Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-02/0024

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis to

Herstellwerk

Manufacturing plant

Injektionssystem fischer FIS V Injection System fischer FIS V

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

Verbunddübel in den Größen M6 bis M30 zur Verankerung im ungerissenen Beton

Bonded anchor in the size of M6 to M30 for use in non-cracked concrete

12. März 2012

29. Oktober 2012

fischerwerke

Diese Zulassung umfasst This Approval contains 29 Seiten einschließlich 20 Anhänge 29 pages including 20 annexes

Diese Zulassung ersetzt This Approval replaces ETA-02/0024 mit Geltungsdauer vom 11.06.2009 bis 29.10.2012 ETA-02/0024 with validity from 11.06.2009 to 29.10.2012

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Seite 2 von 29 | 12. März 2012

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- 3 Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- 5 Bundesgesetzblatt Teil I 2006, S. 2407, 2416
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 29 | 12. März 2012

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Das Injektionssystem fischer FIS V ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel fischer FIS V, FIS VW oder FIS VS und einem Stahlteil besteht. Das Stahlteil besteht aus

- einer fischer Ankerstange in den Größen M6 bis M30,
- einem fischer Innengewindeanker RG MI in den Größen M8 bis M20,
- einem Bewehrungsstab mit Durchmesser 8 bis 28 mm oder
- einem fischer Bewehrungs-Gewinde-Anker FRA in den Größen Durchmesser 12 bis 24 mm.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Im Anhang 1 und 2 sind Produkt und Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter vorwiegend ruhender Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Er darf nur im ungerissenen Beton verankert werden.

Der Dübel darf in trockenem oder nassem Beton jedoch nicht in mit Wasser gefüllte Bohrlöcher gesetzt werden.

Die Bohrlöcher müssen durch Hammer- oder Pressluftbohren hergestellt werden.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

Temperaturbereich I: -40 °C bis +80 °C (max. Langzeit-Temperatur +50 °C und

max. Kurzzeit-Temperatur +80 °C)

Temperaturbereich II: -40 °C bis +120 °C (max. Langzeit-Temperatur +72 °C und

max. Kurzzeit-Temperatur +120 °C)

Stahlteile aus verzinktem Stahl:

Die Stahlteile aus galvanisch verzinktem oder feuerverzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Stahlteile aus nichtrostendem Stahl A4:

Die Stahlteile aus nichtrostendem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Seite 4 von 29 | 12. März 2012

Stahlteile aus hochkorrosionsbeständigem Stahl C:

Die Stahlteile aus hochkorrosionsbeständigem Stahl dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Stahlteile aus Betonstahl:

Nachträglich eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden, sind nicht durch diese europäische technische Zulassung abgedeckt.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 1 bis 7. Die in den Anhängen 1 bis 7 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 10 bis 17 angegeben.

Die zwei Komponenten des fischer Injektionsmörtels FIS V, FIS VW oder FIS VS werden unvermischt in Shuttlekartuschen oder in Coaxialkartuschen gemäß Anhang 1 geliefert. Jede Mörtelkartusche ist mit dem Aufdruck "fischer FIS V", "fischer FIS VW" oder "fischer FIS VS" Verarbeitungshinweisen, Haltbarkeitsdauer, Aushärtezeit, Verarbeitungszeit (temperaturabhängig) und Gefahrenhinweisen gekennzeichnet.

Jede fischer Ankerstange ist mit der Festigkeitsklasse gemäß Anhang 3 gekennzeichnet.

Jeder fischer Innengewindeanker RG MI ist mit dem Herstellerkennzeichen und mit der Nenngröße gemäß Anhang 4 gekennzeichnet. Jeder Innengewindeanker RG MI aus nichtrostendem Stahl ist zusätzlich mit der Bezeichnung "A4" gekennzeichnet. Jeder Innengewindeanker RG MI aus hochkorrosionsbeständigem Stahl ist zusätzlich mit der Bezeichnung "C" gekennzeichnet.

Jeder fischer Bewehrungs-Gewinde-Anker FRA ist mit dem Herstellerkennzeichen und dem Handelsnamen gemäß Anhang 7 gekennzeichnet.

Stahlteile aus Betonstahl müssen den Angaben nach Anhang 6 entsprechen.

Die Markierung der Verankerungstiefe darf auf der Baustelle erfolgen.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 5 von 29 | 12. März 2012

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 7.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Seite 6 von 29 | 12. März 2012

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüfplans durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 7),
- Größe.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 7 von 29 | 12. März 2012

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit dem EOTA Technical Report TR 029 "Design of Bonded Anchors" unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Nachträgliche eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Die grundlegenden Annahmen für die Bemessung nach der Dübeltheorie sind zu beachten. Das beinhaltet sowohl die Berücksichtigung von Zugund Querkräften und die zugehörigen Versagensarten als auch die Annahme, dass der Verankerungsgrund (Betonbauteil) im Grenzzustand der Gebrauchstauglichkeit (gerissen oder ungerissen) verbleibt, wenn der Anschluss bis zum Versagen belastet wird. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden (z. B. Wandanschlussbewehrung, bei der Zugkräfte in mindestens einer Bewehrungslage auftreten), sind nicht durch diese europäische technische Zulassung abgedeckt.

Für die fischer Innengewindeanker RG MI sind die Befestigungsschrauben oder Gewindestangen hinsichtlich des Materials nach und der erforderlichen Festigkeitsklasse gemäß Anhang 5 zu spezifizieren. Die minimale und maximale Einschraubtiefe I_E der Befestigungsschraube oder der Gewindestange für die Befestigung der Anbauteile muss den Anforderungen nach Anhang 4, Tabelle 2 genügen. Die Länge der Befestigungsschraube oder der Gewindestange müssen in Abhängigkeit von der Anbauteildicke, zulässigen Toleranzen, der vorhandenen Gewindelänge und der minimalen und maximalen Einschraubtiefe I_E festgelegt werden.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

Der EOTA Technical Report TR 029 "Design of Bonded Anchors" ist in Englischer Sprache auf der website www.eota.eu veröffentlicht.

Seite 8 von 29 | 12. März 2012

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Es dürfen auch handelsübliche Gewindestangen, Scheiben und Muttern verwendet werden, wenn die nachfolgend aufgeführten Anforderungen erfüllt sind:
 - Werkstoff, Abmessungen und mechanische Eigenschaften der Stahlteile entsprechen Anhang 5, Tabelle 3,
 - Nachweis von Werkstoff und mechanischen Eigenschaften der Stahlteile durch ein Abnahmeprüfzeugnis 3.1 entsprechend EN 10204:2004, die Nachweise sind aufzubewahren,
 - Markierung der Gewindestange mit der geplanten Verankerungstiefe. Dies kann durch den Hersteller oder vom Baustellenpersonal erfolgen.
- Eingemörtelte Betonstähle müssen mit den Bestimmungen nach Anhang 6 übereinstimmen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Markierung und Einhaltung der effektiven Verankerungstiefe,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bohrlochherstellung durch Hammer- oder Pressluftbohren,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- der Dübel darf nicht in wassergefüllte Bohrlöcher gesetzt werden,
- Bohrlochlochreinigung und Einbau gemäß Anhang 8 und 9,
- Die Temperatur der Dübelteile beim Einbau beträgt mindestens 0 °C (fischer FIS VW) bzw.
 +5 °C (FIS V und FIS VS); die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels unterschreitet nicht -5 °C (fischer FIS V, FIS VW) sowie 0 °C (FIS VS); Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 5, Tabelle 4,
- Bei Bohrlochtiefen h₀ > 150 mm sind Verlängerungsschläuche entsprechend Anhang 1 zu verwenden,
- Befestigungsschrauben oder Gewindestangen (einschließlich Muttern und Scheiben) müssen hinsichtlich der Stahlgüte und Festigkeitsklasse dem verwendeten fischer Innengewindeanker RG MI entsprechen,
- Montagedrehmomente sind für die Tragfähigkeit des Dübels nicht erforderlich. Die in den Anhängen 3 bis 7 angegebenen Anzugsdrehmomente dürfen jedoch bei der Montage der Anbauteile nicht überschritten werden.

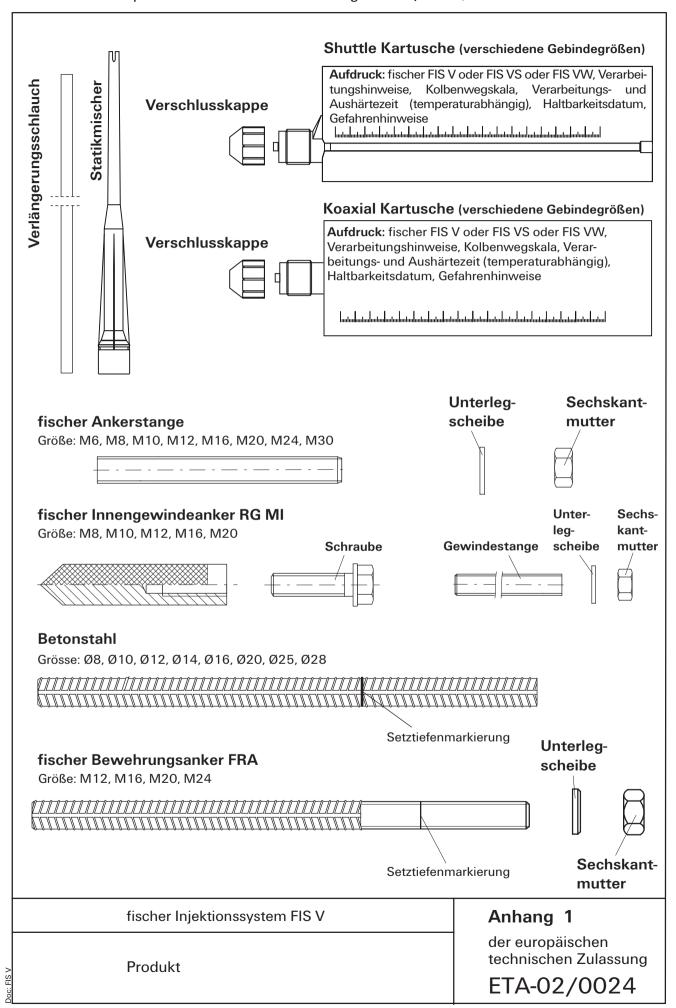
Seite 9 von 29 | 12. März 2012

5 Vorgaben für den Hersteller

5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2, 4.3 und 5.2 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:


- Bohrnenndurchmesser,
- Nenndurchmesser des Stahlteils.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau,
- Material und Festigkeitsklasse der Stahlteile entsprechend Anhang 5, Tabelle 3 übereinstimmen,
- Temperatur im Verankerungsgrund bei Setzen des Dübels,
- Zulässige Verarbeitungszeit des Mörtels,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Verpackung, Transport und Lagerung

Die Mörtelkartuschen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern. Mörtelkartuschen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden. Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelkartuschen sind separat von den Stahlteilen verpackt.

Georg Feistel Beglaubigt
Abteilungsleiter

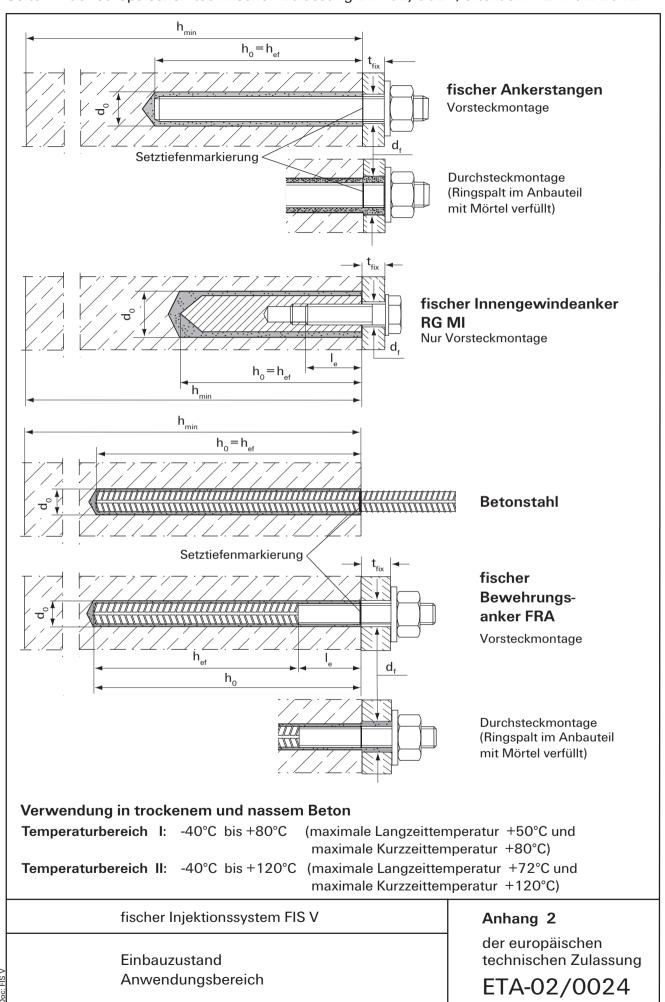
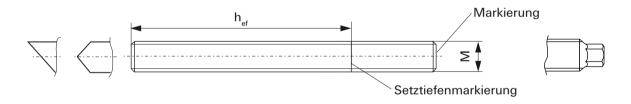
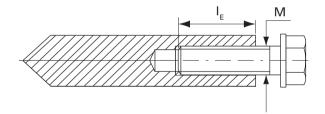



 Tabelle 1:
 Einbaubedingungen für fischer Ankerstangen

Dübelgrösse		[-]	M6	M8	M10	M12	M16	M20	M24	M30
Bohrernenndurch	messer d ₀	[mm]	8	10	12	14	18	24	28	35
Bohrlochtiefe	h _o	[mm]				h _o =	h _{ef}			
Effektive	$\mathbf{h}_{ef,min}$	[mm]	50	60	60	70	80	90	96	120
Verankerungstiefe		[mm]	72	160	200	240	320	400	480	600
Minimaler Rand- und Achsabstand	s _{min} = c _{min}	[mm]	40	40	45	55	65	85	105	140
Durchgangs- loch im	Vorsteck- montage d _f	[mm]	7	9	12	14	18	22	26	33
anzuschlies- senden Bauteil	Durchsteck- montage d _f	[mm]	9	11	14	16	20	26	30	40
Minimale Bauteildicke	h _{min}	[mm]		h _{ef} -	+ 30 (≥1	00)		h _{ef} +	- 2d _o	
Maximales Monta drehmoment	ge- T _{inst,max}	[Nm]	5	10	20	40	60	120	150	300
B: 1 1 A 1	t _{fix,min}	[mm]				()	·	·	
Dicke des Anbaut	eils t _{fix,max}	[mm]				30	00			

fischer Ankerstange

Markierung:


Bei Festigkeitsklasse 8.8 oder hochkorrosionsbeständigem Stahl C, Festigkeitsklasse 80 • Bei nichtrostendem Stahl A4 und hochkorrosionsbeständigem Stahl C, Festigkeitsklasse 50 • •

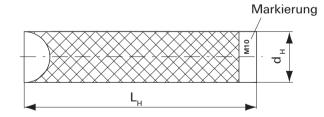

fischer Injektionssystem FIS V	Anhang 3
fischer Ankerstangen Dübelabmessungen und Einbaubedingungen	der europäischen technischen Zulassung ETA-02/0024
	fischer Ankerstangen

Tabelle 2: Einbaubedingungen fischer Innengewindeanker RG MI

Dübelgrösse			M8	M10	M12	M16	M20
Dübeldurchmesser	d _H	[mm]	12	16	18	22	28
Bohrernenndurchmesser	d_{o}	[mm]	14	18	20	24	32
Dübellänge	L _H	[mm]	90	90	125	160	200
Effektive Verankerungstiefe h _{ef} und Bohrlochtiefe h ₀	$h_{ef} = h_0$	[mm]	90	90	125	160	200
Minimaler Rand- und Achsabstand	s _{min} = c _{min}	[mm]	55	65	75	95	125
Durchgangsloch im anzuschliessenden Bauteil	d_{f}	[mm]	9	12	14	18	22
Minimale Bauteildicke	$\mathbf{h}_{\mathrm{min}}$	[mm]	120	125	165	205	260
Einschraubtiefe	l _{E,min}	[mm]	8	10	12	16	20
Elliscillaubtiele	I _{E,max}	[mm]	18	23	26	35	45
Maximales Montage- drehmoment	T _{inst,max}	[Nm]	10	20	40	80	120

fischer Innengewindeanker RG MI

Markierung: Ankergrösse

z.B.: **M10**

Bei nichtrostendem Stahl zusätzlich A4

z.B.: **M10 A4**

Bei hochkorrosionsbeständigem Stahl

zusätzlich **C** z.B.: **M10 C**

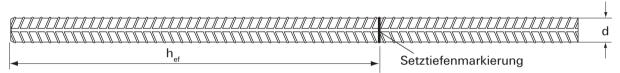
	fischer Injektionssystem FIS V	Anhang 4
	fischer Innengewindeanker RG MI	der europäischen technischen Zulassung
Doc: FIS V	Dübelabmessungen und Einbaubedingungen	ETA-02/0024

Tabelle 3: Materialien: Ankerstangen, Gewindestangen, Unterlegscheiben, Sechskantmuttern und Schrauben

	Material						
Benennung	Stahl, verzinkt	Nichtrostender Stahl A4	Hochkorrosions- beständiger Stahl C				
Ankerstangen	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1 galvanisch verzinkt ≥ 5µm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	Festigkeitsklasse 50 oder 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088 oder 1.4062 pr EN 10088:2011	Festigkeitsklasse 50 oder 80 EN ISO 3506 oder f _{uk} =700N/mm² f _{yk} =560N/mm² 1.4565; 1.4529 EN 10088				
Unterleg- scheiben EN ISO 7089	galvanisch verzinkt ≥ 5µm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	1.4565;1.4529 EN 10088				
Sechskant- muttern EN 24032	Festigkeitsklasse 5 oder 8; EN ISO 898-1 galvanisch verzinkt ≥ 5µm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	Festigkeitsklasse 50 oder 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Festigkeitsklasse 50, 70 oder 80 EN ISO 3506 1.4565; 1.4529 EN 10088				
Schrauben und Gewinde- stangen für Innengewinde- anker RG MI	Festigkeitsklasse 5.8 oder 8.8; EN ISO 898-1 galvanisch verzinkt ≥ 5µm, EN ISO 4042 A2K oder feuerverzinkt EN ISO 10684	Festigkeitsklasse 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Festigkeitsklasse 70 EN ISO 3506-1 1.4565; 1.4529 EN 10088				

Tabelle 4: Verarbeitungszeiten des Mörtels und Wartezeiten bis zum Aufbringen der Last (Die Temperatur im Verankerungsgrund darf während der Aushärtung des Mörtels den angegebenen Mindestwert nicht unterschreiten).

Temperatur im	Αι	Aushärtezeit ¹⁾			
Verankerungs-	[Minuten]				
grund		1			
[°C]	FIS VW	FIS V	FIS VS		
-5 bis ±0	3 Stunden	24 Stunden			
±0 bis +5	3 Stunden	3 Stunden	6 Stunden		
+5 bis +10	50	90	3 Stunden		
+10 bis +20	30	60	2 Stunden		
+20 bis +30		45	60		
+30 bis +40		35	30		


System- temperatur (Mörtel)	Offenzeit/ Verarbeitungszeit [Minuten]					
`[°C]´	FIS VW	FIS VW FIS V FIS VS				
0	5					
+ 5	5	13				
+ 10	3	9	20			
+ 20	1	5	10			
+ 30		4	6			
+ 40		2	4			

 $^{^{\}rm 1)} {\rm In}$ feuchtem Verankerungsgrund sind die Aushärtezeiten zu verdoppeln.

	fischer Injektionssystem FIS V	Anhang 5	
,	Materialien	der europäischen technischen Zulassung	
Doc: FIS V	Verarbeitungs- und Aushärtezeiten	ETA-02/0024	

Tabelle 5:	Einbaube	dingung	en Beton	stähle					
Stabdurch- messer	d [mm]	8	10	12	14	16	20	25	28
Bohrer- nenn durchmesser	d _o [mm]	12	14	16	18	20	25	30	35
Bohrloch- tiefe	h _o [mm]				h _o	= h _{ef}			
Effektive Verankerungs-	h _{ef,min} [mm]	60	60	70	75	80	90	100	112
tiefe	h _{ef,max} [mm]	160	200	240	280	320	400	500	560
Minimaler Rand- und S _{min} S Achsabstand	= c _{min} [mm]	40	45	55	60	65	85	110	130
Minimale Bauteildicke	h _{min} [mm]		h _{ef} + 30	≥ 100			h _{ef}	+ 2d _o	

Betonstahl

Eigenschaften von Betonstahl: Auszug aus EN 1992-1-1 Anhang C, Tabelle C.1 und C.2N,

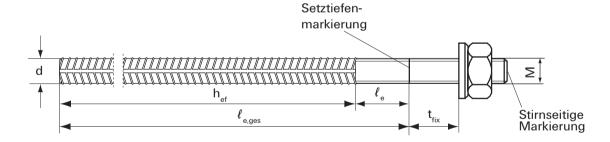
Produktart		Stäbe und Betonstahl vom Ring			
Klasse		В С			
Charakteristische Streckgrenz	e f _{yk} oder f _{0,2k} [MPa]	400 bis	600		
Mindestwert von $k = (f_t/f_{yk})$	≥ 1,08	≥ 1,15 < 1,35			
Charakteristische Dehnung be	ei Höchstlast $\epsilon_{_{ m uk}}$ [%]	≥ 5,0	≥ 7,5		
Biegbarkeit		Biege-/ Rückbiegetest			
Maximale Abweichnung von der Nennmasse (Einzelstab) [%]	Nenndurchmesser des Stabes [mm] ≤ 8 > 8	± 6, ± 4,			
Mindestwerte der bezogenen Rippenfläche, f _{R,min} (Ermittlung nach EN 15630)	Nenndurchmesser des Stabes [mm] 8 bis 12 > 12	0,04 0,05			

Rippenhöhe h:

Die Rippenhöhe h muss im Bereich

 $0.05 \cdot d \le h \le 0.07 \cdot d$ liegen.

d = Nenndurchmesser des Betonstahls

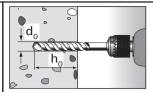

	fischer Injektionssystem FIS V	Anhang 6
	Betonstahl Einbaubedingungen	der europäischen technischen Zulassung
Doc: FIS V	Werkstoffe	ETA-02/0024

Doc: FIS V

Tabelle 6: Einbaubedingungen fischer Bewehrungsanker FRA

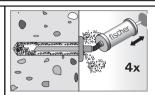
Gewindegrösse				M12	M16	M20	M24
Nenndurchmesser d [mm			[mm]	12	16	20	25
Bohrernenndurchmes	ser	d _o	[mm]	16	20	25	30
Bohrlochtiefe (h	$=\ell_{\rm e,ges}$)	h _o	[mm]		$h_{ef} + \ell_{e}$		
Effektive Verankerung	stiefe -	$\mathbf{h}_{_{\text{ef,mim}}}$	[mm]	70	80	90	96
Litertive veralikerding	stiele	$\boldsymbol{h}_{\text{ef,max}}$	[mm]	140	220	300	380
Abstand Betonoberfläche zur Schweissstelle $\ell_{\rm e}$			[mm]	100			
Minimaler Rand- und Achsabstand	S _{mi}	n = C _{min}	[mm]	55	65	85	105
Durchgangs- loch im anzu-	Vorsteck- montage	d _f	[mm]	14	18	22	26
schliessenden Bauteil	Durchsted montage	ck- d _f	[mm]	18	22	26	32
Minimale Bauteildicke h _{min} [mm]			[mm]	h _o +2d _o			
Montagedrehmoment		T _{inst,max}	[Nm]	40	60	120	150
Dicke des Anbauteils	minimum		[mm]		5	5	
Dicke des Ambautens	maximum	t _{fix}	[mm]		30	00	

fischer Bewehrungsanker FRA

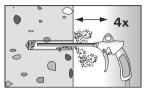


Stirnseitige Markierung z.B.: FRA (nichtrostender Stahl); FRA C (hochkorrosionsbeständiger Stahl)

	fischer Injektionssystem FIS V	Anhang 7	
A 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	fischer Bewehrungsanker FRA	der europäischen technischen Zulassur	ng
	Einbaubedingungen	ETA-02/0024	ŀ

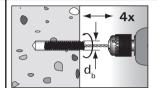

Bohrlocherstellung und Bohrlochreinigung

1



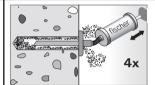
Bohrloch erstellen. Bohrlochdurchmesser $\mathbf{d_0}$ und Bohrlochtiefe $\mathbf{h_0}$ siehe **Tabelle 1**

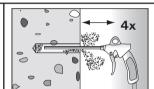
2



h_{ef}≤ 12d; d₀< 18mm: Bohrloch viermal mit Handausbläser ausblasen.

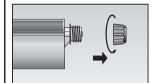
h_{ef} > 12d; d_o ≥ 18mm: Bohrloch viermal mit ölfreier Druckluft (P > 6 bar) ausblasen.


3


Passende Stahlbürste in Bohrmaschine spannen und Bohrloch viermal ausbürsten. Bei tiefen Bohrlöchern Verlängerung verwenden.

	8	10	12	14	16	18	20	24	25	28	30	35
d _b [mm]	9	11	13	16	20	20	21,5	26	27	30	40	40

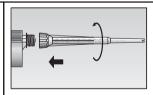
4


h_{ef}≤ 12d; d₀< 18mm: Bohrloch viermal mit Handausbläser ausblasen.

h_{ef}> 12d; d_o ≥ 18mm: Bohrloch viermal mit ölfreier Druckluft (P > 6 bar) ausblasen.

Kartuschenvorbereitung

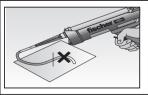
5



Verschlusskappe abschrauben.

Verschlusskappe abschneiden. (Kartuschen 950 ml)

6


Statikmischer aufschrauben. (die Mischspirale im Statikmischer muss deutlich sichtbar sein)

7

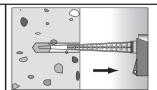
Kartusche in die Auspresspistole legen.

8

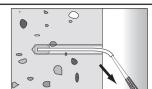
Einen etwa 10 cm langen Mörtelstrang auspressen, bis dieser gleichmässig grau gefärbt ist. Nicht gleichmässig gefärbter Mörtel härtet nicht aus und ist zu verwerfen.

fischer Injektionssystem FIS V

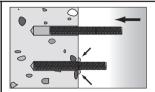
Montageanleitung Teil 1 Anhang 8

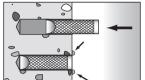

der europäischen technischen Zulassung

ETA-02/0024

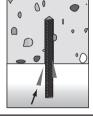

Joc: FIS V

Mörtelinjektion

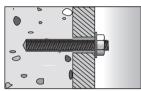

Ca. 3/3 des Bohrlochs vom Grund her mit Mörtel blasenfrei verfüllen.



Bei Bohrtiefen ≥ 150 mm Verlängerungsschlauch verwenden.

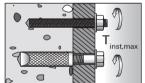

Montage fischer Ankerstangen und fischer Innengewindeanker RG MI

10



Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefenmarkierung anbringen (falls erforderlich). Das Verankerungselement mit leichten Drehbewegungen in das Bohrloch schieben. Beim Erreichen der Setztiefenmarkierung muss Überschussmörtel am Bohrlochmund austreten.

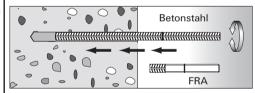
Bei Überkopfmontagen das Verankerungselement mit Keilen fixieren.


Bei Durchsteckmontage muss das Durchgangsloch im Anbauteil ebenfalls mit Mörtel verfüllt werden.

11

Aushärtezeit abwarten. t_{cure} siehe **Tabelle 4**.

12

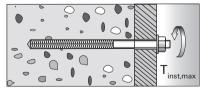

Montage des Anbauteils

T_{inst.max} siehe

Tabelle 1 oder 2.

Montage Betonstahl und fischer Bewehrungsanker FRA

10


Nur saubere und ölfreie Verankerungselemente verwenden. Setztiefenmarkierung anbringen. Mit leichten Drehbewegungen den Bewehrungsstab oder den fischer Bewehrungs Anker FRA kräftig bis zur Setztiefenmarkierung in das gefüllte Bohrloch schieben. Beim Erreichen der Setztiefenmarkierung muss an der Betonoberfläche Überschussmörtel austreten.

11

Aushärtezeit abwarten. t_{cure} siehe **Tabelle 4**.

12

Montage des Anbauteils

T_{inst,max} siehe

Tabelle 6.

fischer Injektionssystem FIS V

Montageanleitung Teil 2

Anhang 9

der europäischen technischen Zulassung

ETA-02/0024

oc: FIS V

Größe			M 6	M 8	M 10	M 12	M 16	M 20	M 24	M 30				
Stahlve	ersagen													
	Festigkeits- 5.8 [kN]		11	19	29	43	79	123	177	281				
che N _{rk.s}		klasse 8.8 [kN]		30	47	68	126	196	282	449				
istis	nichtrosten- Festig- 50 [kN		11	19	29	43	79	123	177	281				
kteri	der Stahl A4	keits- klasse 70 [kN]	14	26	41	59	110	172	247	393				
Charakteristische Tragfähigkeit N _{R.s}	hoch-	Festig- 50 [kN]	11	19	29	43	79	123	177	281				
ರ್ ⊭	korrosions- beständiger	keits-70 ³⁾ [kN]	14	26	41	59	110	172	247	393				
	Stahl C	klasse 80 [kN]	16	30	47	68	126	196	282	449				
	Fes	stigkeits- 5.8 [-]		1,50										
₹ ÷		klasse 8.8 [-]				1,!	50							
Teilsicherheits- beiwert $\gamma_{_{MS,N}}^{_{_{^{1}}}}$	nichtrosten-	Festig- 50 [-]		2,86										
cher ert	der Stahl A4	keits- 70 [-]		1,87										
Signature South South			2,86											
Te	KOITS- // 13) -			1,50										
	beständiger Stahl C	klasse 80 [-]				1,6	 30							
Heraus	ziehen und B	etonausbruch												
Rechne	erischer Durch	messer d [mm]	6	8	10	12	16	20	24	30				
Charak	teristische V	erbundfestigkeit i	n ungeri	ssenem	Beton C2	0/25								
	raturbereich I / +80°C)	τ _{Rk,ucr} [N/mm²]	9	11	11	11	10	9,5	9,0	8,5				
	raturbereich II /+120°C)	$\tau_{_{ m Rk,ucr}}$ [N/mm 2]	6,5	9,5	9,5	9,0	8,5	8,0	7,5	7,0				
		C25/30 [-]				1,0)5							
		C30/37 [-]					10							
Erhöhu	Ψ	C35/45 [-]				1,								
taktore	n für τ _{Rk} ¹ c	C40/50 [-]				1,								
		C45/55 [-]				1,2								
Datana	usbruch	C50/60 [-]				1,2	26							
Detona	iusbrucii													
D l - l	h / h _{ef} ≥ 2,0						h _{ef}							
Randabstand $c_{cr,sp}$ [mm] $2,0 > h / h_{ef} > 1,3$					4,6 h _{ef}	- 1,8 h								
h / h _{ef} ≤ 1,3			2,26 h _{ef}											
Achsab	stand	s _{cr,sp} [mm]	$2c_{cr,sp}$											
Teilsich beiwer	erheits- γ	$\gamma_{\rm Mp} = \gamma_{\rm Mc} = \gamma_{\rm Msp}^{1)} [-]$	1,82)											

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Der Teilsicherheitsbeiwert $\gamma_2 = 1,2$ ist enthalten $^{3)}$ f_{uk} = 700 N/mm² ; f_{yk} = 560 N/mm²

	fischer Injektionssystem FIS V	Anhang 10
	fischer Ankerstangen	der europäischen technischen Zulassung
Doc: FIS V	Charakteristische Zugtragfähigkeit	ETA-02/0024

Tabelle 8: Charakteristische Werte für die Querzugtragfähigkeit von fischer Ankerstangen

Größe			M6	M8	M10	M12	M16	M20	M24	M30		
Stahlver	sagen ohne He	ebelarm										
D α	Fes	stigkeits- 5.8 [kN]	5	9	15	21	39	61	89	141		
ر چ ک		klasse 8.8 [kN]	8	15	23	34	63	98	141	225		
stis	nichtrosten-	Festig- 50 [kN]	5	9	15	21	39	61	89	141		
teri	der Stahl A4	keits- klasse 70 [kN]	7	13	20	30	55	86	124	197		
Charakteristische Tragfähigkeit V _{Rks}	hoch-	Festig- 50 [kN]	5	9	15	21	39	61	89	141		
hal rag	korrosions- beständiger	keits- 70 ³⁾ [kN]	7	13	20	30	55	86	124	197		
0 –	Stahl C	klasse 80 [kN]	8	15	23	34	63	98	141	225		
Stahlver	sagen mit Heb											
O O RK,S	Fes	stigkeits- 5.8 [Nm]	8	19	37	65	166	324	560	1123		
che . M		klasse 8.8 [Nm]	12	30	60	105	266	519	896	1797		
Charakteristisches Biegemoment M _{Rk.s}	nichtrosten-	Festig- 50[Nm] keits-	8	19	37	65	166	324	560	1123		
eris	der Stahl A4	klasse 70[Nm]	11	26	52	92	232	454	784	1573		
akt	hoch- korrosions- beständiger Stahl C	Festin- 50[Nm]	8	19	37	65	166	324	560	1123		
ege		keits-70 ³ [INM]	11	26	52	92	232	454	784	1573		
D ig		klasse 80[Nm]	12	30	60	105	266	519	896	1797		
Teilsiche	erheitsbeiwert	für Stahlversager	า									
	Fes	stigkeits- 5.8 [-]	1,25									
		klasse 8.8 [-]	1,25									
1)	nichtrosten-	Festig- 50 [-]				2,3	8					
$\gamma_{Ms,V}^{1)}$	der Stahl A4	klasse 70 [-]				1,5	6					
	hoch-	Festig- 50 [-]				2,3	8					
	korrosions- beständiger	keits- 70 ³⁾ [-]				1,2	5					
	Stahl C	klasse 80 [-]		1,33								
Betonau	ısbruch auf der	· lastabgewandtei	n Seite									
	n Gleichung (5.7 I Report TR 029 .2.3.3		2,0									
Teilsiche	1,5 ²⁾											
Betonka	ntenbruch	•	Siehe Technical Report TR 029, Kapitel 5.2.3.4									
Teilsiche	rheitsbeiwert	$\gamma_{Mc}^{1)}$ [-]				1,5	5 ²⁾					

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Der Teilsicherheitsbeiwert $\gamma_2=1,0$ ist enthalten. $^{3)}f_{uk}=700\ N/mm^2$: $f_{yk}=560\ N/mm^2$

fischer Injektionssystem FIS V	Anhang 11
fischer Ankerstangen Charakteristische Querzugtragfähigkeit	der europäischen technischen Zulassung ETA-02/0024

Tabelle 9: Verschiebungen der fischer Ankerstangen unter Zuglast

Dübelgröße	M6	M8	M10	M12	M16	M20	M24	M30			
Temperaturbereich	-40°C	/ +80°C		Effektive Verankerungstiefe h _{ef} = 8 d ¹⁾							
Zuglast		N [kN]	2,5	7,7	11,0	15,8	25,5	37,9	51,7	76,3	
Verschiebung	δ_{NO}	[mm]	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,3	
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,3	0,6	0,6	0,6	0,6	0,9	0,9	0,9	
Temperaturbereich	II -40°C	/+120°C		Effe	ektive Vei	ankerun	gstiefe l	$n_{\rm ef} = 8 d^{1)}$			
Zuglast		N [kN]	2,0	6,4	9,5	12,9	21,7	31,9	43,1	62,8	
Verschiebung	$\delta_{_{NO}}$	[mm]	0,1	0,15	0,15	0,15	0,15	0,25	0,25	0,25	
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,3	0,45	0,45	0,45	0,45	0,75	0,75	0,75	

Werte für 8d ≤ h_{ef} ≤ 20d können wie folgt berechnet werden:

$$\delta_{\text{NO}} = \delta_{\text{NO1}} \frac{h_{\text{ef}}}{8d} \qquad \delta_{\text{NO1}} \text{ für } h_{\text{e}}$$

$$\delta_{_{N01}}$$
 für $h_{_{ef}}$ 8d $\delta_{_{N\infty}} = \delta_{_{N\infty1}} \frac{h_{_{ef}}}{8d}$ $\delta_{_{N\infty1}}$ für $h_{_{ef}}$ 8d

$$\delta_{N_{ef}}$$
 für h_{ef} 8d

Tabelle 10: Verschiebungen der fischer Ankerstangen unter Querlast

Dübelgröße		M6	M8	M10	M12	M16	M20	M24	M30
Temperaturbereich I -40°	C / + 80°C	und Tei	nperatu	rbereich	II -40°C	/+120°0			
Festigkeitsklasse 5.8	V [kN]	2,8	5,1	8,1	11,8	21,9	34,2	49,1	78,3
Verschiebung $\delta_{ m vo}$	[mm]	0,7	0,9	1,2	1,4	2,0	2,4	2,6	3,7
Verschiebung $\delta_{_{\!$	[mm]	1,2	1,4	1,7	2,1	2,9	3,7	4,1	5,6
Festigkeitsklasse 8.8	V [kN]	4,6	7,0	11,1	16,2	30,1	47,0	67,7	107,7
Verschiebung $\delta_{ m vo}$	[mm]	1,0	1,2	1,6	1,9	2,8	3,3	3,6	5,1
Verschiebung $\delta_{_{\!V\!\!\!/\!\!\!\!/\!\!\!\!\!/\!$	[mm]	1,6	1,9	2,3	2,9	4,0	5,1	5,6	7,7
A4 Festigkeitsklasse 50	V [kN]	2,8	5,1	8,1	11,8	21,9	34,2	49,1	78,3
Verschiebung $\delta_{ m vo}$	[mm]	0,7	0,9	1,2	1,4	2,0	2,4	2,6	3,7
Verschiebung $\delta_{_{\!$	[mm]	1,2	1,4	1,7	2,1	2,9	3,7	4,1	5,6
A4 Festigkeitsklasse 70	V [kN]	3,2	5,9	9,3	13,5	25,2	39,3	56,4	89,9
Verschiebung $\delta_{ m vo}$	[mm]	0,8	1,0	1,3	1,6	2,2	2,8	3,4	4,3
Verschiebung $\delta_{_{\!$	[mm]	1,1	1,6	2,0	2,4	3,4	4,2	5,6	6,4
C Festigkeitsklasse 50	V [kN]	2,8	5,1	8,1	11,8	21,9	34,2	49,1	78,3
Verschiebung $\delta_{ m vo}$	[mm]	0,7	0,9	1,2	1,4	2,0	2,4	2,6	3,7
Verschiebung $\delta_{_{\!$	[mm]	1,2	1,4	1,7	2,1	2,9	3,7	4,1	5,6
C Festigkeitsklasse 70 ¹⁾	V [kN]	4,0	7,3	11,6	16,9	31,4	49,0	70,4	112,2
Verschiebung $\delta_{ m vo}$	[mm]	1,0	1,3	1,7	2,0	2,8	3,5	4,2	5,3
Verschiebung $\delta_{_{V\!\infty}}$	[mm]	1,4	2,0	2,5	3,0	4,2	5,3	6,3	8,0
C Festigkeitsklasse 80	V [kN]	4,6	7,0	11,1	16,2	30,1	47,0	67,7	107,7
Verschiebung $\delta_{ m VO}$	[mm]	1,0	1,2	1,6	1,9	2,8	3,3	3,6	5,1
Verschiebung $\delta_{_{\!$	[mm]	1,6	1,9	2,3	2,9	4,0	5,1	5,6	7,7

 $^{^{1)}}f_{uk} = 700 \text{ N/mm}^2$; $f_{yk} = 560 \text{ N/mm}^2$

Anhang 12 fischer Injektionssystem FIS V der europäischen fischer Ankerstangen technischen Zulassung Verschiebungen ETA-02/0024

Tabelle 11: Charakteristische Werte für die Zugtragfähigkeit von fischer Innengewindeankern RG MI

Größe					M 8	M 10	M 12	M 16	M 20	
Stahlversagen										
Observation distribution		Festigkeits	5.8	[kN]	19	29	43	79	123	
Charakteristische Tragfähigkeit	N	klasse	8.8	[kN]	29	47	68	108	179	
mit Schraube	$N_{_{ m Rk,s}}$	Festigkeits -			26	41	59	110	172	
		klasse 70	C	[kN]	26	41	59	110	172	
		Festigkeits		[-]			1,50			
Teilsicherheits-	$\gamma_{Ms,N}^{-1}$	klasse		[-]			1,50			
beiwert	' IVIS,IN	Festigkeits		[-]			1,87			
		klasse 70	С	[-]			1,50			
Herausziehen und B		ıch					1	ı		
Rechnerischer Durch	messer		d _H [r		12	16	18	22	28	
Effektive Verankerung	gstiefe		h _{ef} [r	nm]	90	90	125	160	200	
Charakteristische W	erte in Bet	on C20/25								
Temperaturbereich I	(-40°C /+8	0°C) ³⁾ N) Rk,p	[kN]	30	40	50	75	115	
Temperaturbereich II	(-40°C / +1	20°C) ³⁾ N) Rk,p	[kN]	25	30	40	60	95	
		С	25/30	[-]			1,05			
		C	30/37	['] [-]			1,10			
Erhöhungsfaktoren		Ψ_{c} \overline{C}	35/45	<u>[-]</u>			1,15			
für N _{Rk}		\overline{C}	40/50	[-]			1,19			
		C	45/55	; [-]			1,22			
		C	50/60) [-]	1,26					
Betonausbruch										
		ŀ	/ h _{ef} ≥	≥ 2,0			1,0 h _{ef}			
Randabstand $c_{cr,sp}[mm]$ 2,0 $\geq h/h_{ef} \geq 1,3$				1,3			4,6 h _{ef} - 1,	8 h		
	≤ 1,3	2,26 h _{ef}								
Achsabstand		S	2c _{cr.sp}							
Teilsicherheitsbeiwe	rt	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{M}$	1) sp	[-]			1,82)			

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Der Teilsicherheitsbeiwert γ_2 = 1,2 ist enthalten $^{3)}$ Siehe Anhang 2

	fischer Injektionssystem FIS V	Anhang 13
000: 135 <	fischer Innengewindeanker RG MI	der europäischen technischen Zulassung
	Charakteristische Zugtragfähigkeit	ETA-02/0024

Tabelle 12: Charakteristische Werte für die Querzugtragfähigkeit von fischer Innengewindeankern RG MI

Größe					M 8	M 10	M 12	M 16	M 20		
Stahlversagen ohne H	ebelarm			•							
		Festigkeits-	5.8	[kN]	9,2	14,5	21,1	39,2	62		
Charakteristische	V	klasse	8.8	[kN]	14,6	23,2	33,7	62,7	90		
Tragfähigkeit	veit V _{Rk,s} Festigkeits- A4 [kN		[kN]	12,8	20,3	29,5	54,8	86			
		klasse 70	С	[kN]	12,8	20,3	29,5	54,8	86		
		Festigkeits-	5.8	[-]			1,25				
Teilsicherheits-	$\gamma_{Ms,V}$	klasse	8.8	[-]		1,	25		1,5		
beiwert	· IVIS, V	Festigkeits-	A4	[-]			1,56				
		klasse 70	С	[-]			1,25				
Stahlversagen mit Hel	belarm										
		Festigkeits-	5.8[Nm]	20	39	68	173	337		
Charakteristisches	NAO	klasse	8.8[Nm]	30	60	105	266	519		
Biegemoment	$M^0_{\text{Rk,s}}$	Festigkeits-	A4[Nm]	26	52	92	232	454		
		klasse 70	C[Nm]	26	52	92	232	454		
		Festigkeits-	5.8	[-]	1,25						
Teilsicherheits-	$\gamma_{Ms,V}$	klasse	8.8	[-]		1,25					
beiwert	' IVIS,V	Festigkeits-	A4	[-]		1,56					
		klasse 70	С	[-]	1,25						
Betonausbruch auf de	r lastabge	wandten Seit	te								
Faktor k in Gleichung (5.7) des Technical Report TR 029, Kapitel 5.2.3.3 [-]					2,0						
Teilsicherheitsbeiwert $\gamma_{\text{Mcp}}^{ 1)}$ [-]				[-]	1,5 ²⁾						
Betonkantenbruch	Betonkantenbruch						Siehe Technical Report TR 029, Kapitel 5.2.3.4				
Teilsicherheitsbeiwert $\gamma_{Mc}^{(1)}$ [-]					1,5 ²⁾						

¹⁾ Falls keine anderen nationalen Regelungen existieren.

	fischer Injektionssystem FIS V	Anhang 14
>	fischer Innengewindeanker RG MI Charakteristische Querzugtragfähigkeit	der europäischen technischen Zulassung
Doc: FIS V	Charakteristische Querzugtragranigkeit	ETA-02/0024

 $^{^{2)}}$ Der Teilsicherheitsbeiwert γ_{2} = 1,0 ist enthalten.

 Tabelle 13:
 Verschiebung der Innengewindeanker RG MI unter Zuglast

Dübelgröße			M8	M10	M12	M16	M20
Temperaturbereich	I (-40°C/	' + 80°C	;)				
Zuglast	N	[kN]	11,9	13,8	19,8	29,8	69,4
Verschiebung	δ_{NO}	[mm]	0,2	0,2	0,3	0,3	0,7
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,6	0,6	0,9	0,9	2,1
Temperaturbereich	II (-40°C /	' + 120°	°C)				
Zuglast	N	[kN]	9,9	11,9	15,8	23,8	37,7
Verschiebung	δ_{NO}	[mm]	0,15	0,15	0,25	0,25	0,6
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,45	0,45	0,75	0,75	1,8

 Tabelle 14:
 Verschiebung der Innengewindeanker RG MI unter Querlast

Dübelgröße		M8	M10	M12	M16	M20
Temperaturbereich I -40°	C / + 80°C	und Temper	aturbereich I	-40°C/+120	°C	
Festigkeitsklasse 5.8	V [kN]	5,1	8,1	11,8	21,9	34,2
Verschiebung $\delta_{_{ m VO}}$	[mm]	0,9	1,2	1,4	2,0	2,4
Verschiebung $\delta_{_{\!$		1,4	1,7	2,1	2,9	3,7
Festigkeitsklasse 8.8	V [kN]	7,0	11,1	16,2	30,1	47,0
Verschiebung $\delta_{_{ m VC}}$	[mm]	1,2	1,6	1,9	2,8	3,3
Verschiebung $\delta_{_{\!$	[mm]	1,9	2,3	2,9	4,0	5,1
A4 Festigkeitsklasse 70 ¹⁾	V [kN]	5,9	9,3	13,5	25,2	39,3
Verschiebung $\delta_{_{ m VO}}$	[mm]	1,0	1,3	1,6	2,2	2,8
Verschiebung $\delta_{_{\!$	[mm]	1,6	2,0	2,4	3,4	4,2
C Festigkeitsklasse 70	V [kN]	7,3	11,6	16,9	31,4	49,0
Verschiebung $\delta_{_{ m VO}}$	[mm]	1,3	1,7	2,0	2,8	3,5
Verschiebung $\delta_{_{\!$		2,0	2,5	3,0	4,2	5,3

 $^{^{1)}}f_{uk} = 700 \text{ N/mm}^2: f_{yk} = 560 \text{ N/mm}^2$

	fischer Injektionssystem FIS V	Anhang 15
	fischer Innengewindeanker RG MI	der europäischen technischen Zulassung
Doc: FIS V	Verschiebungen	ETA-02/0024

Tabelle 15: Charakteristische Werte für die Zugtragfähigkeit von Betonstählen4)

		. 1					. 1			
Größe		Ød	8	10	12	14	16	20	25	28
Stahlversagen										
Charakteristische Tragfähigkeit		N _{Rk,s} [kN]	28	44	63	85	111	173	270	339
Teilsicherheitsbeiwer	rt	γ _{Ms,N} [-]				1,	,4			
Herausziehen und B	eton									
Rechnerischer Durch	mess	er d [mm]	8	10	12	14	16	20	25	28
Charakteristische V	erbur	ndfestigkeit in	Beton (220/25						
Temperaturbereich I (-40°C / +80°C)	3) τ _F	Rk,ucr [N/mm²]	11,0	11,0	11,0	10,0	10,0	9,5	9,0	8,5
Temperaturbereich II (-40°C / + 120°C)	3) τ _F	Rk,ucr [N/mm²]	9,5	9,5	9,0	8,5	8,5	8,0	7,5	7,0
		C25/30 [-]	1,05							
		C30/37 [-]	1,10							
Erhöhungsfaktoren	Ψ_{c}	C35/45 [-]					15			
für $ au_{_{Rk}}$	C	C40/50 [-]					19			
		C45/55 [-]					22			
		C50/60 [-]				1,	26			
Betonausbruch										
		h / h _{ef} ≥ 2,0				1,0) h _{ef}			
Randabstand c _{cr,sp} [mm]	2,0	> h / h _{ef} >1,3				4,6 h _e	- 1,8 h			
		h / h _{ef} ≤1,3				2,2	6 h _{ef}			
Achsabstand		s _{cr,sp} [mm]				2 (C _{cr,sp}			
Teilsicherheits- beiwert	γ_{Mp} =	$\gamma_{Mc} = \gamma_{Msp}^{1)} [-]$					8 ²⁾			

¹⁾ Falls keine anderen nationalen Regelungen existieren. ²⁾ Der Teilsicherheitsbeiwert γ_2 = 1,2 ist enthalten ³⁾ Siehe Anhang 2

	fischer Injektionssystem FIS V	Anhang 16
	Betonstahl	der europäischen technischen Zulassung
Joc: FIS V	Charakteristische Zugtragfähigkeit	ETA-02/0024

⁴⁾ Die angegebenen Werte gelten für Betonstahl B 500 B mit $f_{uk} = 550 \text{ N/mm}^2 \text{ und } f_{yk} = 500 \text{ N/mm}^2$ Für andere Betonstähle sind die charakteristischen Stahltragfähigkeiten nach TR 029, Gleichung (5.1) zu berechnen.

Tabelle 16: Charakteristische Werte für die Querzugtragfähigkeit von Betonstählen¹⁾

Größe Ød	8	10	12	14	16	20	25	28	
Stahlversagen ohne F	lebelarm								
$\begin{array}{ll} \text{Charak-} \\ \text{teristische} & V_{\text{Rk,s}} \text{ [kN]} \\ \text{Tragfähigkeit} \end{array}$	13,8	21,6	31,1	42,4	55,3	87	135	170	
$ \begin{array}{ccc} \text{Teilsicher-} & & & \\ \text{heitsbeiwert} & & & \\ \end{array} $	1,5								
Stahlversagen mit He	belarm								
Charakte- ristisches M _{Rk,s} [Nm] Biegemoment	33	65	112	178	265	518	1012	1422	
$ \begin{array}{ll} \text{Teil-} \\ \text{sicherheits-} & \gamma_{\text{Ms,V}} \text{ [-]} \\ \text{beiwert} \\ \end{array} $				1,	.5				
Betonausbruch auf de	r lastabg	ewandte	n Seite						
Faktor k in Gleichung (5.7) des Technical Report TR 029, [-] Kapitel 5.2.3.3				2,	,0				
Teil-sicherheits- $\gamma_{\rm Mcp}^{~~2)}$ [-] beiwert	1,5 ³⁾								
Betonkantenbruch	Siehe Technical Report TR 029, Kapitel 5.2.3.4								
Teilsicherheits- $\gamma_{\rm Mc}^{\ \ 2)}$ [-] beiwert		1,5 ³⁾							

 $^{^{1)}}$ Die angegebenen Werte gelten für Betonstahl B 500 B mit f_{uk} = 550 N/mm² und f_{yk} = 500 N/mm². Für andere Betonstähle sind die charakteristischen Stahltragfähigkeiten nach TR 029, Gleichung (5.1) zu berechnen.

	fischer Injektionssystem FIS V	Anhang 17
	Betonstahl	der europäischen technischen Zulassung
Ooc: FIS V	Charakteristische Querzugtragfähigkeit	ETA-02/0024

²⁾ Falls keine anderen nationalen Regelungen existieren.

³⁾ Der Teilsicherheitsbeiwert $\gamma_2 = 1.0$ ist enthalten.

Tabelle 17: Verschiebungen von Betonstahl¹⁾ unter Zuglast

Dübelgröße		Ød	8	10	12	14	16	20	25	28
Temperaturbereich	I -40°C	/ +80°C		Effe	ektive Ve	rankerun	gstiefe l	$n_{\rm ef} = 8 d^{2)}$		
Zuglast		N [kN]	7,7	11,0	15,8	19,5	25,5	37,9	51,7	76,3
Verschiebung	δ_{NO}	[mm]	0,2	0,2	0,2	0,2	0,2	0,3	0,3	0,3
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,6	0,6	0,6	0,6	0,6	0,9	0,9	0,9
Temperaturbereich	II -40°C	/+120°C		Effe	ektive Ve	rankerun	gstiefe l	$n_{\rm ef} = 8 d^{2)}$		
Zuglast		N [kN]	6,4	9,5	12,9	16,6	21,7	31,9	43,1	62,8
Verschiebung	δ_{NO}	[mm]	0,15	0,15	0,15	0,15	0,15	0,25	0,25	0,25
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,45	0,45	0,45	0,45	0,45	0,75	0,75	0,75

 $^{^{1)}}$ Die angegebenen Werte gelten für Betonstahl B 500 B mit $f_{uk} = 550 \text{ N/mm}^2 \text{ und } f_{yk} = 500 \text{ N/mm}^2$. Für andere Betonstähle sind die charakteristischen Stahltragfähigkeiten nach TR 029, Gleichung (5.1) zu berechnen.

²⁾ Werte für 8d ≤ h_{ef} ≤ 20d können wie folgt berechnet werden:

$$\delta_{\text{NO}} = \delta_{\text{NO1}} \frac{h_{\text{ef}}}{8d}$$

$$\delta_{\text{NO1}} \text{ für } h_{\text{ef}} \text{ 8d}$$

$$\delta_{N\infty} = \delta_{N\infty1} \frac{h_{ef}}{8d} \delta_{N\infty1} = \delta_{N\infty1} \sin h_{ef} 8d$$

Tabelle 18: Verschiebungen von Betonstahl¹⁾ unter Querlast

Dübelgröße	(Ød	8	10	12	14	16	20	25	28
Temperaturbereich I -40°C / + 80°C und Temperaturbereich II -40°C /+120°C										
Querlast	V	[kN]	5,1	8,1	11,8	16,0	21,9	34,2	49,1	78,3
Verschiebung	δ_{VO} [[mm]	0,9	1,2	1,4	0,7	2,0	2,4	2,6	3,7
Verschiebung	$\delta_{_{V^{\infty}}}$ [[mm]	1,4	1,7	2,1	1,2	2,9	3,7	4,1	5,6

¹⁾ Die angegebenen Werte gelten für Betonstahl B 500 B mit $f_{uk} = 550 \text{ N/mm}^2 \text{ und } f_{yk} = 500 \text{ N/mm}^2$. Für andere Betonstähle sind die charakteristischen Stahltragfähigkeiten nach TR 029, Gleichung (5.1) zu berechnen.

fischer Injektionssystem FIS V	Anhang 18
Betonstahl	der europäischen technischen Zulassung
Verschiebungen	ETA-02/0024

Tabelle 19: Charakteristische Werte für die Zugtragfähigkeit von fischer Bewehrungsankern FRA

0 "0		10	10	0.0	0.4		
Größe		12	16	20	24		
Stahlversagen			1		T		
Charakteristische Tragfähigkeit	$N_{Rk,s}$ [kN]	68	126	196	283		
Teilsicherheitsbeiwert	$\gamma_{Ms,N}^{1}$ [-]		1,5	56	•		
Herausziehen und Betonausb	ruch						
Rechnerischer Durchmesser	d [mm]	12	16	20	25		
Charakteristische Verbundfes	tigkeit in Beton C20/2	5					
Temperaturbereich I ³⁾ (-40°C / +80°C)	τ _{Rk,ucr} [N/mm²]	11,0	10,0	9,5	9,0		
Temperaturbereich II ³⁾ (-40°C /+120°C)	τ _{Rk,ucr} [N/mm²]	9,0	8,5	8,0	7,5		
	C25/30 [-]	1,05					
	C30/37 [-]	1,10					
Erhöhungs-	C35/45 [-]	C35/45 [-] 1,15					
faktoren für $\tau_{\rm Rk}$	C40/50 [-]		1,1				
	<u>C45/55 [-]</u>		1,2				
	C50/60 [-]		1,2	26			
Betonausbruch							
	h / h _{ef} ≥ 2,0		1,0) h _{ef}			
Randabstand c _{cr,sp} [mm]	2,0 > h / h _{ef} > 1,3		4,6 h _{ef}	- 1,8 h			
	h / h _{ef} ≤ 1,3	2,26 h _{ef}					
Achsabstand	S _{cr,sp} [mm]		2 c	cr,sp			
Teilsicherheitsbeiwert	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{1)}$ [-]		1,8				

 $^{^{1)}}$ Falls keine anderen nationalen Regelungen existieren. $^{2)}$ Der Teilsicherheitsbeiwert $\,\gamma_2$ = 1,2 ist enthalten. $^{3)}$ Siehe Anhang 2

	fischer Injektionssystem FIS V	Anhang 19
>	fischer Bewehrungsanker FRA	der europäischen technischen Zulassung
Ooc: FIS V	Charakteristische Zugtragfähigkeit	ETA-02/0024

Tabelle 20: Charakteristische Querzugtragfähigkeit für fischer Bewehrungsanker FRA						
Größe	12	16	20	24		
Stahlversagen ohne Hebelarm						
Charakteristische Tragfähigkeit	V _{Rk,s} [kN]	33,7	63	98	141	
Teilsicherheitsbeiwert	γ _{Ms,V} [-]	1,25				
Stahlversagen mit Hebelarm						
Charakteristisches Biegemoment	M _{Rk,s} [Nm]	105	266	519	896	
Teilsicherheitsbeiwert	γ _{Ms,V} [-]	1,25				

Betonausbruch auf der lastabgewandten Seite

Faktor k in Gleichung (5.7) des Technical Report TR 029, Kapitel 5.2.3.3	3 k	[-]	2,0
Teilsicherheitsbeiwert	$\gamma_{\text{Mcp}}^{1)}$	[-]	1,5 ²⁾

		·
Betonkantenbruch		Siehe Technical Report TR 029, Kapitel 5.2.3.4
Teilsicherheitsbeiwert	γ _{Mc} 1) [-]	1,52)

¹⁾ Falls keine anderen nationalen Regelungen existieren.

Tabelle 21: Verschiebungen von fischer Bewehrungsankern FRA unter Zuglast

Dübelgröße			M12	M16	M20	M24
Temperaturbereich I -40°C / +80°C			Effektive Verankerungstiefe h _{ef} = 8 d ¹⁾			
Zuglast		N [kN]	15,8	25,5	37,9	51,7
Verschiebung	δ_{NO}	[mm]	0,2	0,2	0,3	0,3
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,6	0,6	0,9	0,9
Temperaturbereich	/+120°C	Effektive Verankerungstiefe h _{ef} = 8 d ¹⁾				
Zuglast		N [kN]	12,9	21,7	31,9	43,1
Verschiebung	δ_{NO}	[mm]	0,15	0,15	0,25	0,25
Verschiebung	$\delta_{_{N^{\infty}}}$	[mm]	0,45	0,45	0,75	0,75

Werte für 8d ≤ h_{ef} ≤ 20d können wie folgt berechnet werden:

$$\delta_{NO} = \delta_{NO1} \frac{h_{ef}}{8d} \qquad \delta_{NO1} \text{ für } h_{ef} \text{ 8c}$$

$$\delta_{\text{NO}} = \delta_{\text{NO1}} \frac{h_{\text{ef}}}{8d} \qquad \delta_{\text{NO1}} \, \text{für} \, h_{\text{ef}} \, 8d \qquad \qquad \left[\delta_{\text{N}\infty} = \delta_{\text{N}\infty1} \frac{h_{\text{ef}}}{8d} \right] \quad \delta_{\text{N}\infty1} \, \text{für} \, h_{\text{ef}} \, 8d$$

Tabelle 22: Verschiebungen von fischer Bewehrungsankern FRA unter Querlast

Dübelgröße			M12	M16	M16 M20	
Temperaturbereich I -40°C /+ 80°C und Temperaturbereich II -40°C /+120°C						
Querlast		V [kN]	11,8	21,9	34,2	49,1
Verschiebung	δ_{vo}	[mm]	1,4	2,0	2,4	2,6
Verschiebung	$\delta_{_{V^{\infty}}}$	[mm]	2,1	2,9	3,7	4,1

L		
	fischer Injektionssystem FIS V	Anhang 20
Doc: FIS V	fischer Bewehrungsanker FRA Charakteristische Querzugtragfähigkeit Verschiebungen	der europäischen technischen Zulassung ETA-02/0024

 $^{^{2)}}$ Der Teilsicherheitsbeiwert γ_{2} = 1,0 ist enthalten.