Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +493078730-0 Fax: +493078730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA Member of EOTA

Europäische Technische Zulassung ETA-11/0493

Handelsbezeichnung Trade name

Injektionssystem Hilti HIT-HY 200-A Injection system Hilti HIT-HY 200-A

Zulassungsinhaber Holder of approval

Hilti Aktiengesellschaft **Business Unit Anchors** 9494 Schaan

FÜRSTENTUM LIECHTENSTEIN

Zulassungsgegenstand und Verwendungszweck Verbunddübel mit Gewindestangen, Betonstahl, Innengewindehülsen und Hilti Zuganker HZA zur Verankerung im Beton

Generic type and use of construction product Bonded anchor with threaded rods, rebar, internal threaded sleeves and Hilti tension anchor HZA for use in concrete

Geltungsdauer: vom Validity: from

8. August 2012

bis

23. Dezember 2016

Herstellwerk Manufacturing plant Hilti Werke

Diese Zulassung umfasst This Approval contains

32 Seiten einschließlich 23 Anhänge 32 pages including 23 annexes

Diese Zulassung ersetzt This Approval replaces

ETA-11/0493 mit Geltungsdauer vom 06.02.2012 bis 23.12.2016 ETA-11/0493 with validity from 06.02.2012 to 23.12.2016

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Seite 2 von 32 | 8. August 2012

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Art. 2 des Gesetzes vom 8. November 2011⁵:
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- 3 Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- 5 Bundesgesetzblatt Teil I 2011, S. 2178
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 32 | 8. August 2012

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Das Injektionssystem Hilti HIT-HY 200-A ein Verbunddübel, der aus dem Injektionsmörtel Hilti HIT-HY 200-A und einem Stahlteil besteht.

Der Injektionsmörtel Hilti HIT-HY 200-A wird in Foliengebinden gemäß Anhang 1 geliefert.

Das Stahlteil besteht aus verzinktem Stahl (Gewindestange HIT-V, Innengewindehülse HIS-N, Zuganker HZA), Betonstahl, nichtrostendem Stahl (Gewindestange HIT-V-R, Innengewindehülse HIS-RN, Zuganker HZA-R) oder aus hochkorrosionsbeständigem Stahl (Gewindestange HIT-V-HCR).

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Im Anhang 1 und 2 sind Produkt und Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter statischer oder quasi-statischer Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf im gerissenen und ungerissenen Beton verwendet werden.

Der Dübel darf in trockenem oder nassem Beton, jedoch nicht in mit Wasser gefüllte Bohrlöcher gesetzt werden.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

-	Temperaturbereich I:	-40 °C bis +40 °C	(max. Langzeit-Temperatur +24 °C und
			max. Kurzzeit-Temperatur +40 °C)
-	Temperaturbereich II:	-40 °C bis +80 °C	(max. Langzeit-Temperatur +50 °C und
			max. Kurzzeit-Temperatur +80 °C)
-	Temperaturbereich III:	-40 °C bis +120 °C	(max. Langzeit-Temperatur +72 °C und
			max. Kurzzeit-Temperatur +120 °C)

Stahlteile aus verzinktem Stahl (Gewindestange HIT-V, Innengewindehülse HIS-N, Zuganker HZA):

Die Stahlteile aus galvanisch verzinktem oder feuerverzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Seite 4 von 32 | 8. August 2012

Stahlteile aus nichtrostendem Stahl (Gewindestange HIT-V-R, Innengewindehülse HIS-RN):

Die Stahlteile aus nichtrostendem Stahl 1.4401, 1.4404, 1.4578, 1.4571, 1.4439 oder 1.4362 dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Stahlteile aus hochkorrosionsbeständigem Stahl (Gewindestange HIT-V-HCR):

Die Stahlteile aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565 dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Stahlteile aus Betonstahl:

Nachträglich eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden, sind nicht durch diese europäische technische Zulassung abgedeckt.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 3 bis 7. Die in den Anhängen 3 bis 7 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in den Anhängen 12 bis 23 angegeben.

Die zwei Komponenten des Injektionsmörtels werden unvermischt in Foliengebinden der Größe 330 ml oder 500 ml gemäß Anhang 1 geliefert. Jedes Foliengebinde ist mit dem Herstellerkennzeichen "HY 200-A", der Chargennummer und dem Haltbarkeitsdatum gekennzeichnet.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 5 von 32 | 8. August 2012

Jede Gewindestange HIT-V ist mit der Stahlgüte und Länge entsprechend Anhang 3 gekennzeichnet. Jede Gewindestange aus nichtrostendem Stahl ist zusätzlich mit der Bezeichnung "R" gekennzeichnet. Jede Gewindestange aus hochkorrosionsbeständigem Stahl ist zusätzlich mit der Bezeichnung "HCR" gekennzeichnet.

Jede Innengewindehülse aus verzinktem Stahl ist mit der Prägung "HIS-N" gemäß Anhang 4 gekennzeichnet. Jede Innengewindehülse aus nichtrostendem Stahl ist mit der Prägung "HIS-RN" gemäß Anhang 4 gekennzeichnet.

Jeder Zuganker aus nichtrostendem Stahl ist mit "HZA-R", der Gewindegröße und der maximalen Anbauteildicke gemäß Anhang 6 geprägt.

Stahlteile aus Betonstahl müssen den Angaben nach Anhang 5 entsprechen.

Die Markierung der Verankerungstiefe darf auf der Baustelle erfolgen.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 1.

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts:
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Seite 6 von 32 | 8. August 2012

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüfplans durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 7 von 32 | 8. August 2012

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1 Option 1),
- Größe.

Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen 4 Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit dem EOTA Technical Report TR 029 "Design of Bonded Anchors" unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Nachträgliche eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Die grundlegenden Annahmen für die Bemessung nach der Dübeltheorie sind zu beachten. Das beinhaltet sowohl die Berücksichtigung von Zugund Querkräften und die zugehörigen Versagensarten als auch die Annahme, dass der Verankerungsgrund (Betonbauteil) im Grenzzustand der Gebrauchstauglichkeit (gerissen oder ungerissen) verbleibt, wenn der Anschluss bis zum Versagen belastet wird. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden (z. B. Wandanschlussbewehrung, bei der Zugkräfte in mindestens einer Bewehrungslage auftreten), sind nicht durch diese europäische technische Zulassung abgedeckt.

Für die Innengewindehülsen HIS-(R)N sind die Befestigungsschrauben oder Gewindestangen hinsichtlich des Materials und der erforderlichen Festigkeitsklasse gemäß Anhang 7 zu spezifizieren.

¹⁰ Der EOTA Technical Report TR 029 "Design of Bonded Anchors" ist in Englischer Sprache auf der website www.eota.eu veröffentlicht.

Seite 8 von 32 | 8. August 2012

Die minimale und maximale Einschraubtiefe h_s der Befestigungsschraube oder der Gewindestange für die Befestigung der Anbauteile muss den Anforderungen nach Anhang 4, Tabelle 2 genügen. Die Länge der Befestigungsschraube oder der Gewindestange müssen in Abhängigkeit von der Anbauteildicke, zulässigen Toleranzen, der vorhandenen Gewindelänge und der minimalen und maximalen Einschraubtiefe h_s festgelegt werden.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen.
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Es dürfen auch handelsübliche Gewindestangen, Scheiben und Muttern verwendet werden, wenn die nachfolgend aufgeführten Anforderungen erfüllt sind:
 - Werkstoff, Abmessungen und mechanische Eigenschaften der Stahlteile entsprechen Anhang 7, Tabelle 6,
 - Nachweis von Werkstoff und mechanischen Eigenschaften der Stahlteile durch ein Abnahmeprüfzeugnis 3.1 entsprechend EN 10204:2004, die Nachweise sind aufzubewahren,
 - Markierung der Gewindestange mit der geplanten Verankerungstiefe. Dies kann durch den Hersteller oder vom Baustellenpersonal erfolgen.
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Markierung und Einhaltung der effektiven Verankerungstiefe,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bohrlochherstellung durch Hammerbohren oder Hilti Hohlbohrer TE-CD/TE-YD,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Der Dübel darf nicht in wassergefüllte Bohrlöcher gesetzt werden,
- Bohrlochlochreinigung und Einbau gemäß Anhang 8 bis 11,
- Bei Bohrlochtiefen ≥ 250 mm sind Stauzapfen zu verwenden,
- Die Temperatur des Mörtels beim Einbau beträgt mindestens 0 °C; die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels unterschreitet nicht -10 °C; Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 10, Tabelle 7,
- Befestigungsschrauben oder Gewindestangen (einschließlich Muttern und Scheiben) für Innengewindehülsen HIS-(R)N müssen der zugehörigen Stahlgüte und Festigkeitsklasse entsprechen,
- Montagedrehmomente sind für die Tragfähigkeit des Dübels nicht erforderlich. Die in Anhang 3, 4 und 6 angegebenen Anzugsdrehmomente dürfen jedoch bei der Montage der Anbauteile nicht überschritten werden.

Seite 9 von 32 | 8. August 2012

5 Vorgaben für den Hersteller

5.1 Verpflichtungen des Herstellers

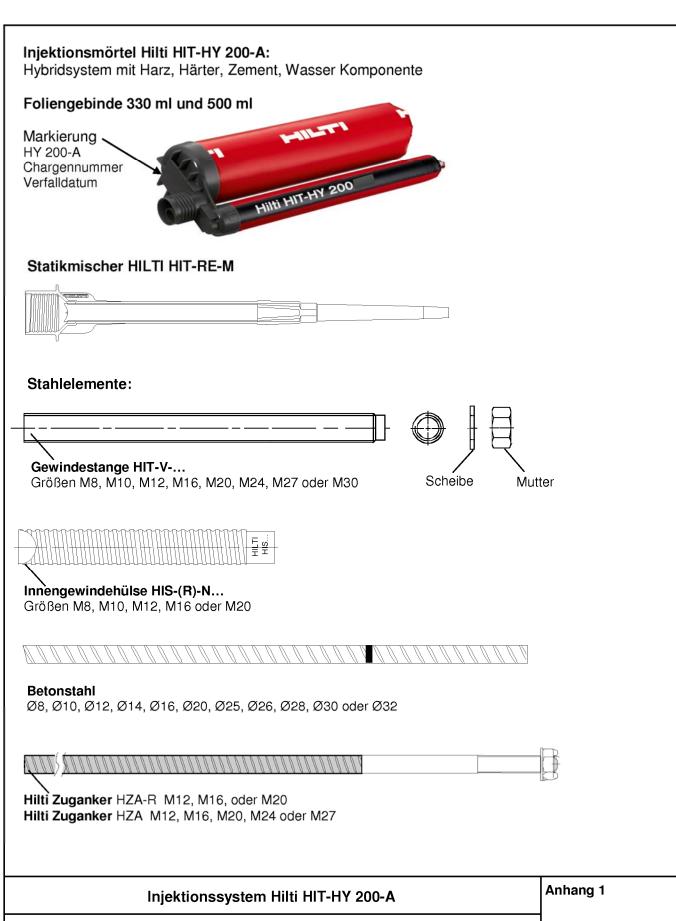
Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

Es sind mindestens folgende Angaben zu machen:

- Bohrnenndurchmesser,
- Bohrlochtiefe.
- Nenndurchmesser des Stahlteils,
- Mindestverankerungstiefe,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau.
- Temperatur im Verankerungsgrund bei Setzen des Dübels,
- Zulässige Verarbeitungszeit des Mörtels,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- Max. Drehmoment beim Befestigen,
- Herstelllos.

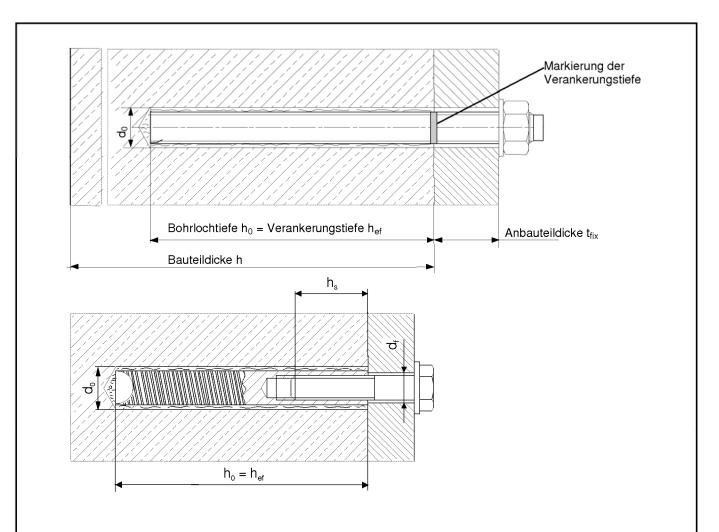
Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

5.2 Verpackung, Transport und Lagerung


Die Foliengebinde sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern.

Foliengebinde mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden.

Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Foliengebinde sind separat von den Stahlteilen verpackt.


Georg Feistel Beglaubigt
Abteilungsleiter

Produkt

Nutzungskategorie: Einbau in trockenem oder feuchtem Beton (nicht in wassergefüllten Bohrlöchern)

Temperaturbereich I: (max Langzeittemperatur +24 ℃ und -40 °C bis +40 °C

max Kurzzeittemperatur +40 °C)

(max. Langzeittemperatur +50 ℃ und Temperaturbereich II: -40 °C bis +80 °C

max. Kurzzeittemperatur +80 ℃)

Temperaturbereich III: -40 ℃ bis +120 ℃ (max. Langzeittemperatur +72 ℃ und

max. Kurzzeittemperatur +120 °C)

Injektionssystem Hilti HIT-HY 200-A	Anhang 2
Setzanweisung und vorgesehener Anwendungsbereich	

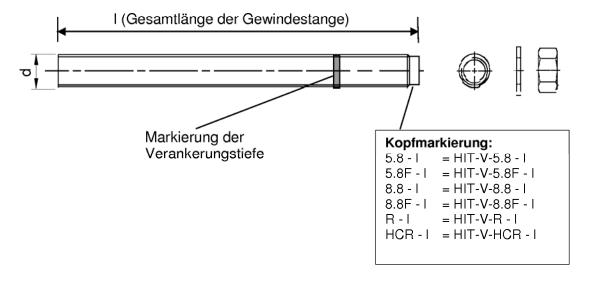


Tabelle 1:	Montagekennwerte	der Gew	indestange	HIT-V
------------	------------------	---------	------------	-------

HIT-HY 200-A mit HIT-V			М8	M10	M12	M16	M20	M24	M27	M30
Durchmesser der Gewindestange	d	[mm]	8	10	12	16	20	24	27	30
Bereich der Verankerungstiefe (hef)	min	-[mm]	60	60	70	80	90	96	108	120
und Bohrlochtiefe (h ₀)	max	-[mm]	160	200	240	320	400	480	540	600
Bohrernenndurchmesser	d_0	[mm]	10	12	14	18	22	28	30	35
Durchgangsbohrung im anzuschließenden Bauteil ¹⁾	d _f	[mm]	9	12	14	18	22	26	30	33
Max Anzugsdrehmoment	T_{max}	[Nm]	10	20	40	80	150	200	270	300
Bauteildicke	h _{min}	[mm]	h _{ef} + 30			h _{ef} + 2d _o				
Achsabstand	S _{min}	[mm]	40	50	60	80	100	120	135	150
Minimaler Randabstand	C _{min}	[mm]	40	50	60	80	100	120	135	150

Für größere Durchgangsbohrungen im anzuschließenden Bauteil siehe Kapitel 1.1 der TR 029

HIT-V...

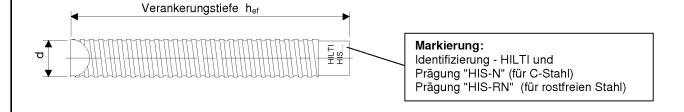

Injektionssystem Hilti HIT-HY 200-A	Anhang 3
Montagekennwerte Gewindestange HIT-V	

Tabelle 2: Montagekennwerte Innengewindehülse HIS-(R)N

HIT-HY 200-A mit HIS-(R)	N		М 8	M 10	M 12	M 16	M 20
Hülsendurchmesser	d	[mm]	12,5	16,5	20,5	25,4	27,6
Verankerungstiefe	h _{ef}	[mm]	90	110	125	170	205
Bohrernenndurchmesser	d ₀	[mm]	14	18	22	28	32
Bohrlochtiefe	h ₀	[mm]	90	110	125	170	205
Durchgangsloch im anzuschließenden Bauteil	d _f	[mm]	9	12	14	18	22
Maximales Anzugsdreh- moment	T_{max}	[Nm]	10	20	40	80	150
Einschraubtiefe min-max	h _s	[mm]	8-20	10-25	12-30	16-40	20-50
Minimale Bauteildicke	h_{min}	[mm]	120	150	170	230	270
Minimaler Achsabstand	S _{min}	[mm]	40	45	55	65	90
Minimaler Randabstand	C _{min}	[mm]	40	45	55	65	90

HIS-(R)N

Injektionssystem Hilti HIT-HY 200-A	Anhang 4
Montagekennwerte Innengewindehülse HIS-(R)N	

Tabelle 3: Montagekennwerte für Stahlteile aus Betonstahl

HIT-HY 200-A mit Betonstahl		Ø8	Ø10	ø	12	Ø14	Ø16	Ø20	Ø25	Ø26	Ø28	Ø30	Ø32		
Durchmesser	d	[mm]	8	10	1:	2	14	16	20	25	26	28	30	32	
Bereich der	min	[mm]	60	60	7	0	75	80	90	100	104	112	120	128	
Verankerungstiefe (h _{ef}) und Bohrlochtiefe(h ₀)	max	[mm]	160	200	24	10	280	320	400	500	520	560	600	640	
Bohrernenndurchmesser	d ₀	[mm]	12 / 10 ¹⁾	14 / 12 ¹⁾	14 ¹⁾	16 ¹⁾	18	20	25	32	32	35	37	40	
Minimale Bauteildicke	h _{min}	[mm]	r	n _{ef} + 30	ef + 30		h _{ef} + 2d _o								
Minimaler Achsabstand	Smin	[mm]	40	50	6	0	70	80	100	125	130	140	150	160	
Minimaler Randabstand	C _{min}	[mm]	40	50	6	0	70	80	100	125	130	140	150	160	

¹⁾ Beide angegebenen Bohrerdurchmesser können verwendet werden

Hinweis zur EN1992-1-1 Anhang C Tabelle C.1 und C.2N Eigenschaften des Betonstahls:

Produktart		Stäbe und Betonstabstahl vom Ring			
Klasse		В	С		
Charakteristische Streckgrenze fy	_k oder f _{0,2k} (MPa)	400 bis	s 600		
Mindestwert von $k = (f_t/f_y)_k$	≥ 1,08	≥ 1,15 < 1,35			
Charakteristische Dehnung bei H	öchstlast, $arepsilon_{uk}$ (%)	≥ 5,0	≥ 7,5		
Biegbarkeiten	Biege/Rückbiegetest				
Maximale Abweichung von der Nennmasse (Einzelstab oder Draht) (%)	Nenndurchmesser des Stabs(mm) ≤ 8 > 8	± 6,0 ± 4,5			
Verbund: Mindestwerte der bezogenen Rippenfläche f _{R,min} (Festlegung gemäß EN 15630)	Nenndurchmesser des Stabs (mm) 8 bis 12 > 12	0,0. 0,0			

Rippenhöhe des Betonstahls h_{rib}:

Die Rippenhöhe des Betonstahls h_{rib} muss die folgende Anforderung erfüllen: $0.05 * d \le h_{rib} \le 0.07 * d$ mit: d = Nenndurchmesser des Betonstahlelements

Injektionssystem Hilti HIT-HY 200-A	Anhang 5
Montagekennwerte Betonstahl	

Tabelle 4: Montagekennwerte der Zuganker HZA-R

HIT-HY 200-A mit HZA-R			M12	M16	M20			
Durchmesser des Ankers	d	[mm]	12	16	20			
Bereich der Verankerungstiefe	min	[mm]	170	180	190			
(h _{nom}) und Bohrlochtiefe(h ₀)	max	[mm]	240	320	400			
Verankerungslänge	h _{ef}	[mm]	h _{nom} -100					
Länge des glatten Schaftes	ℓ_{e}	[mm]	100					
Bohrernenndurchmesser	d ₀	[mm]	16	20	25			
Durchgangsbohrung im anzuschließenden Bauteil	d _f	[mm]	14	18	22			
Max. Anzugsdrehmoment	T _{max}	[Nm]	40	80	150			
Minimale Bauteildicke	h _{min}	[mm]	h _{nom} + 2d _o					
Minimaler Achsabstand	S _{min}	[mm]	60	80	100			
Minimaler Randabstand	C _{min}	[mm]	60	80	100			

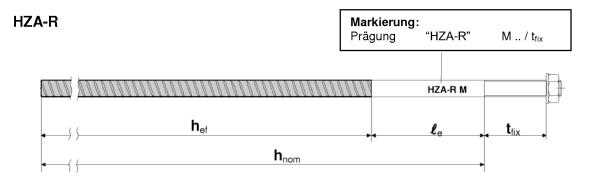


Tabelle 5: Montagekennwerte der Hilti Zuganker HZA

HIT-HY 200-A mit HZA			M12	M16	M20	M24	M27			
Durchmesser des Ankers	d	[mm]	12	16	20	25	28			
Bereich der Verankerungstiefe	min	[mm]	90	100	110	120	140			
(h _{nom}) und Bohrlochtiefe(h ₀)	max	[mm]	240	320	400	500	560			
Verankerungslänge	h _{ef}	[mm]		h _{nom} - 20						
Länge des glatten Schaftes	$\ell_{\mathbf{e}}$	[mm]	20							
Bohrernenndurchmesser	d ₀	[mm]	16	20	25	32	35			
Durchgangsbohrung im anzuschließenden Bauteil	d _f	[mm]	14	18	22	26	30			
Max Anzugsdrehmoment	T _{max}	[Nm]	40	80	150	200	270			
Minimale Bauteildicke	h _{min}	[mm]	h _{nom} + 2d _o							
Minimaler Achsabstand	S _{min}	[mm]	60	80	100	120	135			
Minimaler Randabstand	C _{min}	[mm]	60	80	100	120	135			

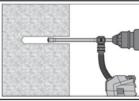
Injektionssystem Hilti HIT-HY 200-A	Anhang 6
Montagekennwerte HZA, HZA-R	

Tabelle 6: Werkstoffe

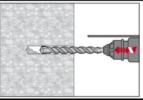
Benennung	Werkstoffe
Stahlteile aus Betonstal	
Betonstahl	Siehe Anhang 5
Stahlteile aus verzinktei	
Gewindestange HIT-V-5.8(F)	Festigkeitsklasse 5.8, R_m = 500 N/mm²; $R_{p,0,2}$ = 400 N/mm², A5 > 8% Duktil galvanisch verzinkt \geq 5 μ m EN ISO 4042 (F) feuerverzinkt \geq 45 μ m EN ISO 10684
Gewindestange HIT-V-8.8(F)	Festigkeitsklasse 8.8, R_m = 800 N/mm²; $R_{p \ 0,2}$ = 640 N/mm², A5 > 8% Duktil galvanisch verzinkt \geq 5 μ m EN ISO 4042 (F) feuerverzinkt \geq 45 μ m EN ISO 10684
Hilti Zuganker HZA	galvanisch verzinkt A2K EN ISO 4042 Betonstahl B500-B gemäß DIN 488-1:2009 und DIN 488-2:2009
Scheibe ISO 7089	galvanisch verzinktEN ISO 4042; feuerverzinktEN ISO 10684
Sechskantmutter EN ISO 4032	Festigkeitsklasse 8 ISO 898-2 galvanisch verzinkt ≥ 5μm EN ISO 4042; feuerverzinkt≥ 45μm EN ISO 10684
Innengewindehülse ¹⁾ HIS-N	C-Stahl 1.0718, EN 10277-3 galvanisch verzinkt≥ 5µm EN ISO 4042
Stahlteile aus nichtroste	endem Stahl
Gewindestange HIT-V-R	Für \leq M24: Festigkeitsklasse 70, R _m = 700 N/mm²; R _{p 0,2} = 450 N/mm²; A5 > 8% Duktil Für > M24: Festigkeitsklasse 50, R _m = 500 N/mm²; R _{p 0,2} = 210 N/mm²; A5 > 8% Duktil Stahl1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
Scheibe ISO 7089	Stahl1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
Sechskantmutter EN ISO 4032	Festigkeitsklasse 70 EN ISO 3506-2 Stahl 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
Innengewindehülse ²⁾ HIS-RN	Stahl 1.4401 und 1.4571 EN 10088
Hilti Zuganker HZA-R	Rundstahl glatt mit Gewinde: Stahl 1.4404, 1.4362 und 1.4571 EN 10088 Betonstahl B500-B gemäß DIN 488-1:2009 und DIN 488-2:2009
Scheibe ISO 7089	Stahl 1.4404 und 1.4571 EN 10088
Sechskantmutter EN ISO 4032	Festigkeitsklasse 80 EN ISO 3506-2 Stahl 1.4404 und 1.4571 EN 10088
Stahlteile aus hochkorre	osionsbeständigem Stahl
Gewindestange HIT-V-HCR	Für \leq M20: $R_m = 800 \text{ N/mm}^2$; $R_{p \ 0,2} = 640 \text{ N/mm}^2$, A5 $> 8\%$ Duktil Für $>$ M20: $R_m = 700 \text{ N/mm}^2$; $R_{p \ 0,2} = 400 \text{ N/mm}^2$, A5 $> 8\%$ Duktil Stahl 1.4529, 1.4565 EN 10088
Scheibe ISO 7089	Stahl 1.4529, 1.4565 EN 10088
Sechskantmutter EN ISO 4032	Festigkeitsklasse 70 EN ISO 3506-2 Stahl 1.4529, 1.4565 EN 10088

zugehörige Befestigungsschraube: Festigkeitsklasse 8.8 EN ISO 898-1, A5 > 8% Duktil galvanisch verzinkter Stahl ≥ 5μm EN ISO 4042

zugehörige Befestigungsschraube: Festigkeitsklasse 70 EN ISO 3506-1, A5 > 8% Duktil


nichtrostender Stahl 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088

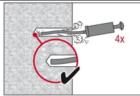
Injektionssystem Hilti HIT-HY 200-A	Anhang 7
Werkstoffe	



Montageanweisung

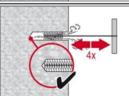
Bohrlocherstellung

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Hilti Bohrers TE-CD oder TE-YD auf die richtige Bohrtiefe erstellen. Dieses Bohrsystem beseitigt das Bohrmehl und reinigt das Bohrloch während des Bohrvorgangs. Nach Erstellen des Bohrlochs kann mit Arbeitsschritt "Injektion des Mörtels" gemäß Gebrauchsanweisung fortgefahren werden.

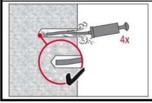

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers auf die richtige Bohrtiefe erstellen.

Bohrlochreinigung

unmittelbar vor dem Setzen des Dübels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein


a) Reinigung von Hand (MC) nur für ungerissenen Beton

für Bohrlochdurchmesser $d_0 \le 20$ mm und Bohrlochtiefen $h_0 \le 10$ d



Für Bohrlochdurchmesser $d_0 \le 20$ mm und Verankerungstiefen $h_{ef} \le 10$ d kann die Hilti Handausblaspumpe verwendet werden.

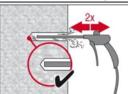
Das Bohrloch mindestens 4-mal mit der Hilti Ausblaspumpe vom Bohrlochgrund ausblasen, bis die rückströmende Luft staubfrei ist.

4-mal mit Stahlbürste in passender Größe (Bürste Ø ≥ Bohrloch Ø, siehe Tabelle 8) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen – falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

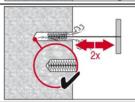
Bohrloch erneut mit der Hilti Handausblaspumpe vom Bohrlochgrund mindestens 4-mal ausblasen, bis die rückströmende Luft staubfrei ist.

Injektionssystem Hilti HIT-HY 200-A

Montageanweisung I


753709 12 8 06 01-188/12

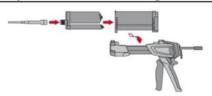
Bohrlochreinigung


unmittelbar vor dem Setzen des Dübels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein

b) Druckluftreinigung (CAC) für alle Bohrlochdurchmesser d₀ und Bohrlochtiefen h₀

Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit ölfreier Druckluft (min. 6 bar bei 6m³/h; falls notwendig mit Verlängerung) ausblasen, bis die rückströmende Luft staubfrei ist.

Bei Bohrlochdurchmesser ≥ 32 mm muss der Kompressor mindestens 140 m³/h Luftstrom haben.



2-mal mit Stahlbürste in passender Größe (Bürste Ø ≥ Bohrloch Ø, siehe Tabelle 8) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung). Die Bürste muss beim Einführen einen Widerstand erzeugen – falls nicht, ist die Bürste zu klein und muss durch eine größere Bürste ersetzt werden.

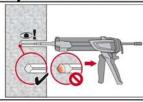
Bohrloch erneut vom Bohrlochgrund über die gesamte Länge 2-mal mit Druckluft ausblasen, bis die rückströmende Luft staubfrei ist.

Injektionsvorbereitung

Befolgen Sie die Bedienungsanleitung des Auspressgerätes und des Mörtels.

Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Prüfen der Kassette und des Foliengebindes auf einwandfreie Funktion

Foliengebinde in die Kassette einführen und Kassette in Auspressgerät schwingen.



Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden.

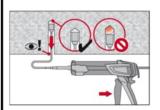
Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:

2 Hübe bei 330 ml Foliengebinde, 3 Hübe bei 500 ml Foliengebinde, 4 Hübe bei 500 ml Foliengebinde ≤ 5℃.

Injektion des Mörtels vom Bohrlochtiefsten ohne Luftblasen zu bilden

Injizieren des Mörtels vom Bohrlochgrund und während jedem Hub den Mischer langsam etwas herausziehen.

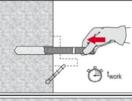
Das Bohrloch zu ca. 2/3 verfüllen. Nach dem Einsetzen des Befestigungselementes muss der Ringspalt vollständig mit Mörtel ausgefüllt sein.


Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen um Mörtelnachlauf zu vermeiden.

Injektionssystem Hilti HIT-HY 200-A

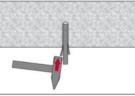
Anhang 9

Montageanweisung II

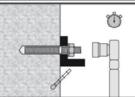


Überkopfanwendung und/oder Montage bei Verankerungstiefen von h_{ef} > 250mm.

Das Injizieren des Mörtels bei Überkopfanwendung ist nur mit Hilfe von Stauzapfen und Verlängerungen möglich.


HIT-RE-M Mischer, Mischerverlängerung und entsprechenden Stauzapfen Hilti HIT-SZ (siehe Tabelle 8) zusammenfügen. Den Stauzapfen bis zum Bohrlochgrund einführen und Mörtel injizieren. Während der Injektion wird der Stauzapfen über den Staudruck vom Bohrlochgrund automatisch nach außen geschoben.

Setzen des Befestigungselementes



Vor der Montage sicherstellen, dass das Element trocken und frei von Öl und anderen Verunreinigungen ist.

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit t_{work} abgelaufen ist. Verarbeitungszeit t_{work} siehe Tabelle 7.

Bei Überkopfanwendung das Element in seiner endgültigen Position z.B. mittels Keilen (Hilti HIT-OHW), gegen Herausrutschen sichern.

Last bzw. Drehmoment aufbringen: Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle 7) kann der Anker belastet werden.

Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} in Tabelle 1,2,4 und 5 nicht überschreiten.

Tabelle 7: Verarbeitungszeit twork und Aushärtezeit tcure

Untergrundtemperatur	Verarbeitungszeit t _{work} Hilti HIT-HY 200-A	Aushärtezeit t _{cure} Hilti HIT-HY 200-A			
-10 ℃ bis -5 ℃	1,5 Stunden	7 Stunden			
-4 ℃ bis 0 ℃	50 Minuten	4 Stunden			
1 ℃ bis 5 ℃	25 Minuten	2 Stunden			
6 °C bis 10 °C	15 Minuten	1 Stunde			
11 ℃ bis 20 ℃	7 Minuten	30 Minuten			
21 °C bis 30 °C	4 Minuten	30 Minuten			
31 ℃ bis 40 ℃	3 Minuten	30 Minuten			

Injektionssystem Hilti HIT-HY 200-A	Anhang 10
Montageanweisung III Aushärtezeit	

Tabelle 8: Bohrlochdurchmesser spezifische Montagewerkzeuge

Bef	estigungsele	ement		Bohren und Re	einigen	Installation
HIT-V	HIS-N	Betonstahl HZA	TE-CD TE-YD	TE-C TE-Y		HIT-SZ
(mmm) mms					411111111111111111111111111111111111111	
[mm]	[mm]	[mm]	d ₀ [mm]	d ₀ [mm]	HIT-RB	HIT-SZ
8		8		10	10	
10	-	8 / 10	12	12	12	12
12	8	10 / 12	14	14	14	14
		12	16	16	16	16
16	10	14	18	18	18	18
-	-	16	20	20	20	20
20	12	~	22	22	22	22
-	-	-	24	24	24	24
-	-	20	25	25	25	25
24	16	-	28	28	28	28
27	-	~		30	30	30
-	20	25 / 26	32	32	32	32
30	-	28		35	35	35
-	-	30		37	37	37
-	-	32		40	40	40

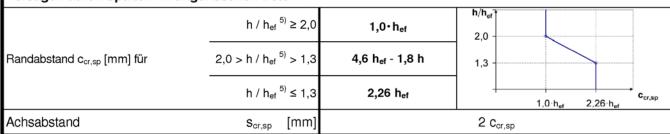
Automatische Reinigung (AC):

Die Reinigung wird während dem Bohren mit dem Hilti TE-CD und TE-YD Bohrsystem inklusive Staubsauger durchgeführt.

zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 20$ mm und einer Bohrlochtiefe von $h_0 \le 100$ wird die Hilti-Handausblaspumpe empfohlen.

Druckluftreinigung (CAC):

Zum Ausblasen mit Druckluft wird die Verwendung einer Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm empfohlen.



Injektionssystem Hilti HIT-HY 200-A Bohrlochreinigung Reinigungssets, Bürstendurchmesser

Hilti HIT-HY 200-A mit HIT-V		М8	M10	M12	M16	M20	M24	M27	M30	
Stahlversagen HIT-V										
Charakt. Zugtragfähigkeit HIT-V-5.8(F)	N _{Rk} ,	s [kN]	18	29	42	79	123	177	230	281
Charakt. Zugtragfähigkeit HIT-V-8.8(F)	N _{Rk} ,		29	46	67	126	196	282	367	449
Teilsicherheitsbeiwert	γ̃Ms	.N ¹⁾ [-]				1,5	5		•	1
Charakt. Zugtragfähigkeit HIT-V-R	N_{Rk}	s [kN]	26	41	59	110	172	247	230	281
Teilsicherheitsbeiwert	γMs	1) [7]			1,	87			2,8	36
Charakt. Zugtragfähigkeit HIT-V-HCR	$N_{Rk,}$	s [kN]	29	46	67	126	196	247	321	393
Teilsicherheitsbeiwert	γ̃Ms	_{.N} 1) [-]			1,5				2,1	
Kombiniertes Versagen durch Heraus		tonaus	bruch ³⁾							
Durchmesser der Gewindestange	d [r	nm]	8	10	12	16	20	24	27	30
Charakteristische Verbundtragfähigkeit i	im unger	rissener	Beton	C20/25						
Temp. Bereich I ⁴⁾ : 40 ℃/24 ℃	τ _{Rk,ucr} [ໂ	N/mm²]	20					15		
Temp. Bereich II ⁴⁾ : 80 ℃/50 ℃	τ _{Rk,ucr} [ໂ	N/mm²]	17					12		
Temp. Bereich III ⁴⁾ : 120 ℃/72 ℃	τ _{Rk,ucr} [ໂ	N/mm²]	14					11		
Charakteristische Verbundtragfähigkeit i	im geriss	senen B	eton C2	:0/25						
Temp. Bereich I ⁴⁾ : 40 ℃/24 ℃	τ _{Rk,cr} [[N/mm²]	(6			8			
Temp. Bereich II ⁴⁾ : 80 ℃/50 ℃				,5			6,5	5		
Temp. Bereich III ⁴⁾ : 120 ℃/72 ℃	Temp. Bereich III ⁴⁾ : 120 ℃/72 ℃ τ _{Rk,cr} [N/mm²]				5,5					
Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma_{Mc}$	$=\gamma_{Msp}^{}^{}$ 1)	[-]				1,8	2)			
Erhöhungsfaktor für τ_{Rk} in Beton	Ψο	[-]				1,0)			

Versagen durch Spalten im ungerissenen Beton 3)

¹⁾ Sofern andere nationale Regelungen fehlen

h = Bauteildicke; h_{ef} = Verankerungstiefe

Injektionssystem Hilti HIT-HY 200-A	Anhang 12
Charakteristische Werte für Zugbeanspruchung Gewindestangen HIT-V…	

In diesem Wert ist der Montagesicherheitsfaktor $\gamma_2 = 1,2$ enthalten

Bemessung von Betonversagen und Spalten siehe Abschnitt 4.2

⁴⁾ Erklärung siehe Abschnitt 1.2

Tabelle 10: Bemessungsverfahren A, Charakteristische Werte für Querbeanspruchung

Hilti HIT-HY 200-A mit HIT-V			М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Stahlversagen ohne Hebelarm											
Charakteristische Quertragfähigkeit HIT-V-5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Charakteristische Quertragfähigkeit HIT-V-8.8	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Charakteristische Quertragfähigkeit HIT-V-R	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140	
Charakteristische Quertragfähigkeit HIT-V-HCR	$V_{Rk,s}$	[kN]	15	23	34	63	98	124	161	196	
Stahlversagen mit Hebelarm											
Charakteristische Quertragfähigkeit HIT-V-5.8	M ^o _{Rk,s}	[Nm]	19	37	66	167	325	561	832	1125	
Charakteristische Quertragfähigkeit HIT-V-8.8	M ^o _{Rk,s}	[Nm]	30	60	105	266	519	898	1332	1799	
Charakteristische Quertragfähigkeit HIT-V-R	M ^o _{Rk,s}	[Nm]	26	52	92	233	454	786	832	1124	
Charakteristische Quertragfähigkeit HIT-V-HCR	M ^o _{Rk,s}	[Nm]	30	60	105	266	520	786	1165	1574	
Teilsicherheitsbeiwert Stahlversagen		'		•							
Teilsicherheitsbeiwert HIT-V Festigkeitsklasse 5.8 oder 8.8	γ _{Ms,V} 1)	[-]				1,2	25				
Teilsicherheitsbeiwert HIT-V-R	γ _{Ms,V} 1)	[-]			1,	56			2,	38	
Teilsicherheitsbeiwert HIT-V-HCR	$\gamma_{Ms,V}^{1)}$	[-]			1,25				1,75		
Betonausbruch auf der lastabgewand											
Faktor in Gleichung (5.7) des Technical Report TR 029 für die Bemessung von Verbunddübeln	k	[-]				2,	.0				
Teilsicherheitsbeiwert	γ _{Mep} ¹⁾	[-]	-] 1,5 ²⁾								
Betonkantenbruch			•								
Siehe Abschnitt 5.2.3.4 des Technical F	Report TR 0	29 für c	die Ber	nessun	g von \	/erbund	ddübel				
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]				1,5	5 2)				

Sofern andere nationale Regelungen fehlen

Injektionssystem Hilti HIT-HY 200-A	Anhang 13
Charakteristische Werte für Querbeanspruchung Gewindestangen HIT-V	

In diesem Wert ist der Montagesicherheitsfaktor γ_2 = 1,0 enthalten.

Tabelle 11: Verschiebung unter Zuglast 1)

Hilti HIT-HY 200-	A mit HI	IT-V	M8	M10	M12	M16	M20	M24	M27	M30
Ungerissener Be				24℃						
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,06	0,07	0,07	0,08
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,13	0,14	0,16
Ungerissener Be	⁰ : 80 ℃ /	∕ 50℃						,		
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,06	0,08	0,09	0,10	0,12
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,09	0,11	0,13	0,15	0,16
Ungerissener Be	ton Tem	peraturklasse III	²⁾ : 120℃	C / 72℃						
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,04	0,05	0,06	0,08	0,10	0,12	0,13	0,16
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,07	0,09	0,11	0,13	0,15	0,17
Gerissener Betor	n Tempe	raturklasse l ²⁾ : 4	0℃ / 24	.დ						
Verschiebung	δ_{N0}	[mm/(N/mm²)]				0,	07			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]				0,	16			
Gerissener Betor	n Tempe	raturklasse II ²⁾ : 8	30℃ / 50	o℃						
Verschiebung	δ_{N0}	$[mm/(N/mm^2)]$				0,	10			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,22							
Gerissener Betor	n Tempe	raturklasse III ²⁾ :	120℃ /	72℃		_				
Verschiebung	δ_{N0}	[mm/(N/mm²)]				0,	13			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]				0,	29			·

Bemessung der Verschiebung unter Gebrauchslast: τ_{Sd} Bemessung der Verbundspannung Verschiebung unter Kurzzeitbelastung = $\delta_{N0} \cdot \tau_{Sd}/1,4$; Verschiebung unter Langzeitbelastung = $\delta_{N\infty} \cdot \tau_{Sd}/1,4$

Tabelle 12: Verschiebung unter Querlast 1)

Hilti HIT-HY 200-A mit HIT-V		M8	M10	M12	M16	M20	M24	M27	M30	
Verschiebung	δ_{V0}	[mm]/kN	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Verschiebung	$\delta_{V\infty}$	[mm]/kN	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

Bemessung der Verschiebung unter Gebrauchslast: V_{sd} Bemessungswert der Querlast Verschiebung unter Kurzzeitbelastung = δ_{V0} • V_d /1,4; Verschiebung unter Langzeitbelastung = $\delta_{V\infty}$ • V_d /1,4

Injektionssystem Hilti HIT-HY 200-A	Anhang 14
Verschiebungen Gewindestangen HIT-V	

²⁾ Erklärung siehe Abschnitt 1.2

Tabelle 13: Bemessungsverfahren A, Charakteristische Werte für Zugbeanspruchung

Hilti HIT-HY 200-A mit Betonstah	ıl		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Stahlversagen											
Charakteristische Zugtragfähigkeit fü Betonstahl B500 gem. DIN 488:2000		s [kN]	28	43	62	85	111	173	270	339	442
Teilsicherheitsbeiwert	γ̃Ms	_{,N} ¹⁾ [-]					1,4				
Kombiniertes Versagen durch He			tonau	sbrucl	h ³⁾						
Durchmesser des Betonstahls	d	[mm]	8	10	12	14	16	20	25	28	32
Charakteristische Verbundtragfähigk	eit im ung	erissener	Betor	n C20/2	25						
Temperaturbereich I ⁴⁾ : 40 ℃/24 ℃ τ _{Rk,ucr} [N/mm²]							12				
Temperaturbereich II ⁴⁾ : 80 ℃/50 ℃	$ au_{ m Rk,ucr}$	[N/mm²]	10								
Temperaturbereich III 4): 120 ℃/72 ℃					8,5						
Charakteristische Verbundtragfähigk	eit im geri	ssenen B	eton C	20/25							
Temperaturbereich I ⁴⁾ : 40 ℃/24 ℃ τ _{Rk,cr} [N/mm ²]			- 5 7								
Temperaturbereich II ⁴⁾ : 80 ℃/50 ℃	$ au_{ m Rk,cr}$	[N/mm²]	- 4 5,5								
Temperaturbereich III 4): 120 ℃/72 ℃	τ _{Rk,cr}	[N/mm²]	- 3,5 5								
Teilsicherheitsbeiwert γ _{Mp}	$= \gamma_{Mc} = \gamma_{Ms}$	¹⁾ [-]					1,5 ²⁾				
Erhöhungsfaktor für τ _{Rk} im Beton	Ψο	r 1					1,0				
Versagen durch Spalten im unger	issenen E	Beton ³⁾									
	h / l	n _{ef} ⁵⁾ ≥ 2,0	,0 1,0 • h ef		f	h/h _e 2,0					
Randabstand c _{cr,sp} [mm] für	2,0 > h / h	n _{ef} ⁵⁾ > 1,3	4,6	h _{ef} - 1,	,8 h	1,3	1				
	h / I	n _{ef} ⁵⁾ ≤ 1,3		2,26 h _e	f			1,0·h _{ef}	2,26	——∫ 6·h _{ef}	C _{cr,sp}
Achsabstand	S _{cr}	_{r,sp} [mm]					2 C _{cr,sp}				

Sofern andere nationale Regelungen fehlen

Injektionssystem Hilti HIT-HY 200-A

Charakteristische Werte für Zugbeanspruchung
Betonstahl

Anhang 15

In diesem Wert ist der Montagesicherheitsfaktor $\gamma_2 = 1,0$ enthalten

Berechnung von Betonversagen und Spalten siehe Abschnitt 4.2

Erklärung siehe Abschnitt 1.2

h = Bauteildicke; h_{ef} = Verankerungstiefe

Tabelle 14: Bemessungsverfahren A, Charakteristische Werte für Querbeanspruchung

Hilti HIT-HY 200-A mit Betonstahl			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Stahlversagen ohne Hebelarm				•	•						
Charakteristische Quertragfähigkeit mit Betonstahl B500 gem. DIN 488:2009-08	$V_{Rk,s}$	[kN]	14	22	31	42	55	86	135	169	221
Stahlversagen Betonstahl mit Heb	Stahlversagen Betonstahl mit Hebelarm										
Charakteristische Quertragfähigkeit mit Betonstahl B500 gem. DIN 488:2009-08	M ^o _{Rk,s}	[Nm]	33	65	112	178	265	518	1012	1422	2123
Teilsicherheitsbeiwert Stahlversagen											
Teilsicherheitsbeiwert Betonstahl	γ _{Ms,V} 1)	[-]					1,5				
Betonausbruch auf der lastabgewa	ndten Se	ite									
Faktor in Gleichung (5.7) des Technic Reports TR 029 für die Bemessung v Verbunddübeln		[-]					2,0				
Teilsicherheitsbeiwert γ_{Mep}^{-1} [-] 1,5 $^{2)}$											
Betonkantenbruch											
Siehe Abschnitt 5.2.3.4 des Technic	al Report	TR 029	für d	ie Bem	nessun	g von '	√erbur	nddübe	el		
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]					1,5 ²⁾				

Sofern andere nationale Regelungen fehlen

Injektionssystem Hilti HIT-HY 200-A	Anhang 16
Charakteristische Werte für Querbeanspruchung Betonstahl	

In diesem Wert ist der Montagesicherheitsfaktor γ_2 = 1,0 enthalten.

Tabelle 15: Verschiebung unter Zuglast 1)

Hilti HIT-HY 200-A	mit Beto	nstahl	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Ungerissener Beto					.5	,	,5 . 6	,5.20	.5.20	.5.20	.5 5 2
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,02	0,03	0,03	0,04	0,04	0,06	0,07	0,08	0,09
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,13	0,15	0,17
Ungerissener Beton Temperaturklasse II ²⁾ : 80 °C / 50 °C											
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,05	0,05	0,06	0,08	0,10	0,11	0,12
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,09	0,11	0,14	0,15	0,17
Ungerissener Beto	Ungerissener Beton Temperaturklasse III ²⁾ : 120 °C / 72 °C										
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,04	0,05	0,06	0,07	0,08	0,10	0,12	0,14	0,16
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,04	0,05	0,07	0,08	0,09	0,11	0,14	0,16	0,18
Gerissener Beton	Temperatu	urklasse l ²): 40℃	: / 24℃	;							
Verschiebung	δ_{N0}	[mm/(N/mm²)]					0,11				
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]					0,16				
Gerissener Beton	Temperatu	urklasse II ²⁾ : 80 ୯	C / 50°	С							
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,15								
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,22								
Gerissener Beton	Temperatu	urklasse III ²⁾ : 120)°C / 72	2°C							
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,20								
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]					0,29				

Berechnung der Verschiebung unter Gebrauchslast: τ_{Sd} Bemessungswert der Verbundspannung Verschiebung unter Kurzzeitbelastung = δ_{N0} • τ_{Sd} /1,4; Verschiebung unter Langzeitbelastung = $\delta_{N\infty}$ • τ_{Sd} /1,4

Tabelle 16: Verschiebung unter Querlast 1)

Hilti HIT-HY 200-A mit Betonstahl		Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
Verschiebung	δ_{V0}	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Verschiebung	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,04	0,04

Bemessung der Verschiebung unter Gebrauchslast: V_{sd} Bemessungsquerlast Verschiebung unter Kurzzeitbelastung = $\delta_{Vo} \cdot V_d/1,4$; Verschiebung unter Langzeitbelastung = $\delta_{Vo} \cdot V_d/1,4$

Injektionssystem Hilti HIT-HY 200-A	Anhang 17
Verschiebungen für Betonstahl	

²⁾ Erklärung siehe Abschnitt 1.2

Tabelle 17: Bemessungsverfahren A, Charakteristische Werte für Zugbeanspruchung

Hilti HIT-HY 200-A mit HIS-(R)N			M 8	M 10	M 12	M 16	M 20	
Stahlversagen HIS-(R)N								
Charakteristische Zugtragfähigkeit HI mit Schrauben der Festigkeitsklasse		N _{Rk,s} [kN]	25	46	67	118	109	
Teilsicherheitsbeiwert	γι	_{Ms,N} ¹⁾ [-]	1,43	1	,50	1,	,47	
Charakteristische Zugtragfähigkeit HI mit Schrauben der Festigkeitsklasse	S-RN	N _{Rk,s} [kN]	26	41	59	110	166	
Teilsicherheitsbeiwert	_{Ms,N} ¹⁾ [-]		1	,87		2,4		
Kombiniertes Versagen durch Hera			nausbruch	3)				
Verankerungstiefe	h _{ef}	[mm]	90	110	125	170	205	
Hülsenaußendurchmesser	d ₁	[mm]	12,5	16,5	20,5	25,4	27,6	
Charakteristische Verbundtragfähigke	eit im unge	rissenen B	eton C20/2	5				
Temperaturklasse I ⁴⁾ : 40 ℃/24 ℃ τ _{Rk,ucr} [N/mm²] 13								
Temperaturklasse II 4): 80 ℃/50 ℃	[N/mm²]			11				
Temperaturklasse III 4): 120℃/72℃	[N/mm²]			9,5				
Charakteristische Verbundtragfähigke	eit im geris	senen Beto	on C20/25					
Temperaturklasse I ⁴⁾ : 40 ℃/24 ℃	$ au_{ m Rk,cr}$	[N/mm²]	7					
Temperaturklasse II 4): 80 ℃/50 ℃	$ au_{ m Rk,cr}$	[N/mm²]			5,5			
Temperaturklasse III 4): 120℃/72℃	$ au_{Rk,cr}$	[N/mm²]			5			
Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma_{N}$	$_{Mc} = \gamma_{Msp}^{1)}$	[-]			1,5 ²⁾			
Erhöhungsfaktor für τ _{Rk} im Beton	ψ _c	[-]			1,0			
Versagen durch Spalten im ungeri	ssenen B	eton ³⁾						
	h / l	h _{ef} ⁵⁾ ≥ 2,0	1,0 • h	l _{ef}	2,0			
Randabstand c _{cr,sp} [mm] for	2,0 > h / l	h _{ef} ⁵⁾ > 1,3	4,6 h _{ef} -	1,8 h	1,3			
	h /	h _{ef} ⁵⁾ ≤ 1,3	2,26 I	n _{ef}		1,0·h _{ef} 2,26	c _{cr,sp}	
Achsabstand	S _{cr,sp}	[mm]			2 C _{cr,sp}			

Sofern andere nationale Regelungen fehlen

h = Bauteildicke; h_{ef} = Verankerungstiefe

Injektionssystem Hilti HIT-HY 200-A	Anhang 18
Charakteristische Werte für Zugbeanspruchung Innengewindehülse HIS-(R)N	

In diesem Wert ist der Montagesicherheitsfaktor $\gamma_2 = 1,0$ enthalten.

Bemessung von Betonversagen und Spalten siehe Abschnitt 4.2

Erklärung siehe Abschnitt 1.2

Tabelle 18: Bemessungsverfahren A, charakteristische Werte für Querbeanspruchung

Hilti HIT-HY 200-A mit HIS-(R)N			M 8	M 10	M 12	M 16	M20
Stahlversagen ohne Hebelarm							
Charakteristische Quertragfähigkeit HIS-N mit Schrauben der Festigkeitsklasse 8.8	V _{Rk,s}	[kN]	13	23	39	59	55
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]	1,2	25		1,5	
Charakteristische Quertragfähigkeit HIS-RN mit Schrauben der Festigkeitsklasse 70	$V_{Rk,s}$	[kN]	13	20	30	55	83
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]	1,56				2,0
Stahlversagen mit Hebelarm							
Charakteristische Quertragfähigkeit HIS-N mit Schrauben der Festigkeit 8.8	M° _{Rk,s}	[Nm]	30	60	105	266	519
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]	1,25				
Charakteristische Quertragfähigkeit HIS-RN mit Schrauben der Festigkeitsklasse 70	M ^o _{Rk,s}	[Nm]	26	52	92	233	454
Teilsicherheitsbeiwert	γ _{Ms,V} 1)	[-]			1,56		
Betonausbruch auf der lastabgewandten Se							
Faktor in Gleichung (5.7) des Technical Report TR029 für die Bemessung von Verbunddübeln		[-]	2,0				
Teilsicherheitsbeiwert	γ _{Mcp} 1)	[-]	1,5 ²⁾				
Betonkantenbruch		_					
Siehe Abschnitt 5.2.3.4 des Technical Report	TR 029	für die	Bemessu	ıng von V	erbunddüb	pel	
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,5 ²⁾		

Sofern andere nationale Regelungen fehlen

Injektionssystem Hilti HIT-HY 200-A	Anhang 19
Charakteristische Werte für Querbeanspruchung Innengewindehülse HIS-(R)N	

In diesem Wert ist der Montagesicherheitsfaktor $\gamma_2 = 1,0$ enthalten

Tabelle 19: Verschiebung unter Zuglast 1)

Hilti HIT-HY 200	-A mit H	IS-(R)N	M8	M10	M12	M16	M20	
Ungerissener Be	ton Tem	peraturbereich I	²⁾ : 40℃ / 24°	C				
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,03	0,05	0,06	0,07	0,08	
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,09	0,11	0,13	0,14	
Ungerissener Be	ton Tern	nperaturbereich l	l ²⁾ : 80℃ / 50) ℃				
Verschiebung	δ_{N0}	$[mm/(N/mm^2)]$	0,05	0,06	0,08	0,10	0,11	
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,11	0,13	0,15	
Ungerissener Be	ton Tem	peraturbereich III	l ²⁾ : 120℃ / 7	2℃				
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,06	0,08	0,10	0,13	0,14	
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,11	0,14	0,15	
Gerissener Beto	n Tempe	raturbereich I 2): 4	40℃ / 24℃					
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,11			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]			0,16			
Gerissener Beto	n Tempe	raturbereich II 2):	80℃ / 50℃					
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,15			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,22					
Gerissener Beto	n Tempe	raturbereich III 2):	: 120℃ / 72°	С				
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,20			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]			0,29			

Bemessung der Verschiebung unter Gebrauchslast: τ_{Sd} Bemessungswert der Zuglast Verschiebung unter Kurzzeitbelastung = δ_{No} • N_{Sd} /1,4; Verschiebung unter Langzeitbelsatung = δ_{No} • N_{Sd} /1,4

Tabelle 20: Verschiebung unter Querlast 1)

Hilti HIT-HY 200-A mit HIS-(R)N			М8	M10	M12	M16	M20
Verschiebung	δ_{V0}	[mm/kN]	0,06	0,06	0,05	0,04	0,04
Verschiebung	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06

Bemessung der Verschiebung unter Gebrauchslast: V_d Bemessungswert der Querlast Verschiebung unter Kurzzeitbelastung = $\delta_{Vo} \cdot V_d / 1, 4$; Verschiebung unter Langzeitbelastung = $\delta_{Vo} \cdot V_d / 1, 4$

Injektionssystem Hilti HIT-HY 200-A	Anhang 20
Verschiebungen für Innengewindehülsen HIS-(R)N	

²⁾ Erklärungen siehe Abschnitt 1.2

Tabelle 21: Bemessungsverfahren A, Charakteristische Werte für Zugbeanspruchung

Hilti HIT-HY 200-A mit HZA, HZA	-R			M12	M16	M20	M24	M27	
Stahlversagen								•	
Charakteristische Zugtragfähigkeit HZA		N _{Rk,s}	[kN]	46	86	135	194	253	
Charakteristische Zugtragfähigkeit HZA-R		$N_{Rk,s}$	[kN]	62	111	173	-	-	
Teilsicherheitsbeiwert		1) γ _{Ms}	[-]			1,4			
Kombiniertes Versagen durch He	rauszieh	en und I	Betonaus	bruch 3)					
Durchmesser des HZA, HZA-R		d	[mm]	12	16	20	25	28	
Charakteristische Verbundtragfähigk	ceit im un	gerissen	en Beton	C20/25		•	•	•	
Temperaturbereich I ⁴⁾ : 40°C/24°	<u>~</u>	τ _{Rk,ucr}	[N/mm²]			12			
Temperaturbereich II ⁴⁾ : 80°C/50°	°C	τ _{Rk,ucr}	[N/mm²]			10			
Temperaturbereich III ⁴⁾ : 120 ℃/72	℃	τ _{Rk.ucr}	[N/mm²]			8,5			
Charakteristische Verbundtragfähigk	keit im ge			20/25					
Temperaturbereich I ⁴): 40 ℃/24 ℃			[N/mm²]						
Temperaturbereich II ⁴⁾ : 80 ℃/50 ℃			[N/mm²]	5,5					
Temperaturbereich III ⁴): 120 ℃/72 ℃			[N/mm²]						
Teilsicherheitsbeiwert $\gamma_{Mp} = \gamma_{Mc} =$			[-]	1,5 ²⁾					
Erhöhungsfaktor für τ_{Rk} im Beton		Ψο	[-]			1,0			
Verankerungstiefe zur Berechnung von $N_{Rk,p}^{0}$ gem. Formel. 5.2a (TR 029,	HZA	h _{ef}	[mm]			h _{nom} ⁶⁾ – 20)		
5.2.2.3 Kombiniertes Versagen durch Herausziehen und Betonausbruch)	H ZA -R	h _{ef}	[mm]	h _{nom} ⁶⁾ – 100					
Betonausbruch 3)									
Verankerungstiefe zur Berechnung von $N^0_{Rk,c}$ gem. Formel 5.3a (TR 029, 5.2.2.4 Betonversagen)	h _{ef}	[mm]	h _{nom} ⁶⁾						
Spalten in ungerissenem Beton 3)									
		h / h	_{ef} ⁵⁾ ≥ 2,0	1,0 · h	h/h				
Randabstand c _{cr,sp} [mm] für	2,0) > h / h	_{ef} ⁵⁾ > 1,3	4,6 h _{ef} - 1,8 h					
		h/h	_{ef} ⁵⁾ ≤ 1,3					C _{cr,sp}	
Achsabstand		S _{cr,sp}	[mm]			2 C _{cr,sp}			

Sofern andere nationale Regelungen fehlen

Grenzen von h_{nom} siehe Tabelle 4 für HZA-R bzw. Tabelle 5 für HZA

Injektionssystem Hilti HIT-HY 200-A	Anhang 21
Charakteristische Werte für Zugbeanspruchung HZA, HZA-R	

In diesem Wert ist der Montagesicherheitsfaktor $\gamma_2 = 1,0$ enthalten

Berechnung von Betonversagen und Spalten siehe Abschnitt 4.2

⁴⁾ Erklärung siehe Abschnitt 1.2

h = Bauteildicke; h_{ef} = Verankerungstiefe

Tabelle 22: Bemessungsverfahren A, Charakteristische Werte für Querbeanspruchung

Hilti HIT-HY 200-A mit HZA, HZA-R			M12	M16	M20	M24	M27	
Stahlversagen ohne Hebelarm								
Charakteristische Quertragfähigkeit HZA	$V_{Rk,s}$	[kN]	23	43	67	97	126	
Charakteristische Quertragfähigkeit HZA-R	$V_{Rk,s}$	[kN]	31	55	86	-	-	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,5			
Stahlversagen mit Hebelarm		_						
Charakteristische Quertragfähigkeit HZA	M ⁰ _{Rk,s}	[Nm]	72	183	357	617	915	
Charakteristische Quertragfähigkeit HZA-R	M ⁰ _{Rk,s}	[Nm]	97	234	457	-	-	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,5			
Betonausbruch auf der lastabgewandt	en Seite							
Faktor in Gleichung (5.7) des Technical Report TR 029 für die Bemessung von k [-] 2,0 Verbunddübeln								
Teilsicherheitsbeiwert	1) γ _{Μcp}	[-]	1,5 ²⁾					
Betonkantenbruch								
Siehe Abschnitt 5.2.3.4 des Technical F	Report TF	029 fü	r die Beme	essung von	Verbunddi	ibel		
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,5 ²⁾			

Sofern andere nationale Regelungen fehlen

Injektionssystem Hilti HIT-HY 200-A	Anhang 22
Charakteristische Werte für Querbeanspruchung HZA, HZA-R	

In diesem Wert ist der Montagesicherheitsfaktor $\gamma_2 = 1,0$ enthalten.

Tabelle 23: Verschiebungen unter Zuglast 1)

Hilti HIT-HY 200-A	mit HZA, HZA-	R	M12	M16	M20	M24	M27	
Ungerissener Betor	n Temperaturbe	ereich I ²⁾ : 40℃ / 24℃						
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,03	0,04	0,06	0,07	0,08	
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,08	0,13	0,13	0,15	
Ungerissener Betor	n Temperaturbe	ereich II ²⁾ : 80℃ / 50°	С					
Verschiebung	δ_{N0}	$[mm/(N/mm^2)]$	0,05	0,06	0,08	0,10	0,11	
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,06	0,09	0,14	0,14	0,15	
Ungerissener Betor	n Temperaturbe	ereich III ²⁾ : 120℃ / 72	2℃					
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,06	0,08	0,10	0,12	0,14	
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,07	0,09	0,14	0,14	0,16	
Gerissener Beton T	emperaturbere	eich I ²⁾ : 40℃ / 24℃						
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,11			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]			0,16			
Gerissener Beton T	emperaturbere	eich II ²⁾ : 80℃ / 50℃						
Verschiebung	δ_{N0}	[mm/(N/mm²)]						
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,22					
Gerissener Beton T	emperaturbere	eich III ²⁾ : 120℃ / 72℃	<u> </u>					
Verschiebung	δ_{N0}	[mm/(N/mm²)]			0,20			
Verschiebung	$\delta_{N\infty}$	[mm/(N/mm²)]	0,29					

Bemessung der Verschiebung unter Gebrauchslast: τ_{Sd} Bemessungswert der Verbundspannung Verschiebung unter Kurzzeitbelastung = $\delta_{No} \cdot \tau_{Sd}/1,4$; Verschiebung unter Langzeitbelastung = $\delta_{No} \cdot \tau_{Sd}/1,4$

Tabelle 24: Verschiebungen unter Querlast 1)

Hilti HIT-HY 200-A mit HZA, HZA-R			M12	M16	M20	M24	M27
Verschiebung	δ_{V0}	[mm/kN]	0,05	0,04	0,04	0,03	0,03
Verschiebung	$\delta_{\text{V}\infty}$	[mm/kN]	0,08	0,06	0,06	0,05	0,05

Bemessung der Verschiebung unter Gebrauchslast: V_{sd} Bemessungswert der Querlast Verschiebung unter Kurzzeitbelastung = $\delta_{V0} \cdot V_d / 1,4$ Verschiebung unter Langzeitbelastung = $\delta_{V\infty} \cdot V_d / 1,4$

Injektionssystem Hilti HIT-HY 200-A	Anhang 23
Verschiebungen HZA, HZA-R	

²⁾ Erklärung siehe Abschnitt 1.2