Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +493078730-0 Fax: +493078730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA Member of EOTA

Europäische Technische Zulassung ETA-12/0060

Handelsbezeichnung

Trade name

Simpson Strong-Tie® - Betonschraube THD Simpson Strong-Tie® - Screw Anchor THD

Zulassungsinhaber Holder of approval

SIMPSON STRONG -TIE® GmbH Riederhofstraße 27 60314 Frankfurt/Main

DEUTSCHLAND

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity:

Herstellwerk

bis

vom from

Manufacturing plant

Betonschraube aus verzinktem Stahl in den

Größen 8, 10, 12, 16 und 20 zur Verankerung in Beton

Concrete screw made of zinc coated steel of sizes 8, 10, 12, 16 and 20 for use in concrete

26. März 2012

26. März 2017

Simpson Strong-Tie Manufacturing Facilities

Diese Zulassung umfasst This Approval contains

16 Seiten einschließlich 9 Anhänge 16 pages including 9 annexes

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Seite 2 von 16 | 26. März 2012

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch die Verordnung vom 31. Oktober 2006⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton Teil 3: Hinterschnittdübel", ETAG 001-03.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- 3 Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- 5 Bundesgesetzblatt Teil I 2006, S. 2407, 2416
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 16 | 26. März 2012

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Die Simpson Strong-Tie Betonschraube THD ist ein Dübel aus galvanisch verzinktem bzw. mechanisch verzinktem Stahl in den Größen 8, 10, 12, 16 und 20. Der Dübel wird in ein vorgebohrtes zylindrisches Bohrloch eingeschraubt. Das Spezialgewinde des Dübels schneidet beim Einschrauben ein Innengewinde in den Verankerungsgrund. Die Verankerung erfolgt durch Formschluss des Spezialgewindes.

Im Anhang 1 sind Produkt und Einbauzustand dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt.

Der Dübel darf für Verankerungen, an die Anforderungen an die Feuerwiderstandsfähigkeit gestellt werden, verwendet werden.

Der Dübel darf nur für Verankerungen unter statischer oder quasi-statischer Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf im gerissenen und ungerissenen Beton verankert werden.

Die Simpson Strong-Tie Betonschraube THD aus verzinktem Stahl darf nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben nach Anhang 2. Die in Anhang 2 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Hinsichtlich der Anforderungen an den Brandschutz wird angenommen, dass der Dübel die Anforderungen der Klasse A1 in Bezug auf das Brandverhalten in Übereinstimmung mit den Bestimmungen der Entscheidung der Kommission 96/603/EG, geändert durch 2000/605/EC erfüllt.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 4 von 16 | 26. März 2012

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 5 und 6 angegeben.

Die charakteristischen Werte für die Bemessung der Verankerungen in Bezug auf die Feuerwiderstandsfähigkeit sind in den Anhängen 7 und 8 angegeben. Sie gelten für die Verwendung in einem System, das den Anforderungen einer bestimmten Feuerwiderstandsklasse genügen muss.

Jeder Dübel ist mit dem Herstellerkennzeichen, dem Handelsnamen, der Dübelgröße und der Dübellänge gemäß Anhang 2 gekennzeichnet.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 3 "Hinterschnittdübel", auf der Grundlage der Option 1.

Die Beurteilung des Dübels für den vorgesehenen Verwendungszweck in Bezug auf die Feuerwiderstandsfähigkeit erfolgte entsprechend dem Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit".

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Seite 5 von 16 | 26. März 2012

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüfplans durchzuführen:

- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass die werkseigene Produktionskontrolle mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt.

Z22617.12 8.06.01-2/11

9

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 6 von 16 | 26. März 2012

- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1, Option 1),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren A, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern, im gerissenen oder ungerissenen Beton usw.) anzugeben.

Bei der Bemessung von Verankerungen unter Brandbeanspruchung sind die Bestimmungen des Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit" zu beachten. Die maßgebenden charakteristischen Dübelkennwerte sind in Anhang 6, Tabelle 8 und 9 angegeben. Die Bemessungsmethode gilt für eine einseitige Brandbeanspruchung des Bauteils. Bei mehrseitiger Brandbeanspruchung kann die Bemessungsmethode nur angewendet werden, wenn der Randabstand des Dübels $c \ge 300 \text{ mm}$ beträgt.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

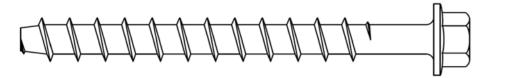
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,

Seite 7 von 16 | 26. März 2012

- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Reinigung des Bohrlochs vom Bohrmehl entsprechend Anhang 9,
- Einbau so, dass die Länge des Dübels im Beton mindestens dem Wert h_{nom} nach Anhang 3, Tabelle 3 entspricht,
- Vollständiges Anpressen des Anbauteils gegen den Beton ohne Zwischenschichten,
- Leichtes Weiterdrehen des Dübels ist nicht möglich,
- Der Dübelkopf liegt vollflächig am Anbauteil an und ist nicht beschädigt,
- Der Dübel darf nur einmal verwendet werden.

5 Verpflichtungen des Herstellers

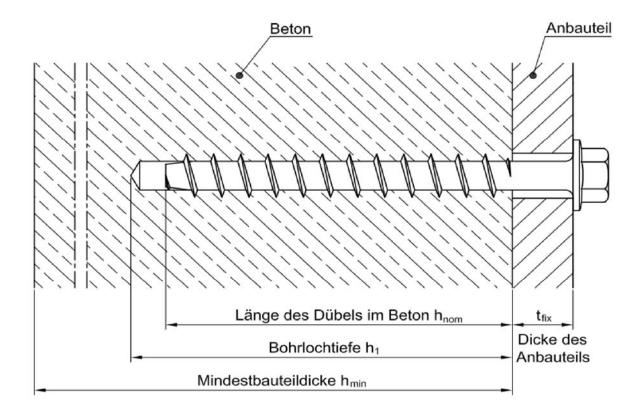
Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.


Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser,
- Dübelgröße,
- Maximale Dicke des Anbauteils,
- Minimale Einbindetiefe,
- Mindestbohrlochtiefe.
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Setzwerkzeuge,
- Herstelllos.

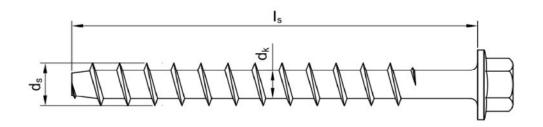
Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

Georg Feistel Abteilungsleiter Beglaubigt



THD8...THD20

Betonschraube THD im Einbauzustand



Simpson Strong-Tie® - Betonschraube THD

Produkt und Einbauzustand

Anhang 1

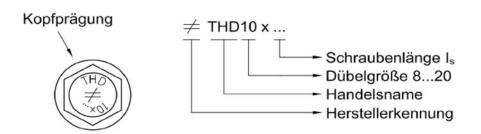
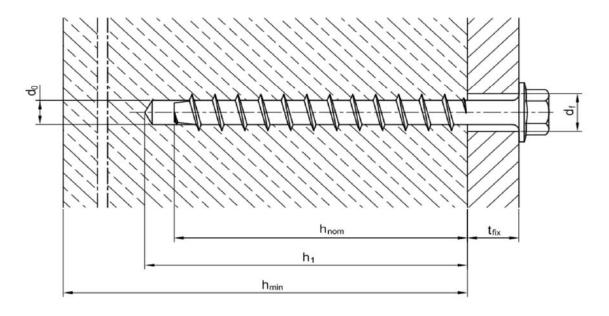


Tabelle 1: Werkstoffe

Bezeichnung	Benennung	Werkstoff ^{1) 2)}
Betonschraube	THD	Kohlenstoffstahl, kaltgeformt

¹⁾ galvanisch verzinkt ≥ 5 μm nach EN ISO 4042; passiviert


Tabelle 2: Dübelabmessungen

Dübelgröße	Schraubenlänge I _s [mm]	Außendurchmesser d _s [mm]	Kerndurchmesser d _k [mm]
THD8	70200	10,3	7,6
THD10	80200	12,5	9,6
THD12	100400	14,4	11,3
THD16	120400	19,6	15,3
THD20	140400	23,5	19,3

Simpson Strong-Tie® - Betonschraube THD	
Werkstoffe und Abmessungen	Anhang 2

²⁾ mechanisch verzinkt ≥ 12 µm nach EN ISO 12683; Typ 1

Tabelle 3: Montagekennwerte

Simpson Strong-Tie®	Dübelgröße					
Betonschraube THD		8	10	12	16	20
Bohrernenndurchmesser	d ₀ [mm]	8	10	12	16	20
Bohrerschneidendurchmesser	d _{cut} ≤ [mm]	8,45	10,45	12,50	16,50	20,55
Bohrlochtiefe	h ₁ ≥ [mm]	75	85	105	130	150
Länge des Dübels im Beton	h _{nom} ≥ [mm]	65	75	95	115	135
Durchgangsloch im anzuschließenden Bauteil	d _f ≤ [mm]	12	14	16	22	26
Schlüsselweite	SW [mm]	13	15	18	24	30
Installation mit Drehmomentschlüssel	T _{inst} [Nm]	_ 1)	75	- ¹⁾	280	350
Installation mit Tangentialschlagschrauber	T _{SD} ≤ [Nm]		Maximale Leistungsabgabe des Tangentialschlagschraubers T _{max} ge Herstellerangabe			
Tangoniaisoniagsoniaasoi		20	00		515	

¹⁾ Installation nur mit Tangentialschlagschrauber zulässig.

Simpson Strong-Tie® - Betonschraube THD	
Montagekennwerte	Anhang 3

Tabelle 4: Bemessungsverfahren A Mindestbauteildicke und minimaler Achs- und Randabstand

Simpson S	Strong-Tie [®]		Dübelgröße					
Betonschr	aube THD		8	10	12	16	20	
	Mindestbauteildicke	h _{min} [mm]	105	125	150	180	220	
gerissener Beton	minimaler Randabstand	c _{min} [mm]	50	60	80	100	120	
Beton minimaler Randabstand c _{min} [mm] 50 60 80 minimaler Achsabstand s _{min} [mm] 50 60 80	100	120						
	Mindestbauteildicke	h _{min} [mm]	105	125	150	180	220	
ungerissener Beton	minimaler Randabstand	c _{min} [mm]	50	60	80	100	120	
	minimaler Achsabstand	s _{min} [mm]	50	60	80	100	120	

Simpson Strong-Tie® - Betonschraube THD	
Mindestbauteildicke minimale Achs- und Randabstände	Anhang 4

Tabelle 5: Bemessungsverfahren A Charakteristische Werte der Tragfähigkeit bei Zugbeanspruchung

Simpson Strong-Tie [®]				Dübelgröße				
Betonschraube THD				10	12	16	20	
Stahlversagen								
charakteristische Zugtragfähigkeit	$N_{Rk,s}$	[kN]	35,1	54,9	75,7	140,1	220,7	
Teilsicherheitsbeiwert	$\gamma_{\rm Ms}^{-1)}$	[-]			1,4			
Herausziehen								
charakteristische Zugtragfähigkeit im gerissenen Beton C20/25	$N_{Rk,p}$	[kN]	6,0	7,5	12,0	25,0	35,0	
charakteristische Zugtragfähigkeit im ungerissenen Beton C20/25	$N_{Rk,p}$	[kN]	7,5	10,5	25,0	30,0	50,0	
		C30/37	1,22					
Erhöhungsfaktor für N _{Rk,p}	Ψ_{C}	C40/50	1,41					
		C50/60		1,55				
Teilsicherheitsbeiwert	γ _{Mp} 1)	[-]			1,8 ²⁾			
Betonausbruch und Spalten								
effektive Verankerungstiefe	h _{ef}	[mm]	47	55	70	86	102	
Achsabstand	S _{cr,N}	[mm]			3h			
Actioabotatio	S _{cr,sp}	[mm]		$3h_{ef}$				
Randabstand	C _{cr,N}	[mm]	1,5h _{ef}					
Nandaustand	C _{cr,sp}	[mm]						
Teilsicherheitsbeiwert	$\gamma_{Mc} = \gamma_{Msp}^{-1})$	[-]			1,8 ²⁾	_	_	

¹⁾ Sofern andere nationale Regelungen fehlen.

Tabelle 6: Verschiebungen unter Zuglast

Simpson Strong-Tie®					Dübelgröße				
Betonschraube THD				8	10	12	16	20	
	Zuglast	Ν	[kN]	2,4	3,0	4,8	9,9	13,9	
gerissener Beton C20/25 bis C50/60	zugehörige Verschiebung	δ_{NO}	[mm]	0,1	0,1	0,2	0,2	0,3	
0_0/_0 0.00		$\delta_{N^{\infty}}$	[mm]	0,3	0,4	0,6	0,4	0,6	
Zuglast ungerissener Beton zugehörige	Zuglast	N	[kN]	3,0	4,2	9,9	11,9	19,8	
	zugehörige Verschiebung	δ_{NO}	[mm]	0,1	0,1	0,1	0,2	0,3	
C20/25 bis C50/60		$\delta_{N^{\infty}}$	[mm]	0,3	0,4	0,6	0,4	0,6	

Simpson Strong-Tie® - Betonschraube THD

Bemessungsverfahren A:
Charakteristische Werte bei Zugbeanspruchung
Verschiebungen

²⁾ Teilsicherheitsbeiwert γ_2 = 1,2 enthalten.

Tabelle 7: Bemessungsverfahren A Charakteristische Werte der Tragfähigkeit bei Querbeanspruchung

Simpson Strong-Tie [®]				Dübelgröße				
Betonschraube THD			8	10	12	16	20	
Stahlversagen ohne Hebelarm								
charakteristische Quertragfähigkeit	$V_{Rk,s}$	[kN]	17,5	27,4	37,8	70,0	110,4	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]			1,5			
Stahlversagen mit Hebelarm								
charakteristisches Biegemoment	$M^0_{Rk,s}$	[Nm]	40,0	79,0	128,0	322,3	637,5	
Teilsicherheitsbeiwert	γ _{Ms} 1)	[-]	1,5					
Betonausbruch auf der lastabgewa	andten S	eite						
Faktor in Gleichung (5.6) der ETAG 001, Anhang C, 5.2.3.3	k	[-]			2			
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,5 ²⁾			
Betonkantenbruch								
wirksame Dübellänge bei Querlast	I _f	[mm]	47	55	70	86	102	
wirksamer Außendurchmesser	d _{nom}	[mm]	7,7	9,6	11,3	15,3	19,3	
Teilsicherheitsbeiwert	γ _{Mc} 1)	[-]			1,5 ²⁾	•	•	

¹⁾ Sofern andere nationale Regelungen fehlen.

Hinweis zur Bemessung bei Querlast

Im Allgemeinen sind die Bedingungen nach ETAG 001, Anhang C, Abschnitt 4.2.2.1 a) und 4.2.2.2 b) nicht eingehalten, da das Durchgangsloch im anzuschließenden Bauteil nach Anhang 3, Tabelle 3, dieser Zulassung größer ist, als die in Anhang C, Tabelle 4.1 angegebenen Werte für die entsprechenden Dübeldurchmesser.

Tabelle 8: Verschiebungen unter Querlast

Simpson Strong-Tie [®]				Dübelgröße					
Betonschraube THD			8	10	12	16	20		
gerissener und ungerissener Beton C20/25 bis C50/60 Querlast Verschiebung	٧	[kN]	8,3	13,0	18,0	33,3	52,6		
	Verschiebung	δ_{V0}	[mm]	2,0	2,2	2,5	2,7	3,0	
		δ _{V∞}	[mm]	3,0	3,3	3,8	4,1	4,5	

Simpson Strong-Tie® - Betonschraube THD

Bemessungsverfahren A:
Charakteristische Werte bei Querbeanspruchung
Verschiebungen

²⁾ Teilsicherheitsbeiwert γ_2 = 1,0 enthalten.

Tabelle 9: Bemessungsverfahren A Charakteristische Zugtragfähigkeitswerte in gerissenem und ungerissenem Beton C20/25 - C50/60 unter Brandbeanspruchung

Simpson Strong-Tie [®]				Dübelgröße					
Betonschraube THD				8	10	12	16	20	
Stahlversagen									
	R30	$N_{Rk,s,fi}$	[kN]	0,5	1,1	2,0	3,7	5,8	
charakteristische	R60	$N_{Rk,s,fi}$	[kN]	0,4	0,9	1,5	2,8	4,4	
Tragfähigkeit	R90	N _{Rk,s,fi}	[kN]	0,3	0,7	1,3	2,4	3,8	
	R120	$N_{Rk,s,fi}$	[kN]	0,2	0,6	1,0	1,8	2,9	
Herausziehen									
charakteristische	R30R90	$N_{Rk,p,fi}$	[kN]	1,5	1,9	3,0	6,3	8,8	
Tragfähigkeit	R120	$N_{Rk,p,fi}$	[kN]	1,2	1,5	2,4	5,0	7,0	
Betonausbruch									
charakteristische	R30R90	$N^0_{Rk,p,fi}$	[kN]	2,7	4,0	7,4	12,2	18,7	
Tragfähigkeit	R120	$N^0_{Rk,p,fi}$	[kN]	2,2	3,2	5,9	9,7	14,9	
	R30R120	c _{cr,N}	[mm]			2h _{ef}			
Randabstand	R30R120	Einseitige Brandbeanspruchur				nspruchung	3		
Achsabstand	R30R120	s _{cr,N}	[mm]			4h _{ef}			
Actionstation	11.0011120	S _{min}	[mm]	50	60	80	100	120	

Sofern andere nationale Regelungen fehlen, wird der Teilsicherheitsbeiwert für die Brandbeanspruchung von $\gamma_{M,fi}$ = 1,0 empfohlen.

Simpson Strong-Tie® - Betonschraube THD	
Bemessungsverfahren A: Charakteristische Werte der Zugtragfähigkeit unter Brandbeanspruchung	Anhang 7

Tabelle 10: Bemessungsverfahren A
Charakteristische Quertragfähigkeitswerte in gerissenem und
ungerissenem Beton C20/25 - C50/60 unter Brandbeanspruchung

Simpson Strong-Tie®			Dübelgröße					
Betonschraube THD			8	10	12	16	20	
Stahlversagen ohne Hebelarm								
charakteristische Tragfähigkeit	R30	$V_{Rk,s,fi}$	[kN]	0,5	1,1	2,0	3,7	5,8
	R60	$V_{Rk,s,fi}$	[kN]	0,4	0,9	1,5	2,8	4,4
	R90	$V_{Rk,s,fi}$	[kN]	0,3	0,7	1,3	2,4	3,8
	R120	$V_{Rk,s,fi}$	[kN]	0,2	0,6	1,0	1,8	2,9
Stahlversagen mit Hebelarm								
charakteristische Tragfähigkeit	R30	$M_{Rk,s,fi}$	[Nm]	0,5	1,6	3,4	8,5	16,8
	R60	$M_{Rk,s,fi}$	[Nm]	0,5	1,4	2,5	6,4	12,6
	R90	$M_{Rk,s,fi}$	[Nm]	0,4	1,0	2,2	5,5	10,9
	R120	$M_{Rk,s,fi}$	[Nm]	0,3	0,8	1,7	4,3	8,4
Betonausbruch auf der lastabgewandten Seite								
Faktor in Gleichung (5.6) der ETAG 001, Anhang C, 5.2.3.3	R30R120	k	[-]	2				

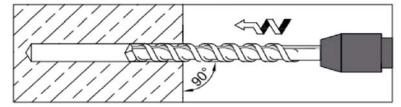
Betonkantenbruch

Der Ausgangswert des charakteristischen Widerstandes $V^0_{Rk,c,fi}$ im Beton C20/25 bis C50/60 unter Brandbeanspruchung:

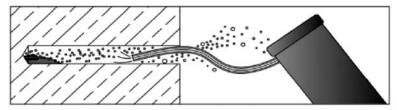
$$V^{0}_{Rk,c,fi} = 0.25 \times V^{0}_{Rk,c} \quad (\leq R90)$$

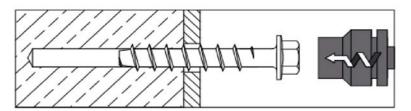
$$V_{Rk,c,fi}^0 = 0.25 \times V_{Rk,c}^0$$
 (R120)

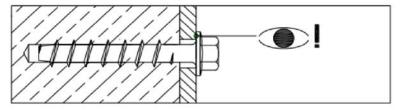
Mit $V^0_{Rk,c}$ als Ausgangswert des charakteristischen Widerstandes im ungerissenen Beton C20/25 unter Normaltemperatur.


Sofern andere nationale Regelungen fehlen, wird der Teilsicherheitsbeiwert für die Brandbeanspruchung von $\gamma_{M,fi}$ = 1,0 empfohlen.

Simpson Strong-Tie® - Betonschraube THD


Bemessungsverfahren A:
Charakteristische Werte der Quertragfähigkeit unter Brandbeanspruchung


Montageanweisung


1. Bohrloch erstellen

2. Bohrloch reinigen

3. Betonschraube mit Schlagschrauber eindrehen

4. Befestigung prüfen

Simpson Strong-Tie® - Betonschraube THD	
Montageanweisung	Anhang 9