,
- for installation in bore holes $h_0 > 150$ mm extension hoses acc. Annex 1 shall be used,
- for overhead installation or in bore hole depth $h_0 > 250$ mm injection-funnels acc. to Annex 1 shall be used,
- Fastening screw or threaded rods (including nut and washer) must comply with the appropriate material and strength class of the internal threaded anchor,
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in Annex 3 to 7 must not be exceeded.

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2 and 4.3 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval.

In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

Page 9 of 26 | 28 September 2011

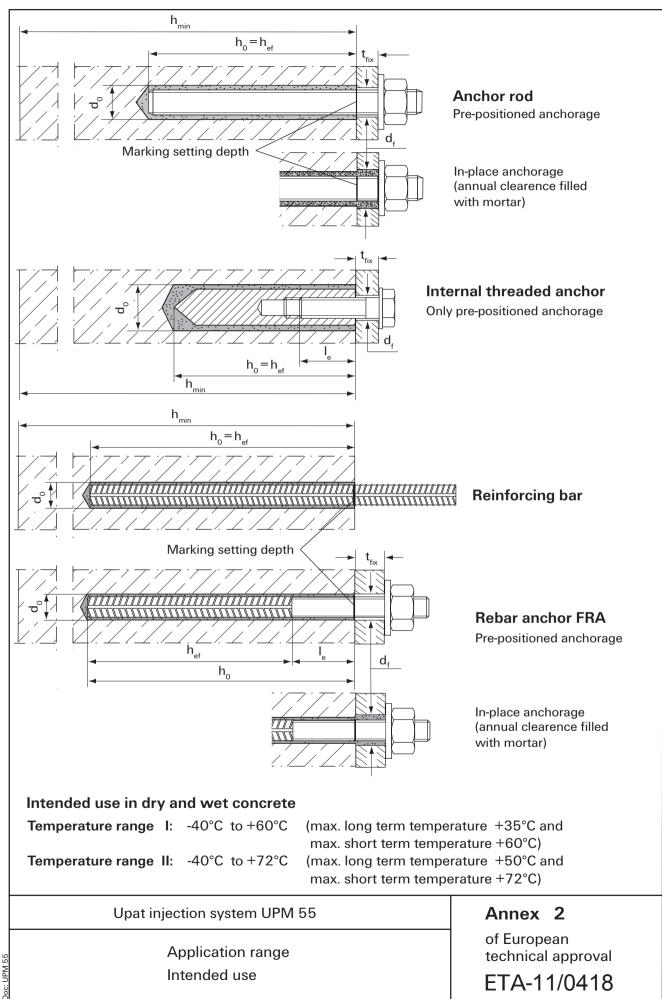
The minimum data required are:

- drill bit diameter,
- diameter of anchor rod,
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- anchor component installation temperature,
- ambient temperature of the concrete during installation of the anchor,
- admissible processing time (open time) of the mortar,
- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- identification of the manufacturing batch,

All data shall be presented in a clear and explicit form.

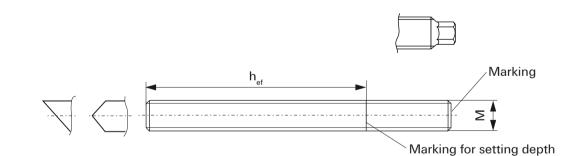
5.2 Packaging, transport and storage

The cartridges shall be protected against sun radiation and shall be stored according to the manufacturer's installation instructions in dry condition at temperatures of at least +5 °C to not more than +30 °C.


Cartridges with expired shelf life must no longer be used.

The anchor shall only be packaged and supplied as a complete unit. Cartridges may be packed separately from metal parts.

Uwe Bender Head of Department *beglaubigt:* Baderschneider



Size of ancho	or		[-]	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Nominal drill	oit diameter	d ₀	[mm]	12	14	14	16	18	24	25	28	30	35
Depth of drill hole h _o			[mm]					h _o =	= h _{ef}				
Effective anch	orage	$h_{_{ef,min}}$	[mm]	60	60	70	75	80	90	93	96	108	120
depth		h _{ef,max}	[mm]	160	200	240	280	320	400	440	480	540	600
Minimum spacing and minimum edge s _{min} = c _{min} distance			[mm]	40	45	55	60	65	85	95	105	120	140
	pre-position anchorage	ed d _f	[mm]	9	12	14	16	18	22	24	26	30	33
hole in the fixure	in-place anchorage	d_{f}	[mm]	14	16	16	18	20	26	28	30	33	40
Minimum thic of concrete m		h _{min}	[mm]	h _{ef} + 30 (≥100)				h _{ef} +2d ₀					
Maximum tor	que moment	T _{inst,max}	[Nm]	10	20	40	50	60	120	135	150	200	300
Thislesso - f.f		t _{fix,min}	[mm]					()				
Thickness of f	ixure	t _{fix,max}	[mm]					30	00				

Anchor rod

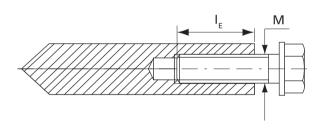
Markierung:

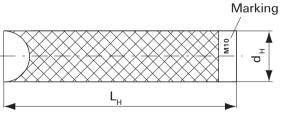
Doc: UPM 55

Property class 8.8 or high corrosion-resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant Steel C, property class 50: ••

Upat injection system UPM 55

Annex 3 of European


Anchor rod Installation parameters and dimensions


technical approval ETA-11/0418

Size of anchor		M8	M10	M12	M16	M20
Diameter of anchor	d _H [mm] 12	16	18	22	28
Nominal drill bit diameter	d _o [mm] 14	18	20	24	32
Length of anchor	L _H [mm	90	90	125	160	200
Effective anchorage depth ${\rm h_{ef}}$ and drill hole depth ${\rm h_0}$	h _{ef} = h _o [mm	90	90	125	160	200
Minimum spacing and edge distance	s _{min} = c _{min} [mm] 55	65	75	95	125
Diameter of clearence hole in the fixure	d _f [mm	9	12	14	18	22
Minimum thickness of concrete member	h _{min} [mm	l 120	125	165	205	260
0	l _{E,min} [mm] 8	10	12	16	20
Screw-in depth	I _{E,max} [mm] 18	23	26	35	45
Maximum torque moment	T _{inst,max} [Nm] 10	20	40	80	120

Table 2: Installation parameters internal threaded anchors

Internal threaded anchor

Marking: anchor size e.g.: M10 Stainless steel additional A4 e.g.: M10 A4 High corrosion-resistant steel additional C e.g.: M10 C

Upat injection system UPM 55

Internal threaded anchors Installation parameters and dimensions Annex 4

of European technical approval ETA-11/0418

Doc: UPM 55

Table 3: Materials: anchor rods, threaded rods, washers, hexagon nuts and screws
--

Designation		Materials			
	Steel, zinc plated	Stainless steel (A4)	high corrosion-resistant steel (C)		
Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1 zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50 or 70 EN ISO 3506, EN 10088 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362	Property class 50 or 80 EN ISO 3506, or $f_{uk} = 700 \text{ N/mm}^2$ $f_{yk} = 560 \text{ N/mm}^2$ EN 10088 1.4462; 1.4539; 1.4565; 1.4529; 1.4547		
Washer EN ISO 7089	zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	EN 10088 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362	EN 10088 1.4462; 1.4539; 1.4565; 1.4529; 1.4547		
Hexagon nut according to EN 24032	Property class 5 or 8; EN 20898-2 zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50 or 70 EN ISO 3506, EN 10088 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362	Property class 50,70 or 80 EN ISO 3506, EN 10088 1.4462; 1.4539; 1.4565; 1.4529; 1.4547		
Screw or threaded rods for internal- threaded anchors	Property class 5.8 or 8.8; EN ISO 898-1 zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 70 EN ISO 3506, EN 10088 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362	Property class 70 EN ISO 3506, EN 10088 1.4462; 1.4539; 1.4565; 1.4529; 1.4547		

Table 4: Maximum permissible processing times and minimum curing times

System temperature [°C]	Max. processing time [minutes]	Minimum curing time ¹⁾ [hours]
+5 to +10	120	40
≥+10 to +20	30	18
≥+20 to +30	14	10
≥+30 to +40	7	5

¹⁾For wet concrete the curing time must be doubled.

Doc: UPM 55

Upat injection system UPM 55

Annex 5 of European

Materials Processing times, curing times technical approval ETA-11/0418

Page 15 of the European technical approval ETA-11/0418, issued on 28 September 2011

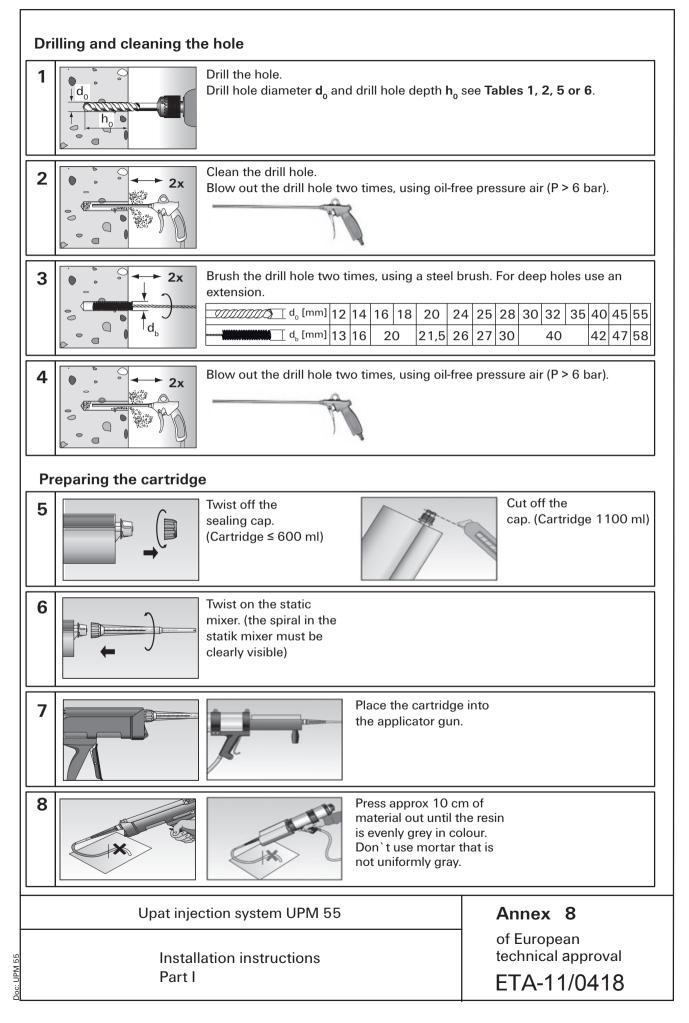
Table 5:	Insta	llatior	n par	ame	eters	rein	forci	ng k	ars										
Nominal bar size	ø d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Nominal drill bit diameter	d _o	[mm]	12	14	16	18	20	25	25	30	30	30	35	35	40	40	40	45	55
Drill hole depth	h _o	[mm]									h ₀ = h	۱ ef							
Effective	$h_{_{\text{ef,min}}}$	[mm]	60	60	70	75	80	85	90	94	98	100	104	112	120	128	136	144	160
anchorage depth	h _{ef,max}	[mm]	160	200	240	280	320	360	400	440	480	500	520	560	600	640	680	720	800
Minimum spacing and s _m minimum edge distanc	_{in} =c _{min}	[mm]	40	45	55	60	65	75	85	95	105	110	120	130	140	160	170	180	200
Minimum thickness of concrete me		[mm]		h _{ef} + ≥	- 30 100							h _{ef}	+ 2d	0					

Table 5:	Installation pa	rameters reinforcing	g bars
----------	-----------------	----------------------	--------

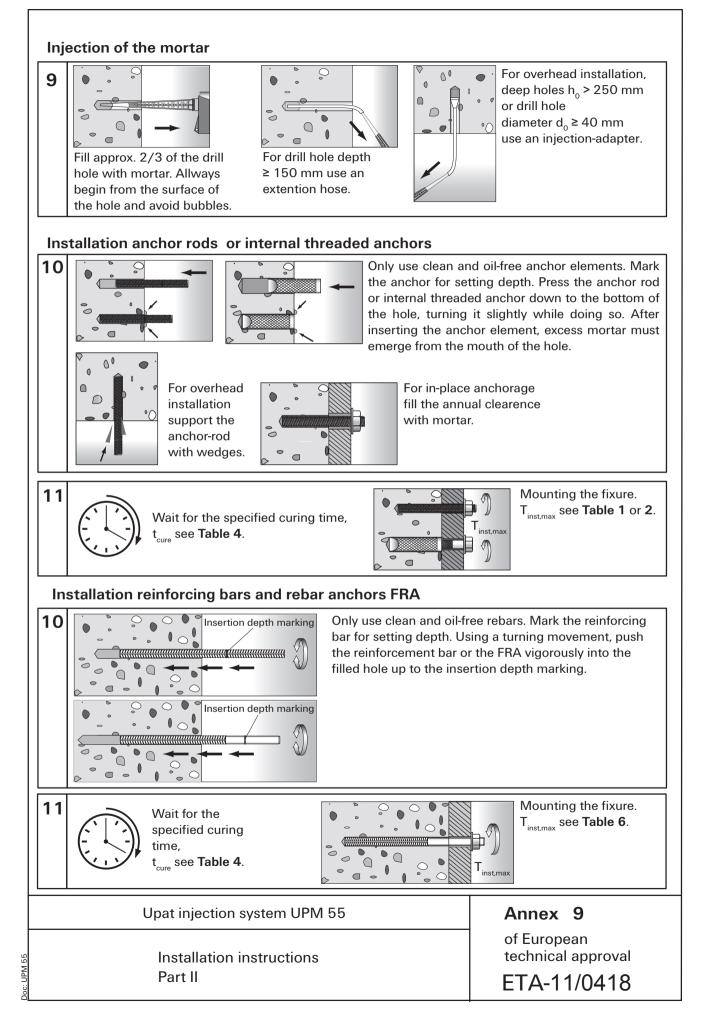
Reinforcing bar

Doc: UPM 55

Marking setting depth


d ł

Refer to EN 1992-1-1 Annex C, Table C.1 and C.2N, properties of reinforcement:


Produkt form		Non-zinc-plate bars and de-co				
Class		В	С			
Characteristic yield strength f _{yk}	Characteristic yield strength f_{yk} or $f_{0,2k}$ [MPa]					
Minimum value of $k = (f_t / f_{yk})$	≥ 1,08	≥ 1,15 < 1,35				
Characteristic strain at maximu	m force, ε _{uk} [%]	≥ 5,0	≥ 7,5			
Bendability		Bend / Re	bend test			
Maximum deviation from nominal mass (individual bar) [%]	Nominal bar size [mm] ≤ 8 > 8	± 6 ± 4				
Bond: Minimum relative rib ^{area, f} R,min (determination according to EN 15630)	Nominal bar size [mm] 8 to 12 > 12	0,040 0,056				
Rib height h:						
The rib height h must be:	$0,05 \cdot d \le h \le 0,07 \cdot d$ $d = nomin$	al bar size				
Upat injectio	on system UPM 55	Annex	6			
	cing bars	of Euro technic	pean al approval			
Installa Materia	tion parameters als		11/0418			

Threaded diameter				M 12	M 16	M 20	M 24
Nominal bar size		d	[mm]	12	16	20	25
Nominal drill bit dia	ameter	d _o	[mm]	16	20	25	30
Depth of drill hole	$(h_0 = \ell_{e,ges})$	h _o	[mm]		h _{ef} -	+ ℓ _e	
Effective anchorage	e denth	h _{ef,mim}	[mm]	70	80	90	96
	e depth	h _{ef,max}	[mm]	140	220	300	380
Distance concrete to welded join		$\ell_{\rm e}$	[mm]		1()0	
Minimum spacing a minimum edge dist	tance	= c _{min}	[mm]	55	65	85	105
Diameter of clearence hole	pre-positioned anchorage	d _f	[mm]	14	18	22	26
in the fixure	in-place anchorage	d _f	[mm]	18	22	26	32
Minimum thicknes of concrete member		h _{min}	[mm]		h _o +	·2d _o	
Maximum torque n		T _{inst,max}	[Nm]	40	60	120	150
Thickness of fixure	minimum	t_{fix}	[Nm]		Į	ō	
THICKINGSS OF HXULE	maximum	t _{fix}	[Nm]		30	00	
Rebar anchor F	RA						
Rebar anchor F		//////////////////////////////////////	ℓ _{e,ges}	Marking fo setting dep		Hea	ad marking
		nless st	ℓ _{e,ges}	setting der	e e e e e e e e e e e e e e e e e e e		<u>-</u>
d d Head marking e.g	.: FRA (for stai	nless st gh corr	ℓ _{e,ges} teel); rosion-res	setting der	e e e e e e e e e e e e e e e e e e e		nd marking

Page 17 of the European technical approval ETA-11/0418, issued on 28 September 2011

Page 18 of the European technical approval ETA-11/0418, issued on 28 September 2011

Size			M 8	M 10	M 12	M 14	M 16	M 20	M 22	M 24	M 27	M 30
Steel fai	ilure									- r		1
Steel Ia		property 5.8 [kN]	19	29	43	58	79	123	152	177	230	281
s	F	class 8.8 [kN]										-
Characteristic resistance N _{Rk.s}		Pro- 50 [kN]	30	47	68	92	126	196	243	282	368	449
Characteristic resistance N _{Rk}	stainless steel A4	perty	19	29	43	58	79	123	152	177	230	281
ract stan			26	41	59	81	110	172	212	247	322	393
Cha esi:	high corrosion-	Pro- 50 [kN]	19	29	43	58	79	123	152	177	230	281
0 2	resistant	perty 70 ⁴⁾ [kN]	26	41	59	81	110	172	212	247	322	393
	steel C	80 [kN]	<u>30 47 68 92 126 196 243 282 368 449</u> 150									
	F	Property 5.8 [-]										
>		class 8.8 [-]					1,5	50				
afet ¹⁾	stainless	Pro- 50 [-]					2,8	36				
als: r Υ _ν .	steel A4	Pro- perty class 70 [-]					1,8	37				
Partial safety factor $\gamma_{_{Ms,N}}{}^{_{1})}$	high _.	Pro- <u>50 [-]</u>					2,8	36				
Ч ș	resistant class						1,5	50				
	steel C	class 80 [-]					1,6	60				
Combin	ed pullout an	d concrete cone	failure									
	r for calculation		8	10	12	14	16	20	22	24	27	30
Charact	eristic bond r	esistance in non	-crack	ed cond	rete C	20/25	1		1	1	1	1
Tempera (60°C /	ature range 35°C)	τ _{Rk,ucr} [N/mm²]	16	15	15	14	14	13	13	13	13	12
Tempera (72°C /	ature range II 50°C)	τ _{Rk,ucr} [N/mm²]	13	12	12	12	11	11	11	11	10	10
		esistance in crac	ked co	oncrete	C20/2	25	1	1	1	1	1	1
	ature range I	τ _{Rk,cr} [N/mm²]					7	,0				
Tempera (72°C /	ature range II 50°C)	τ _{Rk,cr} [N/mm²]	6,0									
		C25/30 [-]					1,0	02				
		C30/37 [-]						04				
Increasi	- 11/	C35/45 [-]						06				
factors	for τ_{Rk}	C40/50 [-]					1,0					
		C45/55 [-] C50/60 [-]						08 09				
Splittin	g failure	C30/00 [-]					1,1	53				
opiituii	y lanule	h / h > 20					1.0	h				
Edge dis c _{cr.sp} [m		$h / h_{ef} \ge 2,0$ 2,0 > h / h_{ef} > 1,3					1,0 4,6 h _{et}	n _{ef} - 1,8 h				
Cr,sp		h / h _{ef} ≤ 1,3					2,26					
Spacing	I	s _{cr,sp} [mm]					2c	r,sp				
Partial s	afety factor γ	$\gamma_{\rm Mp} = \gamma_{\rm Mc} = \gamma_{\rm Msp}^{-1} \ [-]$		1	,5 ²⁾				1,	8 ³⁾		
¹⁾ In abse	ence of other	national regulatio ctor $\gamma_2 = 1,2$ is inc				²⁾ The p ⁴⁾ f _{uk} =	artial s 700 N/	afety fa mm²;	ctor γ_2 $f_{yk} = 5$	= 1,0 is 660 N/r	includ mm²	ed
	Up	at injection sys	tem L	JPM 58	5				Anne			
		or rods acteristic value	s to tension load					of European technical approval ETA-11/0418				

Page 19 of the European technical approval ETA-11/0418, issued on 28 September 2011

Size					M8	M10	M12	M14	M16	M20	M22	M24	M27	M3
Steel fa	ilure without	lever arm			mo	mito			mito			1012-1	10127	mo
Steeria		Property		[kN]	9	15	21	29	39	61	76	89	115	141
IC.		class	8.8	[kN]	15	23	34	46	63	98	122	141	184	225
Characteristic resistance V _{Rks}	stainless	Property	50		9	15	21	29	39	61	76	89	115	14
anc	steel A4	class	70	[kN]	13	20	30	40	55	86	107	124	161	197
sist	high	Duanantu	50	[kN]	9	15	21	29	39	61	76	89	115	14
Σ ä	corrosion- resistant	Property class			13	20	30	40	55	86	107	124	161	197
	steel C		80	[kN]	15	23	34	46	63	98	122	141	184	225
	ilure with lev		F 0 F		10	07	05	104	100	004	447	500	000	110
en- 1 ⁰ 1 _{Rk.s}		Property class			19 30	37 60	65 105	104 167	166 266	324 519	447 716	560 896	833 1333	112 179
ic b It ⊳	otoinloss	Pro-	0.0[50[30 19	37	65	107	166	324	447	560	833	1/9
nen	stainless steel A4	perty class	70[-	26	52	92	146	232	454	626	784	1167	157
Characteristic bending moment $M^{o}_{\rm Rks}$	high		50[19	37	65	104	166	324	447	560	833	112
iara ng r	corrosion- resistant	Pro- perty			26	52	92	146	232	454	626	784	1167	157
dir dir	steel C	class	80[30	60	105	167	266	519	716	896	1333	179
Partial s	afety factor	steel failu	re											
		Property	5.8	[-]					1,2	25				
		class		[-]					1,2	25				
or 1)	stainless	Pro- perty	50	[-]					2,3					
γ _{Ms,V} ''	steel A4	class	70	[-]					1,5					
	high corrosion-		50	[-]					2,3					
	resistant	perty class		[-]					1,2					
0	steel C e pryout failu		80	[-]					1,3	33				
Section	al Report TR 5.2.3.3 afety factor	029,	k γ_{Mcp}^{1}	· [-]	2,00 1,5 ²⁾									
Concret	e edge failur	е				Se	e Tech	nical R	eport T	R 029,	Sectio	n 5.2.3	.4	
Partial s	afety factor		γ_{Mc}^{1}) [-]					1,	5 ²⁾				
				ions			³⁾ f =	= 700 1	J/mm ²	; f _{vk} =	= 560 N	J/mm ²		
²⁾ The pa	rtial safety fac 9: Displace	ctor $\gamma_2 = 1$,	0 is ir	nclud		to ten			,	ук		,		
²⁾ The pa	rtial safety fac	ctor $\gamma_2 = 1$,	0 is ir	nclud	rods	1	sion	oad		,				M 30
²⁾ The pa Table Size	rtial safety fac 9: Displace	ettor $\gamma_2 = 1$, ements o	0 is ir f anc	hor	rods M 8	M 10	msion	oad M 14	M 16	,				M 30
²⁾ The pa Table Size Non-cra	rtial safety fac 9: Displace acked concre	ctor γ ₂ = 1, ements o ete and cra	Ö is ir f anc acked	hor con	rods M 8 crete;	M 10 tempe	M 12	oad M 14 range	M 16 I to II	M 20	M 22	M 24	M 27	
²⁾ The pa Table Size Non-cr Displace	rtial safety fac 9: Displace acked concre ement	ector $\gamma_2 = 1$, ements o ete and cra δ_{NO} [mm/	0 is ir f anc acked (N/m	hor hor con m ²)]	rods M 8 crete; 0,07	M 10 tempe 0,08	M 12 M 12	oad M 14 range	M 16 I to II 0,10	M 20	M 22	M 24	M 27	0,13
²⁾ The pa Table Size Non-cr Displac Displac	rtial safety fac 9: Displace acked concre ement ement	ettor $\gamma_2 = 1$, ements o ete and cra δ_{NO} [mm/ $\delta_{N\infty}$ [mm/	0 is ir f anc acked (N/m (N/m	hor hor <u>con</u> m ²)] m ²)]	rods M 8 crete; 0,07 0,11	M 10 tempe 0,08 0,12	M 12 M 12 0,09 0,13	oad M 14 range 0,09 0,14	M 16 I to II 0,10	M 20	M 22	M 24	M 27	0,13
²⁾ The pa Table ! Size Non-cr Displac Displac Calcula	rtial safety fac 9: Displace acked concre eement eement tion of charac	ettor $\gamma_2 = 1$, ements o ete and cra δ_{N0} [mm/ $\delta_{N\infty}$ [mm/ cteristic dis	0 is ir f anc acked (N/m (N/m splace	hor hor <u>cone</u> m ²)] m ²)] men	rods M 8 crete; 0,07 0,11 t with	M 10 tempe 0,08 0,12 $\delta_{N} = (\delta$	msion M 12 rature 0,09 0,13 _{N0} • τ _{sd})	oad M 14 range 0,09 0,14 /1,4	M 16 I to II 0,10	M 20	M 22	M 24	M 27	0,13
²⁾ The pa Table Size Non-cr Displac Displac Calcula Table	rtial safety fac 9: Displace acked concre ement ement	ettor $\gamma_2 = 1$, ements o ete and cra δ_{N0} [mm/ $\delta_{N\infty}$ [mm/ cteristic dis	0 is ir f anc acked (N/m (N/m splace	hor hor <u>cone</u> m ²)] m ²)] men	rods M 8 crete; 0,07 0,11 t with	M 10 tempe 0,08 0,12 $\delta_{N} = (\delta$ s to s	$\begin{array}{c c} \mathbf{N} & \mathbf{M} & 12 \\ \hline \mathbf{M} & 12 \\ \hline \mathbf{Prature} \\ \hline 0,09 \\ 0,13 \\ \hline 0,0^{\circ} \tau_{sd} \\ \hline \mathbf{hear I} \\ \end{array}$	oad M 14 range 0,09 0,14 /1,4 oad	M 16 I to II 0,10 0,15	M 20 0,11 0,16	M 22 0,11 0,17	M 24	M 27 0,12 0,19	<u>0,13</u> 0,19
Table Size Non-cra Displac Displac Calcula Table Size	rtial safety fac 9: Displace acked concre ement ement tion of charac 10: Displace	ettor $\gamma_2 = 1$, ements o ete and cra δ_{N0} [mm/ $\delta_{N\infty}$ [mm/ eteristic dis cements	0 is ir f anc acked (N/m (N/m cplace of ar	cone m ²)] m ²)] men ⁻ nchc	rods M 8 crete; 0,07 0,11 t with or rod M 8	M 10 tempe 0,08 0,12 $\delta_N = (\delta$ s to s M 10	M 12 rature 0,09 0,13 No [•] τ _{sd}) hear l	oad M 14 range 0,09 0,14 /1,4 oad M 14	M 16 I to II 0,10 0,15 M 16	M 20 0,11 0,16 M 20	M 22 0,11 0,17 M 22	M 24 0,12 0,18 M 24	M 27 0,12 0,19 M 27	0,13 0,19 M 30
²⁾ The pa Table 9 Size Non-cr Displac Displac Calcula Table Size Displac	rtial safety fac 9: Displace acked concre eement tion of charac 10: Displace cement	ettor $\gamma_2 = 1$, ements o ete and cra δ_{NO} [mm/ $\delta_{N\infty}$ [mm/ eteristic dis cements δ_{VO}	0 is ir f anc acked (N/m (N/m place of ar [mm,	nclud hor m ²)] m ²)] men nchc	rods M 8 crete; 0,07 0,11 t with or rod M 8 0,18		M 12 rature 0,09 0,13 No* τ _{sd} hear I M 12	oad M 14 range 0,09 0,14 /1,4 oad M 14 0,10	M 16 I to II 0,10 0,15 M 16 0,09	M 20 0,11 0,16 M 20 0,07	M 22 0,11 0,17 M 22 0,07	M 24 0,12 0,18 M 24 0,06	M 27 0,12 0,19 M 27 0,05	0,13 0,19 M 30 0,05
²⁾ The pa Table S Size Non-cr Displac Displac Calcula Table Size Displac Displac	rtial safety fac 9: Displace acked concre ement tion of charact 10: Displace cement cement	ctor $\gamma_2 = 1$, ements o ete and cra δ_{N0} [mm/ $\delta_{N\infty}$ [mm/ cteristic dis cements δ_{V0} δ_{V0}	0 is ir f anc acked (N/m (N/m place of ar [mm, [mm,	nclud hor <u>con</u> m ²)] m ²)] men nchc /kN]	rods M 8 crete; 0,07 0,11 t with or rod M 8 0,18 0,27		M 12 rature 0,09 0,13 No* τ _{sd} hear I 0,12 0,12	oad range 0,09 0,14 /1,4 oad M 14 0,10 0,10	M 16 I to II 0,10 0,15 M 16	M 20 0,11 0,16 M 20 0,07	M 22 0,11 0,17 M 22 0,07	M 24 0,12 0,18 M 24 0,06	M 27 0,12 0,19 M 27	0,13 0,19 M 30 0,05
²⁾ The pa Table S Size Non-cr Displac Displac Calcula Table Size Displac Displac	rtial safety fac 9: Displace acked concre eement tion of charac 10: Displace cement	ctor $\gamma_2 = 1$, ements o ete and cra δ_{N0} [mm/ $\delta_{N\infty}$ [mm/ cteristic dis cements δ_{V0} δ_{V0}	0 is ir f anc acked (N/m (N/m place of ar [mm, [mm,	nclud hor <u>con</u> m ²)] m ²)] men nchc /kN]	rods M 8 crete; 0,07 0,11 t with or rod M 8 0,18 0,27		M 12 rature 0,09 0,13 No* τ _{sd} hear I 0,12 0,12	oad range 0,09 0,14 /1,4 oad M 14 0,10 0,10	M 16 I to II 0,10 0,15 M 16 0,09	M 20 0,11 0,16 M 20 0,07	M 22 0,11 0,17 M 22 0,07	M 24 0,12 0,18 M 24 0,06	M 27 0,12 0,19 M 27 0,05	0,13 0,19 M 30 0,05
²⁾ The pa Table S Size Non-cr Displac Displac Calcula Table Size Displac Displac	rtial safety fac 9: Displace acked concre eement tion of charac 10: Displac cement cement tion of charac	ctor $\gamma_2 = 1$, ements o ete and cra δ_{N0} [mm/ $\delta_{N\infty}$ [mm/ cteristic dis cements δ_{V0} δ_{V0}	o is ir f anc acked (N/m (N/m place of ar [mm, splace	nclud hor <u>con</u> m ²)] m ²)] men nchc /kN] /kN] men	rods M 8 crete; 0,07 0,11 t with or rod M 8 0,18 0,27 t with		M 12 rature 0,09 0,13 No* τ _{sd} hear I 0,12 0,12	oad range 0,09 0,14 /1,4 oad M 14 0,10 0,10	M 16 I to II 0,10 0,15 M 16 0,09	M 20 0,11 0,16 M 20 0,07 0,11	M 22 0,11 0,17 M 22 0,07 0,10	M 24 0,12 0,18 M 24 0,06 0,09 x 11	M 27 0,12 0,19 M 27 0,05 0,08	0,13 0,19 M 30 0,05
²⁾ The pa Table S Size Non-cr Displac Displac Calcula Table Size Displac Displac	rtial safety fac 9: Displace acked concre ement ement tion of charact 10: Displace cement cement tion of charact cement tion of charact tion of charact	ettor $\gamma_2 = 1$, ements o ete and cra δ_{NO} [mm/ $\delta_{N\infty}$ [mm/ eteristic dis cements δ_{VO} δ_{VO} eteristic dis	o is ir f anc acked (N/m (N/m place of ar [mm, splace	nclud hor <u>con</u> m ²)] m ²)] men nchc /kN] /kN] men	rods M 8 crete; 0,07 0,11 t with or rod M 8 0,18 0,27 t with		M 12 rature 0,09 0,13 No* τ _{sd} hear I 0,12 0,12	oad range 0,09 0,14 /1,4 oad M 14 0,10 0,10	M 16 I to II 0,10 0,15 M 16 0,09	M 20 0,11 0,16 M 20 0,07 0,11	M 22 0,11 0,17 M 22 0,07 0,10	M 24 0,12 0,18 M 24 0,06 0,09 x 11 opean	M 27 0,12 0,19 M 27 0,05 0,08	0,13 0,19 M 30 0,05 0,07
²⁾ The pa Table S Size Non-cr Displace Displace Calcula Table Size Displace Displace	rtial safety fac 9: Displace acked concre tement tement tion of charact 10: Displace cement cement tion of charact tion of charact tion of charact upa	ettor $\gamma_2 = 1$, ements o ete and cra δ_{N0} [mm/ $\delta_{N\infty}$ [mm/ eteristic dis cements δ_{V0} $\delta_{V\infty}$ eteristic dis cements cements δ_{V0}	O is ir f anc acked (N/m (N/m place of ar [mm, [mm, splace	nclud hor con m ²)] m ²)] men nchc /kN] /kN] men stem	rods M 8 crete; 0,07 0,11 t with or rod M 8 0,18 0,27 t with 0,27 t with	M 10 tempe $0,08$ $0,12$ $\delta_N = (\delta)$ s to sl M 10 $0,12$ $\delta_N = (\delta)$ M 10 $0,15$ $0,22$ $\delta_V = (\delta)$ I 55	$ \frac{M 12}{0,09} $ 0,13 0,13 0,13 0,13 0,12 0,12 0,12 0,18 0,00 0,18 0,00 0,18 0,00 0,00 0,00	oad range 0,09 0,14 /1,4 oad M 14 0,10 0,10	M 16 I to II 0,10 0,15 M 16 0,09	M 20 0,11 0,16 M 20 0,07 0,11	M 22 0,11 0,17 M 22 0,07 0,10	M 24 0,12 0,18 M 24 0,06 0,09 x 11 opean	M 27 0,12 0,19 M 27 0,05 0,08	0,13 0,19 M 30 0,05 0,07

Size				M 8	M 10	M 12	M 16	M 20
Steel failure							I	
		Property 5.8 [[kN]	19	29	43	79	123
Characteristic	NI	class 8.8 [29	47	68	108	179
resistance with screw	N _{Rk,s}	Property A4 [[kN]	26	41	59	110	172
301000		class 70 C [kN]	26	41	59	110	172
		Property 5.8	[-]			1,50		
Partial safety	$\gamma_{Ms,N}^{1)}$	class 8.8	[-]			1,50		
factor	* IVIS,IN	Property A4	[-]			1,87		
A 11 1 1 1		class 70 C	[-]			1,87		
Combined pullout and co	oncrete co		1	10	10	10		
Diameter for calculation		d _H [n		12	16	18	22	28
Effective anchorage dept		h _{ef} [n		90	90	125	160	200
Characteristic values in			/25					
Temperature range I (60°	°C / 35°C) ⁴⁾	N _{Rk,ucr} [[kN]	50	60	95	140	200
Temperature range II (72°	°C / 50°C) ⁴⁾		[kN]	40	50	75	115	170
Characteristic values in (cracked co		I					
Temperature range I (60°	°C / 35°C) ⁴⁾	N _{Rk,cr} [[kN]	20	30	50	75	115
Temperature range II (72°	°C / 50°C)4		[kN]	20	25	40	60	95
	-,,	C25/30				1,02		
		C30/37				1,02		
		C35/4F				1,01		
Increasing factors for N_{Rk}	ψ	° C40/50				1,07		
		C45/58				1,08		
		C50/60	D [-]			1,09		
Splitting failure			I					
		h / h _{ef} ≥	: 2,0			1,0 h _{ef}		
Edge distance c _{cr.sp} [m	m]	2,0 > h / h _{ef} >				4,6 h _{ef} - 1,	8 h	
		h / h _{ef} ≤				2,26 h	of	
Spacing			nm]			2c _{cr,sp}		
Partial safety factor	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{II}$		[-]		1,5 ²⁾	0,0		8 ³⁾
 In absence of other na The partial safety factors The partial safety factors The partial safety factors See annex 2 	or $\gamma_2 = 1,0$	is included						
Upat ir	njection s	ystem UPM 55	5			Anne: of Euro		
	threaded	anchors Jes to tension				technic	al approv	val

Size					N4 O	NA 10	NA 10	NA 1 C	N4 00
					M 8	M 10	M 12	M 16	M 20
Steel failure without lever	r arm								
		Property	-		9,2	14,5	21,1	39,2	62
Characteristic	V _{Rk,s}		8.8 [-	14,6	23,2	33,7	54,0	90
resistance	[®] Rk,s	Property	A4 [kN]	12,8	20,3	29,5	54,8	86
		class 70	C [kN]	12,8	20,3	29,5	54,8	86
		Property		[-]			1,25		
Partial safety	$\gamma_{Ms,V}$	class		[-]			1,25		
factor	• IVIS, V	Property	A4	[-]			1,56		
		class 70	С	[-]			1,25		
Steel failure with lever an	m								
		Property	5.8 [N	lm]	20	39	68	173	337
Characteristic	0	class	8.8 [N	lm]	30	60	105	266	519
bending moment	$M^{0}_{_{Rk,s}}$	Property	A4 [N	lm]	26	52	92	232	454
		class 70	C [N	lm]	26	52	92	232	454
		Property	5.8	[-]			1,25		
Partial safety	v	class	8.8	[-]			1,25		
factor	$\gamma_{\text{Ms,V}}$	Property	A4	[-]			1,56		
		class 70	С	[-]			1,56		
Concrete pryout failure									
Factor k in Equation (5.7) o Report TR 029, Section 5.2		al		[-]			2,0		
Partial safety factor		$\gamma_{Mcp}^{1)}$		[-]			1,5 ²⁾		
Concrete edge failure					See Te	chnical Rep	oort TR 02	9, Section	5.2.3.4
Partial safety factor		γ_{Mc}^{1})	[-]			1,5 ²⁾		

Table 12: Characteristic values to shear load internal threaded anchors

¹⁾ In absence of other national regulations.

 $^{2)}$ The partial safety factor γ_{2} = 1,0 is included.

Table 13: Displacements of internal threaded ancho	rs to tension load
--	--------------------

Size		M 8	M 10	M 12	M 16	M 20
Non-cracked concrete	and cracked concrete; temp	erature ra	nge I to II			
Displacement	δ _{N0} [mm /(N/mm²)]	0,09	0,10	0,10	0,11	0,13
Displacement	$\delta_{_{N^{\infty}}} \text{ [mm /(N/mm^2)]}$	0,13	0,15	0,15	0,17	0,19

Calculation of characteristic displacement with $\delta_{_{N}}$ = ($\delta_{_{N0}} \cdot \tau_{_{Sd}})$ /1,4

Table 14: Displacements of internal threaded anchors to shear load

Size		M 8	M 10	M 12	M 16	M 20
Displacement	δ _{vo} [mm/kN]	0,12	0,09	0,08	0,07	0,05
Displacement	$\delta_{_{V\!\infty}}$ [mm/kN]	0,18	0,14	0,12	0,10	0,08
Calculation of characteristic di	splacement with $\delta_v = (\delta$	V ₀ • V _{Sd}) ∕ 1	,4			
Upat injecti	on system UPM 55			Ann	ex 13	
Internal threa Characteristi			iropean nical appi	roval		

Size	Ød	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Steel failure			_			_						_	_		-	_		
Characteristic resistance reinforcing bars ⁵⁾	N _{Rk,s} [kN]	28	44	63	85	111	140	173	209	249	270	292	339	389	443	499	560	69 ⁻
Partial safety factor	γ _{Ms,N} ¹⁾ [-]									1,4								
Combined pullout and c	oncrete cone f	ailuı	re															
Diameter for calculation	d [mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Characteristic bond res	istance in non-	crac	ked	con	cret	e C2	0/2	5										
Temperature range I ⁴⁾ (60°C / 35°C)	τ _{Rk,ucr} [N/mm²]	16	15	15	14	14	14	13	13	13	13	13	13	12	12	12	12	12
Temperature range II ⁴⁾ (72°C / 50°C)	τ _{Rk,ucr} [N/mm²]	13	12	12	12	11	11	11	11	11	10	10	10	10	10	10	9,5	9,5
Characteristic bond res	istance in cracl	ked	cond	crete	e C2	0/2!	5											
Temperature range I ⁴⁾ (60C / 35°C)	τ _{Rk,cr} [N/mm²]	7	7	7	7	7	7	7	7	7	7	7	7	7	5	5	5	5
Temperature range II ⁴⁾ (72°C / 50°C)	τ _{Rk,cr} [N/mm²]	6	6	6	6	6	6	6	6	6	6	6	6	6	4	4	4	4
	C25/30 [-]									1,02								
	C30/37 [-]									1,04								
Increasing Ψ_{c}	C35 <u>/45</u> [-]									1,06								
factors for τ_{Rk} Ψ_{c}	C40/50									1,07								
	C45/55 [-]									1,08								
	C50/60 [-]									1,09								
Splitting failure																		
Edge distance	h / h _{ef} ≥ 2,0								1	,0 h	ef							
c _{cr.sp} [mm] 2,	0 > <u>h / h_{ef} >1,3</u>								4,6 ł	ר _{ef} - `	I,8 h							
	h / h _{ef} ≤ 1,3									,26 I								
Spacing	s _{cr,sp} [mm]								2	2 c _{cr,s}								
Partial safety factor γ_{Mp} =	$\gamma_{Mc} = \gamma_{Msp}^{1}$ [-]		1	,5 ²⁾							1,8	8 ³⁾						

Characteristic values to tonsion load reinforcing here T I I 4 E

¹⁾ In absence of other national regulations.

 $^{2)}$ The partial safety factor γ_2 = 1,0 is included $^{3)}$ The partial safety factor γ_2 = 1,2 is included

⁴⁾ See annex 2

 $^{5)}$ The values given in Table 15 are valid for reinforcing bars with $f_{_{uk}}$ = 550 N/mm² and $f_{_{yk}}$ = 500 N/mm². Other reinforcing bars have to be calculated according to TR 029, Equation (5.1).

Annex 14

Reinforcing bars Characteristic values to tension load of European technical approval

ETA-11/0418

Doc: UPM 55

Page 24 of the European technical approval ETA-11/0418, issued on 28 September 2011

Size Ø d	8	10	12	14	16	18	20	22	24	25	26	28	30) 3	2	34	36	40
Steel failure without	ever	arm			1						1							
Charac- teristic V _{Rk,s} [kN] resistance	13,8 2	21,6	31,1	42,4	55,3	3 70	87	105	5 125	135	146	170) 19	5 2	21	250	280	346
Partial safety $\gamma_{MS,V}$ [-] factor		·			·			·	1	,5		·		·		·	·	
Steel failure with leve	er arm	า																
Charac- teristic M ⁰ _{Rk,s} [Nm] resistance	33	65	112	178	265	5 378	3 518	8 690	896	1012	21139	9 142	2 174	19 21	23 2	547	3023	4147
Partial safety $\gamma_{MS,V}$ [-] factor									1	,5								
Concrete pryout failu	re																	
Factor k in Equation (5.7) of Technical Report TR 029, [-] Section 5.2.3.3									2	2,0								
Partial safety $\gamma_{Mcp}^{2)}$ [-]									1	,5 ³⁾								
Concrete edge failure					Se	e Tec	hnica	al Rep	port T	R 02	9, Se	ection	5.2.	3.4				
failurePartial safety factor γ_{Mc}^{2} [-]									1,	,5 ³⁾								
failure Partial safety v 2) [-1	ars ha natior ctor γ	rectored to the total rectored to the tota	be c egula ,0 is i	alcul tions inclu	or rei lated s. ded.	inforc accc	cing b ording	pars v g to T	1, vith f	,5 ³⁾ , _{ik} = 5 9, Eq	50 N uatio	/mm	1² and		= 500) N/r	nm².	
failure Partial safety factor $\gamma_{Mc}^{(2)}$ [-] ¹⁾ The values given in Other reinforcing ba ²⁾ In absence of other ³⁾ The partial safety factor	ars ha natior ctor γ	nal re $_2 = 1$ nts o	o be c egula ,0 is i of re	alcul tions inclu info	or rei lated s. ded. rcin	inforc accc	sing b ording rs to	pars v g to T	1, vith f	,5 ³⁾ , _{ik} = 5 9, Eq	50 N uatio	/mm	1² and		= 500 32	1	1	40
failure Partial safety factor γ _{Mc} ²⁾ [-] ¹⁾ The values given in Other reinforcing ba ²⁾ In absence of other ³⁾ The partial safety fac Table 17: Displac	ars ha natior ctor γ emei Ø ε	nve to nal re $_2 = 1$ nts (o be c egula ,0 is i of re 10	alcul tions inclu info 12	or rei lated ded. rcin	nforc accc g ba 16	cing b ording rs to 18	pars v g to T o ten 20	1 rR 02 sion 22	,5 ³⁾ , = 5 9, Eq loac 24	50 N uatio	/mm n (5.	² and 1).	d f _{yk} =	1	1		40
failure Partial safety factor $\gamma_{Mc}^{(2)}$ [-] ¹⁾ The values given in Other reinforcing ba ²⁾ In absence of other ³⁾ The partial safety factor Table 17: Displace Size Non-cracked concret Displace ment δ_{N0}	$ars ha nation ctor \gamma_2emen\phi se and\gamma_2$	$\frac{1}{2} = 1$ $\frac{1}{2} = 1$ $\frac{1}{2} = 1$ $\frac{1}{2} = 1$	o be c egula ,0 is i of re 10	alcul tions inclu info 12 con	or rei lated ded. rcin 14 crete	g ba	rs to	pars v g to T o ten 20 ature	1 with f R 02 sion 22 rang	,5 ³⁾ = 5 9, Eq loac 24 ge l to	50 N uatio	/mm n (5. 26	² and 1). 28	30	32	34		40
$\begin{array}{c} \textbf{failure} \\ \hline \textbf{Partial safety} \\ \textbf{factor} & \gamma_{Mc}^{\ 2)} \ [-] \\ \hline \end{array} \\ \begin{array}{c} ^{1)} \text{ The values given in} \\ \text{Other reinforcing ba} \\ ^{2)} \text{ In absence of other} \\ ^{3)} \text{ The partial safety fac} \\ \hline \textbf{Table 17: Displace} \\ \hline \textbf{Non-cracked concret} \\ \hline \text{Displace}_{ment} & \delta_{No} \\ \hline \hline \begin{array}{c} \text{mm} \\ (N/mm^2) \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} \textbf{Mm} \\ \textbf{Mm} \\ \hline \end{array} \\ \end{array}$	emer $\vec{p} = \vec{p}$ $\vec{p} = \vec{p}$	$\frac{1}{2} = 1$	b be c egula ,0 is i of re 10 ,08 0,08 0,08	alcul tions inclu info 12 ,09 ,13 0	or rei lated s. ded. rcin 14 crete	g ba 16 0,10 0,15	rs to 18 0,10	oars v g to T 20 ature 0,11 0,16	1, r o2 sion 22 0,11 0,17	,5 ³⁾ = 5 9, Eq loac 24 ge I to 0,12 0,18	50 N uatio 25 11 0,12	/mm n (5. 26	² and 1). 28 0,13	30 0,13	32 0,13	34	36	0,15
failure Partial safety factor $\gamma_{Mc}^{(2)}$ [-] ¹⁾ The values given in Other reinforcing ba ²⁾ In absence of other ³⁾ The partial safety factor Table 17: Displace Size Non-cracked concret Displace- mm ment δ_{No} ment δ_{No} Calculation of charact	ars ha nation ctor $\gamma_{\frac{1}{2}}$ emen Ø a a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b a b b b b b b b b b b	$\frac{1}{2} = 1$	o be c egula ,0 is i of re 10 cked 0,08 0,08 0,12 0 place	alcul tions inclu info 12 ,09 ,13 ,13 ,13	or rei lated 3. ded. rcin 14 0,09 0,14 0,14	g ba 16 0,10 0,15 h δ _N =	cing b prding rs to 18 0,10 0,10 = (δ _{NO}	oars v g to T o ten 20 0,11 0,16 0,16	1, vith f, R 02 sion 22 0,11 0,17 ,)/1,4	5^{3} , 5	50 N uatio 25 11 0,12	/mm n (5. 26	² and 1). 28 0,13	30 0,13	32 0,13	34	36	0,15
failure Partial safety factor $\gamma_{Mc}^{(2)}$ [-] ¹⁾ The values given in Other reinforcing ba ²⁾ In absence of other ³⁾ The partial safety factor Table 17: Displace Size Non-cracked concret Displace- mm (N/mm² Displace- mm (N/mm² Calculation of charact Table 18: Displace	ars ha nation ctor $\gamma_{\underline{j}}$ emen $\overline{\mathcal{O}}$ a $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ eristic	vve to nal re $_2 = 1$ nts (8 d cra07 C11 C11 Cc dispnts c	o be c egula ,0 is i of re 10 ,080 0,080 0,120 place	alcul tions inclu info 12 09 0 13 0 9 0 13 0 9	or rei lated 3. ded. rcin 14 0,09 0,14 0,14 t with ccinç	inforce accord g ba 16 a; ten 0,10 0,15 h $\delta_{\rm N}$ = g bar	cing b ording rs to 18 0,10 0,10 = (δ _{N0} cs to	pars v g to T o ten 20 ature 0,11 0,16 $\cdot \tau_{sc}$ she	1, vith f, R 02 sion 22 0,11 0,17 0,17 ar lo	,5 ³⁾ , = 5 9, Eq loac 24 0,12 0,18 ad	50 N uatio 25 0,12 0,18	/mm n (5. 26 0,12 0,18	² and 1). 28 0,13 0,19	30 0,13 0,19	32 0,13 0,20	34 0,14 0,20	36 0,14 0,21	0,1
failure Partial safety factor $\gamma_{Mc}^{(2)}$ [-] ¹⁾ The values given in Other reinforcing ba ²⁾ In absence of other ³⁾ The partial safety factor Table 17: Displace Size Non-cracked concret Displace- mm (N/mm² Displace- mm (N/mm² Calculation of charact Table 18: Displace	ars ha nation ctor $\gamma_{\underline{j}}$ emen $\overline{\mathcal{O}}$ a $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ $\overline{\mathcal{O}}$ eristic emen $\overline{\mathcal{O}}$ a	vve to nal re $_2 = 1$ nts (8 d cra 07 C 11 C c dispnts c 8	be c egula ,0 is i of re 10 cked 0,08 0,012 0 place of rei 10	alcul tions inclu info 12 09 09 0 13 09 0 13 0 9 0 13 0 9 0 13 0 12 13 0 12 12 12 12 12 12 12 12 12 12 12 12 12	or rei lated 3. ded. rcin 14 crete 0,09 0,14 t with ccinc 14	inforce accord g ba 16 3; ten 0,10 0,15 0,15 0,15 0,15 0,15 0,15	cing b ording rs to 18 0,10 0,10 0,16 = (δ _{N0} cs to 18	pars v g to T p ten 20 ature 0,11 0,16 $\cdot \tau_{sc}$ she 20	1, vith f, R 02 sion 22 0,11 0,17 0,17 ar lo 22	,5 ³⁾ = 5 9, Eq loac 24 0,12 0,12 0,18 ad 24	50 N uatio 25 0.11 0,12 0,18 25	/mm n (5. 0,12 0,18 26	² and 1). 28 0,13 0,19 28	30 0,13 0,19	32 0,13 0,20	34 0,1 ² 0,20	36 0,14 0,21	0,1 0,2 40

Upat injection system UPM 55

Displacements

Doc: UPM 55

Reinforcing bars Characteristic values to shear load Annex 15 of European

technical approval ETA-11/0418

Table 19: Characteristic values to tension load rebar anchor FRA

Size		M12	M16	M20	M24
Steel failure					
Characteristic resistance	N _{Rk,s} [kN]	68	126	196	283
Partial safety factor	γ _{Ms,N} ¹⁾ [-]		1,5	6	
Combined pullout and concre					
Diameter for calculation	d [mm]	12	16	20	25
Characteristic bond resistand	e in non-cracked concr	ete C20/25			
Temperature range I ⁴⁾ (60°C / 35°C)	τ _{Rk,ucr} [N/mm²]	15	14	13	13
Temperature range II ⁴⁾ (72°C / 50°C)	τ _{Rk,ucr} [N/mm²]	12	11	11	11
Characteristic bond resistand	e in cracked concrete (C20/25			
Temperature range I ⁴⁾ (60C / 35°C)	τ _{Rk,cr} [N/mm²]		7		
Temperature range II ⁴⁾ (72°C / 50°C)	τ _{Rk,cr} [N/mm²]		6		
	C25/30 [-]		1,0	2	
	C30/37 [-]		1,0		
Increasing	C35/45 [-]		1,0		
factors for $\tau_{_{Rk}}$ $\psi_{_{c}}$	C40/50 [-]		1,0		
	<u>C45/55 [-]</u>		1,0		
	C50/60 [-]		1,0	9	
Splitting failure	1				
	h / h _{ef} ≥ 2,0		1,0	h _{ef}	
Edge distance c _{cr,sp} [mm]	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} -	1,8 h	
	h / h _{ef} ≤ 1,3		2,26	01	
Spacing	S _{cr,sp} [mm]		2 c	r,sp	
Partial safety factor $\gamma_{\rm N}$	$\gamma_{Mc} = \gamma_{Mc} = \gamma_{Msp}^{(1)} $ [-]	1,5 ²⁾		1,8 ³⁾	-

¹⁾ In absence of other national regulations. ²⁾ The partial safety factor $\gamma_2 = 1,0$ is included ³⁾ The partial safety factor $\gamma_2 = 1,2$ is included ⁴⁾ See annex 2

Doc: UPM 55

Upat injection system UPM 55

Rebar anchors FRA Characteristic values to tension load Annex 16

of European technical approval

ETA-11/0418

Size		M12	M16	M20	M24
Steel failure without lever arm		I			
Characteristic resistance	V _{Rk,s} [kN]	33,7	63	98	141
Partial safety factor	γ _{Ms,V} [-]		1,2	25	
Steel failure with lever arm					
Characteristic bending moment	M ⁰ _{Rk,s} [Nm]	105	266	519	896
Partial safety factor	γ _{Ms,V} [-]		1,:	25	
Concrete pryout failure					
Factor k in Equation (5.7) of Technical Report TR 029, Section 5.2	2.3.3 k [-]		2,	,0	
Partial safety factor	γ _{Mcp} ¹⁾ [-]		1,!	5 ²⁾	
Concrete edge failure		See Tech	nnical Report T	R 029, Section	า 5.2.3.4
Partial safety factor	γ _{Mc} ¹⁾ [-]		1,!	5 ²⁾	

.

¹⁾ In absence of other national regulations.

²⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

Table 21: Displacements of rebar anchors FRA to tension load

Size	Ø	12	16	20	24						
Non-cracked and cracked concrete; temperature range I to II											
Displacement	δ _{N0} [mm/(N/mm²)]	0,09	0,10	0,11	0,12						
Displacement	$\delta_{_{N\infty}}$ [mm/(N/mm ²)]	0,13	0,15	0,16	0,18						

Calculation of characteristic displacement with $\delta_{_{N}}$ = ($\delta_{_{NO}}$ + $\tau_{_{Sd}})$ / 1,4

Table 22: Displacements of rebar anchors FRA to shear load

Size		Ø	12	16	20	24
Displacement	$\boldsymbol{\delta}_{\text{VO}}$	[mm/kN]	0,12	0,09	0,07	0,06
Displacement	δ_{V^∞}	[mm/kN]	0,18	0,14	0,11	0,09

Calculation of characteristic displacement with $\delta_{_V}$ = ($\delta_{_{VO}}$ + $V_{_{Sd}})$ / 1,4

Upat injection system	UPM 55
-----------------------	--------

Rebar anchors FRA
Characteristic values to shear load
Displacements

Doc: UPM 55

Annex 17

of European technical approval ETA-11/0418