Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

European Technical Approval ETA-11/0115

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name Würth Betonschraube Pointe Bleu PB Würth concrete screw Pointe Bleu PB

Zulassungsinhaber Holder of approval Würth France S.A. Z.I. Quest Rue Georges Bresse 67150 ERSTEIN FRANKREICH

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis to

Herstellwerk
Manufacturing plant

Betonschraube aus galvanisch verzinktem Stahl in den Größen 10, 12 und 16 zur Verankerung im Beton

Concrete screw made of galvanised steel of sizes 10, 12 and 16 for use in concrete

10 May 2011

27 May 2013

Plant 1, Plant 2

Diese Zulassung umfasst This Approval contains 11 Seiten einschließlich 4 Anhänge

11 pages including 4 annexes

Page 2 of 11 | 10 May 2011

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 11 | 10 May 2011

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the construction product and intended use

1.1 Definition of the product

The Würth Concrete Screw Pointe Bleu PB is an anchor made of zinc plated steel of sizes PB10, PB12 and PB16. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

An illustration of the product and intended use is given in Annex 1.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12. It may be anchored in cracked and non-cracked concrete.

The anchor may only be used in structures subject to dry internal conditions.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and information given in Annex 2. The characteristic material values, dimensions and tolerances of the anchor not indicated in Annex 2 shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

Regarding the requirements concerning safety in case of fire it is assumed that the anchor meets the requirements of class A1 in relation to reaction to fire in accordance with the stipulations of the Commission decision 96/603/EC, amended by 2000/605/EC.

The characteristic values for the design of the anchorages are given in Annex 3 and 4.

Each anchor shall be marked with the identifying mark of the producer including the anchor type, the diameter and the length of the anchor according to Annex 2.

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 4 of 11 | 10 May 2011

2.2 Methods of verification

The assessment of the fitness of the anchor for the intended use with regard to the requirements of mechanical resistance and stability as well as safety in use in the sense of the Essential Requirements 1 and 4 was performed based on ETAG 001 "Guideline for European technical approval of Metal Anchors for Use in Concrete", Option 1, and the following additional tests:

- 1. Setting tests in high strength concrete;
- 2. Setting tests in low strength concrete;
- 3. Setting tests with impact screw driver;
- 4. Modified test under repeated loads on bevelled washers;
- 5. Tests in respect to brittle fracture.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the communication of the European Commission⁸ the system 2+ of attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 2+: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
 - (1) initial type—testing of the product;
 - (2) factory production control;
 - (3) testing of samples taken at the factory in accordance with a prescribed test plan.
- (b) Tasks for the approved body:
 - (4) certification of factory production control on the basis of:
 - initial inspection of factory and of factory production control;
 - continuous surveillance, assessment and approval of factory production control

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial / raw / constituent materials stated in the technical documentation of this European technical approval.

Letter of the European Commission of 13/02/2004 to EOTA

Page 5 of 11 | 10 May 2011

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks of manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks of approved bodies

The approved body shall perform the

- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control,

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the factory production control stating the conformity with the factory production control of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchors. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the holder of the approval (legal entity responsible for the manufacturer).
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate for the factory production control,
- the number of the European technical approval,
- use category (ETAG 001-1, Option 1),
- size.

See section 3.2.2.

The control plan is a confidential part of the documentation of the European technical approval, but not published together with the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity.

Page 6 of 11 | 10 May 2011

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the European technical approval and consequently the validity of the CE marking on the basis of the European technical approval and if so whether further assessment or alterations to the European technical approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Annex C, Method A under the responsibility of an engineer experienced in anchorages and concrete work.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, in cracked or non-cracked concrete, etc.).

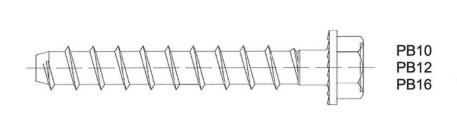
4.3 Installation of anchors

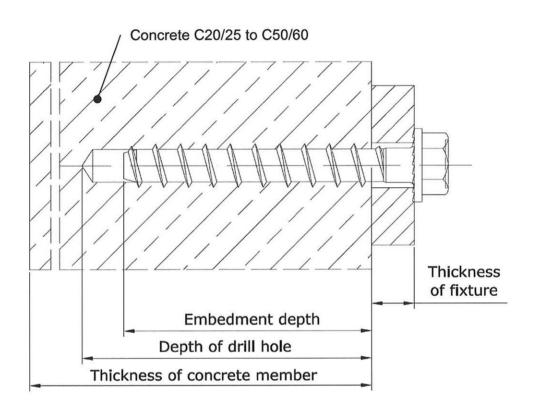
The fitness for use of the anchor can only be assumed if the following conditions of installation are met:

- Anchor installation carried out by appropriately qualified personnel under the supervision of the person responsible for technical matters on site,
- Use of the anchor only as supplied by the manufacturer,
- Anchor installation in accordance with the manufacturer's specifications and drawings.
- Checks before placing the anchor, to ensure that the characteristic values of the base material in which the anchor is to be placed, is identical with the values, which the characteristic loads apply,
- Check of the concrete being well compacted, e.g. without significant voids,
- Edge distances and spacings not less than the specified values without minus tolerances,
- Placing drill holes without damaging the reinforcement,
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application,
- Cleaning of the hole of drilling dust,
- The anchor may be used only once,
- Anchor installation such that the embedment depth of the anchor in the concrete is not smaller then the value h_{nom} given in Annex 2 Table 2,
- The fixture is fully pressed on the concrete surface without intermediate layers,
- Further turning of the anchor is not easy,
- The head of the anchor is fully supported on the fixture and is not damaged.

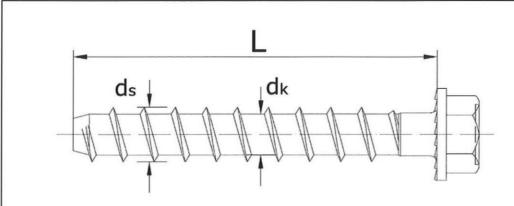
Page 7 of 11 | 10 May 2011

5 Responsibility of the manufacturer


The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2 and 4.3 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition, all installation data shall be shown clearly on the packaging and/or on an enclosed instruction sheet, preferably using illustrations.

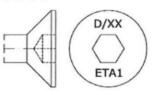

The minimum data required are:

- Drill bit diameter,
- Size of the anchor,
- Maximum thickness of the fixture,
- Minimum embedment depth,
- Minimum hole depth,
- Information on the installation procedure, including cleaning of the hole, preferably by means of an illustration,
- Reference to any special installation equipment needed,
- Identification of the manufacturing batch.

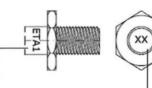

All data shall be presented in a clear and explicit form.

Georg Feistel beglaubigt:
Abteilungsleiter Baderschneider

Würth Concrete Screw Pointe Bleu PB	Annex 1
Product and intended use	of European technical approval ETA-11/0115



Head Styles


PB HEX

Head Marking: Identifying mark: ETA1 Diameter D: e.g. 10 Length XX: e.g. 150 PB CS

PB ET

Marking I: Identifying mark: ETA1 Diameter D: e.g. 10

Marking II;

Length XX: e.g. 150

Marking D/XX where

D= Nominal diameter of the bore hole [mm]

XX= Length of anchor [mm]

Table 1 Dimensions and installation parameters

Anchor size			PE	10	PE	312	PE	316														
Length of the anchor	L≥	[mm]	6	60		75 95		5														
Length of the anchor	L≤	[mm]	320		320		320		320		320		320		320		320 3		320		20 320	
Diameter of the shaft	d _k	[mm]	9.7		11.6		11.6 15.															
Outer diameter of the thread	d _s	[mm]	11.2		.2 13.4		17.9															
Nominal drill hole diameter	d ₀	[mm]	10		12		16															
Depth of drill hole	h₁ ≥	[mm]	65	85	80	95	90	125														
Nominal embedment depth	h _{nom}	[mm]	55	75	70	85	80	110														
Maximum clearance hole in the fixture	d _f	[mm]	12		14		19															
Minimum thickness of member	h _{min}	[mm]	105	115	1:	25	145	165														
Minimum spacing	S _{min}	[mm]	60		90		110															
Minimum edge distance	C _{min}	[mm]	6	0	90		110															

Würth Concrete Screw Pointe Bleu PB	Annex 2
Head styles and marking Dimensions and installation parameters	of European technical approval ETA-11/0115

Table 2 Design method A Characteristic values for tension loads

Anchor size			PB	10	PB	12	PE	16		
Setting depth	h _{nom}	[mm]	55	75	70	85	80	110		
Steel failure										
Characteristic resistance	$N_{Rk,s}$	[kN]	56 78.5				140.4			
Partial safety factor	γ _{Ms} 1)	[-]	1.4							
Pullout failure										
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	3	6	4	5	7.5	12		
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	7.5	12	12	16	16	25		
		C30/37	1.15							
Increasing factor for N _{Rk,p} in cracked and non-cracked concrete	Ψ_{c}	Ψ _c C40/50		Ψ_{c} C40/50 1.27						
Thorrord deficience		C50/60			1.	36				
Partial safety factor	γ _{Mp} 1)	[-]	2.1 ²⁾				1.8 ³⁾			
Concrete cone and splitting failure										
Effective anchorage depth	h _{ef}	[mm]	40	57	51.4	64.1	57.2	82.7		
Characteristic spacing	$s_{cr,N} = s_{cr,sp}$	[mm]	3 h _{ef}							
Characteristic edge distance	$c_{cr,N} = c_{cr,sp}$	[mm]	1.5 h _{ef}							
Partial safety factor	$\gamma_{Msp} = \gamma_{Mc}^{}}$	[-]		2.	1 ²⁾		1.8	3 ³⁾		

¹⁾ In absence of other national regulations

Table 3 Displacements under tension loads

Anchor size			PB	10	PB	12	PE	316
Setting depth	h _{nom}	[mm]	55	75	70	85	80	110
Tension load in cracked concrete	N	[kN]	1.0	2.0	1.4	1.7	3.0	4.8
Displacement	δ_{N0}	[mm]	0.2			0.3		
Displacement	δ _{N∞}	[mm]	0.9	0.5	0.4	1.0	1.0	1.3
Tension load in non-cracked concrete	N	[kN]	2.6	4.1	3.1	4.1	6.3	9.9
Displacement	δ_{N0}	[mm]	0.2				0	.3
Displacement	δ _{N∞}	[mm]	0	.5	0	.4	1.0	1.3

Würth Concrete Screw Pointe Bleu PB	Annex 3
Design method A,	of European technical
Characteristic values for tension loads,	approval
Displacements	ETA-11/0115

²⁾

The partial safety factor γ_2 = 1.4 is included The partial safety factor γ_2 = 1.2 is included 3)

Table 4 Design method A
Characteristic values for shear loads

Anchor size			PB	310	PB	12	PB	16
Setting depth	h_{nom}	[mm]	55 75		70	85	80	110
Steel failure without lever arm								
Characteristic resistance	$V_{Rk,s}$	[kN]	27 35.8			8.8	55.1	
Partial safety factor	γ _{Ms} 1)	[-]	1.5					
Steel failure with lever arm								
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	77 1:			128 306)6
Partial safety factor	γ _{Ms} 1)	[-]			1.5	5 ²⁾		
Concrete pryout failure								
Factor in equation (5.6) of ETAG 001, Annex C, section 5.2.3.3	k	[-]		1.0			2.0	
Respective partial safety factor	γ _{Mc} 1)	[-]			1.5	5 ²⁾		
Concrete edge failure								
Effective length of the anchor in shear loading	ℓ_{f}	[mm]	40	57	51.4	64.1	57.2	82.7
Outside diameter of the anchor	d_{nom}	[mm]	1	0	1	2	1	6
Partial safety factor	γ _{Mc} 1)	[-]			1.5	5 ²⁾		

¹⁾ In absence of other national regulations

Table 5 Displacements under shear loads

Anchor size			PB10	PB12	PB16
Tension load in cracked and non-cracked concrete	V	[kN]	13	17	26
Displacement	δ_{N0}	[mm]	1.4	2.0	2.5
Displacement	δ _{N∞}	[mm]	2.1	3.0	3.8

Information for design of anchorage under shear load:

In general, the conditions given in ETAG 001 Annex C, section 4.2.2.1 a) and section 4.2.2.2 are not fulfilled because the diameter of clearance hole in the fixture according to Annex 2 Table 2 is larger than the values given in Annex C Table 4.1 for the corresponding diameter of the anchors.

However, for each specific anchor length the manufacturer may specify the thickness of fixture for which these conditions are fulfilled.

Würth Concrete Screw Pointe Bleu PB	Annex 4
Design method A, Characteristic values for shear loads, Displacements	of European technical approval ETA-11/0115

The partial safety factor $\gamma_2 = 1.0$ is included