Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

European Technical Approval ETA-09/0339

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity: vom from

bis to

Herstellwerk

Manufacturing plant

Halfen Ankerschiene HTA Halfen anchor channel HTA

Halfen GmbH

Abt. Forschung und Entwicklung

Liebigstraße 14 40764 Langenfeld DEUTSCHLAND

Einbetonierte Ankerschienen

Cast-in anchor channels

28 February 2012

15 February 2015

Werk Langenfeld Liebigstraße 14 40764 Langenfeld

Diese Zulassung umfasst This Approval contains 27 Seiten einschließlich 19 Anhänge 27 pages including 19 annexes

Diese Zulassung ersetzt This Approval replaces ETA-09/0339 mit Geltungsdauer vom 15.02.2010 bis 15.02.2015 ETA-09/0339 with validity from 15.02.2010 to 15.02.2015

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 27 | 28 February 2012

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 27 | 28 February 2012

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The Halfen anchor channel HTA is an anchor channel consisting of a C-shaped channel of hotrolled or cold-formed steel and at least two metal anchors non-detachably fixed on the profile back

The anchor channel is imbedded surface-flush in the concrete. Halfen-special screws (hammerhead or hooked) with appropriate hexagon nuts and washers will be fixed in the channel.

An illustration of the product and intended use is given in Annex 1.

1.2 Intended use

The anchor channel is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences.

The anchor channel is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C12/15 at minimum to C90/105 at most according to EN 206-1:2000-12. The anchor channel may be anchored in cracked and non-cracked concrete.

The anchor channel may be used for transmission of tensile loads, shear loads, or a combination of tensile and shear loads perpendicular to the longitudinal axis of the channel.

The intended use of the anchor channel (channel profile, anchor, special screw, washer and nut) concerning corrosion is given in Annex 3, Table 1 depending on the chosen material.

The provisions made in this European technical approval are based on an assumed working life of the anchor channel of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor channel corresponds to the drawings and information given in Annex 2 to 7. The characteristic material values, dimensions and tolerances of the anchor channel not indicated in the Annexes shall correspond to respective values laid down in the technical documentation of this European technical approval.

Regarding the requirements concerning safety in case of fire it is assumed that the anchor channel meets the requirements of class A1 in relation to reaction to fire in accordance with the stipulations of the Commission decision 96/603/EC, amended by 2000/605/EC.

The technical documentation of this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as it is relevant to the tasks of the approved body involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 4 of 27 | 28 February 2012

N I

 δ_N

The characteristic values for the design of the anchorages are given in Annexes 8 to 17.

The anchor channel shall be marked with the identifying mark of the producer, the type, the size and if applicable additionally with the type of stainless steel, e.g. HTA 40/22 A4 according to Annex 2. The position of the anchor is marked for anchor channels with weld-on anchors by nail holes in the channel profile.

Each special screw is marked with the identifying mark of the producer and if applicable with the strength grade and if applicable with the type of stainless steel according to Annex 2.

2.2 Method of verification

2.2.1 General

The assessment of the fitness of the anchor channel for the intended use with regard to the requirements of mechanical resistance and stability as well as safety in use in the sense of the Essential Requirements 1 and 4 was performed based on the following verifications:

Verifications for tension loads for

Ctaal failure anabar

1. Distribution of acting tension loads

2.	Steel failure - anchor	$N_{Rk,s,a}$
3.	Steel failure - special screw	$N_{Rk,s,s}$
4.	Steel failure - connection channel/ anchor	$N_{Rk,s,c}$
5.	Steel failure - local flexure of channel lips	$N_{Rk,s,l}$
6.	Steel failure - flexure resistance of channel	$M_{Rk,s,flex}$
7.	Steel failure - transfer of setting torque into prestressing force	T _{inst}
8.	Concrete failure - pullout	$N_{Rk,p}$
9.	Concrete failure - concrete cone	$N_{Rk,c}$
10.	Concrete failure - splitting due to installation	$c_{\text{min}},s_{\text{min}},h_{\text{min}}$
11.	Concrete failure - splitting due to loading	$N_{Rk,sp}$
12.	Concrete failure - blow-out	$N_{Rk,cb}$
13.	Reinforcement	$N_{Rk,re}, N_{Rd,a}$

14. Displacement under tension loads

Verifications for shear loads for

1. Distribution of acting shear loads

2.	Steel failure without lever arm - special screw	$V_{Rk,s,s}$
3.	Steel failure without lever arm - flexure channel lips	$V_{Rk,sl}$
4.	Steel failure with lever arm	$M^0_{Rk,s}$
5.	Concrete failure - pry-out	$V_{Rk,cp}$
6.	Concrete failure - concrete edge	$V_{Rk,c}$
7.	Reinforcement	$V_{Rk,c,re}$
8.	Displacement under shear loads	$\delta_{\scriptscriptstyle V}$

In addition to the specific clauses relating to dangerous substances contained in this European Technical Approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

Page 5 of 27 | 28 February 2012

3 Evaluation and attestation of conformity and CE-marking

3.1 System of attestation of conformity

According to the Decision 2000/273/EC of the European Commission⁸ system 2(i) (referred to as system 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed test plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchor channels in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

Official Journal of the European Communities L 86 of 07.04.2000

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 27 | 28 February 2012

3.2.2 Tasks of the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor channel. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed.
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- trade name of the anchor channels and special screws.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor channel for the intended use is given under the following condition:

The design of the anchorage is based on the CEN/TS 1992-4:2009 "Design of fastenings for use in concrete", part 1 and 3 under the responsibility of an engineer experienced in anchorages and concrete work.

Page 7 of 27 | 28 February 2012

The verifications for shear load with supplementary reinforcement follows CEN/TS 1992-4-3:2009, section 6.3.6 and 6.3.7 or alternatively Annexes 16 and 17.

The reduction of the member cross section caused by the anchor channel is taken into account for the verification of the concrete member if necessary.

The member thickness is not less than h_{min} indicated in Annex 8, Table 9 and 10.

The edge distance of the anchors on the profile back of the channel is not less than c_{min} indicated in Annex 8, Table 9 and 10.

The spacing of the anchors shall be between s_{min} and s_{max} given in Annex 6, Table 5.

The spacing of the special screws is not less than $s_{min,s}$ given in Annex 9, Table 11.

The effective anchorage depth is not less than min hef according to Annex 8, Table 9 and 10.

The characteristic resistances are calculated with the minimum effective anchorage depth.

Taking into account the loads to be anchored verifiable calculation notes and drawings are generated.

The position, the type, the size, the length of the anchor channel, if applicable the spacing of the anchors and if applicable the position as well as the size of the special screws are indicated on the design drawings. The material of the anchor channel and the special screw shall be given additionally on the drawings.

4.3 Installation of the anchor channel

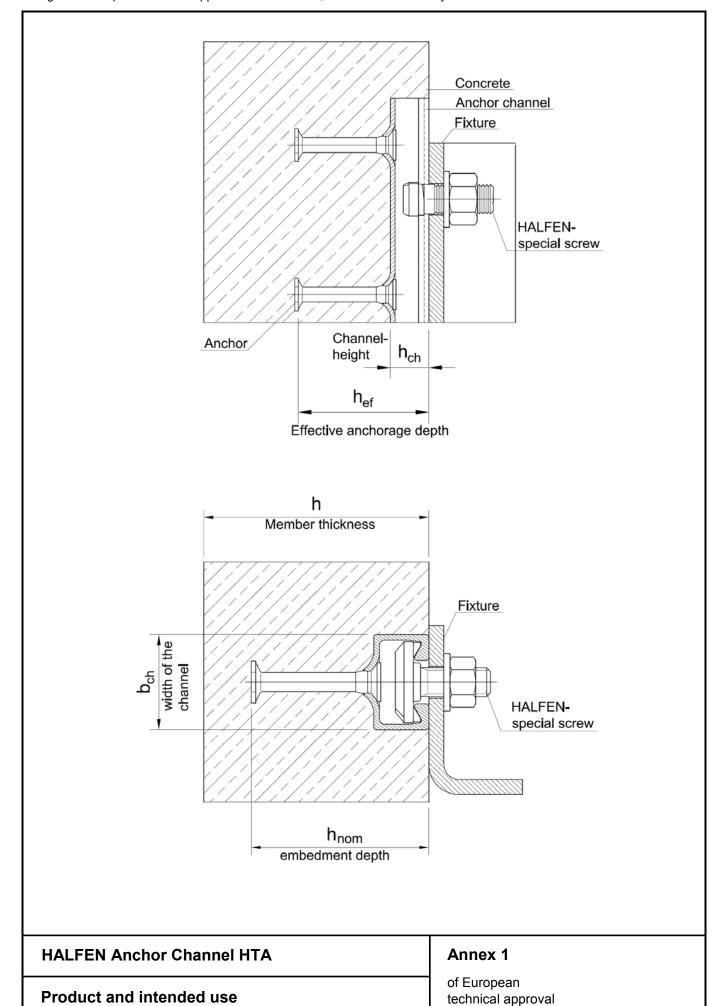
The fitness for use of the anchor channel can only be assumed, if the following installation conditions are observed:

- Installation by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- Use of the anchor channel only as supplied by the manufacturer without exchanging the components.
- Installation in accordance with the manufacturer's specifications given in Annex 18 and 19 and the design drawings.
- The anchor channels are fixed on the formwork such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are to be protected from penetration of concrete into the internal space of the channels.
- Size and spacing of special screws corresponding to the design drawings.
- Orientating the special screw (notch according Annex 7) rectangular to the channel axis.
- Observation of the prescribed values (e.g. T_{inst} according Annex 9) of installation.
- The setting torques given in Annex 9 must not be exceeded.

Page 8 of 27 | 28 February 2012

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer


It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to and 4.2 and 4.3 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:

- Dimensions of the anchor channel,
- mentioning of the matching screws,
- materials of the anchor channel (channel, anchor, screw, washer, nut)
- details on the installation procedure, preferably by using illustrations,
- maximum setting torque,
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.

Georg Feistel beglaubigt:
Head of Department Müller

Anchor channel Anchor channel cold rolled profile hot rolled profile cold rolled C- profile 2 Anchor (also possible as weld- on anchor, as I - profile or as round anchor) hnom Channel e. g. hef HTA 40/22 **ل** و Channel e. g. HTA 40/25 3 HALFENspecial screw e.g. HS M12 x 30 Washer Hexagonal Nut Legend h_{ch} Channel height b_{ch} Width of the channel

Marking of the HALFEN anchor channel, e. g.: HTA 40/22 A4

h_{ef} effective anchorage depth

h_{nom} embedment depth

a) Stumped on back of channel

b) Printed on channel web

H or HALFEN:

Identifying mark of the producer

TA Type of anchor channel

40/22 size A4 material

Close to the anchor a nail hole is positioned

Material channels:

No marking for 1.0038/1.0044 A4 1.4401/1.4404/1.4571

L4 1.4362 F4 1.4462 HC/HCR 1.4529/1.4547

Marking of the HALFEN- special screw, e. g.: HALFEN A4-70

H or HALFEN:

Identifying mark of the producer

A4 material 70 strenght grade

Material of the special screws:

4.6 Steel grade 4.6 8.8 Steel grade 8.8

A4 Stainless steel (1.4401/1.4404/1.4571), grade -50 A4-70 Stainless steel (1.4401/1.4404/1.4571), grade -70

L4-70 Stainless steel (1.4362), grade -70 F4-70 Stainless steel (1.4462), grade -70

HC-50 Stainless steel (1.44529/1.4547), grade -50 HC-70 Stainless steel (1.44529/1.4547), grade -70

HALFEN Anchor Channel HTA

Product and marking

Annex 2

of European technical approval

Table 1:	Table 1: Materials and intended	asn par			
			Intend	Intended use	
		1	2	3	4
		Dry internal conditions	Internal conditions with usual humidity	Medium corrosion exposure	High corrosion exposure
Item no.	Specification	Anchor channels may only be used in structures subject to dry internal conditions (e.g. accomodations, bureaus, schools, hospitals, shops, exceptional internal conditions with usual humidity acc. column 2)	Anchor channels may also be used in structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional permanent damp conditions and application under water)	Anchor channels may also be used in structures subject to external atmospheric exposure (including industrial and marine environment) or exposure in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent, alternating immersion in seawater etc. acc. column 4) exist.	Anchor channels may also be used in structures subject to exposure in particular aggressive conditions (e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in de-sulphurization plants or road tunnels where deigng materials are used).
			Mate	Materials	
Θ	Channel profile	Steel 1.0038; 1.0044 EN 10025 hot-dip galv. ≥ 50 μm ⁶)	Steel 1.0038; 1.0044 EN 10025 hot-dip galv. \geq 50 μ m ⁶)	Stainless steel 1.4401/ 1.4404/ 1.4571 1.4362 EN 10088	Stainless steel
©	Anchor	Steel 1.0038; 1.0214, 1.0401, 1.1132, 1.5525 EN 10263, EN 10269 hot-dip galv. \geq 50 μ m ⁶)	Steel 1.0038; 1.0214, 1.0401, 1.1132, 1.5525 EN 10263, EN 10269 hot-dip galv. \geq 50 μ m ⁶)	Stainless steel 1.4401/ 1.4404/ 1.4571 1.4362, 1.4578 EN 10088, 1.0038 ³)	EN 10088
<u></u>	HALFEN special screws shaft and thread according EN ISO 4018	Steel, strength grade 4.6 / 8.8 EN ISO 898-1 electroplated $\geq 5 \mu m^4$)	Steel, strength grade 4.6 / 8.8 EN ISO 898-1 hot-dip galv. \geq 40 μ m 1) 5)	Stainless steel 1.4401/ 1.4404/ 1.4571 1.4362 EN ISO 3506-1	Stainless steel 1.4462 ²),1.4529/ 1.4547 EN ISO 3506-1
9	Washer, EN ISO 7089 and EN ISO 7093-1 production class A, 200 HV	Steel EN 10025 electroplated $\ge 5 \ \mu m^4$)	Steel EN 10025 hot-dip galv. \ge 40 μ m 1) 5)	Stainless steel 1.4401/ 1.4404/ 1.4571 EN 10088	Stainless steel 1.4462 ²), 1.4529/ 1.4547 EN 10088
<u>©</u>	Hexagonal nuts EN ISO 4032	Steel strength grade $5/8$ EN $20898-2$ electroplated $\ge 5 \mu m^4$)	Steel strength grade $5/8$ EN $20898-2$ hot-dip galv. $\ge 40~\mu m^{-1}$)	Stainless steel 1.4401/ 1.4404/ 1.4571 EN ISO 3506-2	Stainless steel 1.4462 ²), 1.4529/ 1.4547 EN ISO 3506-2
) or electroplated special coating	ating ≥ 12μm	4) electrop) electroplated acc. EN ISO 4042	

 $^5)$ hot-dip galv. acc. to EN ISO 10684 $^6)$ hot-dip galv. on the basis of EN ISO 1461, but thickness $\geq\!\!50\mu m$

 $^2)$ 1.4462 not applicable for indoor swimming pools $^3)$ Steel acc. EN 10025, 1.0038 not for anchor channels 28/15 and 38/17

HALFEN Anchor Channel HTA	Annex 3	
Materials and intended use	of European technical approval	
	ETA- 09/0339	

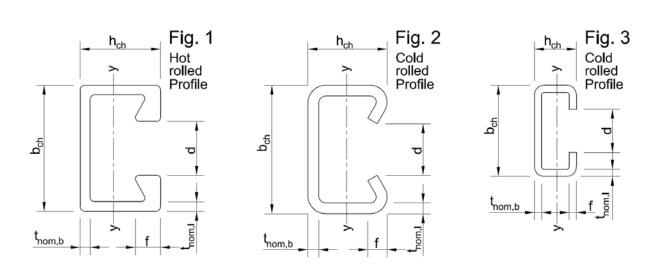


Table 2: Geometrical profile properties

Anchor	ē		ia	ı					
channel	Figure	b _{ch}	h _{ch}	t _{nom,b}	t _{nom,I}	d	f	Material	l _y
				[m	m]	•		_	[mm ⁴]
28/15	3	28.00	15.25	2.25	2.25	12.00	2.25		4060
38/17	3	38.00	17.50	3.00	3.00	18.00	3.00		8547
40/25	2	40.00	25.00	2.75	2.75	18.00	5.60		20570
49/30	2	50.00	30.00	3.00	3.00	22.00	7.39		41827
54/33	2	53.50	33.00	4.50	4.50	22.00	7.90] _	72079
72/49	2	72.00	49.00	6.00	6.00	33.00	9.90	Steel	293579
40/22	1	39.50	23.00	2.40	2.40	18.00	6.00	0)	19703
50/30	1	49.00	30.00	3.00	2.75	22.50	7.85		51904
52/34	1	52.50	33.50	4.10	4.00	22.50	10.50		93262
55/42	1	54.50	42.00	5.00	5.00	26.00	12.90		187464
72/48	1	72.00	48.50	4.50	5.00	33.00	15.50		349721
28/15	3	28.00	15.25	2.25	2.25	12.00	2.25		4060
38/17	3	38.00	17.50	3.00	3.00	18.00	3.00		8547
40/25	2	39.50	25.00	2.50	2.50	18.00	5.40	1 _	19097
49/30	2	50.00	30.00	3.00	3.00	22.00	7.39	tee	41827
54/33	2	53.50	33.00	4.50	4.50	22.00	7.90	S S	72079
72/49	2	72.00	49.00	6.00	6.00	33.00	9.90	Stainless steel	293579
40/22	1	39.50	23.00	2.40	2.40	18.00	6.00	Stail	19759
50/30	1	49.00	30.00	3.00	2.75	22.50	7.85		51904
52/34	1	52.50	33.50	4.10	4.00	22.50	10.50		93262
72/48	1	72.00	48.50	4.50	5.00	33.00	15.50		349721

HALFEN Anchor Channel HT

Geometrical profile properties

Annex 4

of European technical approval

Table 3: Types of round anchors

Туре	Shaft Ø d₁	Head Ø d₂
	[m	m]
	6	12
	8	16
В6	10	20
ВО	12	25
	14	28
	16	32

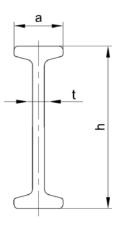


Table 4: Types of I-anchors

Туре	Height h	Head width a	Web thickness t
		[mm]	
I 62	62	18	5
I 69	69	18	5
l 128	128	17	6
l 140	140	20	7.1

Types of anchor

Annex 5

of European technical approval

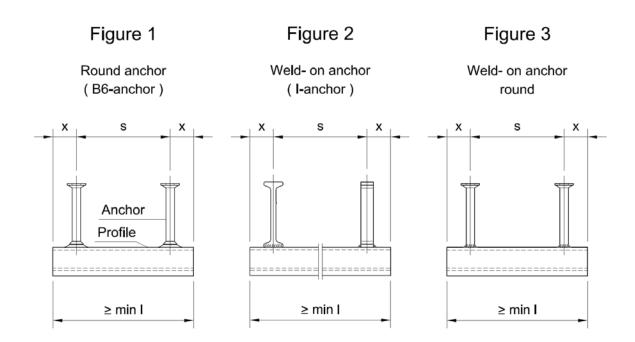


Table 5: Anchor positioning

	Anchor	spacing	End spa	cing x 1)	min Channel lenght min I		
Anchor			Round	Welded	Round	Welded	
channel	c .	e	anchor	anchor	anchor	anchor	
	S _{min}	S _{max}	Fig. 1	Fig. 2 and 3	Fig. 1	Fig. 2 and 3	
			[mm]			
28/15	50	200	25	25	100	100	
38/17	30	200	25	25	100	100	
40/22							
40/25							
49/30	100 (50)	250	25	25	100	150	
50/30							
52/34	100 (80)	250	35	25	150	150	
54/33	100 (80)	250	55	25	150	150	
55/42	100 (80)	300	35	25 (35)	150	150	
72/48	100 (80)	400	35	25 (35)	150	150	
72/49	100 (80)	400	33	25 (35)	130	130	

^() valid for round anchor acc. Fig. 1 and welded anchors with 35 mm end spacing

HALFEN Anchor Channel HTA	Annex 6
Anchor positioning, channel length	of European technical approval
	ETA- 09/0339

¹⁾ For channels with I=6070 mm, the end spacing is always 35 mm

HALFEN- special screw, Hook- head geometry Notch for marking the position HALFEN- special screw, Hammer- head geometry Notch for marking the position Notch for marking the position Notch for marking the position

alternative Hook- head geometry

alternative Hammer- head geometry

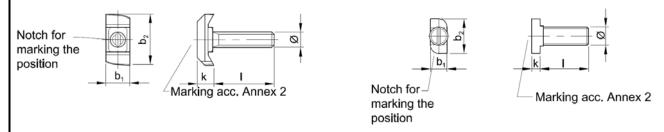


Table 6: Dimensions, special screw, Hook-head

		Special screws, Hook-head				Special screws, alternative Hook- head geometry				
HS	Thread	Width	Length		Thickness	Width	Length	Thickness	Length	Anchor
113	Ø	b ₁	b_2	b3	k	b_1	b_2	k	I	channel
40/22	M 10	15.0	30.8	16.0	7.5	14 (13)	32.5	7	20-150	40/22
40/22	M 12	15.0	30.8	16.0	7.5	14	32.5	7	20-250	40/22
40/22	M 16	17.4	30.3	16.0	8.5	17	32.5	8	30-300	40/23
50/30	M 10	16.3	40.2	20.0	10.0	13	41	10	25-50	49/30
50/30	M 12	16.3	40.2	20.0	10.0	13	41	10	30-200	50/30
50/30	M 16	19.4	40.2	20.0	11.0	17	41	11	30-300	52/34
50/30	M 20	21.0	39.5	20.0	12.5	21	41	12	35-300	54/33
50/30	M 24					24.5	41	18	40-300	55/42
72/48	M 20					23	58	14	50-200	
72/48	M 24					25	58	16	50-250	72/48
72/48	M 27					28	58	18	50-250	72/49
72/48	M 30					31	58	20	50-300	

Table 7: Dimensions, special screw, Hammer-head

		Sc	rews, Hamme	r-head	Screws,	alternative Ha	mmer-head	geometry		
HS	Thread	Width	Length	Thickness	Width	Length		Thickness	Length	Anchor
по	Ø	b ₁	b_2	k	b ₁	b_2	b_3	k	1	channel
28/15	M 6	10.1	22.7 (22.2)	4	10.6	21.1	10.0	4.0	15-60	
28/15	M 8	10.1	22.7 (22.2)	4	10.6	21.1(20.7)	10.0	4.5	15-150	28/15
28/15	M 10	10.1	22.7 (22.2)	5 (4)	10.9	20.2	10.0	5.0	15-200	20/13
28/15	M 12	10.1	22.7 (22.2)	5.5	10.8	20.1	-	6.5	20-200	
38/17	M 10	13 (12)	30.5	6	13.6-14.1	29.0	15.5	6.0	20-175	
38/17	M 12	13 (12)	30.5	7 (6)	13.6-14.1	29.0	15.5	6.0	20-200	38/17
38/17	M 16	16	30.5	7	16.0	29.0	15.5	8.5	20-200	

¹⁾ Materials according Annex 3, Tab.1

Marking of the screw head acc. to Annex 2

Table 8: Strength grade

	Stee	el ¹)	Stain	less steel 1)
Strength grade	4.6	8.8	A4-50	A4-70; FA-70
f _{uk} [N/mm²]	400	800	500	700
f _{yk} [N/mm²]	240	640	210	450
Finish	gv,	fv		-

HALFEN Anchor Channel HTA

Halfen-special screws, dimensions, strength grade

Annex 7

of European technical approval

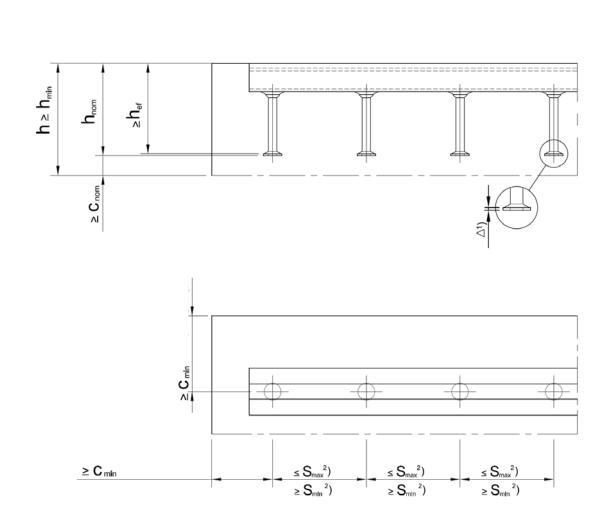


Table 9: Minimum anchorage depth, edge distance and member thickness for cold rolled profiles

Anchor channel			28/15	38/17	40/25	49/30	54/33	72/49
Min. anchorage depth	l]	min h _{ef}	45	76	79	94	155	179
Min. edge distance	π	C _{min}	40	50	50	75	100	150
Min. member thickness	ı]	h _{min}			$h_{ef} + \Delta^1$) + C _{nom}		

Table 10: Minimum anchorage depth, edge distance and member thickness for hot rolled profiles

Anchor channel			40/22	50/30	52/34	55/42	72/48
Min. anchorage depth	ı]	min h _{ef}	79	94	155	175	179
Min. edge distance	μπ	C _{min}	50	75	100	100	150
Min. member thickness		h _{min}		h _{ef}	$+ \Delta^{1}) + c$	nom	

¹) Δ = anchor head thickness

Installation parameters of cold rolled and hot rolled anchor channels

Annex 8

of European technical approval

²) s_{min}, s_{max} acc. to Table 5, Annex 6

Table 11: Minimum spacing and setting torque of HALFEN – special screws

		Min engeing	Set	ting Torque T _{in}	st ⁵)
	Special	Min. spacing $s_{min,s}^{4}$) of the	General 2)	Steel – stee	el contact 3)
Anchor channel	screw Ø	special screws	4.6; 8.8; A4 – 50; A4 – 70 ¹)	4.6; A4 – 50 ¹)	8.8; A4 – 70 ¹)
	[mm]	[mm]		[Nm]	
	6	30	-	3	-
28/15	8	40	8	8	20
20/13	10	50	13	15	40
	12	60	15	25	70
	10	50	15	15	40
38/17	12	60	25	25	70
	16	80	40	65	180
40/22	10	50	15	15	40
40/22	12	60	25	25	70
40/23	16	80	45	65	180
	10	50	15	15	40
49/30	12	60	25	25	70
50/30	16	80	60	65	180
	20	100	75	130	360
	10	50	15	15	40
52/34	12	60	25	25	70
54/33	16	80	60	65	180
	20	100	120	130	360
	10	50	15	15	40
	12	60	25	25	70
55/42	16	80	60	65	180
	20	100	120	130	360
	24	120	200	230	620
	20	100	120	130	360
72/48	24	120	200	230	620
72/49	27	135	300	340	900
	30	150	380	460	1200

¹⁾ Materials according to Tab. 1, Annex 3
2) Acc. to figure 1, Annex 10
3) Acc. to figure 2, Annex 10
4) See Annex 11, Fig. 1

Installation parameters of **HALFEN** – special screw

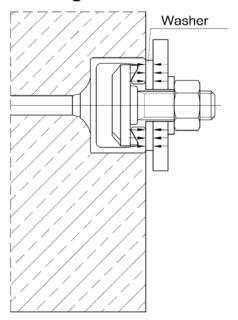
Annex 9


of European technical approval

⁵) T_{inst} must not be exceeded

General

The fixture is braced to concrete or to the anchor channel respectively braced to concrete and anchor channel. The setting torques according to Annex 9, Table 11 shall be applied and must not be exceeded.


Fig. 1

Steel-steel contact

The fixture is braced to the anchor channel by suitable washer. The setting torques according to Annex 9, Table 11 shall be applied and must not be exceeded.

Fig. 2

HALFEN Anchor Channel HTA

Installation parameters of Positions of the fixture

Annex 10

of European technical approval

Table 12: Characteristic values for tension loads - steel failure channel

Anchor cl	nannel		28/15	38/17	40/22 40/25	49/30 50/30	52/34 54/33	55/42	72/48 72/49
Steel failure, anchor		•		•		•	•		
Characteristic resistance	$N_{Rk,s,a}$	[kN]				not releva	ant		
Partial safety factor	γ _{Ms}	1)				1.8			
Steel failure, connec	tion chann	el ancho	or						
Characteristic resistance	$N_{Rk,s,c}$	[kN]	9	18	20	31	55	80	100
Partial safety factor	γ̃Ms,c	a ¹)				1.8			
Steel failure, local			el lips fo	r s _s ≥ s _s	lb				
Spacing of special screws for N _{Rk,s,l}	S _{slb}	[mm]	42	52	65	81	88	109	129
Characteristic resistance	$N_{Rk,s,l}$	[kN]	9	18	20	31	55	80	100
Partial safety factor	γ _{Ms,I}	1)				1.8			
Steel failure, local fle			s for s _{slb}	≥ S _s ≥ S _m	nin,s ²)				
Characteristic resistance	$N_{Rk,s,l}$	[kN]			0.5 (1+s	s/s _{slb}) N _{RI}	$_{K,s,l} \leq N_{Rk,s}$	S,C	
Partial safety factor	$\gamma_{\rm Ms,I}^{1}$)					1.8			

⁾ in absence of other national regulations

Fig. 1

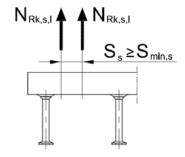


Fig. 2: Assumption of system

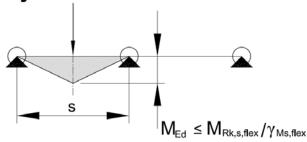
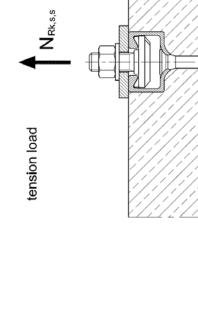


Table 13: Flexure resistance of channel

Anchor channe	el .	_	28/15	38/17	40/25	49/30	54/33	72/49	40/22	50/30	52/34	55/42	72/48
Characteristic		Steel	317	580	1099	1673	2984	8617	1076	2038	3373	6447	8593
flexure resistance of channel	M _{Rk,s,flex} [Nm]	Stainless steel	324	593	1071	1708	2984	8617	1080	2081	3445	-	8775
Partial safety factor	γMs,flex	1)						1.15					

¹⁾ in absence of other national regulations


Characteristic values for tension loads - steel failure channel

Annex 11

of European technical approval

²⁾ s_{min,s} acc. to Table 11, Annex 9

: Chara	Table 14: Characteristic values for	alues for		load - s	teel failu	ension load - steel failure of HALFEN-special screws	LFEN-s	pecial sc	rews			
	Special Screw Ø	Ø,		M 6	M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
			4.6	8.0	14.6	23.2	33.7	62.8	98.0	141.2	183.6	224.4
	2		8.8	16.1	29.3	46.4	67.4	125.6	196.0	282.4	367.2	448.8
	Rk,s,s	Z Z	A4-50	10.1	18.3	29.0	42.2	78.5	122.5	176.5	229.5	280.5
			A4-70	14.1	25.6	40.6	59.0	109.9	171.5	247.1	321.3	392.7
			4.6					2.00				
	က်		8.8					1.50				
	(Ms,s)		A4-50					2.86				
			A4-70					1.87				

1) Materials

¹) Materials according Table 1, Annex 3 ²) In conformity to EN ISO 898-1: 1999 ³) in absence of other national regulations

HALFEN Anchor Channel HTA

Characteristic values for tension loads - steel failure special screws

Annex 12

of European technical approval

Table 15: Characteristic values for tension loads – concrete failure

Anchor chann	iel			28/15	38/17	40/25 40/22	49/30 50/30	54/33 52/34	55/42	72/49 72/48
Pullout failure)					<u>1</u>				
Characteristic resistance in	Round anchors			7.6	13.5	13.5	21.1	33.9	41.5	54.3
cracked concrete C12/15	Welded anchors	$N_{Rk,p}$	[kN]	11.7	11.7	14.0	21.1	25.7	37.2	46.4
	C20/25						1.67			
	C25/30	j					2.00			
Increasing	C30/37	j					2.47			
factor for	C35/45	Ψ_{c}	[-]				3.00			
$N_{Rk,p}$	C40/50	j					3.33			
	C45/55	j					3.67			
	≥C50/60						4.00			
		Ψια	cr,N				1.4			
Partial safety fa		γ _{Mp} = 1	Y _{Mc} ¹)	<u> </u>			1.5			
Concrete con	e failure N°	Rk,c See	CEN/TS							
		α	ch	0.81	0.88	0.88	0.91	0.98	1.00	1.00
Effective ancho	orage	h _{ef}		45	76	79	94	155	175	179
Characteristic distance	edge	C _{cr,N}	[mm]	111	171	176	199	260	269	270
Characteristic	spacing	S _{cr,N}		223	342	352	399	521	538	540
		Ψω	cr,N				1.4			
Partial safety fa	actor	γмα	¹)				1.5			
Splitting										
		·		1	Ve	rification o	f splitting i	s not relev	vant	

¹⁾ in absence of other national regulations

Table 16: Displacements under tension loads

Anchor channel			28/15	38/17	40/25 40/22	49/30 50/30	54/33 52/34	55/42	72/49 72/48
Tension load	N_{Ek}	[kN]	3.6	7.1	8.3	12.3	21.8	31.7	39.7
Short time displacement	δ_{N0}	[mm]	0.3	0.3	0.4	0.4	0.5	0.5	0.5
Long time displacement	δ_{N}	[mm]	1.2	1.2	1.2	1.2	1.2	1.2	1.2

Characteristic values for tension loads - concrete failure and displacements

Annex 13

of European technical approval

Table 17: Characteristic values for shear loads

Anchor cha	nnal			28/15	38/17	40/25	49/30	54/33	55/42	72/49
				20/15	30/17	40/22	50/30	52/34	55/42	72/48
Steel failure	e, local flexure of	channel l	lips					1		
Characterist	ic resistance	$V_{Rk,s,l}$	[kN]	9	18	20 26	31 40.3	55 71.5	104	100 130
Partial safet	y factor	γMs,	1)				1.8			
Pry out faile	ure									
Factor in equal CEN/TS 1992		k ₅	3)				2.0			
Partial safet	•	γмс	1)				1.5			
Concrete e	dge failure									
	Cracked concrete without edge reinforcement or stirrups	α _p · Ч	$\nu_{{\sf re,V}}$	2.5	3.5	4.0	4.0	4.0	4.0	4.0
Product of factor α_p	Cracked concrete with straight edge reinforcement (≥Ø 12 mm)	α _p · Ч	$\nu_{\sf re,V}$	3.0	4.1	4.7	4.7	4.7	4.7	4.7
and Ψ _{re,V}	Non-cracked concrete²) or cracked concrete with edge reinforcement and stirrups with a spacing a≤ 100mm and a≤2c₁	$\alpha_{p}\cdot q$	ν _{re,V}	3.5	4.7	5.3	5.3	5.3	5.3	5.3
Effect of the structural co	thickness of the emponent	$\alpha_{h,}$	V				(h/h _{cr,V}) ^{0.}	5		
Characterist	ic height	h _{cr}	,V			:	2c ₁ + 2h _c	:h		
Characterist	ic edge distance	C _{cr}	,V				2c ₁ + b _{ct}	1		
Characterist	ic spacing	S _{cr}	,V				4c ₁ + 2b _c	:h		
Partial safet	y factor	γмс	1)				1.5			

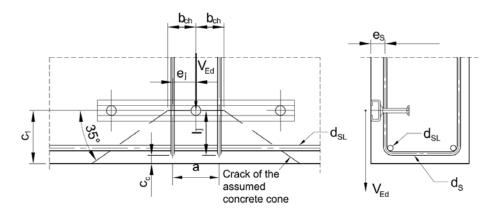
HALFEN Anchor Channel HTA	Annex 14
Characteristic values for shear loads	of European technical approval
	ETA- 09/0339

 $^{^{1)}}$ in absence of other national regulations 2) Proof acc. to CEN/TS 1992-4-1: 2009, section 5 3) Without supplementary reinforgement. In case of supplementary reinforcement the factor k_5 should be multiplied with 0.75

Table 18: Characte	aracteris	tic valı	ristic values for shear load - steel failure of HALFEN-special screws	load -	steel 1	failure	of HAL	FEN-s	pecial	screws	S	
Special Screw Ø				9 W	M 8	01 M	M 12	91 M	M 20	M 24	72 M	M 30
Steel failure ²)												
			4.6	4.8	8.8	13.9	20.2	37.7	58.8	84.7	110.2	134.6
Characteristic	2,		8.8	8.0	14.6	23.2	33.7	62.8	98.0	141.2	183.6	224.4
resistance	VRK,s,s /		A4-50 ¹)	0.9	11.0	17.4	25.3	47.1	73.5	105.9	137.7	168.3
			A4-70 ¹)	8.4	15.4	24.4	35.4	629	102.9	148.3	192.8	235.6
			4.6	6.3	15.0	29.9	52.4	133.2	259.6	449.0	8.599	899.6
Characteristic	0,40	<u>{</u>	8.8	12.2	30.0	59.8	104.8	266.4	519.3	898.0	1331.5	1799.2
resistance	IVI RK,s		A4-50 ¹)	9.2	18.7	37.4	65.5	166.5	324.5	561.3	832.2	1124.5
			A4-70 ¹)	10.7	26.2	52.3	2.16	233.1	4.454	785.8	1165.1	1574.3
			4.6					1.67				
Partial safety	, , , , , , , , , , , , , , , , , , ,	3	8.8					1.25				
factor	Ws,s /	_	A4-50 ¹)					2.38				
			A4-70 ¹)					1.56				

¹) Materials according Table 1, Annex 3
²) In conformity to DIN EN 898-1: 1999
³) in absence of other national regulations

Table 19: Displacements under shear loads


Anchor channel				38/17	40/25 40/22	49/30 50/30	54/33 52/34	55/42	72/49 72/48
Shear load	V_{Ek}	[kN]	3.6	7.1	8.3	12.3	21.8	31.7	39.7
Short time displacement	δ_{V0}	[mm]	0.6	0.6	0.6	0.6	1.2	1.2	1.2
Long time displacement	δ_{V}	[mm]	0.9	0.9	0.9	0.9	1.8	1.8	1.8

Characteristic values for shear loads - Steel failure special screws and displacements

Annex 15

of European technical approval

Verification for anchor channels for shear loads with reinforcement (only for loading perpendicular to the edge)

$$V_{Ed} \le V_{Rd,re} = V_{Rk,re} / \gamma_{Mc} \qquad V_{Ed} = max [V_{Ed}; V_{Ed}^{a}]$$
 (1)

$$V_{Rk,re} = V_{Rk,c,re}/X \tag{2}$$

$$V_{Rk,c,re} = V_{Rk,c,hook} + V_{Rk,c,bond} \le V_{Rk,c,re,max}$$

$$\le \sum_{m+n} A_s \cdot f_{y,k}$$
(3)

$$V_{Rk,c,hook} = \sum_{j=1}^m \Biggl(\psi_1 \cdot \psi_3 \cdot \psi_4 \cdot A_s \cdot f_{y,k} \cdot \left(\frac{f_{ck}}{30} \right)^{0,1} \Biggr) +$$

$$\sum_{j=1}^{n} \left(\psi_2 \cdot \psi_3 \cdot \psi_4 \cdot A_s \cdot f_{y,k} \cdot \left(\frac{f_{ck}}{30} \right)^{0,1} \right) \tag{4}$$

$$V_{Rk,c,bond} = \sum_{i=1}^{m+n} (\pi \cdot d_s \cdot I_j \cdot f_{b,k})$$
 (5)

$$V_{Rk,c,re,max} = 4.2 \cdot c_1^{-0.12} \cdot V_{Rk,c}$$
 (6)

$$V_{Rk,c} = V_{Rk,c}^{0} \cdot \alpha_{s,V} \cdot \alpha_{c,V} \cdot \alpha_{h,V}$$
(7)

Reinforcement requirements

$$50 \, \text{mm} \le a \le \begin{cases} s \\ 150 \, \text{mm} \\ (c_1 - c_c + 0.7 \cdot b_{ch} - 4 \cdot d_s) / \, 0.35 \\ c_1 - c_c \end{cases} \tag{8}$$

$$6\,\mathrm{mm} \le \mathrm{d_s} \le 20\,\mathrm{mm} \tag{9}$$

HALFEN Anchor Channel HTA

Verification for shear loads with reinforcement

Annex 16

of European technical approval

 Ψ_1 effectiveness factor

0.67 for stirrups directly besides a shear load

• for a stirrup at the location of a shear load

• for a stirrup between 2 shear loads acting on an anchor channel (distance between the loads p≤s_{cr.v} according to Table 17) (2)

effectiveness factor

= 0.11 for other stirrups in the concrete cone

 $= (d_{s,L}/d_s)^{2/3}$

 d_s = diameter of stirrup [mm]

 $d_{s,L}$ = diameter of edge bars [mm]

anchorage length of a stirrup leg in the concrete cone [mm] Ιį

c₁-c_c-0.7·(e_i-b_{ch}) [mm] for stirrups crossed diagonally by the assumed crack

c₁-c_c [mm] for stirrups directly under the load or for stirrups crossed orthogonally by the assumed crack

4·d_s \geq

edge distance [mm] C_1

concrete cover [mm] C_{C}

distance of the stirrup leg to the point of load action [mm] e_i

width of the anchor channel [mm] (acc. to Table 2) b_{ch}

cross section of one leg of the stirrup [mm²] A_s

characteristic yield strength of the reinforcement [N/mm²] $f_{v,k}$

= char. concrete strength measured on cubes with a side length of 150 mm [N/mm²] f_{ck}

characteristic bond strength [N/mm²] t_{bk}

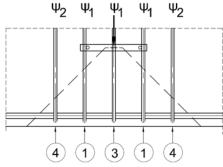
number of stirrups in the assumed concrete cone with Ψ_1 m number of stirrups in the assumed concrete cone with Ψ_2 ; n

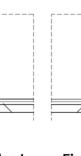
spacing of stirrups а

 $e_{s}/z+1$ [-] Χ

Ζ

factor taking into account eccentricity between reinforcement force and load


distance between reinforcement and shear force acting on the anchor channel e_s according to CEN/TS 1992-4-3 chap. 5.3.4


internal lever arm

0.85d [mm]; $d = min (2 \cdot h_{ef} / 2 \cdot c_1)$

acc. CEN/TS 1992-4-3: 2009, section 6.3.5.3

acc. CEN/TS 1992-4-1: 2009, section 3.2.2

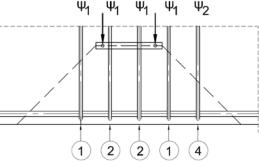
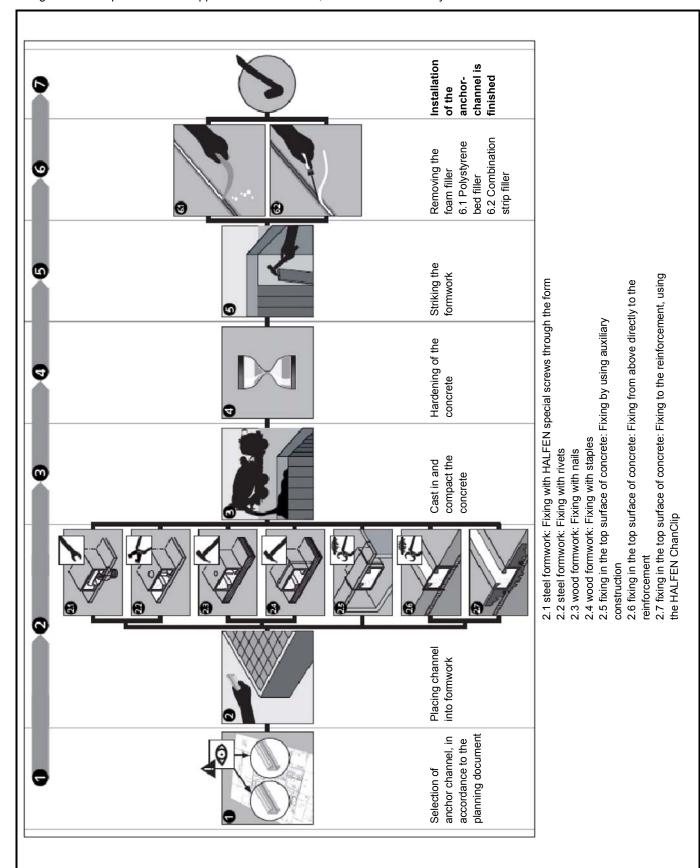


Fig. 1: Effectiveness factor for one load

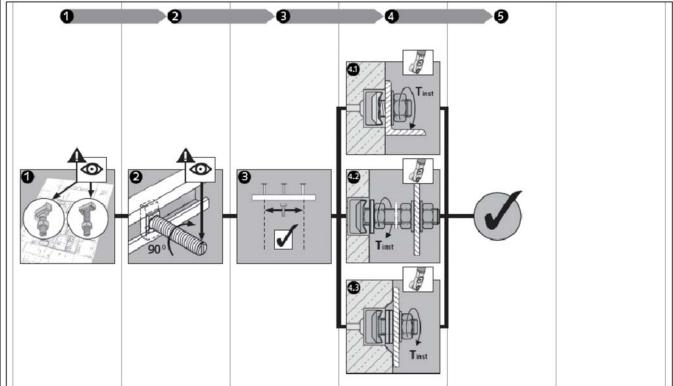

Fig. 2: Effectiveness factor for two loads

HALFEN Anchor Channel HTA

model for reinforcement under shear loading towards the edge

Annex 17

of European technical approval



Manufacturers' specification anchor channel

Annex 18

of European technical approval

Installation of HALFEN special screws

Selection of the HALFEN special screws in accordance with the planning document Insert the special screw into the channel. After a 90° turn clockwise, the special screw locks into the channel. (Check of the position of the screw by notch) Positioning of the special screw: At the channel ends a minimum clearance must be maintained, which corresponds with the overhang beyond the last anchor acc. Annex 6.

Tighten the hexagonal nut to the setting torque (T_{inst}) acc.Table 20. T_{inst} must not be exceeded. 4.1: general 4.2 and 4.3: steel to steel contact

After fixing the nuts: check the correct position of the screw: If the notch is not perpendicular to the channel length axis, the special screw must be released completely, inserted and tightened again.

Fixing is completed

Table 20: Setting torques

Position of fixture (acc. Ann.10)	Strength/ Material grade	Anchor channel	T inst [Nm] 1)								
			М8	M10	M12	M16	M20	M24	M27	M30	
deneral deneral deneral		28/15	8	13	15	-	-	-	-	-	
		38/17	-	15	25	40	-	-	-	-	
	4.6	40/25 40/22	-	15	25	45	-	-	-	-	
	8.8 A4-50	A4-50 50/30	-	15	25	60	75	-	-	-	
	A4-70 F4-70	54/33 53/34	-	15	25	60	120	-	-	-	
		55/42	-	15	25	60	120	200	-	-	
		72/49 72/48	-	-	-	-	120	200	300	380	
Steel to steel contact	4.6 A4-70	all anchor channels	8	15	25	65	130	230	340	460	
	8.8 A4-70 F4-70		20	40	70	180	360	620	900	1200	

1) T_{inst} must not be exceeded

HALFEN Anchor Channel HTA

Manufacturer's specification HALFEN special screw

Annex 19

of European technical approval