

European Technical Approval ETA-12/0258

Handelsbezeichnung	J	fischer Superbond
Trade name		fischer Superbond
Zulassungsinhaber		fischerwerke GmbH & Co. KG
Holder of approval		Otto-Hahn-Straße 15
		79211 Denzlingen DEUTSCHLAND
		DECTSCIERIND
Zulassungsgegensta	ind	Verbunddübel in den Größen M8 bis M30 zur Verankerung im Beton
und Verwendungszw		
Generic type and use		Bonded Anchor of sizes M8 to M30 for use in concrete
of construction produ	ict	
Geltungsdauer:	vom	
Validity:	from	8 August 2012
	bis	8 August 2017
	to	
Herstellwerk		fischerwerke
Manufacturing plant		

32 Seiten einschließlich 23 Anhänge

32 pages including 23 annexes

English translation prepared by DIBt - Original version in German language

Diese Zulassung umfasst This Approval contains

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 32 | 8 August 2012

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by law of 31 October 2006⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12
- ² Official Journal of the European Communities L 220, 30 August 1993, p. 1
- ³ Official Journal of the European Union L 284, 31 October 2003, p. 25
- ⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2006, p. 2407, 2416

⁶ Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 32 | 8 August 2012

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the product and intended use

1.1 Definition of the construction product

The fischer Superbond is a bonded anchor consisting of a cartridge with injection mortar FIS SB or a mortar capsule fischer RSB and a steel element. The steel elements are either

- fischer anchor rods FIS A in the range of M8 to M30 or
- fischer threaded rod RGM in the range of M8 to M30 or
- fischer internal threaded anchor RG MI in the range of M8 to M20 or
- Reinforcing bar in the range of Ø 8 to Ø 32 or
- fischer rebar anchor FRA in the range of 12 to 24.

In case of the injection system the anchor rod is placed into a drilled hole filled with injection mortar.

The mortar capsule is placed in the hole and the threaded rod or the internal threaded anchor is driven by machine with simultaneous hammering and turning.

The steel elements are anchored via the bond between steel element, injection mortar and concrete.

An illustration of the product and intended use is given in Annex 1.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval. The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be installed in cracked or non-cracked concrete.

The capsule system may be used in dry or wet concrete or in flooded holes excepting sea water. The injection system may be used in dry or wet concrete; it must not be installed in flooded holes.

The anchor may be used in the following temperature ranges:

Temperature range I: -40 °C to +40 °C	(max short term temperature +40 °C and max long term temperature +24 °C)
Temperature range II: -40 °C to +80 °C	(max short term temperature +80 °C and max long term temperature +50 °C)
Temperature range III: -40 °C to +120 °C	(max short term temperature +120 °C and max long term temperature +72 °C)
Temperature range IV: -40 °C to +150 °C	(max short term temperature +150 °C and max long term temperature +90 °C)

Page 4 of 32 | 8 August 2012

Elements made of zinc plated or hot-dip galvanised steel:

The steel elements made of zinc plated or hot-dip galvanised steel may only be used in structures subject to dry internal conditions.

Elements made of stainless steel A4:

The steel elements made of stainless steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of high corrosion resistant steel C:

The steel elements made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of reinforcing bars:

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 only. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with post-installed reinforcing bars in concrete structures designed in accordance with EN1992-1-1: 2004 are not covered by this European technical approval.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The anchor corresponds to the drawings and provisions given in Annexes 1 to 9. The values, dimensions and tolerances of the anchor not indicated in Annexes 1 to 9 shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic anchor values for the design of anchorages are given in Annexes 14 to 23.

Each mortar cartridge is marked with the imprint "fischer FIS SB", processing notes, piston travel scale, processing and curing time (depending on temperature), hazard code and shelf life in accordance with Annex 1.

Each fischer mortar capsule RSB shall be marked with the identifying mark of the manufacturer and with the trade name in accordance with Annex 1.

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 32 | 8 August 2012

Each fischer anchor rod FIS A and threaded rod RGM are marked with the property class in accordance with Annex 4.

Each fischer internal threaded anchor RG MI is marked with the marking of steel grade and length in accordance with Annex 5. Each fischer internal threaded anchor RG MI made of stainless steel is marked with the additional letter "A4". Each fischer internal threaded anchor RG MI made of high corrosion resistant steel is marked with the additional letter "C".

Each fischer rebar anchor FRA is marked with the identifying mark of the producer and the trade name according to Annex 9.

Elements made of reinforcing bars shall comply with the specifications given in Annex 8. The marking of embedment depth may be done on jobsite.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors" on the basis of Option 1.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the decision 96/582/EG of the European Commission⁸ the system 2(i) (referred to as system 1) of attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

Page 6 of 32 | 8 August 2012

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial / raw / constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan relating to this European technical approval which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks of manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.3. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks of approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan relating to this European technical approval.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 7 of 32 | 8 August 2012

- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1 Option 1),
- size.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the European technical approval and consequently the validity of the CE marking on the basis of the European technical approval and if so whether further assessment or alterations to the European technical approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors"¹⁰ under the responsibility of an engineer experienced in anchorages and concrete work.

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 only. The basic assumptions for the design according to anchor theory shall be observed. This includes the consideration of tension and shear loads and the corresponding failure modes as well as the assumption that the base material (concrete structural element) remains essentially in the serviceability limit state (either non-cracked or cracked) when the connection is loaded to failure. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with reinforcing bars in concrete structures designed in accordance with EN 1992-1-1:2004 (e.g. connection of a wall loaded with tension forces in one layer of the reinforcement with the foundation) are not covered by this European technical approval.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

For the fischer internal threaded anchor RG MI fastening screws or threaded rods made of appropriate steel and strength class acc. to Annex 7 shall be specified. The minimum and maximum thread engagement length I_E of the fastening screw or the threaded rod for installation of the fixture shall be met the requirements according to Annex 5, Table 3. The length of the fastening screw or the threaded rod shall be determined depending on thickness of fixture, admissible tolerances, available thread length and minimum and maximum thread engagement length I_E .

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

The Technical Report TR 029 "Design of Bonded Anchors" is published in English on EOTA website www.eota.eu.

Page 8 of 32 | 8 August 2012

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 7, Table 7,
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
 - marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or the person on jobsite.
- reinforcing bars shall comply with specifications given in Annex 8,
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- marking and keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drill holes for the cartridge injection system must be made by hammer drilling only,
- drill holes for the capsule system by hammer drilling or diamond drilling,
- in case of aborted hole: The hole shall be filled with mortar,
- the cartridge injection system must not be installed in flooded holes,
- cleaning the drill hole and installation in accordance with Annexes 10 to 13,
- if the anchor is proper installed mortar must be visible at the member surface.
- the anchor component installation temperature shall be at least 0 °C for the cartridge injection system and -15 °C for the capsule system,
- during curing of the mortar the temperature of the concrete must not fall below -15 °C for the cartridge injection system and -30 °C for the capsule system,
- the curing time until the anchor may be loaded as given in Annex 3, Table 1 has to be observed.
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in Annexes 4, 5 and 9 must not be exceeded.

Page 9 of 32 | 8 August 2012

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to section 1 and 2 including Annexes referred to as well as sections 4.2, 4.3 and 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:

- diameter of drill bit,
- hole depth,
- diameter of anchor rod,
- minimum effective anchorage depth,
- maximum thickness of the fixture,
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- temperature of anchor components while installation,
- ambient temperature of the concrete during installation of the anchor,
- admissible processing time (open time) of a cartridge,
- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- installation torque moment,
- identification of the manufacturing batch.
- All data shall be presented in a clear and explicit form.

5.2 Packaging, transport and storage

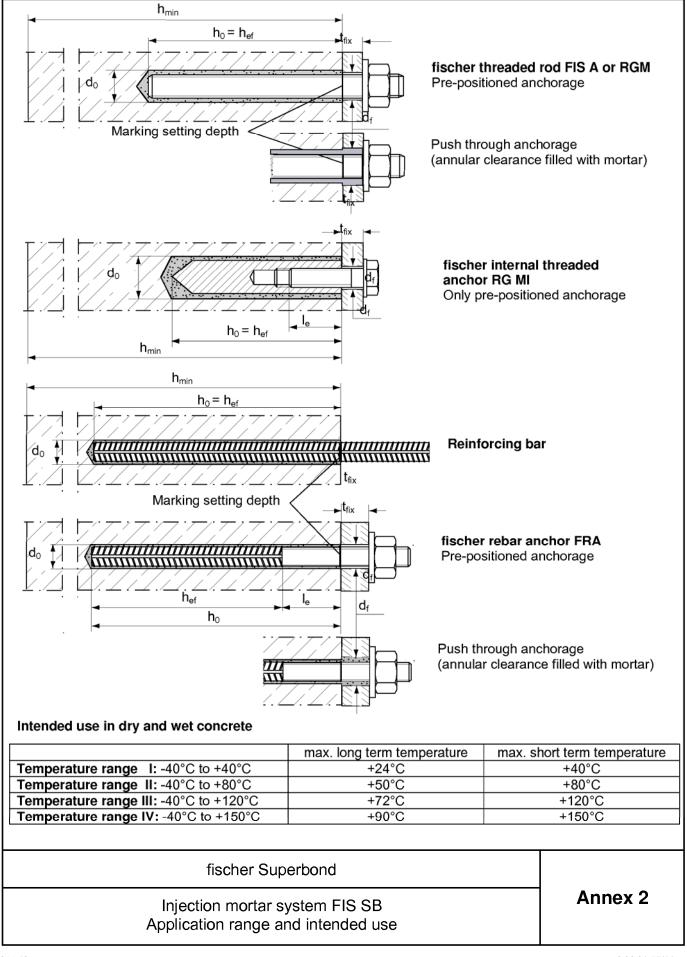
The mortar cartridges and the capsules shall be protected against sun radiation and shall be stored according to the manufacturer instructions in dry condition at temperatures of at least +5 °C to not more than +25 °C (Short time storage up to +35 °C is admissible).

Mortar cartridges and glass capsules with expired shelf life must no longer be used.

The anchor shall only be packaged and supplied as a complete unit. Mortar cartridges and capsules may be packed separately from metal parts.

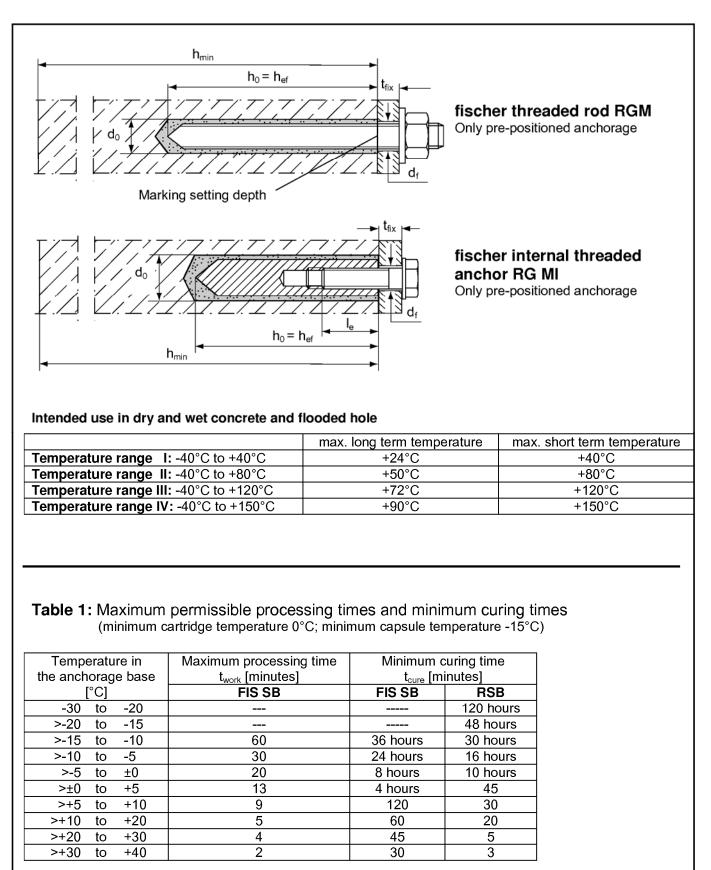
The manufacturer's installation instruction shall indicate that the mortar cartridges and capsules can be used only with the corresponding steel elements.

Georg Feistel Head of Department *beglaubigt:* G. Lange


Page 10 of European technical approval ETA-12/0258 of 8 August 2012

Injection system FIS SB	Resin capsule sy	vstem RSB
Imprint: fischer FIS SB, processing notes, shelf- life, piston travel scale, curing and processing times (depending on temperature), hazard code Sizes: 390ml, 585ml, 1100ml, 1500ml Static mixer	Resin capsule RSB	
fischer threaded rod FIS A or RGM Size: M8, M10, M12, M16, M20, M24, M27,M30	fischer threaded rod RGM Size: M8, M10, M12, M16, M	I20, M24, M30
Washer Hexagon nut	<	Washer Hexagon nut
fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw	fischer internal threaded a Size: M8, M10, M12, M16, M	I
	-	Threaded rod
Reinforcing bar Size: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø28, Ø32		medded fou
fischer rebar anchor FRA Size: 12, 16, 20, 24		
Hexagon Washer nut		
Marking setting depth		
fischer Superbond		
Product		Annex 1

Page 11 of European technical approval ETA-12/0258 of 8 August 2012



Page 12 of European technical approval ETA-12/0258 of 8 August 2012

English translation prepared by DIBt

fischer Superbond

Resin capsule system RSB Application range and intended use Processing times, curing times FIS SB and RSB

English translation	prepared by DIBt
---------------------	------------------

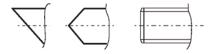
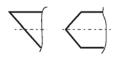
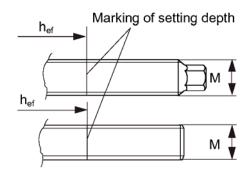


Table 2	: Installation p	parameters fo	or fische	er threa	ded r	ods F	IS A a	nd RG	βM			
Size					M8	M10	M12	M16	M20	M24	M27	M30
	Nominal drill b	it diameter	d ₀	[mm]	10	12	14	18	24	28	30	35
	Depth of drill h	nole	h_0	h_0 [mm] $h_0 = h_{ef}$								
	Effective anchorage		$\mathbf{h}_{\mathrm{ef,min}}$	[mm]	60	60	70	80	90	96	108	120
Injection mortar	depth		h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
FIS SB	Diameter of clearance	pre- positioned	d_{f}	[mm]	9	12	14	18	22	26	30	33
	hole in the fixture ¹⁾	push through	d_f	[mm]	11	14	16	20	26	30	33	40
	Nominal drill b	it diameter	d ₀	[mm]	10	12	14	18	25	28		35
	Depth of drill h	nole	h _o	[mm]	$h_0 = h_{ef}$							
	Effective		h _{ef,1}	[mm]		75	75	95				
Resin	anchorage	_	h _{ef,2}	[mm]	80	90	110	125	170	210		280
capsule	depth		h _{ef,3}	[mm]		150	150	190	210			
RSB	Diameter of clearance hole in the fixture ¹⁾	Only pre- positioned anchorage	d _f	[mm]	9	12	14	18	22	26		33
	spacing and edge distance	$\mathbf{s}_{min} = \mathbf{c}_{min}$		[mm]	40	45	55	65	85	105	120	140
Minimum concrete	thickness of member		\mathbf{h}_{\min}	[mm]	h _{ef} -	+ 30 (≥	100)	h _{ef} + 2d ₀				
Maximum moment	torque		T _{inst,max}	[Nm]	10	20	40	60	120	150	200	300
Thickness	s of fixture		t _{fix,mim}	[mm]					0			
THICKNES			t _{fix,max}	[mm]				30	000			


1) For bigger clearance holes in the fixture see chapter 1.1 of the TR°029


fischer threaded rods rod FIS A and RGM

Alternative point geometry threaded rods FIS A

Alternative point geometry threaded rods RGM

Marking (on random place):

Property class 8.8 or high corrosions-resistant steel C, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••

fischer Superbond

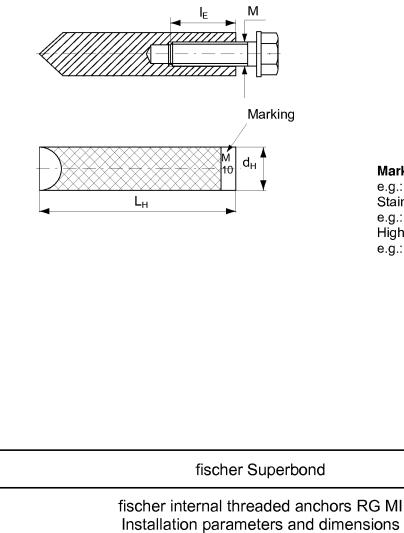

fischer threaded rods FIS A und RGM Installation parameters and dimensions

Table 3: Installation parameters for fischer internal threaded anchors RG MI

Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H	[mm]	12	16	18	22	28
Nominal drill bit diameter	d _o	[mm]	14	18	20	24	32
Length of anchor	L _H	[mm]	90	90	125	160	200
Effective anchorage depth $h_{\rm ef}$ and drill hole depth $h_{\rm 0}$	$h_{ef} = h_0$	[mm]	90	90	125	160	200
Minimum spacing and minimum edge distance	$s_{min} = c_{min}$	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture	d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	125	165	205	260
Screw-in depth –	l _{E,min}	[mm]	8	10	12	16	20
	I _{E,max}	[mm]	18	23	26	35	45
Maximum torque moment	T _{inst,max}	[Nm]	10	20	40	80	120

fischer internal threaded anchor RG MI

Marking: Anchor size e.g.: M10 Stainless steel additional A4 e.g.: M10 A4 High corrosion-resistant steel additional C e.g.: M10 C

English translatior	n prepared by DIBt
---------------------	--------------------

Table 4: Allocation Resin capsule RSB to threaded rods RGM

Size			M8	M10	M12	M16	M20	M24	M30
Nominal drill bit diameter	d _o	[mm]	10	12	14	18	25	28	35
Minimum setting depth	h _{ef,1}	[mm]		75	75	95			
Associated resin capsule RSB		[-]		10 mini	12 mini	16 mini			
Medium setting depth	h _{ef, 2}	[mm]	80	90	110	125	170	210	280
Associated resin capsule RSB		[-]	8	10	12	16	20	20 E/24	30
Maximum setting depth	h _{ef, 3}	[mm]		150	150	190	210		
Associated resin capsule RSB		[-]		2x10mini	2x12mini	2x16mini	20 E/24		

Table 5: Allocation resin capsule RSB to internal threaded rods RG MI

Size			M8	M10	M12	M16	M20
Nominal drill bit diameter	do	[mm]	14	18	20	24	32
Setting depth	h _{ef}	[mm]	90	90	125	160	200
Associated resin capsule RSB		[-]	10	12	16	16 E	20 E/24

Table 6: Dimensions of resin capsule RSB

Size			M8	M10 mini	M10	M12 mini	M12	M16 mini	M16	M16 E	M20	M24	M30
Imprint		[-]	RSB 8	RSB 10 mini	RSB 10	RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16 E	RSB 20	RSB 20 E /24	RSB 30
Diameter	Dp	[mm]	9,0),5		2,5		16,5		23	3,0	27,5
Length	L _P	[mm]	85	72	90	72	97	72	95	123	160	190	260
				<	≈ R \$	L _p					1		
				her Su								Annex	c 6
		Р		sin cap eters a		SB cation	S					111104	X V

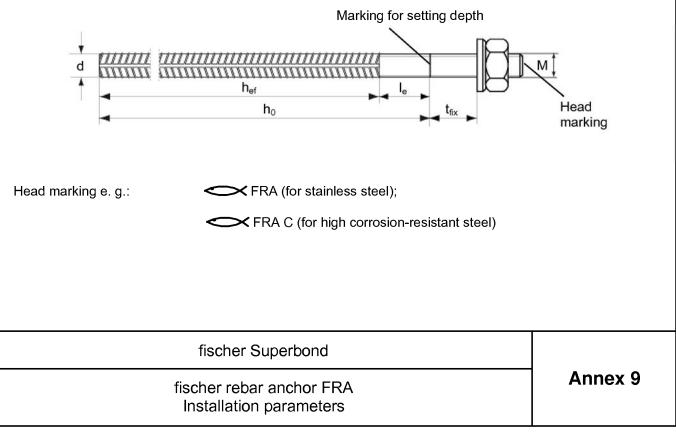
Table 7: Materials: threaded rods, washers, hexagon nuts and screws

		Material			
Designation	Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C		
Threaded rod	Property class 5.8 or 8.8; EN ISO 20898-1 zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50, 70 or 80 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088 or 1.4062 pr EN 10088:2011	Property class 50 or 8 EN ISO 3506 or property class 70 wi f _{yk} =560 N/mm ² 1.4529; 1.4565 EN 10088		
Washer EN ISO 7089	Zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	1.4529; 1.4565 EN 10088		
Hexagon nut EN 24032	Property class 5 or 8; EN ISO 20898-2 zinc plated ≥ 5μm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50 oder 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Property class 50, 70 or 80 EN ISO 3506 1.4529; 1.4565 EN 10088		
Screw or threaded rod for internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 20898-1 zinc plated ≥ 5μm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Property class 70 EN ISO 3506 1.4529; 1.4565 EN 10088		

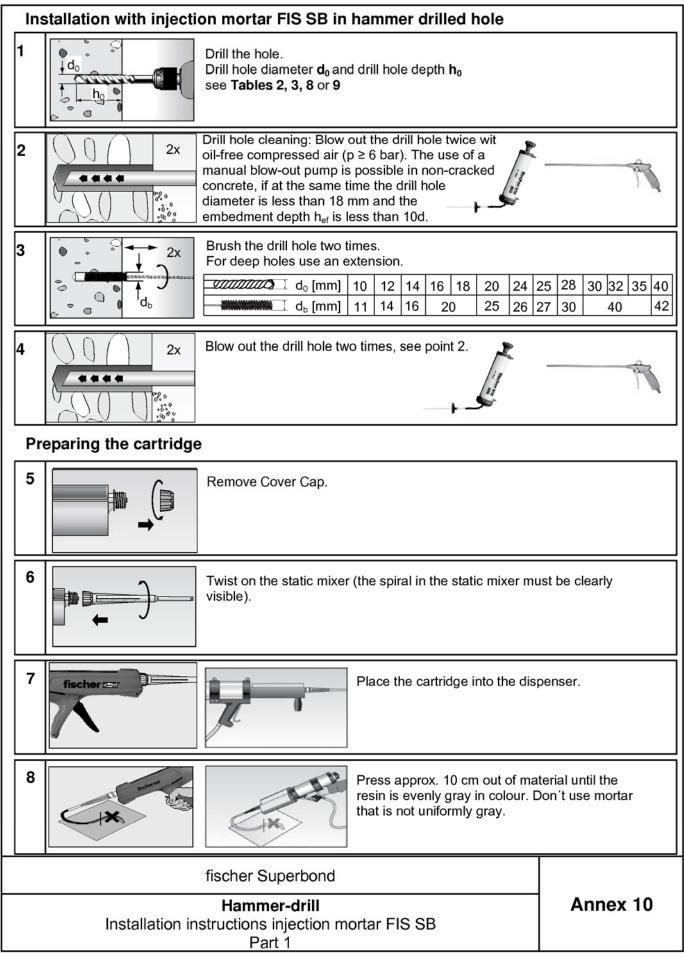
fischer Superbond

Materials

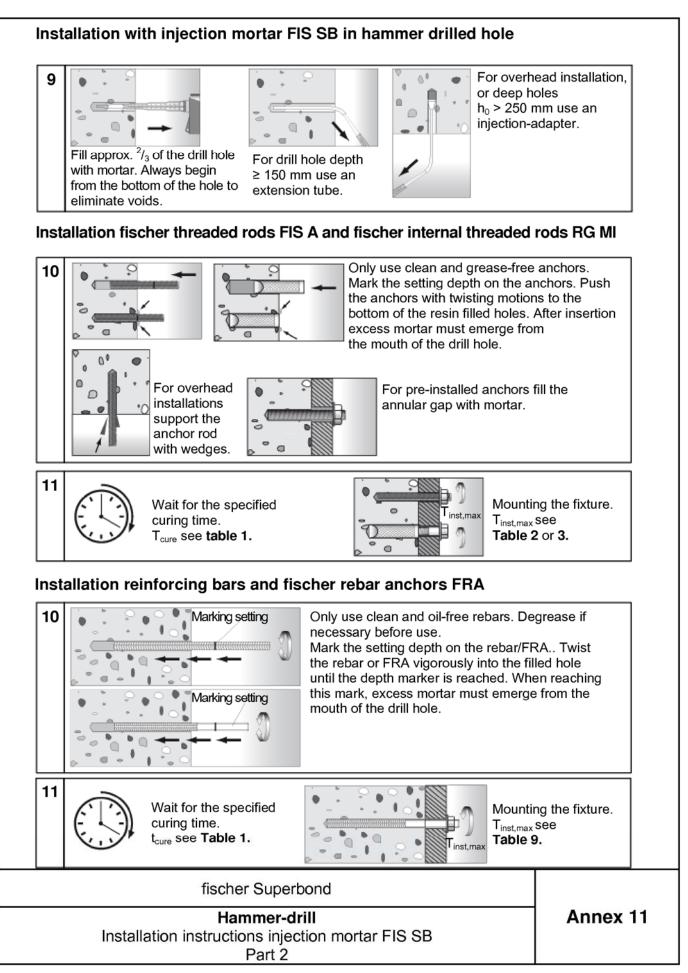
Nominal bar size	Ød	[mm]	8 ¹⁾	10 ¹⁾	12 ¹)	14	16	20	25	28	3
Nominal drill bit diameter	d ₀	[mm]	(10)12	(12)14	(14)	16	18	20	25	30	35	4
Drill hole depth	h ₀	[mm]					$h_0 = h_{ef}$		1			
Effective	h _{ef,min}	[mm]	60	60	70		75	80	90	100	112	12
anchorage depth	h _{ef,max}	[mm]	160	200	240)	280	320	400	500	560	64
Minimum spacing and minimum edge distance	s _{min} = C _{min}	[mm]	40	45	55		60	65	85	110	130	16
Minimum thickness of concrete member h_{min} [mm] $h_{ef} + 30$ ≥ 100 h_e ¹⁾ Both drill bit diameter can be used										do		
Properties of reinforceme	Marking s	setting d	epth				[[[]	d †				
Product form					Non-zi			ars a	nd de		l rod	
ClassDCharacteristic yield strength f_{yk} oder $f_{0,2k}$ [MPa]400 to 600										С		
Minimum value of k = (f		≥	: 1,08			2	: 1,15 : 1,35					
Characteristic strain at	maximum	l force		ε _{uk} [%]	≥ 5,0 ≥ 7,5							
Bentability Maximum deviation from nominal mass (individual bar) [%]		Nomina ≤ 8 > 8	l bar size	[mm]	Bend / Rebend test							
Bond: Minimum relative area, f _{R,min} (determination to EN 15			l bar size	[mm]	0,040 0,056							
Rib height h: The rib height must be 0 d = Nominal bar size									1			
The rib height must be 0	fis	cher Su	uperbon							Δηη		
The rib height must be 0	fis	cher Su							-	Ann	ex 8	

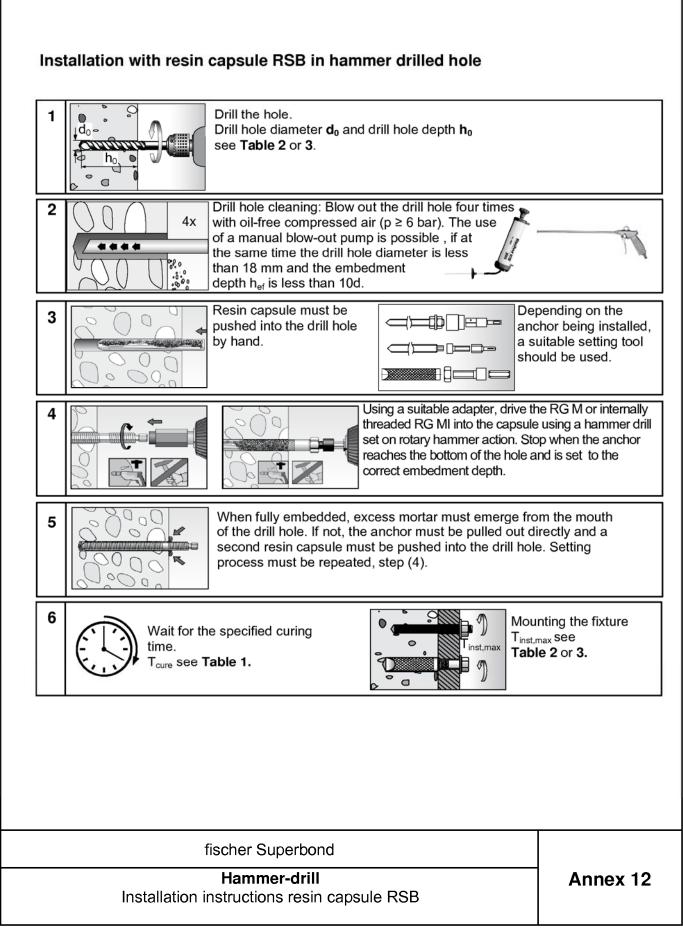

Table 9: Installation parameters fischer rebar anchor FRA

Threaded diameter			M12	1)	M16	M20	M24
Nominal bar size	d	[mm]	12		16	20	25
Nominal drill bit diameter	d ₀	[mm]	(14)	16	20	25	30
Depth of drill hole $(h_0 = I_{ges})$	h _o	[mm]			h _{ef}	+ l _e	
Effective anchorage depth	h _{ef,min}	[mm]	70		80	90	96
Effective anchorage depth —	h _{ef,max}	[mm]	140)	220	300	380
Distance concrete surface to welded join	۱ _e	[mm]			100		
Minimum spacing and minimum edge distance	s _{min} =c _{min}	[mm]	55		65	85	105
Diameter of clearance hole	Pre-positioned d _f	[mm]	14		18	22	26
in the fixture ²⁾	Push through d _f	[mm]	18		22	26	32
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +30 ≥ 100			h_{ef} + 2 d_0	
Maximum torque moment	T _{ins,max}	[Nm]	40		60	120	150
Thickness of the fixture —	minimum t _{fix}	[mm]			()	
	maximum t _{fix}	[mm]			30	00	


¹⁾ Both drill bit diameter can be used

²⁾ For bigger clearance holes in the fixture see chapter 1.1 of the TR°029


fischer rebar anchor FRA



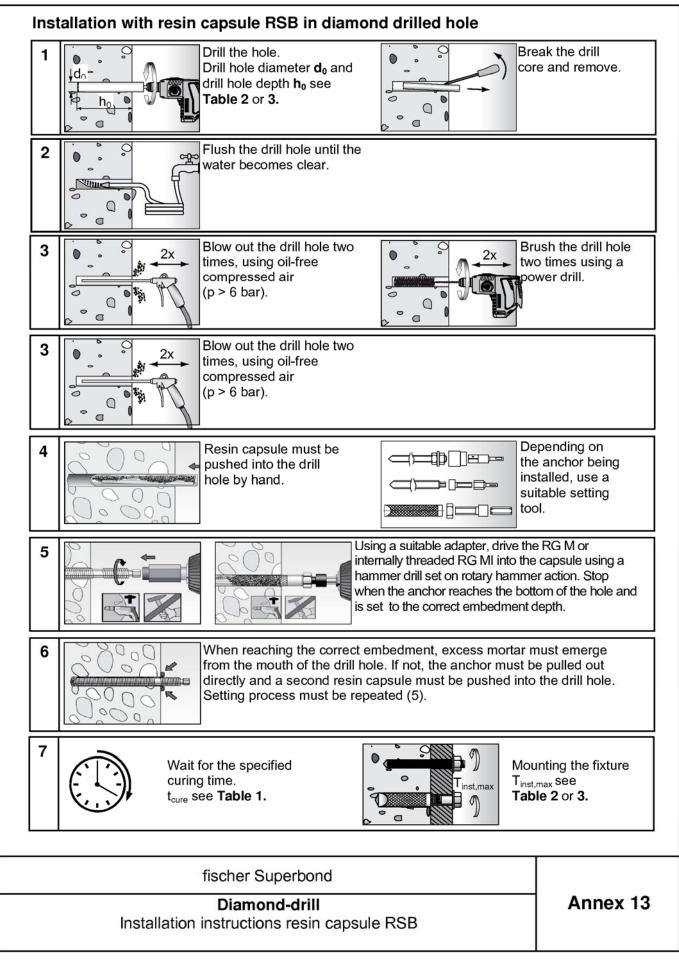


Table 10: Characteristic values to tension load of fischer threaded rods FIS A and RGM with mortar FIS SB or capsule RSB in hammer drilled hole

				•		-	r arillea		I _		
Size				M8	M10	M12	M16	M20	M24	M27 ⁷⁾	M30
Steel failure	Duonouti	<u> </u>	[LAI]						_		
0 9	olooo	5.8	[kN]	19	29	43	79	123	177	230	281
N R	0033	8.8	[kN]	30	47	68	126	196	282	368	449
jo e o la Stainless		50	[kN]	19	29	43	79	123	177	230	281
ਬੁੱਲੂ steels A4	Property -	70	[kN]	26	41	59	110	172	247	322	393
ତି 🖉 and steel C	class _	80									
			[kN]	30	47	68	126	196	282	368	449
Į D		5.8	[-]				1,5	0			
fac	class –	8.8	[-]				1,5	i0			
Dartial safety factor Steinless steels A4 and steel C A		50	[-]				2,8	6			
ਇੱਡ ≰ Stainless ਜ਼ ≲ steels A4		70	[-]								
and steel C	class						1,50 ²⁾ /	1,87			
۵°		80	[-]				1,6	60			
Combined pullou										-	
Diameter of calcu			[mm]	8	10	12	16	20	24	27	30
Characteristic bo	.3)							13	12	10	40
Temperature range		FN 1	/mm ²] /mm ²]	12 12	13 12	13 12	13 13	13	12	10 10	10 10
Temperature range			/mm ²]	12	12	12	11	11	12	9	9
Temperature range IV ³			/mm ²]	10	10	10	11	10	10	8	8
Characteristic bo	1 4 4 9 9 1		-								
Temperature range		FN 1	/mm ²]	6,5	7,0	7,5	7,5	7,5	7,5	7,5	7,5
Temperature range			/mm ²]	6,0	6,5	7,5	7,5	7,5	7,5	7,0	7,0
Temperature range	III ³⁾ τ _{Rk,cr}		/mm ²]	5,5	6,0	6,5	6,5	6,5	6,5	6,0	6,0
Temperature range IV ³) τ _{Rk,cr}		/mm ²]	5,0	5,5	6,0	6,0	6,0	6,0	5,5	5,5
		25/30					1,0				
Increasing		30/37					1,0				
factor		235/48 240/50					1,0 1,0				
for τ_{Rk}		240/50					1,0 1,0				
	-	250/60					1,0				
Splitting failure			<u>, 11</u>				.,.	•			
Edge distance –		h / h _e	_f ≥2,0				1,0	h _{ef}			
c _{cr,sp} [mm] –	2,0 >		_f > 1,3				4,6 h _{ef} -				
		_	_f ≤ 1,3				2,26				
Spacing Partial safety factor			[mm]				2c _{cr} 1,5	.sp 4)			
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-			nd wet hole ⁶⁾	1	8 ⁵⁾		1,0	1,5	4)		
¹⁾ In absence ²⁾ For steel (³⁾ See anne» ⁴⁾ The partia	e of other na C: f _{uk} = 700 l	Itional N/mm	l regula ² ; f _{yk} = : 1.0 is	tions 560 N/m included	m²	⁷⁾ On	IY FIS SE				
		fisc	her S	uperbo	nd						
	fischer th Characte	nread	ded ro		A and I	-			/	Annex	14

ğ ğ

Stainless

Tal	ble 11: Ch in I	aracteris hammer a					f fische	r thread	ded rod	s FIS A	and R	GM
Size					M8	M10	M12	M16	M20	M24	M27 ⁴⁾	M30
Steel [·]	failure with	out lever a	arm									
<u>.</u> 0		Property	5.8	[kN]	9	15	21	39	61	89	115	141
ristic V _{Rks}		class	8.8	[kN]	15	23	34	63	98	141	184	225
Characteristic esistance Agest stance Peets page Characteristic	-	50	[kN]	9	15	21	39	61	89	115	141	
Char esist	azor Dorugu La Stainless La Steels A4 De and steel C clas	Property class	70	[kN]	13	20	30	55	86	124	161	197
0 2	and steel C	0000	80	[kN]	15	23	34	63	98	141	184	225
Steel	failure with	lever arm	1	ľ							•	
두 놓		Property	5.8	[Nm]	19	37	65	166	324	560	833	1123
deristic benomination $M^{\rm O}_{\rm Rcs}$		class	8.8	[Nm]	30	60	105	266	519	896	1333	1797
terist	Stainless		50	[Nm]	19	37	65	166	324	560	833	1123

Char; ding n	steels A4 and steel C	class	70	[Nm]	26 52 92 232 454 784 1167 1573								
0 ·ē			80	[Nm]	30	<u>30</u> 60 105 266 519 896 1333 1797							
Partia	al safety fac	tor											
		Property	5.8	[-]				1,	25				
		class	8.8	[-]	1,25								
γ _{Ms,V} ¹⁾	Stainless	Proporti	50	[-]	2,38								
	steels A4	Property class	70	[-]	1,25 ²⁾ / 1,56								
	and steel C	01033	80	[-]	1,33								
Conc	rete pryout	failure											
Facto	r k in equatio	on (5.7)						2,	00				
of Tec	chnical Repo	ort	k	[-]									
TR 02	9, Section 5	5.2.3.3											
Partia	I safety facto	or	1) γΜαρ	[-]] 1,5 ³)								
Conc	rete edge fa	ilure			See Technical Report TR 029, Section 5.2.3.4								
Partia	I safety facto	or	1) YMc	[-]	1,5 ³⁾								
4)							0)			0			

¹⁾ In absence of other national regulations.

³⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

Property

²⁾ For steel C: f_{uk} = 700 N/mm²; f_{yk} = 560 N/mm² ⁴⁾Only FIS SB

Table 12: Displacements to tension load

Size	•	M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked and	Non-cracked and cracked concrete; temperature range I, II, III, IV									
Displacement	δ_{N0} [mm/(N/mm ²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,13	0,13	
Displacement	δ _{N∞} [mm/(N/mm²)]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19	
Calculation of characteristic displacement with $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$										

Table 13: Displacements to shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30	
Displacement	δ_{V0} [mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05	
Displacement	δ _{V∞} [mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07	
Coloulation of characteristic displacement with $S = (S + a)/(a)/(a)$										

Calculation of characteristic displacement with $\delta_V = (\delta_{VO} \bullet V_{Sd}) / 1,4$

fischer Superbond Hammer and diamond-drill fischer threaded rods FIS A and RGM Characteristic values to shear load and displacements

Size					M 8	M 10	M 12	M 16	M 20
Steel failure									
Characteristic		Property	5.8		19	29	43	79	123
resistance with	N _{Rk,s}	class	8.8		29	47	68	108	179
screw		Property	A4		26	41	59	110	172
		class 70 Property	<u> </u>	[kN]	26	41	59 1,50	110	172
Partial safety		class	<u> </u>				1,50		
actor	γ Ms, N $^{1)}$	Property	0.0				1,87		
		class 70	<u></u> C	[-]			1,87		
Combined pullo		ncrete con	e failui				,		
iameter of calcula			d _H	[mm]	12	16	18	22	28
Characteristic b									
emperature range			Rk,ucr	$[N/mm^2]$	12	12	11	11	9,5
emperature range			Rk,ucr	$[N/mm^2]$	12 11	11	11	10	9,0 8
emperature range			Rk,ucr	$[N/mm^2]$		10	10	9	-
emperature range	`	,	Rk,ucr	$[N/mm^2]$	10	9,5	9	8,5	7,5
Characteristic v emperature range				[N/mm ²]			5,0		
emperature range		5000)	111,01	$[N/mm^2]$			<u> </u>		
emperature range		$2/70^{\circ}O$	110,01	[N/mm ²]			4,5		
emperature range			Tugor	[N/mm ²]			4,0		
			^t _{Rk,cr} 5/30	[-]			1,02		
			0/37	[-]			1,04		
ncreasing factors)T(C3	5/45	[-]			1,07		
o r τ _{Rk}	Ψα		0/50	[-]			1,08		
			5/55	[-]			1,09		
		C50	0/60	[-]			1,10		
Splitting failure			b/	h > 2 0			105		
Edge distance	c _{cr,sp} [n	-2	0 > h / l	h _{ef} ≥ 2,0 h _{ef} > 1,3			<u>1,0 h_{ef}</u> 4,6 h _{ef} – 1,8	h	
	Ccr,sp [11	<u> </u>		h _{ef} ≤ 1,3		•	2,26 h _{ef}	11	
Spacing	S _{cr.sp}		,	[mm]					
Partial safety facto			dry a	and wet			2c _{cr,sp} 1,5 ³⁾		
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp} [-]$	-		floode	d hole ⁵⁾	1,8 ⁴⁾			5 ³⁾	
 In absence of 6 See annex 2 a The partial safe The partial safe The partial safe Only RSB 	nd 3. ety factor γ_2	2 = 1,0 is inc	cluded.						
				erbond					

Table 15: Characteristic values to shear load of fischer internal threaded anchors RG MI in hammer and diamond drilled hole

				M 8	M 10	M 12	M 16	M 20		
ut lever ar	m									
	Property	5.8	[kN]	9,2	14,5	21,1	39,2	69		
V	class	8.8	[kN]	14,6	23,2	33,7	54,0	90		
V Rk,s	Property	A4	[kN]	12,8	20,3	29,5	54,8	86		
	class 70	С	[kN]	12,8	20,3	29,5	54,8	86		
	Property	5.8	[-]			1,25				
	class	8.8	[-]			1,25				
Y Ms, V	Property	A4	[-]			1,56				
	class 70	С	[-]			1,56				
ever arm										
${\sf M}^{0}_{{\sf Rk},{\sf s}}$	Property	5.8	[Nm]	20	39	68	173	337		
	class	8.8	[Nm]	30	60	105	266	519		
	Property	A4	[Nm]	26	52	92	232	454		
	class 70	С	[Nm]	26	52	92	232	454		
	Property	5.8	[-]			1,25				
	class	8.8	[-]			1,25				
γ Ms, V	Property	A4	[-]			1,56				
	class 70	С	[-]	1,56						
ilure										
(5.7) of Te	echnical		[]			2.0				
tion 5.2.3.	3									
Partial safety factor $\gamma_{MCD}^{(1)}$			¹⁾ [-]	-] 1,5 ²⁾						
Concrete edge failure					See Technical Report TR 029, Section 5.2.3.4					
		ŶΝ	4c ¹⁾ [-]			1,5 ²⁾				
	V _{Rk,s} γ _{Ms, V} ever arm M ⁰ _{Rk,s} γ _{Ms, V} illure (5.7) of To stion 5.2.3. ure	V _{Rk,s} V _{Rk,s} γ Ms, V γ Ms, V Property class 70 Property class 70 Property	$\begin{split} & V_{\text{Rk,s}} & \frac{\text{Property}}{\text{class}} & \frac{5.8}{8.8} \\ & \text{Property} & A4 \\ & \text{class 70} & C \\ & \text{Property} & \frac{5.8}{class} \\ & \text{Property} & \frac{5.8}{class} \\ & \text{Property} & \frac{44}{class 70} \\ & \text{Cever arm} \\ & \text{M}^{0}_{\text{Rk,s}} & \frac{\text{Property}}{class} & \frac{5.8}{8.8} \\ & \text{Property} & \frac{5.8}{class} \\ & \frac{6}{2} \\ & \frac{6}{2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ut lever arm $V_{Rk,s}$ Property class 5.8 (kN] [kN] 9,2 (kN] $V_{Rk,s}$ Property class A4 (kN] 12,8 (kN] 12,8 (kN] $\gamma_{Ms,V}$ Property class 5.8 (kN] [-] - $\gamma_{Ms,V}$ Property class 6.8 (kN] [-] - $W_{Rk,s}$ Property class 7.8 (kN] [-] - $W_{Rk,s}$ Property class 6.8 (kN] 20 (kN] - $W_{Rk,s}$ Property class 6.8 (kN] 30 (kN] 20 (kN] - $W_{Rk,s}$ Property class 6.8 (kN] 30 (kN] 20 (kN] - $W_{Rk,s}$ Property class 6.8 (kN] 10 (kN] 26 (kN] - $\gamma_{Ms,V}$ Property class 6.8 (kN] - - $\gamma_{Ms,V}$ Property class 7 (kN] - - $\gamma_{Ms,V}$ Property class 6 (kN] - - $\gamma_{Ms,V}$ W_{Rs} W_{Rs} - -	Ut lever arm $V_{Rk,s}$ Property class 5.8 (kN] [kN] 9,2 (kN] 14,5 (kN] $V_{Rk,s}$ Property class 70 A4 (kN] 12,8 (kN] 20,3 (kN] 20,3 (kN] $\gamma_{Ms,V}$ Property class 5.8 (kN] [-]	ut lever arm $V_{Rk,s}$ Property class 5.8 8.8 8.8 (kN] [kN] 9,2 9,2 14,5 23,2 21,1 33,7 $V_{Rk,s}$ Property class 70 A4 (kN] 12,8 20,3 29,5 $\gamma_{Ms,V}$ Property class 70 C (kN] 12,8 20,3 29,5 $\gamma_{Ms,V}$ Property class 70 5.8 (lass [-] 1,25 $\gamma_{Ms,V}$ Property class 70 C (lass [-] 1,56 ever arm Property class 70 C (lass [-] 1,56 ever arm Property class 70 C (loss [Nm] 20 (loss 39 (loss 68 (loss $\gamma_{Ms,V}$ Property class 70 C (loss [Nm] 26 (loss 52 (loss 92 (loss $\gamma_{Ms,V}$ Property class 70 C (loss [-] 1,25 (loss 1,25 $\gamma_{Ms,V}$ Property class 70 [-] 1,25 92 (loss 70 1,25 $\gamma_{Ms,V}$ Property class 70 [-] 1,25 92 (loss 70 1,25 $\gamma_{Ms,V}$	ut lever arm $V_{\text{Rk,s}}$ Property class 5.8 (kN) [kN] 9,2 (lass 14,5 (lass 21,1 (lass 39,2 (lass 39,2 (lass 39,2 (lass 39,2 (lass 39,2 (lass 39,2 (lass 30,2 (lass 30,		

¹⁾ In absence of other national regulations. ²⁾ The partial safety factor γ_2 = 1,0 is included.

Table 16: Displacements to tension load

Size		M 8	M 10	M 12	M 16	M 20		
Non-cracked concrete and cracked concrete; temperature range I, II, III, IV								
Displacement	δ _{N0} [mm/(N/mm ²)]	0,09	0,10	0,10	0,11	0,19		
Displacement	δ _{N∞} [mm/(N/mm²)]	0,13	0,15	0,15	0,17	0,19		

Table 17: Displacements to shear load

Size		M 8	M 10	M 12	M 16	M 20
Displacement	δ _{vo} [mm/kN]	0,12	0,09	0,08	0,07	0,05
Displacement	δ _{V∞} [mm/kN]	0,18	0,14	0,12	0,10	0,08
O a lavelation of all and staniatio	1 = 2 = 2	X / A A				

Calculation of characteristic displacement $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer Superbond	
Hammer and diamond-drill fischer internal threaded anchor RG MI	Annex 17
Characteristic values to shear load and displacements	

Table 18: Characteristic values to tension load of fischer threaded rods RGM with capsule RSB in diamond drilled hole

Size			M 8	M 10	M 12	M 16	M 20	M 24	M 30	
Combined pullout and co	oncrete con									
Diameter of calculation	d	[mm]	8	10	12	16	20	24	30	
Characteristic bond resis	stance in no	n-cracked co	ncrete C	20/25						
Temperature range I ¹⁾ (40°C/24°C)	$ au_{Rk,ucr}$	[N/mm ²]	13	13	14	14	14	13	11	
Temperature range II ¹⁾ (80°C/50°C)	$ au_{Rk,ucr}$	[N/mm ²]	12	13	13	14	13	13	10	
Temperature range III ¹⁾ (120°C/72°C)	$ au_{Rk,ucr}$	[N/mm ²]	11	12	12	12	12	11	9,5	
Temperature range IV ¹⁾ (150°C/90°C)	$ au_{Rk,ucr}$	[N/mm ²]	10	11	11	11	11	10	8,5	
Characteristic bond resis	stance in cra	acked concret	te C20/2	5			_			
Temperature range I ¹⁾ (40°C/24°C)	$\tau_{Rk,cr}$	[N/mm ²]				7,5	7,5	7,5	7,5	
Temperature range II ¹⁾ (80°C/50°C)	$\tau_{Rk,cr}$	[N/mm ²]				7,5	7,5	7,5	7,0	
Temperature range III ¹⁾ (120°C/72°C)	$\tau_{\rm Rk,cr}$	[N/mm ²]				6,5	6,5	6,5	6,5	
Temperature range IV ¹⁾ (150°C/90°C)	$\tau_{\text{Rk,cr}}$	[N/mm ²]				6,0	6,0	6,0	6,0	
		C25/30 [-]				1,02	•			
		C30/37 [-]	1,04							
Increasing factors	Ψ_{c} —	C35/45 [-]				1,07				
for τ_{Rk}	1 c	C40/50 [-]				1,08				
		C45/55 [-]				1,09				
		C50/60 [-]	1,10							
Splitting failure										
Edge distance		h / h _{ef} ≥ 2,0				1,0 h _{ef}				
C _{cr,sp} [mm]	2,0 2	> h / h _{ef} > 1,3			4,6	6 h _{ef} – 1,8	3 h			
		h / h _{ef} ≤ 1,3				2,26 h_{ef}				
Spacing		s _{cr,sp} [mm]				2c _{cr,sp} 1,5 ³⁾				
Partial safety factor ²⁾		dry and wet		-4)		1,5%	3)			
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-]		flooded hole	1,8	8 ⁴⁾			1,5 ³⁾			

¹⁾ See Annex 3. ²⁾ In absence of other national regulations. ³⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

⁴⁾ The partial safety factor γ_2 = 1,2 is included.

	fischer	Superbond
--	---------	-----------

Diamond-drill Characteristic values to tension load of fischer threaded rods RGM

Г

Table 19: Characte	ristic values	s to tension lo	oad of fise	cher intern	al threade	d anchors	RG MI		
		diamond dril							
Size			M 8	M 10	M 12	M 16	M 20		
Combined pullout and c	oncrete con	e failure							
Diameter of calculation	d	[mm]	12	16	18	22	28		
Characteristic bond resi	istance in no	n-cracked con	crete C20/	25	-				
Temperature range I ¹⁾ (40°C/24°C)	τ _{Rk,ucr}	[N/mm ²]	13	12	12	11	10		
Temperature range II ¹⁾ (80°C/50°C)	$ au_{Rk,ucr}$	[N/mm ²]	13	12	12	11	9,5		
Temperature range III ¹⁾ (120°C/72°C)	$ au_{Rk,ucr}$	[N/mm ²]	11	11	10	9,5	8,5		
Temperature range IV ¹⁾ (150°C/90°C)	$ au_{Rk,ucr}$	[N/mm ²]	10	10	9,5	9,0	8,0		
Characteristic bond resi	istance in cra	cked concrete	e C20/25						
Temperature range I ¹⁾ (40°C/24°C)	$\tau_{Rk,cr}$	[N/mm ²]		5,0	5,0	5,0	5,0		
Temperature range II ¹⁾ (80°C/50°C)	$\tau_{Rk,cr}$	[N/mm ²]		5,0	5,0	5,0	5,0		
Temperature range III ¹⁾ (120°C/72°C)	$\tau_{Rk,cr}$	[N/mm ²]		4,5	4,5	4,5	4,5		
Temperature range IV ¹⁾ (150°C/90°C)	$ au_{Rk,cr}$	[N/mm ²]		4,0	4,0	4,0	4,0		
		C25/30 [-]			1,02				
		C30/37 [-]			1,04				
Increasing factors	Ψ _c —	C35/45 [-]			1,07				
for τ _{Rk}	тс 	C40/50 [-]			1,08				
		C45/55 [-]			1,09				
		C50/60 [-]			1,10				
Splitting failure									
Edge		h / h _{ef} ≥ 2,0			1,0 h _{ef}				
distance c _{cr,sp} [mm]	2,0 2	<u>h / h_{ef} > 1,3</u>		4	. <u>,6 h_{ef} – 1,8 l</u>	า			
Oranina -		h / h _{ef} ≤ 1,3			2,26 h _{ef}				
Spacing s _{cr,sp}		[mm]	<u> </u>						
Partial safety factor ²⁾		dry and wet flooded hole	1,8 ⁴⁾		<u>1,5 /</u> 1,5	53)			
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-]			1,0		1,3	J .			

¹⁾ See Annex 3. ²⁾ In absence of other national regulations. ³⁾ The partial safety factor $\gamma_2 = 1,0$ is included. ⁴⁾ The partial safety factor $\gamma_2 = 1,2$ is included.

Diamond-drill Characteristic values to tension load of internal threaded rods RG MI

Deutsches Institut für Bautechnik

Table 20: Characteristic values to tension load of reinforcing bars with mortar FIS SB in hammer drilled hole											
Size		Ød	8	10	12	14	16	20	25	28	32
Steel failure		νu	<u> </u>	10			10		20		02
Characteristic resistance	N	[LNI]	28	44	63	85	111	173	270	339	443
reinforcing bars ⁴⁾	N _{Rk,s}	[kN]	20	44	03	60		173	270	339	443
Partial safety factor	1) γMs,N	[-]					1,4				
	Combined pullout and concrete cone failure							- 00	05		
Diameter for calculation Characteristic bond resis	d tanco in non-c	[mm]	8	10	12	14	16	20	25	28	32
Temperature range I ³⁾ (40°C / 24°C)	τ _{Rk,ucr}	[N/mm ²]	8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
Temperature range II ³⁾ (80°C / 50°C)	τ _{Rk,ucr}	[N/mm ²]	8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
Temperature range III ³⁾ (120°C / 72°C)	τ _{Rk,ucr}	[N/mm ²]	7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
Temperature range IV ³⁾	τ _{Rk,ucr}	[N/mm ²]	6,5	7,0	7,0	7,5	7,5	8,0	7,5	7,0	6,0
(150°C/90°C) Characteristic bond resis	·			,	-			-	•		-
Temperature range I ³⁾											
(40°C / 24°C) Temperature range II ³⁾	τ _{Rk,cr}	[N/mm ²]	4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
(80°C / 50°C) Temperature range III ³⁾	τ _{Rk,cr}	[N/mm ²]	4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
(120°C / 72°C)	τ _{Rk,cr}	[N/mm ²]	4,0	5,0	5,0	5,0	6,0	5,5	5,5	5,5	5,5
Temperature range IV ³⁾ (150°C / 90°C)	τ _{Rk,cr}	[N/mm ²]	3,5	4,5	4,5	4,5	5,5	5,0	5,0	5,0	5,0
Increasing factors for τ_{Rk}	Ψ _c —	C25/30 [-] C30/37 [-] C35/45 [-] C40/50 [-] C45/55 [-] C50/60 [-]					1,02 1,04 1,07 1,08 1,09 1,10				
Splitting failure							,				
Edge distance c _{cr,sp} [mm]	2,0 > h h	/ $h_{ef} \ge 2,0$ / $h_{ef} \ge 1,3$ / $h_{ef} \le 1,3$				2	1,0 h _{ef} h _{ef} – 1, 2,26 h _{et}	f	<u> </u>		
	pr,sp	[mm]					2 c _{cr,sp} 1,5 ²⁾				
Partial safety factor $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{-1}$ [-] $1,5^{2)}$ 1) In absence of other national regulations.2) The partial safety factor $\gamma_2 = 1,0$ is included.3) See annex 2.4) The values given obtain for reinforcing bars B500B with $f_{uk} = 550 \text{ N/mm}^2$ and $f_{yk} = 500 \text{ N/mm}^2$ Other reinforcing bars have to be calculated according to TR 029, Equation (5.1).											
	fischer	Superbon	d								
Character	Hammer drill Characteristic values to tension load of reinforcing bars								Anr	iex 2	0

Table 21: Characteristic values to shear load of reinforcing bars with mortar FIS SB in hammer drilled hole

Size		Ød	8	10	12	14	16	20	25	28	32
Steel failure without lev	ver arm										
Characteristic resistance ¹⁾	$V_{Rk,s}$	[kN]	13,8	21,6	31,1	42,4	55,3	87	135	170	221
Partial safety factor	γ Ms,V	[-]	1,5								
Steel failure with lever arm											
Characteristic bending moment ¹⁾	${\sf M}^{\sf O}_{\sf Rk,s}$	[Nm]	33	65	112	178	265	518	1012	1422	2123
Partial safety factor	γ Ms,V	[-]					1,5				
Concrete pryout failure											
Factor k in equation (5.7)) of										
Technical Report TR 029	,	[-]					2,0				
Section 5.2.3.3											
Partial safety factor	2) γ Μcp	[-]	1,5 ³⁾								
Concrete edge failure											
Partial safety factor	γ _{Mc} 2)	[-]					1,5 ³⁾				

¹⁾ The values given obtain for reinforcing bars B500B with $f_{uk} = 550 \text{ N/mm}^2$ and $f_{yk} = 500 \text{ N/mm}^2$ Other reinforcing bars have to be calculated according to TR 029, Equation (5.1). ²⁾ In absence of other national regulations. ³⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

Table 22: Displacements of reinforcing bars to tension load

Size		Ød	8	10	12	14	16	20	25	28	32
	d non a						-	20	20	20	<u>ა</u> 2
Non-cracked and non-cracked concrete; temperature range I, II, III, IV Displacement δ _{N0} [mm/(N/mm ²)] 0,07 0,08 0,09 0,10 0,11 0,12 0,13 0,13											
•		[mm/(N/mm ²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13
Displacement $\delta_{N^{\infty}}$ [mm/(N/mm ²)] 0,12 0,13 0,13 0,15 0,16 0,16 0,18 0,20 0,20 Calculation of characteristic displacement with δ_{N} = (δ_{N0} • τ_{Sd}) / 1,4											
Table 23: Displacements of reinforcing bars to shear load											
Size		Ød	8	10	12	14	16	20	25	28	32
Displacement	δ_{V0}	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05
Displacement	δ_{V^∞}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06
Calculation of characteristic displacement with δ_V = ($\delta_{V0} \bullet V_{Sd}$) / 1,4											
fischer Superbond									_		
Hammer-drill Characteristic values to shear load and displacements of reinforcing bars								nnex	21		

Characteristic resistance

I

196

283

126

Table 24: Characteristic values to tenFIS SB in hammer drilled h		scher rebar an	ichors FRA wit	th mortar
Size	M12	M16	M20	M24
Steel failure				

68

N_{Rks}[kN]

Unaracteristic resistance		00	120	130	205			
Partial safety factor	γ _{Μs,N} ¹⁾ [-]		1,	,6				
Combined pullout and o		1						
Diameter of calculation	d [mm]	12	16	20	25			
Characteristic bond res	istance in non-crack	ed concrete C2	0/25					
Temperature range I ³⁾ (40°C / 24°C)	τ _{Rk,ucr} [N/mm ²]	9,0	9,5	10	9,5			
Temperature range II ³⁾ (80°C / 50°C)	τ _{Rk,ucr} [N/mm ²]	9,0	9,5	9,5	9,0			
Temperature range III ³⁾ (120°C / 72°C)	τ _{Rk,ucr} [N/mm ²]	8,0	8,5	8,5	8,0			
Temperature range IV ³⁾ (150°C / 90°C)	τ _{Rk,ucr} [N/mm²]	7,0	7,5	8,0	7,5			
Characteristic bond res	istance in cracked co	oncrete C20/25						
Temperature range I ³⁾ (40°C / 24°C)	τ _{Rk,cr} [N/mm²]	6,0	7,0	6,0	6,0			
Temperature range II ³⁾ (80°C / 50°C)	τ _{Rk,cr} [N/mm²]	5,5	6,5	6,0	6,0			
Temperature range III ³⁾ (120°C / 72°C)	τ _{Rk,cr} [N/mm²]	5,0	6,0	5,5	5,5			
Temperature range IV ³⁾ (150°C / 90°C)	τ _{Rk,cr} [N/mm²]	4,5	5,5	5,0	5,0			
· ·	C25/30 [-]		1,0	02	-			
Inorodoing	C30/37 [-]		1,0	04				
Increasing factors Ψ_c	C35/45 [-]		1,0	07				
for τ_{Rk}	C40/50 [-]			08				
	C45/55 [-]			09				
	C50/60 [-]		1,	10				
Splitting failure	-							
Edge distance -	h / h _{ef} ≥ 2,0	1,0 h _{ef}						
C _{cr,sp} [mm] -	2,0 > h / h _{ef} > 1,3			– 1,8 h				
	h / h _{ef} ≤ 1,3			3 h _{ef}				
Spacing	$\frac{\mathbf{S}_{\text{cr,sp}}}{\gamma_{\text{Mp}} = \gamma_{\text{Mc}} = \gamma_{\text{Msp}}^{1}[-]}$	<u>2 c_{cr,sp}</u> 1,5 ²⁾						
Partial safety factor			4 1					

¹⁾ In absence of other national regulations. ²⁾ The partial safety factor $\gamma_2 = 1,0$ is included. ³⁾ See annex 2.

fischer Superbond

Hammer-drill Characteristic values to tension load of fischer rebar anchors FRA

Table 25: Characteristic values to shear load of fischer rebar anchors FRA with mortar FIS SB in hammer drilled hole

Size			M12	M16	M20	M24			
Steel failure without lever arr	n	•							
Characteristic	V	[kN]	22.7	63	98	141			
resistance	$V_{Rk,s}$		33,7	03	90	141			
Partial safety factor	γ̃Ms,V	[-]	1,33						
Steel failure with lever arm									
Characteristic bending	M ⁰ _{Rk,s}	[Nm]	105	266	519	896			
moment	IVI Rk,s		105	200	518	090			
Partial safety factor	γ̃Ms,V	[-]		1,:	33				
Concrete pryout failure									
Factor k in equation (5.7)									
of Technical Report TR 029,	k	[-]		2,	,0				
Section 5.2.3.3									
Partial safety factor	1) ΥΜcp	[-]	1,5 ²⁾						
Concrete edge failure			See Technical Report TR 029, Section 5.2						
Partial safety factor	γ _{Mc} ¹⁾	[-]	1,5 ²⁾						

 $^{1)}$ In absence of other national regulations. $^{2)}$ The partial safety factor γ_2 = 1,0 is included.

Table 26: Displacements of fischer rebar anchors FRA to tension load

Size	Ø	12	16	20	24					
Non-cracked and non-cracked concrete; temperature range I, II, III, IV										
Displacement	$\delta_{N0} [mm/(N/mm^2)]$	0,09	0,10	0,11	0,12					
Displacement	δ _{N∞} [mm/(N/mm²)]	0,13	0,16	0,16	0,18					
Calculation of characteristi	Calculation of characteristic displacement with $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$									

Table 27: Displacements of fischer rebar anchors FRA to shear load

Size	Ø	12	16	20	24
Displacement	δ_{V0} [mm/kN]	0,12	0,09	0,07	0,06
Displacement	δ _{V∞} [mm/kN]	0,18	0,14	0,11	0,09

Calculation of characteristic displacement with $\delta_V = (\delta_{VO} \bullet V_{Sd}) / 1,4$

fischer Superbond

Hammer-drill Characteristic values to shear load and displacements of fischer rebar anchors FRA