gemeinsam getragene Anstalt (öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-12/0602

Handelsbezeichnung Trade name Friulsider Injektionssystem KEM-UP 934 für Beton Friulsider Injection System KEM-UP 934 for concrete

Zulassungsinhaber Holder of approval Friulsider S.p.A. Via Trieste 1

33048 SAN. GIOVANNI AL NATISONE

ITALIEN

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: vom Validity: from

bis

Herstellwerk

Manufacturing plant

Verbunddübel in den Größen Ø 10 mm bis Ø 25 mm für Diamantbohren zur Verankerung im ungerissenen Beton

Bonded anchor in the size of Ø 10 mm to Ø 25 mm for diamond coring for use in uncracked concrete

20. Dezember 2012

16. März 2017

Friulsider S.p.A., Plant1 Germany

Diese Zulassung umfasst This Approval contains 23 Seiten einschließlich 14 Anhänge 23 pages including 14 annexes

Seite 2 von 23 | 20. Dezember 2012

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Art. 2 des Gesetzes vom 8. November 2011⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 5: Verbunddübel", ETAG 001-05.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- Bundesgesetzblatt Teil I 2011, S. 2178
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 23 | 20. Dezember 2012

BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN Ш **ZULASSUNG**

1 Beschreibung des Produkts und des Verwendungszwecks

1.1 Beschreibung des Bauprodukts

Das "Friulsider Injektionssystem KEM-UP 934 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Friulsider KEM-UP 934 und einem Stahlteil besteht. Das Stahlteil ist eine handelsübliche Gewindestange gemäß Anhang 3, Durchmesser M 10 bis M 24 oder ein Betonstahl gemäß Anhang 4, Durchmesser 10 bis 25 mm.

Das Stahlteil wird in ein mit Iniektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

In den Anhängen 1 und 2 sind Produkt und Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen der Verankerungen zu einer Gefahr für Leben oder Gesundheit von Menschen und/oder erheblichen wirtschaftlichen Folgen führt. Der Brandschutz (wesentliche Anforderung 2) ist durch diese europäische technische Zulassung nicht erfasst. Der Dübel darf nur für Verankerungen unter statischer oder quasi-statischer Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206:2000-12 verwendet werden.

Der Dübel darf nur im ungerissenen Beton verankert werden.

Der Dübel darf in trockenen oder nassen Beton und in mit Wasser gefüllte Bohrlöcher gesetzt werden.

Der Dübel darf in den folgenden Temperaturbereichen verwendet werden:

-40 °C bis +40 °C Temperaturbereich I: (max. Langzeit-Temperatur +24 °C und

max. Kurzzeit-Temperatur +40 °C)

Temperaturbereich II: -40 °C bis +60 °C (max. Langzeit-Temperatur +43 °C und

max. Kurzzeit-Temperatur +60 °C)

(max. Langzeit-Temperatur +43 °C und -40 °C bis +72 °C Temperaturbereich III: max. Kurzzeit-Temperatur +72 °C)

Stahlteile aus verzinktem Stahl:

Die Stahlteile aus galvanisch verzinktem Stahl oder feuerverzinktem Stahl dürfen nur in Bauteilen unter den Bedingungen trockener Innenräume verwendet werden.

Stahlteile aus nichtrostendem Stahl:

Die Stahlteile aus nichtrostendem Stahl 1.4401 oder 1.4571 dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Seite 4 von 23 | 20. Dezember 2012

Stahlteile aus hochkorrosionsbeständigem Stahl:

Die Stahlteile aus hochkorrosionsbeständigem Stahl 1.4529 oder 1.4565 dürfen in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Stahlteile aus Betonstahl:

Nachträglich eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden, sind nicht durch diese europäische technische Zulassung abgedeckt.

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben der Anhänge 3 und 4. Die in den Anhängen 3 und 4 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

Die charakteristischen Dübelkennwerte für die Bemessung der Verankerungen sind in den Anhängen 9 bis 14 angegeben.

Die zwei Komponenten des Injektionsmörtels werden unvermischt in side-by-side Kartuschen der Größe 385 ml, 585 ml oder 1400 ml gemäß Anhang 2 geliefert. Jede Kartusche ist mit dem Herstellerkennzeichen "KEM-UP 934", mit Verarbeitungshinweisen, der Chargennummer, dem Haltbarkeitsdatum, einer Gefahrenbezeichnung, Härtungs- und Verarbeitungszeiten mit oder ohne Kolbenwegskala gekennzeichnet.

Stahlteile aus Betonstahl müssen den Angaben nach Anhang 4 entsprechen.

Die Markierung der Verankerungstiefe darf auf der Baustelle erfolgen.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die mechanische Festigkeit und Standsicherheit und die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 1 und 4 erfolgte in Übereinstimmung mit der "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 5 "Verbunddübel", auf der Grundlage der Option 7.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 5 von 23 | 20. Dezember 2012

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 96/582/EG der Europäischen Kommission⁸ ist das System 2(i) (bezeichnet als System 1) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 1: Zertifizierung der Konformität des Produkts durch eine zugelassene Zertifizierungsstelle aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) werkseigener Produktionskontrolle;
 - zusätzlicher Prüfung von im Werk entnommenen Proben durch den Hersteller nach festgelegtem Prüfplan;
- (b) Aufgaben der zugelassenen Stelle:
 - (3) Erstprüfung des Produkts;
 - (4) Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - (5) laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten, einschließlich der Aufzeichnungen der erzielten Ergebnisse. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/Rohstoffe/Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

Z91806 12 8 06 01-443/12

8

Amtsblatt der Europäischen Gemeinschaften L 254 vom 08.10.1996.

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der in das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 6 von 23 | 20. Dezember 2012

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit den Bestimmungen des Prüfplans durchzuführen:

- Erstprüfung des Produkts,
- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass das Produkt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Zulassungsinhabers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für das Produkt,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-1, Option 7),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen.

Seite 7 von 23 | 20. Dezember 2012

Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

4.2 Bemessung der Verankerung

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit dem EOTA Technical Report TR 029 "Design of Bonded Anchors" unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Nachträgliche eingemörtelte Betonstähle dürfen als Dübel verwendet und nur nach dem EOTA Technical Report TR 029 bemessen werden. Die grundlegenden Annahmen für die Bemessung nach der Dübeltheorie sind zu beachten. Das beinhaltet sowohl die Berücksichtigung von Zugund Querkräften und die zugehörigen Versagensarten als auch die Annahme, dass der Verankerungsgrund (Betonbauteil) im Grenzzustand der Gebrauchstauglichkeit (gerissen oder ungerissen) verbleibt, wenn der Anschluss bis zum Versagen belastet wird. Solche Anwendungen sind z. B. in Betonierfugen oder als Schubdorne oder Wandanschlussbewehrung, die überwiegend Quer- und Druckkräfte auf das Fundament übertragen, wobei die Bewehrungsstäbe als Dübel wirken, um Querkräfte aufzunehmen. Anschlüsse mit nachträglich eingemörtelten Bewehrungsanschlüssen, die nach EN 1992-1-1:2004 bemessen werden (z. B. Wandanschlussbewehrung, bei der Zugkräfte in mindestens einer Bewehrungslage auftreten), sind nicht durch diese europäische technische Zulassung abgedeckt.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.) angegeben.

4.3 Einbau der Dübel

Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den in der technischen Dokumentation dieser europäischen technischen Zulassung angegebenen Werkzeugen,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Es dürfen handelsübliche Gewindestangen, Scheiben und Muttern verwendet werden, wenn die nachfolgend aufgeführten Anforderungen erfüllt sind:
 - Werkstoff, Abmessungen und mechanische Eigenschaften der Stahlteile entsprechend Anhang 3,
 - Nachweis von Werkstoff und mechanischen Eigenschaften der Stahlteile durch ein Abnahmeprüfzeugnis 3.1 entsprechend EN 10204:2004, die Nachweise sind aufzubewahren.
 - Markierung der Gewindestange mit der geplanten Verankerungstiefe. Dies kann durch den Hersteller oder vom Baustellenpersonal erfolgen.
- Eingemörtelte Betonstähle müssen mit den Bestimmungen nach Anhang 4 übereinstimmen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,

Der EOTA Technical Report TR 029 "Design of Bonded Anchors" ist in Englischer Sprache auf der website www.eota.eu veröffentlicht.

Seite 8 von 23 | 20. Dezember 2012

- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Markierung und Einhaltung der effektiven Verankerungstiefe,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bohrlochherstellung durch Diamantbohren,
- Bei Fehlbohrungen: Fehlbohrungen sind zu vermörteln,
- Bohrlochlochreinigung und Einbau gemäß Anhänge 6 und 7,
- die Temperatur im Verankerungsgrund während der Aushärtung des Injektionsmörtels unterschreitet nicht 5 °C; Einhaltung der Wartezeit bis zur Lastaufbringung gemäß Anhang 5, Tabelle 4.
- Bei der Mörtelinjektion in Bohrlöchern mit einem Durchmesser von d₀ > 20 mm sind Stauzapfen nach Anhang 8 bei Überkopf- oder Horizontalmontage zu verwenden,
- Montagedrehmomente sind für die Tragfähigkeit des Dübels nicht erforderlich. Die in Anhang 5 angegebenen Anzugsdrehmomente dürfen jedoch bei der Montage der Anbauteile nicht überschritten werden.

5 Vorgaben für den Hersteller

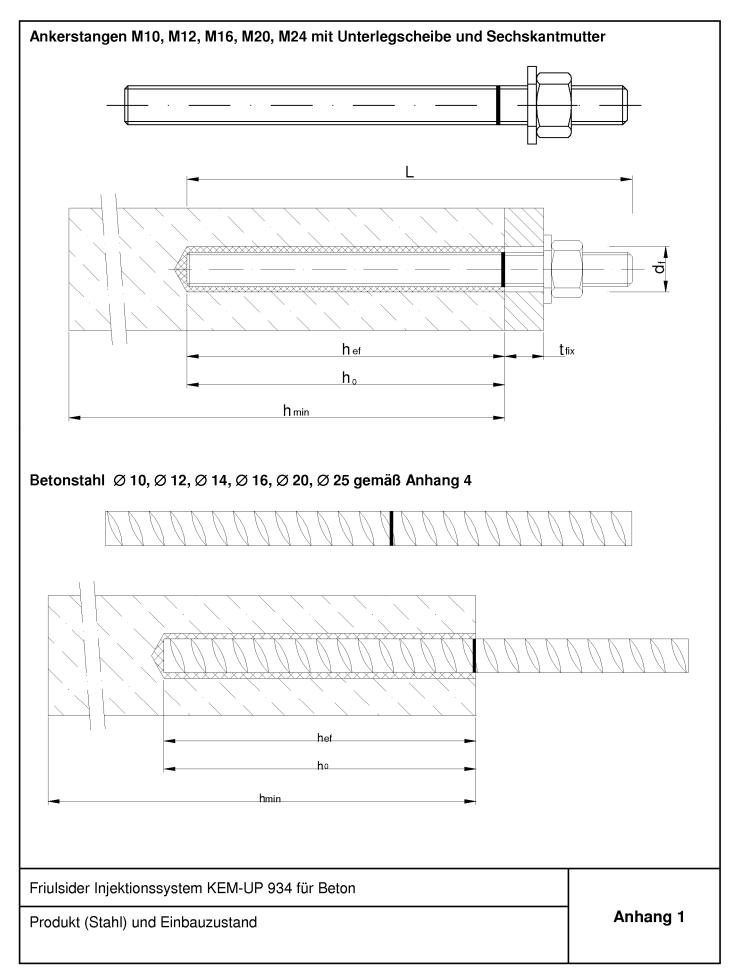
5.1 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2, 4.3 und 5.2 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.

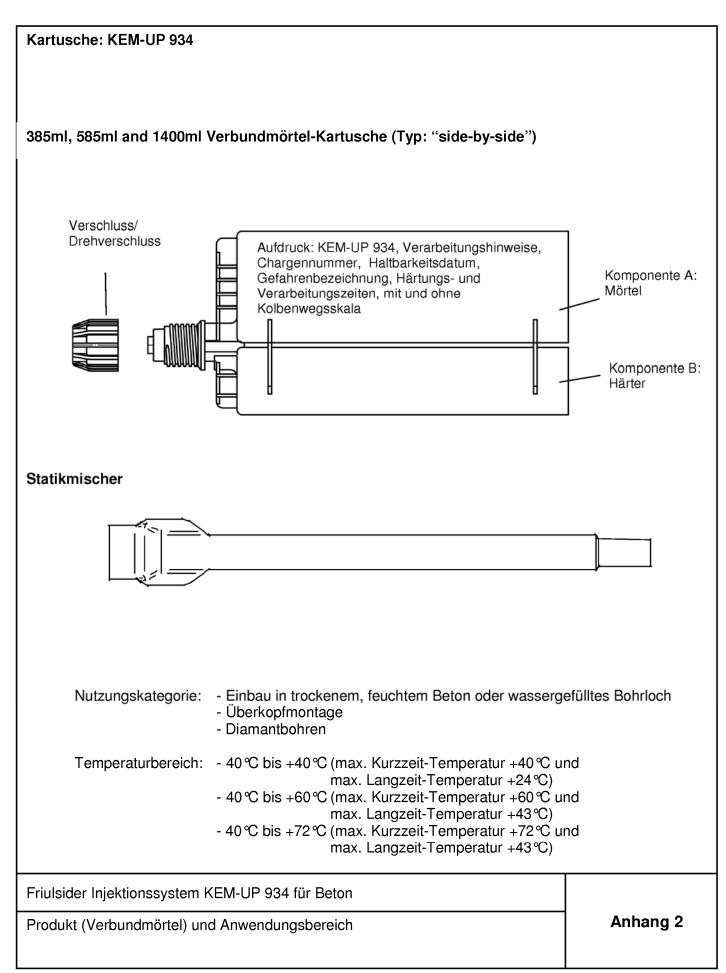
Es sind mindestens folgende Angaben zu machen:

- Bohrernenndurchmesser,
- Bohrlochtiefe,
- Nenndurchmesser des Stahlteiles,
- Mindestverankerungstiefe,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs mit den Reinigungsgeräten, vorzugsweise durch bildliche Darstellung,
- Temperatur der Dübelteile beim Einbau,
- Temperatur im Verankerungsgrund beim Setzen des Dübels,
- zulässige Verarbeitungszeit der Mörtels,
- Wartezeit bis zur Lastaufbringung abhängig von der Temperatur im Verankerungsgrund beim Setzen,
- max. Drehmoment beim Befestigen,
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.


Seite 9 von 23 | 20. Dezember 2012

5.2 Verpackung, Transport und Lagerung


Die Mörtelkartuschen sind vor Sonneneinstrahlung zu schützen und entsprechend der Montageanleitung trocken bei Temperaturen von mindestens +5 °C bis höchstens +25 °C zu lagern. Mörtelkartuschen mit abgelaufenem Haltbarkeitsdatum dürfen nicht mehr verwendet werden. Der Dübel ist als Befestigungseinheit zu verpacken und zu liefern. Die Mörtelkartuschen sind separat von den Stahlteilen verpackt.

Georg Feistel Abteilungsleiter Beglaubigt

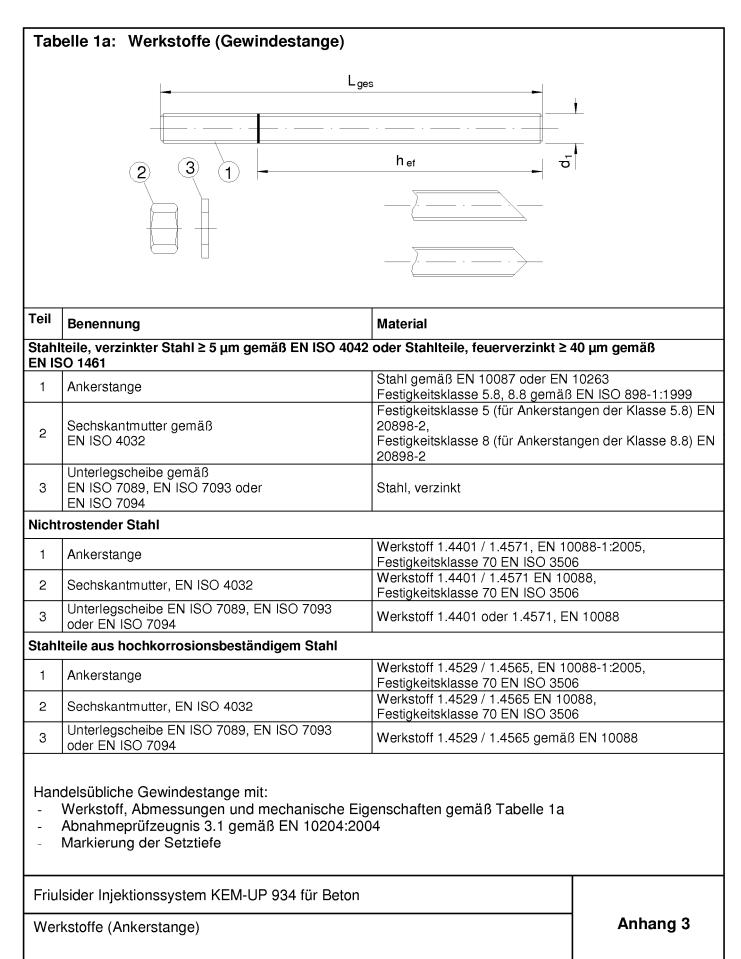
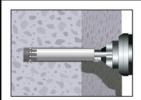


Table 1b: Materials (Reinforcing bar) Auszug aus EN 1992-1-1 Anhang C, Tabelle C.1, Eigenschaften von Betonstahl: **Produktart** Stäbe und Betonstabstahl vom Ring Klasse С Charakteristische Streckgrenze fyk oder fo,2k 400 bis 600 (N/mm²)≥ 1.15 Mindestwert von $k = (f_t / f_y)_k$ ≥ 1,08 < 1,35 Charakteristische Dehnung bei Höchstlast ≥ 5,0 ≥ 7,5 ε_{uk} (%) Biegbarkeit Biege-/Rückbiegetest Maximale Nenndurchmesser des Abweichung von der Stabs (mm) $\pm 6,0$ Nennmasse ≤8 $\pm 4,5$ (Einzelstab) (%) > 8 Auszug aus EN 1992-1-1 Anhang C, Tabelle C.2N, Eigenschaften von Betonstahl: Produktart Stäbe und Betonstabstahl vom Ring В С **Klasse** Verbund: Nenndurchmesser des Mindestwerte der Stabs (mm) bezogenen 0,040 Rippenfläche f_{R,min} 8 bis 12 0,056 > 12 Die Rippenhöhe muss $0.05d \le h \le 0.07d$ betragen. (d: Nenndurchmesser des Stabs; h: Rippenhöhe) Bei der Bemessung ist Kapitel 4.2 zu beachten. Friulsider Injektionssystem KEM-UP 934 für Beton Anhang 4 Werkstoffe (Betonstahl)

Tabelle 2: Montagekennwerte für Gewindestangen							
Dübelgröße		M 10	M 12	M 16	M 20	M 24	
Bohrernenndurchmesser	d ₀ [mm] =	12	14	18	24	28	
Setz- und Bohrlochtiefebereich	h _{ef,min} [mm] =	60	70	80	90	96	
Setz- una bonnochtierebereich	h _{ef,max} [mm] =	200	240	320	400	480	
Durchgangsloch im anzuschließenden Bauteil	d₁ [mm] ≤	12	14	18	22	26	
Bürstendurchmesser	d _b [mm] ≥	14	16	20	26	30	
Drehmoment	T _{inst} [Nm]	20	40	80	120	160	
Anbauteildicke	$t_{\text{fix,min}}$ [mm] >	0					
Andautendicke	$t_{fix,max}$ [mm] <	1500					
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 20		h _{ef} + 2d ₀			
minimaler Achsabstand	s _{min} [mm]	50	60	80	100	120	
minimaler Randabstand	c _{min} [mm]	50	60	80	100	120	

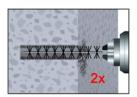
Tabelle 3: Montagekennwerte für Betonstahl

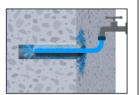
Dübelgröße		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Bohrernenndurchmesser	d ₀ [mm] =	14	16	18	20	24	32
Setz- und	h _{ef,min} [mm] =	60	70	75	80	90	100
Bohrlochtiefebereich	h _{ef,max} [mm] =	200	240	280	320	400	500
Bürstendurchmesser	d _b [mm] ≥	16	18	20	22	26	34
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm	h _{ef} + 2d ₀				
minimaler Achsabstand	s _{min} [mm]	50	60	70	80	100	125
minimaler Randabstand	c _{min} [mm]	50	60	70	80	100	125


Tabelle 4: Mindest-Aushärtezeit

Untergrund- temperatur	Verarbeitungs- zeit	Mindest- Aushärtezeit in trockenem Beton	Mindest- Aushärtezeit in feuchtem Beton
≥ 5 ℃	120 min	50 h	100 h
≥ +10 ℃	90 min	30 h	60 h
≥ +20 ℃	30 min	10 h	20 h
≥ +30 ℃	20 min	6 h	12 h
≥ +40 ℃	12 min	4 h	8 h

Friulsider Injektionssystem KEM-UP 934 für Beton	
Montagekennwerte	Anhang 5


Setzanweisung


1b. Bohrloch mit Diamantbohrer und mit vorgeschriebenem Bohrerdurchmesser (Tabelle 2 oder Tabelle 3) und gewählter Bohrlochtiefe erstellen.

2a. Mit Wasser ausspülen, bis klares Wasser aus dem Bohrloch austritt.

2b. Bohrloch mit geeigneter Drahtbürste gem. Tabelle 5 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder Bohrmaschine ausbürsten. Bei tiefen Bohrlöchern Bürstenverlängerung benutzen (Tabelle 5).



Wiederholt mit Wasser ausspülen, bis klares Wasser aus dem Bohrloch austritt.

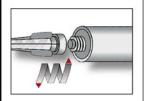
Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt werden.

2d. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (Anhang 8) (min. 6 bar) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

2e. Bohrloch mit geeigneter Drahtbürste gem. Tabelle 5 (minimaler Bürstendurchmesser d_{b,min} ist einzuhalten und zu überprüfen) 2x mittels eines Akkuschraubers oder Bohrmaschine ausbürsten. Bei tiefen Bohrlöchern Bürstenverlängerung benutzen (Tabelle 5).

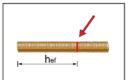
2f. Anschließend das Bohrloch erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (Anhang 8) (min. 6 bar) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden

Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

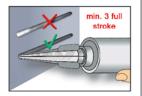

Friulsider Injektionssystem KEM-UP 934 für Beton

Setzanweisung

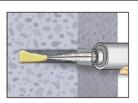
Anhang 6



Setzanweisung (Fortsetzung)

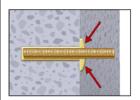


3. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen.


Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle 4) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.

4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.

5. Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue oder rote Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe.



6. Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Für Setztiefen größer 190 mm passende Mischerverlängerung verwenden. Für die Horizontal- oder Überkopfmontage von Ankern > Ø 20 mm sind Verfüllstutzen gemäß Anhang 8 zu verwenden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle 4) sind zu beachten.

7. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange sollte schmutz-, fett-, und ölfrei sein.

8. Nach Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Setztiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).

9. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (s. Tabelle 4).

10. Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment (Tabelle 2) montiert werden. Die Mutter muss mit einem geeigneten Drehmomentschlüssel festgezogen werden.

Friulsider Injektionssystem KEM-UP 934 für Beton

Setzanweisung (Fortsetzung)

Anhang 7

7101497 12

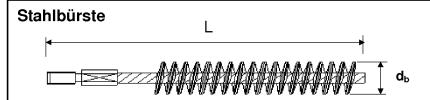


Tabelle 5: Parameter für Reinigungs- und Setzzubehör

Gewinde-stangen	Betonstahl	d₀ Bohrer - Ø	d₀ Bürsten - Ø	d _{b,min} min. Bürsten - Ø	Verfüll- stutzen - Ø
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
M10		12	14	12,5	-
M12	10	14	16	14,5	-
	12	16	18	16,5	-
M16	14	18	20	18,5	-
	16	20	22	20,5	-
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
	25	32	34	32,5	# 32

Empfohlene Druckluftpistole (min 6 bar)

Alle Durchmesser (d₀)

Verfüllstutzen für Überkopf- oder Horizontalmontage

Alle Durchmesser (d₀)

Friulsider Injektionssystem KEM-UP 934 für Beton	
Reinigungs- und Installationszubehör	Anhang 8

Dübelgröße Gewindesta	ngen			M 10	M 12	M 16	M 20	M24
Stahlversagen							•	
Charakteristische Zugtrag Stahl, Festigkeitsklasse 5.		N _{Rk,s}	[kN]	29	42	78	122	176
Charakteristische Zugtrag	fähigkeit,	N _{Rk,s}	[kN]	46	67	125	196	282
Stahl, Festigkeitsklasse 8. Teilsicherheitsbeiwert	.8	γ _{Ms,N} 1)	1, ,			l 1,50		
Charakteristische Zugtrag Stahl A4 und HCR Festigkeitsklasse 70	fähigkeit, nichtrostender	N _{Rk,s}	[kN]	41	59	110	171	247
Teilsicherheitsbeiwert		γMs,N 1)	1			1,87	•	
Kombiniertes Versagen	durch Herausziehen und		sbruch					
Charakteristische Verbund	dtragfähigkeit im ungerisse	nen Betor	C20/25					
Temperaturbereich I ⁴⁾ :	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	11	10	10	9,5	9,0
40 °C/24 °C	wassergefülltes Bohrloch	₹Rk,ucr	[N/mm²]	9,0	10	9,5	9,5	8,5
Temperaturbereich II ⁴⁾ : 60 ℃/43 ℃	trockener und feuchter Beton	₹Rk,ucr	[N/mm²]	7,0	6,5	6,0	6,0	5,5
	wassergefülltes Bohrloch	₹Rk,ucr	[N/mm²]	5,5	6,5	6,0	6,0	5,5
Temperaturbereich III ⁴⁾ :	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	6,0	6,0	5,5	5,0	5,0
72℃/43℃	wassergefülltes Bohrloch	₹Rk,ucr	[N/mm²]	5,0	6,0	5,0	5,0	5,0
Teilsicherheitsbeiwert (trockener und feuchter Be	eton)	$\gamma_{Mp} = \gamma_{Mp}$	1)	1,5 ²⁾ 1,8 ³⁾				
Erhöhungsfaktor für		C30/37				1,04		
ungerissenen Beton Ψ _c		C40/50		1,08				
		C50/60				1,10		
Spalten		T						
Randabstand		C _{cr,sp}	[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$			h _{ef}	
Achsabstand		S _{cr,sp}	[mm]		2 C _{cr,sp}			
Teilsicherheitsbeiwert (trockener und feuchter Be	eton)	γ _{Msp} 1)		1,5 ²⁾ 1,8 ³⁾				
²⁾ In diesem Wert ist de	nalen Regelungen fehlen er Montagesicherheitsbeiw er Montagesicherheitsbeiw Abschnitt 1.2	ert $\gamma_2 = 1.0$ ert $\gamma_2 = 1.2$	enthalten. enthalten.					

Friulsider Injektionssystem KEM-UP 934 für Beton

Anwendung mit Gewindestangen

Bemessungsverfahren A:

Charakteristische Werte bei Zuabeanspruchung in ungerissenem Beton

Anhang 9

Tabelle 7:	Bemessungsverfahren A:
	Charakteristische Werte bei Querbeanspruchung in gerissenem und
	ungerissenem Beton

Dübelgröße Gewindestangen			M 10	M 12	M 16	M 20	M24
Stahlversagen ohne Hebelarm							
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 5.8	$V_{Rk,s}$	[kN]	15	21	39	61	88
Charakteristische Quertragfähigkeit, Stahl, Festigkeitsklasse 8.8	V _{Rk,s}	[kN]	23	34	63	98	141
Teilsicherheitsbeiwert	γMs,V 1)				1,25		
Charakteristische Zugtragfähigkeit, nichtrostender Stahl A4 und HCR Festigkeitsklasse 70	V _{Rk,s}	[kN]	20	30	55	86	124
Teilsicherheitsbeiwert	γMs,V 1)				1,56		
Stahlversagen mit Hebelarm		•					
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s}	[Nm]	37	65	166	324	560
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s}	[Nm]	60	105	266	519	896
Teilsicherheitsbeiwert	γMs,V 1)		1,25				
Charakteristische Zugtragfähigkeit, nichtrostender Stahl A4 und HCR Festigkeitsklasse 70	M ⁰ Rk,s	[Nm]	52	92	232	454	784
Teilsicherheitsbeiwert	γMs,V 1)				1,56		
Betonausbruch auf der lastabgewandte	en Seite						
	tor k in Gleichung (5.7) des Technical Report 029 für die Bemessung von Verbunddübeln			2,0			
Teilsicherheitsbeiwert	γMcp ¹⁾		1,50 ²⁾				
Betonkantenbruch	•	<u>'</u>					
Siehe Abschnitt 5.2.3.4 des Technical Re	port TR 029	für die Be	messung vo	n Verbunddüb	el		
Teilsicherheitsbeiwert	γ _{Mc} 1)				1,50 ²⁾		

Friulsider Injektionssystem KEM-UP 934 für Beton Anhang 10 Anwendung mit Gewindestangen Bemessungsverfahren A: Charakteristische Werte bei Querbeanspruchung in gerissenem und

 $^{^{1)}}$ Sofern andere nationalen Regelungen fehlen $^{2)}$ In diesem Wert ist der Montagesicherheitsbeiwert γ_2 = 1,0 enthalten.

Tabelle 8: V	erschie	bung unter Zuglast	t ¹⁾					
Dübelgröße Gewind	destangen		M 10	M 12	M 16	M 20	M24	
Temperaturbereich 40 ℃/24 ℃ für ungerissenen Beton C20/25								
Verschiebung	δινο	[mm/(N/mm²)]	0,013	0,015	0,020	0,024	0,029	
Verschiebung	δ _{N∞}	[mm/(N/mm²)]	0,052	0,061	0,079	0,096	0,114	
Temperaturbereich	Temperaturbereich 72 ℃/43 ℃ and 60 ℃/43 ℃ für ungerissenen Beton C20/25							
Verschiebung	δινο	[mm/(N/mm²)]	0,015	0,018	0,023	0,028	0,033	
Verschiebung	δ _{N∞}	[mm/(N/mm²)]	0,060	0,070	0,091	0,111	0,131	

 $^{^{1)}}$ Berechnung der Verschiebung unter Bemessungslast Verschiebung unter Kurzzeitbelastung = $\delta_{No} \cdot \tau_{Sd} \, / \, 1,4;$ Verschiebung unter Langzeitbelastung = $\delta_{N\infty} \cdot \tau_{Sd} \, / \, 1,4;$ $(\tau_{Sd} :$ Bemessungswert der Verbundspannung)

Tabelle 9: Verschiebung unter Querlast 2)

Dübelgröße		M 10	M 12	M 16	M 20	M24	
Verschiebung	δνο	[mm/(kN)]	0,06	0,05	0,04	0,04	0,03
Verschiebung	δ _{V∞}	[mm/(kN)]	0,08	0,08	0,06	0,06	0,05

 $^{^{2)}}$ Berechnung der Verschiebung unter Bemessungslast Verschiebung unter Kurzzeitbelastung = $\delta_{Vo}\cdot V_d$ / 1,4; Verschiebung unter Langzeitbelastung = $\delta_{V\infty}\cdot V_d$ / 1,4; (V_d: Bemessungsquerlast)

Friulsider Injektionssystem KEM-UP 934 für Beton	
Anwendung mit Gewindestangen Verschiebungen	Anhang 11

Tabelle 10: Bem Char	essungsverfah akteristische \			eanspr	uchung	in unge	erissene	em Beto	n
Dübelgröße Betonstahl				Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Stahlversagen (Eigenso	haften gemäß Anha	ang 4)				ı		l	
Charakteristische Zugtrac B500 B nach DIN 488-2:2	gfähigkeit 2009-08 ⁵⁾	N _{Rk,s}	[kN]	43	62	85	111	173	270
Teilsicherheitsbeiwert		γ _{Ms,N} 1)	•		,	1,	40	•	
Kombiniertes Versagen	durch Herausziehe			uch					
Charakteristische Verbun	dtragfähigkeit im ung	gerissene	n Beton C2	20/25					
Temperaturbereich I ⁴⁾ :	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	11	10	10	10	9,5	9,0
40 ℃/24 ℃	wassergefülltes Bohrloch	TRk,ucr	[N/mm²]	9,0	10	10	9,5	9,5	8,5
Temperaturbereich II ⁴ : 60 °C/43 °C	trockener und feuchter Beton	₹Rk,ucr	[N/mm²]	7,0	6,5	6,5	6,0	6,0	5,5
	wassergefülltes Bohrloch	₹Rk,ucr	[N/mm²]	5,5	6,5	6,5	6,0	6,0	5,5
Temperaturbereich III ⁴⁾ :	trockener und feuchter Beton	₹Rk,ucr	[N/mm²]	6,0	6,0	6,0	5,5	5,0	5,0
72℃/43℃	wassergefülltes Bohrloch	T _{Rk,ucr}	[N/mm²]	5,0	6,0	5,5	5,5	5,0	5,0
Teilsicherheitsbeiwert (tr Beton und wassergefüllte	$\gamma_{Mp} = \gamma$	1) Mc	1,5 ²⁾	1,8 ³⁾					
Erhöhungsfaktor für			7	1,04					
ungerissenen Beton Ψc)	1,08					
·	C50/60	0 1,10							
Spalten			1						
Randabstand			[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$					
Achsabstand	S _{cr,sp}	[mm]	2 C _{cr,sp}						
Teilsicherheitsbeiwert (tr Beton und wassergefüllte	γ _{Msp} 1)		1,8 ²⁾ 2,1 ³⁾						

Bei der Bemessung ist Kapitel 4.2 zu beachten.

Friulsider Injektionssystem KEM-UP 934 für Beton	
Anwendung mit Betonstahl Bemessungsverfahren A:	Anhang 12
Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton	

 $^{^{1)}}$ Sofern andere nationalen Regelungen fehlen $^{2)}$ In diesem Wert ist der Montagesicherheitsbeiwert γ_2 = 1,0 enthalten. $^{3)}$ In diesem Wert ist der Montagesicherheitsbeiwert γ_2 = 1,2 enthalten. $^{4)}$ Erläuterungen siehe Abschnitt 1.2 $^{5)}$ Für Bewehrungsstähle, die nicht der DIN 488 entsprechen: Ermittlung von $N_{RK,s}$ nach Technical Report TR 029, Gleichung (5.1)

Tabelle 11: Bemessungsverfahren A: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton								
Dübelgröße Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Stahlversagen ohne Hebelarm (Eigenschaften gemäß Anhang 4)								
Charakteristische Quertragfähigkeit, B500 B nach DIN 488-2:2009-08 ³⁾	V _{Rk,s}	[kN]	22	31	42	55	86	135
Teilsicherheitsbeiwert $\gamma_{\text{Ms,V}}^{\ \ 1)}$			1,5					
Stahlversagen mit Hebelarm (Eigenschaften gemäß Anhang 4)								
Charakteristisches Biegemoment, B500 B nach DIN 488-2:2009-08 ⁴⁾	M ⁰ _{Rk,s}	[Nm]	65	112	178	265	518	1012
Teilsicherheitsbeiwert	cherheitsbeiwert $\gamma_{Ms,V}^{(1)}$ 1,5							
Betonausbruch auf der lastabgewandten Seite								
Faktor k in Gleichung (5.7) des Technical Report TR 029 für die Bemessung von Verbunddübeln								
Teilsicherheitsbeiwert $\gamma_{\text{Mop}}^{-1)}$ 1,50 2								
Betonkantenbruch								
Siehe Abschnitt 5.2.3.4 des Technical Report TR 029 für die Bemessung von Verbunddübel								
Teilsicherheitsbeiwert $\gamma_{Mc}^{-1)}$ 1,50 $^{2)}$								

Bei der Bemessung ist Kapitel 4.2 zu beachten.

Friulsider Injektionssystem KEM-UP 934 für Beton	
Anwendung mit Betonstahl Bemessungsverfahren A: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton	Anhang 13

 $^{^{1)}}$ Sofern andere nationalen Regelungen fehlen $^{2)}$ In diesem Wert ist der Montagesicherheitsbeiwert γ_2 = 1,0 enthalten. $^{3)}$ Für Bewehrungsstähle, die nicht der DIN 488 entsprechen: Ermittlung von $V_{\text{RK,s}}$ nach Technical

Report TR 029, Gleichung (5.5)

4) Für Bewehrungsstähle, die nicht der DIN 488 entsprechen: Ermittlung von M⁰_{Rk,s} nach Technical Report TR 029, Gleichung (5.6b)

Tabelle 12	: Versc	hiebung unter	Zuglast ¹⁾						
Dübelgröße Be	tonstahl		Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	
Temperaturbereich 40 ℃/24 ℃ für ungerissenen Beton C20/25									
Verschiebung	δ_{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,024	0,030	
Verschiebung	$\delta_{N_{\infty}}$	[mm/(N/mm²)]	0,052	0,061	0,070	0,079	0,096	0,118	
Temperaturbereich 72 ℃/43 ℃ and 60 ℃/43 ℃ für ungerissenen Beton C20/25									
Verschiebung δ_{N0} [mm/(N/mm²)] 0,015 0,018 0,020 0,023 0,028 0,034									
Verschiebung	$\delta_{N_{\infty}}$	[mm/(N/mm²)]	0,060	0,070	0,081	0,091	0,111	0,136	

 $^{^{1)}}$ Berechnung der Verschiebung unter Bemessungslast Verschiebung unter Kurzzeitbelastung = $\delta_{\text{N0}} \cdot \tau_{\text{Sd}} \, / \, 1,4;$ Verschiebung unter Langzeitbelastung = $\delta_{\text{N}\infty} \cdot \tau_{\text{Sd}} \, / \, 1,4;$ $(\tau_{\text{Sd}} :$ Bemessungswert der Verbundspannung)

Table 13: Verschiebung unter Querlast 2)

Betonstahl			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25
Verschiebung	δ_{V0}	[mm/(kN)]	0,05	0,05	0,04	0,04	0,04	0,03
Verschiebung	$\delta_{V_{\infty}}$	[mm/(kN)]	0,08	0,07	0,06	0,06	0,05	0,05

 $^{^{2)}}$ Berechnung der Verschiebung unter Bemessungslast Verschiebung unter Kurzzeitbelastung = $\delta_{V0}\cdot V_d$ / 1,4; Verschiebung unter Langzeitbelastung = $\delta_{V\infty}\cdot V_d$ / 1,4; (V_d: Bemessungsquerlast)

Friulsider Injektionssystem KEM-UP 934 für Beton	
Anwendung mit Betonstahl Verschiebungen	Anhang 14