Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +493078730-0 Fax: +493078730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA Member of EOTA

European Technical Approval ETA-10/0012

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

fischer Injektionssystem FIS EM fischer injection system FIS EM

Zulassungsinhaber Holder of approval

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen **DEUTSCHLAND**

zur Verankerung im Beton

Verbunddübel in den Größen Ø 8 mm bis Ø 40 mm

Bonded anchor in the size of Ø 8 mm to Ø 40 mm

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

to

bis

22 June 2012

16 February 2015

for use in concrete

Herstellwerk Manufacturing plant

fischerwerke

Diese Zulassung umfasst This Approval contains

29 Seiten einschließlich 20 Anhänge 29 pages including 20 annexes

Diese Zulassung ersetzt This Approval replaces

ETA-10/0012 mit Geltungsdauer vom 01.06.2011 bis 16.02.2015 ETA-10/0012 with validity from 01.06.2011 to 16.02.2015

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 29 | 22 June 2012

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵:
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- Official Journal of the European Communities L 40, 11 February 1989, p. 12
- Official Journal of the European Communities L 220, 30 August 1993, p. 1
- Official Journal of the European Union L 284, 31 October 2003, p. 25
- Bundesgesetzblatt Teil I 1998, p. 812
- 5 Bundesgesetzblatt Teil I 2006, p. 2407, 2416
- Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 29 | 22 June 2012

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The fischer injection system FIS EM is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EM and a steel element. The steel elements are either

- fischer anchor rods in the range of M8 to M30 or
- fischer internal threaded anchor RG MI in the range of M8 to M20 or
- Reinforcing bar in the range of Ø 8 to Ø 40 or
- fischer rebar anchor FRA in the range of 12 to 24.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

An illustration of the product and intended use is given in Annexes 1 and 2.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval. The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be used in cracked or non-cracked concrete.

The anchor may be installed in dry or wet concrete or in flooded holes.

The anchor may be used in the following temperature ranges:

Temperature range I: -40 °C to +60 °C (max long term temperature +35 °C and

max short term temperature +60 °C)

Temperature range II: -40 °C to +72 °C (max long term temperature +50 °C and

max short term temperature +72 °C)

Elements made of zinc coated steel:

The element made of zinc plated or hot dipped galvanised steel may only be used in structures subject to dry internal conditions.

Elements made of stainless steel:

The element made of stainless steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure to permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Page 4 of 29 | 22 June 2012

Elements made of high corrosion resistant steel:

The element made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of reinforcing bars:

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 only. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with post-installed reinforcing bars in concrete structures designed in accordance with EN1992-1-1: 2004 are not covered by this European technical approval.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and provisions given in Annexes 1 to 7. The characteristic material values, dimensions and tolerances of the anchor not indicated in Annex 1 to 7 shall correspond to the respective values laid down in the technical documentation of this European technical approval.

The characteristic values for the design of anchorages are given in Annexes 11 to 20.

The two components of the injection mortar fischer FIS EM are delivered in unmixed condition in side-by side-cartridges of sizes 390 ml, 585 ml, 1100 ml or 1500 ml according to Annex 1. Each cartridge is marked with the imprint "fischer FIS EM", with processing notes, shelf life, curing time, processing time (depending on temperature), hazard code.

Each fischer anchor rod is marked with the identifying mark of the producer and property class in accordance with Annex 3.

Each fischer internal threaded anchor RG MI is marked with the marking of steel grade and length in accordance with Annex 4. Each fischer internal threaded anchor RG MI made of stainless steel is marked with the additional letter "A4". Each fischer internal threaded anchor RG MI made of high corrosion resistant steel is marked with the additional letter "C".

Each fischer rebar anchor FRA is marked with the identifying mark of the producer and the trade name according to Annex 7.

Elements made of reinforcing bars shall comply with the specifications given in Annex 6.

The marking of embedment depth may be done on jobsite.

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 29 | 22 June 2012

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors", on the basis of Option 1.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 96/582/EG of the European Commission⁸ system 2(i) (referred to as System 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

Official Journal of the European Communities L 254 of 08.10.1996

Page 6 of 29 | 22 June 2012

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2 For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval.
- use category (ETAG 001-1, Option 1),
- size.

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 7 of 29 | 22 June 2012

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited at Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors" under the responsibility of an engineer experienced in anchorages and concrete work.

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 only. The basic assumptions for the design according to anchor theory shall be observed. This includes the consideration of tension and shear loads and the corresponding failure modes as well as the assumption that the base material (concrete structural element) remains essentially in the serviceability limit state (either non-cracked or cracked) when the connection is loaded to failure. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with reinforcing bars in concrete structures designed in accordance with EN 1992-1-1:2004 (e.g. connection of a wall loaded with tension forces in one layer of the reinforcement with the foundation) are not covered by this European technical approval.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

For the fischer internal threaded anchor RG MI fastening screws or threaded rods made of appropriate steel and strength class acc. to Annex 5 shall be specified. The minimum and maximum thread engagement length $I_{\rm E}$ of the fastening screw or the threaded rod for installation of the fixture shall be met the requirements according to Annex 4, Table 2. The length of the fastening screw or the threaded rod shall be determined depending on thickness of fixture, admissible tolerances, available thread length and minimum and maximum thread engagement length $I_{\rm E}$.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

The Technical Report TR 029 "Design of bonded anchors" is published in English on EOTA website www.eota.eu.

Page 8 of 29 | 22 June 2012

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- use of the anchor only as supplied by the manufacturer without exchanging the components,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 5, Table 3,
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
 - marking of the threaded rod with the envisage embedment depth. This may be done
 by the manufacturer of the rod or the person on jobsite.
- reinforcing bars shall comply with specifications given in Annex 6,
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- marking and keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drilling by hammer-drilling or diamond drilling,
- in case of aborted drill hole: the drill hole shall be filled with mortar,
- cleaning the drill hole and installation in accordance with Annexes 8 to 10,
- during installation and curing of the chemical mortar the anchor component installation temperature shall be at least 5 °C;
- during curing of the chemical mortar the temperature of the concrete must not fall below +5 °C; observing the curing time according to Annex 5, Table 4 until the anchor may be loaded.
- for installation in bore holes h₀ > 150 mm extension hoses acc. Annex 1 shall be used,
- for overhead installation or in bore hole depth $h_0 > 250$ mm injection-funnels acc. to Annex 1 shall be used,
- Fastening screw or threaded rods (including nut and washer) must comply with the appropriate material and strength class of the fischer internal threaded anchor RG MI,
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in Annex 3, 4 and 7 must not be exceeded.

Page 9 of 29 | 22 June 2012

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer

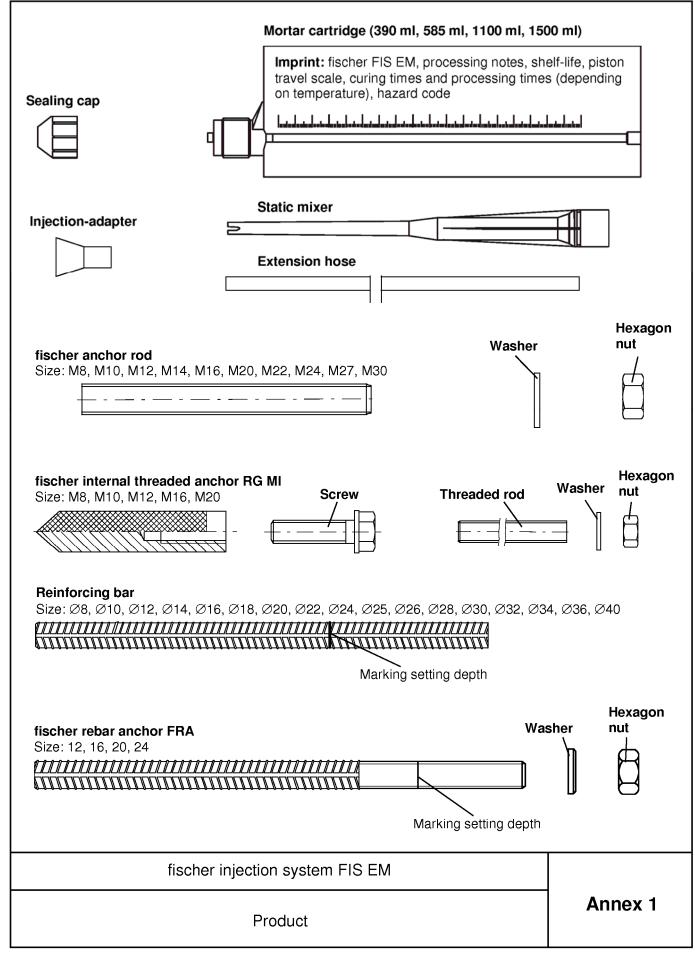
The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2, 4.3 and 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval.

In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:

- drill bit diameter,
- hole depth;
- diameter of anchor rod,
- minimum effective anchorage depth;
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- anchor component installation temperature,
- material and property class of metal parts acc. to Annex 5, Table 3,
- ambient temperature of the concrete during installation of the anchor,
- admissible processing time (open time) of the mortar,
- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- torque moment;
- identification of the manufacturing batch,

All data shall be presented in a clear and explicit form.


5.2 Packaging, transport and storage

The cartridges shall be protected against sun radiation and shall be stored according to the manufacturer's installation instructions in dry condition at temperatures of at least +5 °C to not more than +30 °C.

Cartridges with expired shelf life must no longer be used.

Georg Feistel beglaubigt:
Head of Department Baderschneider

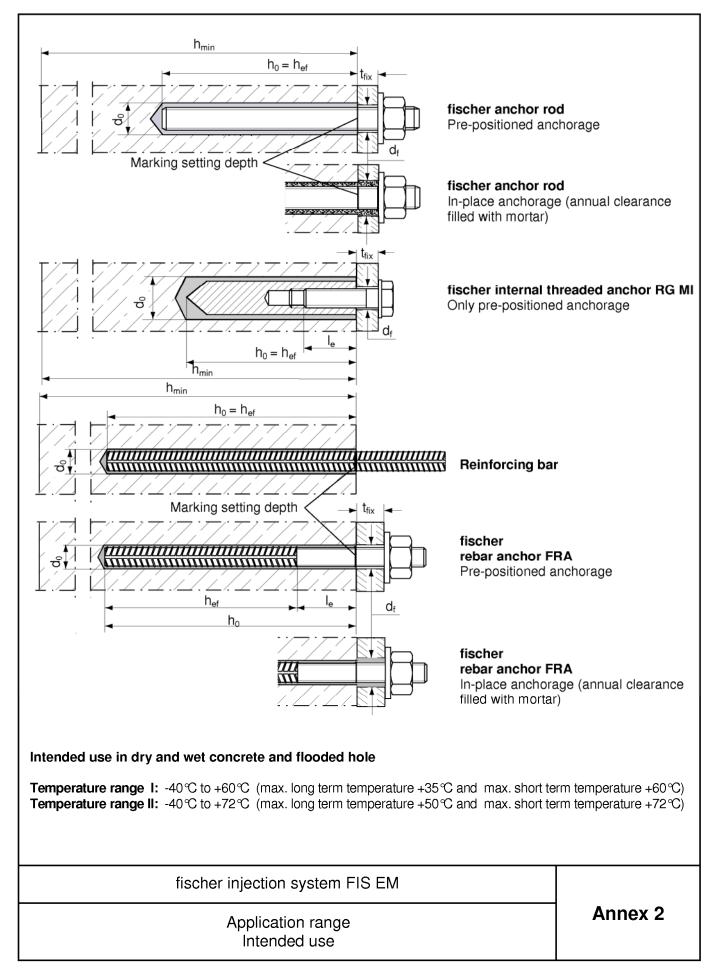
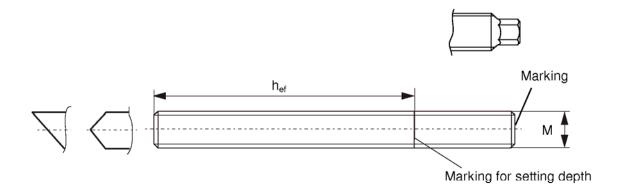



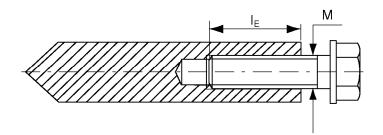
Table 1: Installation parameters for fischer anchor rods

Size			[-]	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Nominal drill bit dia	ameter	d ₀	[mm]	12	14	14	16	18	24	25	28	30	35
Depth of drill ho	le	h _o	[mm]		$h_0 = h_{ef}$								
Effective anchor	age	$h_{\text{ef,min}}$	[mm]	60	60	70	75	80	90	93	96	108	120
depth		h _{ef,max}	[mm]	160	200	240	280	320	400	440	480	540	600
Minimum spacing and minimum edge distance	S _m	_{nin} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Diameter of clearance hole	pre- positioned anchorage	d _f	[mm]	9	12	14	16	18	22	24	26	30	33
in the fixture	In-place anchorage	d_{f}	[mm]	14	16	16	18	20	26	28	30	33	40
Minimum thicknot concrete member		h_{min}	[mm]		h _{ef} +	- 30 (≥⁻	100)			ł	า _{ef} + 2d	0	
Maximum torque moment	Э	$T_{inst,max}$	[Nm]	10	20	40	50	60	120	135	150	200	300
Thickness of fixture —		$t_{fix,min}$	[mm]					()				
THICKIICSS OF IIX	.ui e	$t_{fix,max}$	[mm]					30	00				

fischer anchor rod:

Marking:

Property class 8.8 or high corrosion-resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel, property class 50: • •


fischer injection system FIS EM	
fischer anchor rod Installation parameters and dimensions	Annex 3

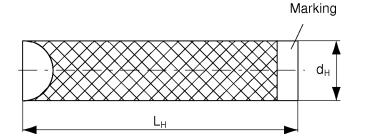


Table 2: Installation parameters fischer internal threaded anchors RG MI

Size			М8	M10	M12	M16	M20
Diameter of anchor	d _H	[mm]	12	16	18	22	28
Nominal drill bit diameter	d _o	[mm]	14	18	20	24	32
Length of anchor	L_H	[mm]	90	90	125	160	200
Effective anchorage depth h _{ef} and drill hole depth h ₀	$h_{\text{ef}} = h_0$	[mm]	90	90	125	160	200
Minimum spacing and minimum edge distance	$S_{min} = C_{min}$	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h_{min}	[mm]	120	125	165	205	260
Saraw in donth	$I_{E,min}$	[mm]	8	10	12	16	20
Screw-in depth –	I _{E,max}	[mm]	18	23	26	35	45
Maximum torque moment	T _{inst,max}	[Nm]	10	20	40	80	120

fischer internal threaded anchor RG MI

Marking: anchor size

e.g.: M10

Stainless steel additional A4

e. g.: M10 A4

High corrosion-resistant steel additional C

e. g.: M10 C

fischer injection system FIS EM

fischer internal threaded anchors RG MI
Installation parameters and dimensions

Annex 4

Table 3: Materials: anchor rods, threaded rods, washers, hexagon nuts and screws

		Material	
Designation	Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C
Anchor rod	Property class 5.8 or 8.8; EN ISO 20898-1 zinc plated ≥ 5μm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50 or 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088 or 1.4062 pr EN 10088:2011	Property class 50 or 80 EN ISO 3506 or property class 70 with $f_{yk} = 560 \text{ N/mm}^2$ 1.4529; 1.4565 EN 10088
Washer EN ISO 7089	Zinc plated ≥ 5μm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	1.4529; 1.4565 EN 10088
Hexagon nut according to EN 24032	Property class 5.8 or 8.8; EN ISO 20898-1 zinc plated ≥ 5μm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50 or 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Property class 50, 70 or 80 EN ISO 3506 1.4529; 1.4565 EN 10088
Screw or threaded rod for internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 20898-1 zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Property class 70 EN ISO 3506 1.4529; 1.4565 EN 10088

Table 4: Maximum permissible processing times and minimum curing times

System temperature	Max. processing time	Minimum curing time ¹⁾
[℃]	[minutes]	[hours]
+5 to +10	120	40
≥ +10 to +20	30	18
≥ +20 to +30	14	10
≥ +30 to +40	7	5

¹⁾ In wet concrete or flooded holes the curing times must be doubled.

fischer injection system FIS EM	
Materials Processing times, curing times	Annex 5

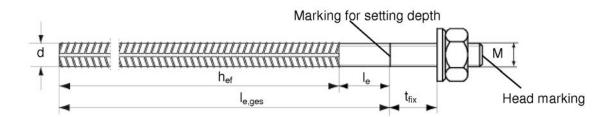

	40	55		160	800	500]													
	36	45		144	720 8	180 2															
	34	40		136 1	680 7	170 1															
	32	40		128	640 6	160 1															
	30	40		120	9 009	140															
	28	35		112	9 099	130															
	56	35		104	520	120	h _{ef} + 2d ₀				rod										
	25	30		100	200	110	hef				coiled			15	35	,5					
	24	30	$h_0 = h_{ef}$		480	105					nd de-	O	0	≥ 1,15	< 1,35	> 7,5	d test				
	22	30	ے	94	440	95				SN	oars a		400 to 600				Reber	+ 6,0 + 4,5		0,040	
	20	25		90	400	85			P 4	992-1-1 Annex C, Table C.1 and C.2N	Non-zinc-plated bars and de-coiled rod		40				Bend / Rebend test				
	18	52		85	360	75			g dept	e C.1	zinc-p	В		40	0,-	5,0					
	16	20		80	320	65	•		Marking for setting depth	, Tabl	Non-			^	d	ΛΙ					
ည	14	18		7.5	280	09			king fo) wex			Paj			8 _{uk} [%]		Ē	E		
ng ba	12	16		70	240	55	h _{ef} + 30 ≥ 100		Mari	1-1 A			fyk or fozk [MPa]			3		bar size [mm]	bar size [mm]		o
ıforciı	9	4		09	200	45	hef -			_			f _{vk} or					al bar s	al bar	N	≥ 0,07
's reir	ω	12		09	160	40				to EN						force		Nominal s 8	Nomina	8 bis 12 > 12	d s h
metel	[mm]	[mm]	[mm]	[mm]	[mm]	= C _{min} [mm]	[mm]			: refer			_	_	5	imum					0,05
ı para	ø	ဗိ	٩	h _{ef,min}	h _{ef,max}	Smin	h _{min}			emen			trength	- (f. / f.	- (-t./-)	at max		rom dual ba	ive rib	ding to	ust be e
Table 5: Installation parameters reinforcing bars	Nominal bar size	Nominal drill bit diameter	Drill hole depth		ye depth	Minimum spacing and minimum edge distance	thickness ste	Reinforcing bar		Properties of reinforcement: refer to EN	Product form	Class	Characteristic yield strength	Minimum value of $k = (f, f, f)$	ב אויס מטומא וווחוווווווווווווווווווווווווווווווו	Characteristic strain at maximum force	Bentability	Maximum deviation from nominal mass (individual bar)	Bond: minimum relative rib	(determination according to EN 15630)	Rib height h: The rib height h must be d = nominal bar size
						fisch	er inje	ctio	n systen	n FIS	S E	M									
								itio	orcing ba on parama aterials		S									A 	nnex 6

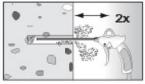
Table 6: Installation parameters fischer rebar anchor FRA

Threaded diameter			M12	M16	M20	M24		
Nominal bar size	d	[mm]	12	16	20	25		
Nominal drill bit diameter	d ₀	[mm]	16	20	25	30		
Depth of drill hole $(h_0 = l_{ges})$	h ₀	[mm]		h _e	_f + l _e			
Effective anchorage donth	$h_{ef,min}$	[mm]	70	80	90	96		
Effective anchorage depth	h _{ef,max}	[mm]	140	220	300	380		
Distance concrete surface to welded join	l _e	[mm]		•	100			
Minimum spacing and minimum edge distance	S _{min} =C _{min}	[mm]	55	65	85	105		
Diameter of clearance hole	pre-positioned anchorage d _f	[mm]	14	18	22	26		
in the fixture	in-place anchorage d _f	[mm]	18	22	26	32		
Minimum thickness of concrete member	h _{min}	[mm]		h _o -	+ 2 d ₀			
Maximum torque moment	$T_{inst,max}$	[Nm]	40	60	120	150		
Thickness of the fixture	minimum t _{fix}	[mm]			0			
THICKNESS OF THE HATCHE	maximum t _{fix}	[mm]	3000					

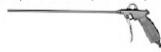
fischer rebar anchor FRA

Head marking e.g.: FRA (for stainless steel); FRA C (for high corrosion-resistant steel)

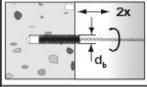
fischer injection system FIS EM	
fischer rebar anchor FRA Installation parameters	Annex 7



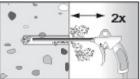
Drilling and cleaning the hole (hammer-drilling)



Drill the hole. Drill hole diameter d_0 and drill hole depth h_0 see **Tables 1, 2, 5 or 6**.

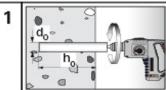

2

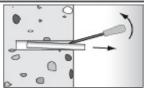
Clean the drill hole: Blow out the drill hole two times, using oil-free compressed air (P > 6bar)


3

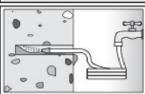
Brush the drill hole two times. For drill hole \geq 30 mm use a power drill. For deep holes use an extension.

d₀[mm	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Id _b [mm]										40		42	47	58

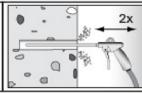

4


Clean the drill hole: Blow out the drill hole two times, using oil-free compressed air (P > 6bar)

Drilling and cleaning the hole (diamond-drilling)



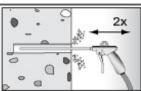
Drill the hole.
Drill hole diameter **d**₀ and drill hole depth **h**₀
see **Tables 1, 2, 5 or 6**


Break the drill core and draw it out.

2

Flush the drill hole until the water comes clear.

3

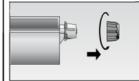


Blow out the drill hole two times, using oil-free compressed air (P > 6bar)

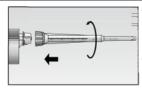
Brush the drill hole two times using a power drill. Corresponding brushes see "hammer-drilling"

5

Blow out the drill hole two times, using oil-free compressed air (P > 6bar)


fischer injection system FIS EM

Installation instructions Part 1 Annex 8



Preparing the cartridge

6

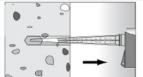
Twist off the sealing cap

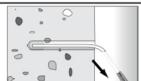
Twist on the static mixer (the spiral in the static mixer must be clearly visible).

7

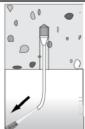
Place the cartridge into the applicator gun.

8

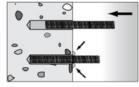


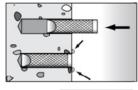

Press approx. 10 cm of material out until the resin is evenly grey in colour. Don't use mortar that is not uniformly grey.

Injection of the mortar


9

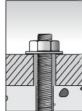
Fill approx. 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles.


For drill hole depth ≥ 150 mm use an extension hose.



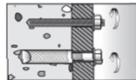
For overhead installation, deep holes $h_0 > 250$ mm or drill hole diameter $d_0 \ge 40$ mm use an injection-adapter.

Installation fischer anchor rods or internal threaded anchors RG MI


10

For overhead installations support the anchor rod with wedges.

Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Press the anchor rod or internal threaded anchor down to the bottom of the hole, turning it slightly while doing so. After inserting the anchor element, excess mortar must emerge from the mouth of the drill hole.


For in-place anchorage fill the annual clearance with mortar.

11

Wait for the specified curing time,

t_{cure} see **Table 4**.

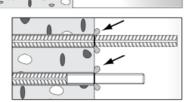
Mounting the fixture $T_{\text{inst,max}}$ see

Table 1 or 2

fischer injection system FIS EM

Installation instructions Part 2 Annex 9

Z49715.12

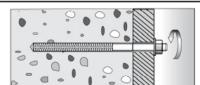


Installation reinforcing bars and fischer FRA

Setting depth mark

Setting depth mark

Only use clean and oil-free rebars. Mark the setting depth of the reinforcing bar. Using a turning movement, push the reinforcement bar or the FRA vigorously into the filled hole up to the insertion depth marking.



When reaching the setting depth mark, excess mortar must emerge from the mouth of the drill hole.

11

Wait for the specified curing time t_{cure} see **Table 4**.

Mounting the fixture $T_{inst,max}$ see **Table 6.**

fischer injection system FIS EM

Installation instructions Part 3 Annex 10

Table 7: Chara	acteristic	values	s to te	nsion	load	fische	r ancl	nor roo	ds				
Size				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Steel failure					_				_				
"	Property	5.8	[kN]	19	29	43	58	79	123	152	177	230	281
Stainless steel A4 High corrosion resistant steel	class	8.8	[kN]	30	47	68	92	126	196	243	282	368	449
Stainless steel	Property	50	[kN]	19	29	43	58	79	123	152	177	230	281
To	class	70 50	[kN] [kN]	26 19	41 29	59 43	81 58	110 79	172 123	212 152	247 177	322 230	393 281
O se resistant steel	Property	70 ⁵⁾	[kN]	26	41	59	81	110	172	212	247	322	393
C	class	80	[kN]	30	47	68	92	126	196	243	282	368	449
<u>-</u>	Property	5.8	[-]					1,				- 000	
≱ ≘	class	8.8	[-]					1,					
Stainless steel A4 High corrosion Registrant stool	Property	50	[-]					2,8	36				
Stainless steel Property 50 [-] 2,86 Stainless steel Property 50 [-] 1,87 Stainless steel Property 50 [-] 2,86													
High corrosion	High corrosion Property 50 [-] 2,86												
resistant steel C	class	70 ⁵⁾	[-]						50				
Combined pullo	ut and con	80 crete fa	[-] jilura					1,0	oU				
Diameter of calcula		d d		8	10	12	14	16	20	22	24	27	30
Characteristic b			[mm]					16	20	22	24	21	30
hammer-drilling				auneu	. 001101	JIG UZ	.J, 2J						
Temperature range	<u> </u>				1.0	1,5	1.4	1	1.0	1.0	1.0	1.0	T
(60°C/35°C) Temperature range	τ _{Rk,uc}	· •	/mm²]	16	16	15	14	14	13	13	13	12	12
(72℃/50℃)	τ _{Rk,uc}		/mm²]	15	14	14	13	13	12	12	12	11	11
Characteristic bo hammer-drilling			non-cr	acked	concr	ete C2	0/25						
Temperature range (60°C/35°C)	$ au_{ m Rk,uc}$	or [N	l/mm²]	16	16	15	13	13	11	11	10	10	9
Temperature range (72°C/50°C)	$ au_{Rk,uc}$	or [N	l/mm²]	15	14	14	13	12	11	10	10	9	9
Characteristic bo diamond-drilling				acked	concr	ete C2	0/25						
Temperature range (60°C/35°C)		ra i	/mm²]	16	15	13	12	12	10	10	10	9	9
Temperature range (72°C/50°C)	· τ _{Rk,uc}	r [N	/mm²]	15	14	12	11	11	10	9	9	8	8
Characteristic bo			on-cra	cked	concre	te C20	/25						
diamond-drilling (Temperature range				I			<u> </u>			Τ	1		T
(60°C/35°C)	$ au_{Rk,uc}$	r [N	/mm ²]	16	15	13	12	12	10	10	10	9	9
Temperature range (72°C/50°C)	τ _{Rk,uc}	· -	/mm ²]	15	14	12	11	11	10	9	9	8	8
	Dry and we concrete	t 	[-]			1	,5 ²⁾				1	,8 ³⁾	
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{-1)}$	Flooded ho	2,1 ⁴⁾											
$^{1)}$ If no other nation $^{3)}$ The partial safe $^{5)}$ f _{uk} = 700 N/mm	1) If no other national regulations exist. 2) The partial safety factor $\gamma_2 = 1,0$ is included. 3) The partial safety factor $\gamma_2 = 1,4$ is included. 5) $f_{uk} = 700 \text{ N/mm}^2$; $f_{yk} = 560 \text{ N/mm}^2$												
	fisch	er inje	ction	syste	m FIS	EM							
fischer anchor rods Characteristic values to tension load Annex 11													

Table 7 1.	Characteristic	values to	tension	fischer	anchor r	ods
I able 1.1.	Ullalacielistic	values to	rension.	11301161	anchori	uus

Size			M8	M10	M12	M14	M16	M20	M22	M24	M27	M30				
Characteristic bo	ond resistance	e in cracke	d conc	rete C	20/25	ı		ı			ı	ı				
Hammer and dia	mond drilling	g (dry and w	et con	crete)												
Temperature range (60°C/35°C)	e I τ _{Rk,cr}	[N/mm ²]	7	7	7	7	6	6	7	7	7	7				
Temperature range (72°C/50°C)	e II τ _{Rk,cr}	[N/mm ²]	7	7	7	7	6	6 6	7	7	7	7				
Characteristic bo	nd resistanc	e in cracked	d conc	rete C2	20/25	•		•								
Hammer and diar		(flooded ho	ole)													
Temperature range (60°C/35°C)	τ _{Rk,cr}	[N/mm²]	7	9	9	8	8	7	7	6	6	6				
Temperature range $(72 ^{\circ}\text{C}/50 ^{\circ}\text{C})$	t _{Rk,cr}	[N/mm²]	7	8	8	8	7	7	6	6	6	6				
		C25/30 [-]					1,	02								
		C30/37 [-]	1,04													
Increasing factor	$\Psi_{ extsf{c}}$.	C35/45 [-]	1,06													
for $ au_{Rk}$	1 °C .	C40/50 [-]						07								
1		C45/55 [-]						80								
		C50/60 [-]					٦,١	09								
Splitting failure																
Edge distance -		h / h _{ef} ≥ 2,0						h _{ef}								
c _{cr,sp} [mm] –	2,0	h / h _{ef} ≥ 1,3						– 1,8 h								
		$h/h_{ef} \le 1,3$						3 h _{ef}								
Spacing	Duranalizat	s _{cr,sp} [mm]														
	Dry and wet concrete	[-]	[-] 1,5 ²⁾ 1,8 ³⁾							8 ³⁾						
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{-1)}$	Flooded hole	[-]	[-]													

fischer injection system FIS EM

fischer anchor rods Characteristic values to tension load Annex 12

¹⁾ If no other national regulations exist. ²⁾ The partial safety factor $\gamma_2 = 1,0$ is included. ³⁾ The partial safety factor $\gamma_2 = 1,2$ is included. ⁴⁾ The partial safety factor $\gamma_2 = 1,4$ is included.

					M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Stee	el failure witho	ut lever a	m									ı		
		Property	5.8	[kN]	9	15	21	29	39	61	76	89	115	141
Characteristic esistance V _{Rks}		class	8.8	[kN]	15	23	34	46	63	98	122	141	184	225
Characteristic esistance V _{Rks}	Stainless	Property	_50	[kN]	9	15	21	29	39	61	76	89	115	141
anc	steel A4	class	70	[kN]	13	20	30	40	55	86	107	124	161	197
Sist	High corrosion	Property	50	[kN]	9	15	21	29	39	61	76	89	115	141
ပ စ	resistant steel C	class	70 ³⁾ 80	[kN]	13 15	20 23	30 34	40 46	55	86	107 122	124 141	161	197
Stee	el failure with I	ever arm	00	[kN]	15	23	- 34	40	63	98	122	141	184	225
	ci idiidic witii i	Property	5.8	[Nm]	19	37	65	104	166	324	447	560	833	1123
å°Ę.		class	8.8	[Nm]	30	60	105	167	266	519	716	896	1333	1797
글달	Stainless	Property	50	[Nm]	19	37	65	104	166	324	447	560	833	1123
eris	steel A4	class	70	[Nm]	26	52	92	146	232	454	626	784	1167	1573
136	High corrosion	Property	50	[Nm]	19	37	65	104	166	324	447	560	833	1123
Characteristic bending moment $M^{^0}_{ { m R}_{\rm KS}}$	resistant	class	70 ³⁾	[Nm]	26	52	92	146	232	454	626	784	1167	1573
	steel C		80	[Nm]	30	60	105	167	266	519	716	896	1333	1797
Parl	tial safety facto		50	ГТ					4 4	25				
		Property class	5.8 8.8	[-] [-]						25 25				
	Stainless	Property	50	[-]					2,					
γ _{Ms,V} 1)	steel A4	class	70	 [-]					1,					
IIVIS,V	High corrosion		50	[-]					2,					
	resistant	Property class	70 ³⁾	[-]					1,3	25				
	steel C		80	[-]					1,	33				
	crete pryout fa													
	r k in Equation (nical Report TR		k						2.0	20				
	n 5.2.3.3	029,	r.	[-]					2,0	50				
	safety factor		γ _{Mcp} 1)	[-]					1,5	5 ²⁾				
	ncrete edge fa	ilure	1 IVICD			Se	e Tech	nical R			Section	n 5.2.3	3.4	
Partia	I safety factor		γ _{Mc} 1)	[-]					1,5	5 ²⁾				
1) In at	osence of other	national re	gulatio	ns.			$^{3)} f_{uk} = ^{-1}$	700 N /r	mm²; f _v	$_{\rm k} = 560$	N/mm	2		
0)	partial safety fa	actor $\gamma_2 = 1$	0 is inc	luded.					,					
²⁾ The	,	•-												
				00r 01	nchor	rods t	o tens	sion lo	ad					
	ole 9: Displad	cements	of fisc	iei ai										
		cements	of fisc	iei ai	M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Tak Size		cracked c	oncret	e; tem	M8	M10	M12		M16	M20	M22	M24	M27	M30
Tak Size Nor Displa	e n-cracked and acement	cracked c δ _{N0} [m	oncret	e; tem nm²)]	M8 peratu 0,07	M10 ure ran 0,08	M12 ge I an 0,09	d II 0,09	0,10	0,11	0,11	0,12	0,12	0,13
Size Non Displa Displa	e n-cracked and acement acement	$\begin{array}{c} \textbf{cracked c} \\ \delta_{\text{No}} \text{ [m} \\ \delta_{\text{N}^{\infty}} \text{ [m]} \end{array}$	oncret nm/(N/n nm/(N/n	e; tem nm²)] nm²)]	M8 peratu 0,07 0,11	M10 ure ran 0,08 0,12	M12 ge I an 0,09 0,13	0,09 0,14						0,13 0,19
Size Non Displa Displa	e n-cracked and acement	$\begin{array}{c} \textbf{cracked c} \\ \delta_{\text{No}} \text{ [m} \\ \delta_{\text{N}^{\infty}} \text{ [m]} \end{array}$	oncret nm/(N/n nm/(N/n	e; tem nm²)] nm²)]	M8 peratu 0,07 0,11	M10 ure ran 0,08 0,12	M12 ge I an 0,09 0,13	0,09 0,14	0,10	0,11	0,11	0,12	0,12	0,13
Size Nor Displa Displa Calc	e n-cracked and acement acement culation of chara	$\frac{\delta_{\text{No}} \text{ [n]}}{\delta_{\text{N}_{\infty}} \text{ [n]}}$ $\delta_{\text{N}_{\infty}} \text{ [n]}$ acteristic di	oncret nm/(N/r nm/(N/r splacer	e; tem nm²)] nm²)] nent w	$\begin{array}{c} \textbf{M8} \\ \textbf{peratu} \\ \textbf{0,07} \\ \textbf{0,11} \\ \textbf{vith } \delta_{N} = 0 \end{array}$	M10 ure ran 0,08 0,12 = (δ _{N0} •	M12 ge I an 0,09 0,13 τ _{Sd}) / τ	0,09 0,14 1,4	0,10 0,15	0,11	0,11	0,12	0,12	0,13
Size Non Displa Displa Cald	en-cracked and acement acement culation of character 10: Displa	$\frac{\delta_{\text{No}} \text{ [n]}}{\delta_{\text{N}_{\infty}} \text{ [n]}}$ $\delta_{\text{N}_{\infty}} \text{ [n]}$ acteristic di	oncret nm/(N/r nm/(N/r splacer	e; tem nm²)] nm²)] nent w	M8 peratu 0,07 0,11 with $\delta_{\rm N}$ ancho	M10 Jre ran 0,08 0,12 = $(\delta_{N0} \bullet r)$ or rods	M12 ge I an 0,09 0,13 τ _{Sd}) / τ	0,09 0,14 1,4 ear lo	0,10 0,15 ad	0,11 0,16	0,11	0,12	0,12	0,13 0,19
Tak Size Non Displa Displa Cald Tak	e n-cracked and acement acement culation of character 10: Displace	cracked c δ_{No} [n $\delta_{N\infty}$ [n acteristic diacements	oncret nm/(N/r nm/(N/r splacer	e; tem nm²)] nm²)] nent w	M8 peratu 0,07 0,11 with $\delta_N = 0$	M10 ure ran 0,08 0,12 = (δ _{N0} • or rods M10	M12 ge I an 0,09 0,13 τ _{Sd}) / τ	0,09 0,14 1,4 ear lo	0,10 0,15 ad M16	0,11 0,16 M20	0,11 0,17 M22	0,12 0,18	0,12 0,19 M27	0,13 0,19 M30
Size Non Displa Displa Calc Tak Size Displa	en-cracked and acement acement culation of character 10: Displace	cracked c δ_{N_0} [n δ_{N_∞} [n acteristic diacements	oncretonm/(N/rnm/(N/rsplacerofos) of fis δ_{V0} [mr	e; tem nm²)] nm²)] nent w cher a	$\begin{array}{c} \textbf{M8} \\ \textbf{peratu} \\ \textbf{0,07} \\ \textbf{0,11} \\ \textbf{vith } \delta_{N} = \\ \textbf{ancho} \\ \textbf{M8} \\ \textbf{0,18} \\ \end{array}$	M10 Jre ran 0,08 0,12 = (δ _{N0} • or rods M10 0,15	$\begin{array}{c} \textbf{M12} \\ \textbf{ge I an} \\ 0,09 \\ 0,13 \\ \tau_{Sd}) \ / \ \\ \textbf{to sh} \\ \textbf{M12} \\ 0,12 \\ \end{array}$	0,09 0,14 1,4 ear loa M14 0,10	0,10 0,15 ad M16 0,09	0,11 0,16 M20 0,07	0,11 0,17 M22 0,07	0,12 0,18 M24 0,06	0,12 0,19 M27 0,05	0,13 0,19 M30 0,05
Tak Size Noi Displa Displa Calc Tak Size Displa Displa	en-cracked and acement acement culation of character to the complete section of the complete section o	cracked c δ _{N0} [n δ _{N∞} [n acteristic di	oncretonm/(N/m/N/m/(N/m/N/m/N/m/N/m/N/m/n/n/n/m/splacerofoffis δ_{V0} [mm $\delta_{V\infty}$ [mm δ	e; tem nm²)] nm²)] ment w cher a	M8 peratu 0,07 0,11 vith δ _N = ancho $M8$ 0,18 0,27	M10 ure ran 0,08 0,12 = $(\delta_{N0} \bullet$ or rods M10 0,15 0,22	M12 ge I an 0,09 0,13 τ _{Sd}) / τ to sh M12 0,12 0,18	0,09 0,14 1,4 ear lo 0,10 0,16	0,10 0,15 ad M16	0,11 0,16 M20	0,11 0,17 M22	0,12 0,18	0,12 0,19 M27	0,13 0,19 M30 0,05
Tak Size Noi Displa Displa Calc Tak Size Displa Displa	en-cracked and acement acement culation of character 10: Displace	cracked c δ _{N0} [n δ _{N∞} [n acteristic di	oncretonm/(N/m/N/m/(N/m/N/m/N/m/N/m/N/m/n/n/n/m/splacerofoffis δ_{V0} [mm $\delta_{V\infty}$ [mm δ	e; tem nm²)] nm²)] ment w cher a	M8 peratu 0,07 0,11 vith δ _N = ancho $M8$ 0,18 0,27	M10 ure ran 0,08 0,12 = $(\delta_{N0} \bullet$ or rods M10 0,15 0,22	M12 ge I an 0,09 0,13 τ _{Sd}) / τ to sh M12 0,12 0,18	0,09 0,14 1,4 ear lo 0,10 0,16	0,10 0,15 ad M16 0,09	0,11 0,16 M20 0,07	0,11 0,17 M22 0,07	0,12 0,18 M24 0,06	0,12 0,19 M27 0,05	0,13 0,19 M30 0,05
Tak Size Noi Displa Displa Calc Tak Size Displa Displa	en-cracked and acement acement culation of character to the complete section of the complete section o	cracked c δ _{N0} [n δ _{N∞} [n acteristic di	oncretonm/(N/m/N/m/(N/m/N/m/N/m/N/m/N/m/n/n/n/m/splacerofoffis δ_{V0} [mm $\delta_{V\infty}$ [mm δ	e; tem nm²)] nm²)] ment w cher a	M8 peratu 0,07 0,11 vith δ _N = ancho $M8$ 0,18 0,27	M10 ure ran 0,08 0,12 = $(\delta_{N0} \bullet$ or rods M10 0,15 0,22	M12 ge I an 0,09 0,13 τ _{Sd}) / τ to sh M12 0,12 0,18	0,09 0,14 1,4 ear lo 0,10 0,16	0,10 0,15 ad M16 0,09	0,11 0,16 M20 0,07	0,11 0,17 M22 0,07	0,12 0,18 M24 0,06	0,12 0,19 M27 0,05	0,13 0,19 M30
Tak Size Noi Displa Displa Calc Tak Size Displa Displa	en-cracked and acement acement culation of character to the complete section of the complete section o	cracked α δ _{N0} [n δ _{N∞} [n acteristic di acements	oncretonm/(N/mm/(N/mm/(N/msplacers of fissology) δ_{V0} [mr splacers splacers of the splace	e; tem nm²)] nm²)] nent w cher a n/kN] n/kN] ment w	$\begin{array}{c} \textbf{M8} \\ \textbf{peratu} \\ \textbf{0,07} \\ \textbf{0,11} \\ \textbf{vith} \ \delta_{\textbf{N}} = \\ \textbf{ancho} \\ \textbf{M8} \\ \textbf{0,18} \\ \textbf{0,27} \\ \textbf{vith} \ \delta_{\textbf{V}} = \\ \textbf{vith} \ \delta_{\textbf{V}} = \\ \textbf{0,18} \\ \textbf{0,27} \\ \textbf{vith} \ \delta_{\textbf{V}} = \\ \textbf{vith} \ \delta_{\textbf{V}} = \\ \textbf{0,27} \\ \textbf{vith} \ \delta_{\textbf{V}} = $	$\begin{array}{c} \textbf{M10} \\ \textbf{ire ran} \\ 0.08 \\ 0.12 \\ = (\delta_{N0} \bullet \\ \textbf{or rods} \\ \textbf{M10} \\ 0.15 \\ 0.22 \\ = (\delta_{V0} \bullet \\ \textbf{o} \\ \end{array}$	M12 ge I an 0,09 0,13 τ _{Sd}) / τ to sh M12 0,12 0,18 V _{Sd}) /	0,09 0,14 1,4 ear lo 0,10 0,16	0,10 0,15 ad M16 0,09	0,11 0,16 M20 0,07	0,11 0,17 M22 0,07	0,12 0,18 M24 0,06	0,12 0,19 M27 0,05	0,13 0,19 M30 0,05
Tak Size Noi Displa Displa Calc Tak Size Displa Displa	en-cracked and acement acement culation of character to the complete section of the complete section o	cracked α δ _{N0} [n δ _{N∞} [n acteristic di acements	oncretonm/(N/mm/(N/mm/(N/mm/(N/mm/(N/msplacerong))))))))))))))))))))))))))))))))))))	e; tem nm²)] nm²)] nent w cher a n/kN] n/kN] ment w	$\begin{array}{c} \textbf{M8} \\ \textbf{peratu} \\ 0,07 \\ 0,11 \\ \textit{vith } \delta_{N} : \\ \textbf{ancho} \\ \hline \textbf{M8} \\ 0,18 \\ 0,27 \\ \textit{vith } \delta_{V} : \\ \textbf{syster} \\ \end{array}$	$\begin{array}{c} \textbf{M10} \\ \textbf{ire ran} \\ 0.08 \\ 0.12 \\ = (\delta_{N0} \bullet \\ \textbf{or rods} \\ \\ \textbf{M10} \\ 0.15 \\ 0.22 \\ = (\delta_{V0} \bullet \\ \\ \textbf{m FIS} \\ \end{array}$	M12 ge I an 0,09 0,13 τ _{Sd}) / τ to sh M12 0,12 0,18 V _{Sd}) /	0,09 0,14 1,4 ear lo 0,10 0,16	0,10 0,15 ad M16 0,09	0,11 0,16 M20 0,07	0,11 0,17 M22 0,07	0,12 0,18 M24 0,06	0,12 0,19 M27 0,05	0,13 0,19 M30 0,05
Tak Size Noi Displa Displa Calc Tak Size Displa Displa	en-cracked and acement acement culation of character to the complete section of the complete section o	cracked α δ _{N0} [n δ _{N∞} [n acteristic di acements	oncrete $\frac{1}{1}$ $\frac{1}{1$	e; tem nm²)] nm²)] nent w cher a n/kN] n/kN] ment w ction s	$\begin{array}{c} \textbf{M8} \\ \textbf{peratu} \\ 0,07 \\ 0,11 \\ \textbf{vith } \delta_{N} = \\ \textbf{ancho} \\ \textbf{M8} \\ 0,18 \\ 0,27 \\ \textbf{vith } \delta_{V} = \\ \textbf{syster} \\ \textbf{chor r} \\ \\ \textbf{chor r} \\ \end{array}$	$\begin{array}{c} \textbf{M10} \\ \textbf{ire ran} \\ 0.08 \\ 0.12 \\ = (\delta_{\text{N0}} \bullet \\ \textbf{or rods} \\ \hline \textbf{M10} \\ 0.15 \\ 0.22 \\ = (\delta_{\text{V0}} \bullet \\ \\ \textbf{m FIS} \\ \textbf{ods} \\ \end{array}$	M12 ge I an 0,09 0,13 τ _{Sd}) / τ to sh M12 0,12 0,18 V _{Sd}) /	0,09 0,14 1,4 ear lo 0,10 0,16	0,10 0,15 ad M16 0,09	0,11 0,16 M20 0,07	0,11 0,17 M22 0,07	0,12 0,18 M24 0,06 0,09	0,12 0,19 M27 0,05	0,13 0,19 M30 0,05 0,07

Z49715.12 8.06.01-56/12

Displacements

Size						M 8	M 10	M 12	M 16	M 20
Steel failure						IVI O	191 10	IVI IZ	IVI TO	IVI 20
Steer failure	Dr	operty	5.8	ΓL	(N)	19	29	43	79	123
Characteristic		ass	8.8	_	(N)	29	47	68	108	179
resistance with	NI —	operty	A4		(N)	26	41	59	110	173
screw		ass 70	- 74		(N)	26	41	59	110	172
		operty	5.8	Įν	[-]	20	41	1,50	110	172
Partial safety	0	ass	8.8		[-]			1,50		
factor	~ '/ —	operty	A4		[-]			1,87		
iacioi		ass 70	- 74		[-]			1,87		
Combined pullout					<u> </u>			1,07		
Diameter of calcula		cianaic	d _H	ſm	ım1	12	16	18	22	28
Effective anchorage			h _{ef}		:::: <u>]</u> 1m]	90	90	125	160	200
Characteristic bor		in non-c								
Temperature range				[N/mr		15	14	14	13	12
Temperature range			Rk,ucr	[N/mr		14	13	13	12	11
			TIN, UCI	L .						1 11
Characteristic bo						14	12		11	10
Temperature range			Rk,ucr	[N/mi				12		10
Temperature range		, -	Rk,ucr	[N/mı		13	12	11	10	9
Characteristic boi									<u> </u>	1
Temperature range	•		Rk,ucr	[N/mı		13	12	11	10	9
Temperature range		,	Rk,ucr	[N/mı		12	11	10	9	8
Characteristic bor			<u>cracke</u>						, 	
Temperature range	•		Rk,ucr	[N/mı		13	12	11	10	9
Temperature range			Rk,ucr	[N/mı		12	11	10	9	8
Characteristic bond			concret			Hammer an	d diamond	drilling (dry	and wet co	ncrete)
Temperature range	I (60℃/35℃) -	τ _{Rk,cr}	[N/mi	m²]	7	6	6	7	7
Temperature range	II (72°C/50°C		τ _{Rk,cr}	[N/mi	m²]	7	6	6	7	7
Characteristic bor	nd resistance			ncret	e C2	20/25. Hami	mer and dia	mond drillir	ng (flooded	hole)
Temperature range	I (60°C/35°C) ,	τ _{Rk,cr}	[N/mi	m²]	8	8	7	7	6
Temperature range	II (72°C/50°C		τ _{Rk,cr}	[N/mı	m ²]	8	7	7	6	6
	,		25/30	•	[- <u>1</u>			1,02		1
			30/37		Ī-Ī			1,04		
Increasing factors			35/45		<u> [-]</u>			1,06		
for N_{Rk}	$\Psi_{ extsf{c}}$		40/50		[-]			1,07		
TOT TOTAL			45/55		[-]			1,08		
			50/60		[-]			1,09		
Splitting failure			00,00					1,00		
opg .aa.			h / h	n _{ef} ≥ 2,	οТ			1,0 h _{ef}		
Edge distance	c _{cr,sp} [mm]	20	> h / h				4	-,6 h _{ef} – 1,8	h	
Lago diotarios	Ocr,sp [11111]			n _{ef} ≤ 1,				2,26 h _{ef}		
Spacing				_p [mn				2 C _{cr,sp}		
-paonig	dry and w	 ≏t	⊃cr,s	<u> </u>	+		0)	- ⊃cr,sp		۵)
Partial safety	concrete	υι		[[-]		1,5 ²⁾		1,	8 ³⁾
factor					+					
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{-1}$	flooded ho	ole		[[-]			2,1 ⁴⁾		
						3)				
1) If no other natio									1,2 is inclu	
²⁾ The partial safe	ety factor $\gamma_2 = 1$	1,0 is inc	luded.			™The pa	rtial safety	factor $\gamma_2 = 1$	1,4 is includ	ed
	ficaba	iniooti		stom		= N.4				
	nschei	rinjection	JII SYS	olGIII	1110	D ∟IVI				
									A	
	fischer inte	ernal th	reade	d an	cho	rs RG MI			Anne	x 14

Table 12: Characteristic values to shear load fischer internal threaded anchors RG MI

Size					M 8	M 10	M 12	M 16	M 20
Steel failure withou	ut lever ar	m							
Characteristic		Property	5.8	[kN]	9,2	14,5	21,1	39,2	62
Characteristic resistance	V	class	8.8	[kN]	14,6	23,2	33,7	54,0	90
resistance	$V_{Rk,s}$	Property	A4	[kN]	12,8	20,3	29,5	54,8	86
		class 70	С	[kN]	12,8	20,3	29,5	54,8	86
		Property	5.8	[-]			1,25		
Partial safety	γ Ms, V $^{1)}$	class	8.8	[-]			1,25		
factor	Y Ms, V	Property	A4	[-]			1,56		
		class 70	С	[-]			1,56		
Steel failure with I	ever arm								
Characteristic		Property	5.8	[Nm]	20	39	68	173	337
Characteristic	$M^0_{Rk.s}$	class	8.8	[Nm]	30	60	105	266	519
bending moment	IVI Rk,s	Property	A4	[Nm]	26	52	92	232	454
		class 70	С	[Nm]	26	52	92	232	454
		Property	5.8	[-]			1,25		
Partial safety		class	8.8	[-]			1,25		
factor	γ Ms, V	Property	A4	[-]			1,56		
		class 70	С	[-]			1,56		
Concrete pryout	t failure								
Factor k in Equation				[-]			2,0		
Report TR 029, See		3							
Partial safety factor	<u> </u>		γΜα	¹⁾ [-]			1,5 ²⁾		
Concrete edge f	ailure				See T	echnical Re	eport TR 02	9, Section !	5.2.3.4
Partial safety factor	,		γι	1c ¹⁾ [-]			1,5 ²⁾		·
			411	.~					

Table 13: Displacements of fischer internal threaded anchors RG MI to tension load

Size		M 8	M 10	M 12	M 16	M 20
Non-cracked concrete and	cracked concrete; temperat	ture range	I and II			
Displacement	δ_{N0} [mm/(N/mm ²)]	0,09	0,10	0,10	0,11	0,13
Displacement	$\delta_{N^{\infty}} [mm/(N/mm^2)]$	0,13	0,15	0,15	0,17	0,19

Calculation of characteristic displacement with $\delta_N = (\delta_{N0} \, \bullet \, \tau_{Sd}) \, / \, 1,4$

Table 14: Displacements of fischer internal threaded anchors RG MI to shear load

Size		M 8	M 10	M 12	M 16	M 20
Displacement	$\delta_{ m V0}$ [mm/kN]	0,12	0,09	0,08	0,07	0,05
Displacement	δ _{V∞} [mm/kN]	0,18	0,14	0,12	0,10	0,08

Calculation of characteristic displacement with $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer injection system FIS EM	
fischer internal threaded anchors RG MI Characteristic values to shear load	Annex 15
Displacements	

 $^{^{1)}}$ In absence of other national regulations. $^{2)}$ The partial safety factor $\gamma_2\!=\!$ 1,0 is included.

	40		691			40			12	10		ω	ω			7	7		7	2			
	36		260			36			12	11		ω	ω			ω	7		∞	2			
	34		499			34			12	11		6	ω			ω	7		ω	2			
	32		443			32			12	11		6	ω			ω	ω		ω	8			
	9		389			8			12	11		တ	တ			တ	ω		o	8	.,8°3		nm².
	28		339			78			13	11		9	တ			ဝ	ω		6	8	, <u>, </u>		500 N/mm²
	26		292			56			<u>5</u>	11		9	თ			တ	ω		6	8			yk = 5(
	25		270			52			5	12		9	თ			თ	ი		ი	6			and f
	24		249	1,4		24			13	12		9	9			10	တ		10	6		2,1 ⁴⁾	4/mm ² s inclu s inclu
	22		209			22			13	12		=	9			9	တ		10	6			rcing bars B500B with f_{uk} = 550 N/mm² and rding to TR 029, Equation (5.1). ³⁾ The partial safety factor γ_2 = 1,2 is included ⁴⁾ The partial safety factor γ_2 = 1,4 is included
<u>δ</u>	20		173			20			13	12		=	=			10	10		10	10			h f _{uk} = ntion (; stor ½ tor ½ :
ng ba	cing bar 1															10			B with Equal				
forcir	10 10 10 10 10 10 10 10 10 10 10 10 10 1															11			B500 R 029, ial safe				
rein	C20/2															11	1,52)		y bars y to TI e part e parti				
 load	load r														12			orcing ording 3) Th 4) Th					
	9		44			10	sed cc		16	14	o pes	16	4	ced cc		15	4	ced cc	15	14			r reinf d acc
-	8		28		as a	ω	-crac	(16	15	-crack	16	ਨ	-crack	(e)	16	15	-crack	16	15			ies for culate is. uded.
cteristic values	Ø		se N _{Rk,s} [kN]	γ _{Ms N} [-]	conci		esistance in non	and wet concrete	$\tau_{\text{Rk,uor}}$ [N/mm 2]	$ au_{Rk,ucr}\left[N/mm^2 ight]$	esistance in non ded hole)	t _{Rk,uor} [N/mm²]	τ _{Rk,uor} [N/mm ²]	esistance in non	and wet concret	t _{Rk,uor} [N/mm ²]	t _{Rk,uor} [N/mm²]	esistance in non ded hole)	τ _{Rk,uor} [N/mm²]	$\tau_{\rm Rk,uor} [{ m N/mm}^2]$	Dry and wet [-] concrete	Flooded [-]	able 15. are values have to be calculational regulation of $\gamma_2 = 1,0$ is included.
Table 15: Characteristic values	Size	Steel failure	Characteristic resistance Reinforcing bars	Partial safety factor	Combined pullout and	Diameter for calculation	Characteristic bond resistance in non-c	hammer-drilling (dry and wet concrete)	Temperature range I (60°C/35°C)	Temperature range II (72°C/50°C)	Characteristic bond resistance in non-c hammer-drilling (flooded hole)	Temperature range I (60 °C/35 °C)	Temperature range II (72°C/50°C)	Characteristic bond resistance in non-c	diamond-drilling (dry and wet concrete)	Temperature range I (60 C/35 C)	Temperature range II (72°C/50°C)	Characteristic bond resistance in non-cracked concrete diamond-drilling (flooded hole)	Temperature range I (60 C/35 C)	Temperature range II (72°C/50°C)	>	7Mp=7Mc = 7Msp	The values given in Table 15. are values for reinforcing bars B500B with f_{uk} = 550 N/mm² and f_{yk} = Other reinforcing bars have to be calculated according to TR 029, Equation (5.1). Other reinforcing bars have to be calculated according to TR 029, Equation (5.1). In absence of other national regulations. The partial safety factor γ_2 = 1,0 is included. The partial safety factor γ_2 = 1,4 is included.
									R	einfo	on sy orcin alue:	g ba	rs									Ann	nex 16

s values to tension load reinforcing bars	Ød 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34 36 40	Characteristic bond resistance in cracked concrete C20/25. Hammer and diamond drilling (dry and wet concrete)	[N/mm ²] 7 7 7 7 6 6 6 7 7 7 7 7 7 5 5 5 5	Teksgr 7 7 7 7 7 6 6 6 7 7 7 7 7 7 5 5 5 5 5 6 7 M/mm ²]	Characteristic bond resistance in cracked concrete C20/25. Hammer and diamond drilling (flooded hole)	This Tarker 7 8 8 8 8 6 6 6 6 6 6 6 6 6 5 5 1 1 1 1 1 1 1 1 1	Teksy 7 8 8 7 7 7 6 6 6 6 6 6 6 6 5 5 5 5 5 1 N/mm ² 1 7 8 8 7 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6	25/30 [-] 1,02		1,0b 1,0b 1,050 [-]				$1,0 h_{ef} \ge 2,0$	4,6		r.sp. [mm] 2 C _{Cr.Sp}	[-]	led [-] 2,1 ⁴⁾	The values given in Table 15.1 are values for reinforcing bars B500B with f_{uk} = 550 N/mm ² and f_{yk} = 500 N/mm ² . Other reinforcing bars have to be calculated according to TR 029, Equation (5.1).	1,0 is included.	1,2 is included.	
Table 15.1: Characteristic values to	Size	tharacteristic bond resistance in c	τemperature range l (60℃/35℃) [N/mm	τεπperature range II 72℃/50℃) [N/mm	haracteristic bond resistance in c	Temperature range l (60 ℃/35 ℃) [N/mm	Γemperature range II 72°C/50°C)	C25/30 [-	l	increasing factors $\Psi_{ m c} = 0.35/45$ [-] for $ au_{ m c}$	1	C50/60 [-]	Splitting failure		Commission 2,0 >h / hef > 1,	$h / h_{ef} \le 1,3$		Partial safety Dry and wet concrete		The values given in Table 15.1 are Other reinforcing bars have to be	The partial safety factor $\gamma_2 = 1,0$ is include $^{3)}$ The partial safety factor $\gamma_2 = 1,0$ is included the safety factor $\gamma_2 = 1,0$ is included the safety factor $\gamma_2 = 1,0$ in included the safety factor $\gamma_2 = 1,0$ is included the safety factor $\gamma_2 = 1,0$ in included the safety factor $\gamma_2 = 1,0$ included the safety factor $\gamma_2 = 1,0$ included the safety	The partial safety factor γ_2 = 1,2 is incluctor and partial safety factor γ_2 = 1,4 is incluctor γ_2 = 1,4 is incluctor.	
	S	J) - 		fis	schei	r inje	info	on orci	sys	ste ba	ars	FIS	S E	ΞM			<u></u> 口 充	<u>*</u>			Annex 17	 7

fischer injection system FIS EM Reinforcing bars Annex 18

Size				M12	M16	M20	M24
Steel failure			•				
Characteristic resis	tance	$N_{Rk,s}$	[kN]	68	126	196	283
Partial safety factor		γ _{Ms,N} 1)	[-]		1,8	87	
Combined pullout	and concrete fail	ure					
Diameter of calcula		d	[mm]	12	16	20	25
Characteristic bon			I concrete C	20/25			
nammer-drilling (d		-	rn 1 / 21	4-	4.4	10	10
Temperature range		$ au_{Rk,ucr}$	[N/mm ²]	15	14	13	13
Temperature range		$ au_{ m Rk,ucr}$	[N/mm ²]	14	13	12	12
Characteristic bon		on-crаскеа	concrete C	20/25			
hammer-drilling (f Temperature range			[N/mm ²]	15	10	11	10
		$ au_{Rk,ucr}$	[N/mm ²]	14	13 12	11	10
Temperature range Characteristic bor		τ _{Rk,ucr}			12	11	10
diamond-drilling (i concrete c	20/25			
Temperature range			[N/mm ²]	13	12	10	10
Temperature range		$ au_{ ext{Rk,ucr}}$	[N/mm ²]	12	11	10	9
Characteristic bon					1.1	1 10	
diamond-drilling (J. JIGUNUG	. 55.16.66 0	_0,_0			
Temperature range		$ au_{ ext{Rk,ucr}}$	[N/mm ²]	13	12	10	10
Temperature range		τ _{Rk,ucr}	[N/mm ²]	12	11	10	9
Characteristic bon					<u> </u>		
Hammer and diam							
Temperature range	I (60°C/35°C)	$ au_{Rk,cr}$	[N/mm ²]	7	6	6	7
Temperature range	II (72°C/50°C)	$ au_{Rk.cr}$	[N/mm ²]	7	6	6	7
Characteristic bor Hammer and diam			crete C20/2	5.			
Temperature range		$ au_{Rk,cr}$	[N/mm ²]	8	8	7	6
Temperature range	II (72°C/50°C)	$ au_{Rk,cr}$	[N/mm ²]	8	7	7	6
	,		C25/30 [-]		1,0	02	
			C30/37 [-]		1,	04	
Increasing factors))(C35/45 [-]			06	
for $ au_{Rk}$		Ψ _c –	C40/50 [-]		1,0	07	
			C45/55 [-]		1,0	08	
			C50/60 [-]		1,	09	
Splitting failure							
			n / h _{ef} ≥ 2,0			h _{ef}	
Edge distance	c _{cr,sp} [mm]		$1/h_{ef} > 1,3$		4,6 h _{ef}		
Orana di ana	_	h	n / h _{ef} ≤ 1,3		•	3 h _{ef}	
Spacing Spacing	S _{cr,sp}	Lugt come	[mm]		2 c 1,5 ²⁾	cr,sp	4 03)
Partial safety factor	ary and	wet concre	;te [-]		·		1,8 ³⁾
		flooded ho	ole [-]		2,	1 ⁴⁾	
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{1)}$							
	f other national reg						
The partial sa	fety factor $\gamma_2 = 1.0$	is included.	•				
The partial sa	fety factor $\gamma_2 = 1.2$	is included.					
The partial sa	fety factor $\gamma_2 = 1,4$	is included.					
	fischer inje	ection syst	tem FIS EN	 Л			
						\dashv $_{Ann}$	ex 19
	fischer Characteristi	rebar ancl				^''''	CX 13

Table 20: Characteristic values to shear load fischer rebar anchors FRA

Size			M12	M16	M20	M24
Steel failure		•				•
Characteristic	$V_{Rk,s}$	[kN]	33,7	63	98	141
resistance	▼ Rk,s	[KIN]	55,7	00	90	141
Partial safety factor	γ̃Ms,V	[-]		1,5	56	
Steel failure with lever arm						
Characteristic bending	$M^0_{Rk,s}$	[Nm]	105	266	519	896
moment	IVI Rk,s	נואווון	105	200	319	090
Partial safety factor	γMs,V	[-]		1,5	56	
Concrete pryout failure						
Factor k in Equation (5.7)						
of Technical Report TR 029,	k	[-]		2,	0	
Section 5.2.3.3						
Partial safety factor	γ _{Μcp} 1)	[-]	·	1,5	5 ²⁾	
Concrete edge failure			See Ted	hnical Report T		า 5.2.3.4
Partial safety factor	γ _{Mc} 1)	[-]		1,5	5 ²⁾	

Table 21: Displacements of fischer rebar anchors FRA to tension load

Size	Ø	12	16	20	24			
Non-cracked and cracked concrete; temperature range I and II								
Displacement	δ_{No} [mm/(N/mm ²)]	0,09	0,10	0,11	0,12			
Displacement	$\delta_{N^{\infty}} [mm/(N/mm^2)]$	0,13	0,15	0,16	0,18			

Calculation of characteristic displacement with $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$

Table 22: Displacements of fischer rebar anchors FRA to shear load

Size	Ø	12	16	20	24
Displacement δ_{V0} [i	mm/kN]	0,12	0,09	0,07	0,06
Displacement δ _{V∞} [I	mm/kN]	0,18	0,14	0,11	0,09

Calculation of characteristic displacement with $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer injection system FIS EM	
fischer rebar anchor FRA	Annex 20
Characteristic values to shear load	
Displacements	

 $^{^{1)}}$ In absence of other national regulations. $^{2)}$ The partial safety factor $\gamma_2=$ 1,0 is included.