

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen:

30.08.2012 | 127-1.15.7-49/12

Zulassungsnummer:

Z-15.7-253

Antragsteller:

F. J. Aschwanden AG Grenzstrasse 24 3250 Lyss Switzerland SCHWEIZ

Geltungsdauer

vom: 30. August 2012 bis: 30. Juni 2013

Zulassungsgegenstand:

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst neun Seiten und 24 Anlagen. Diese allgemeine bauaufsichtliche Zulassung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-253 vom 20. Januar 2012. Der Gegenstand ist erstmals am 28. Juni 2006 allgemein bauaufsichtlich zugelassen worden.

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-253

Seite 2 von 9 | 30. August 2012

I ALLGEMEINE BESTIMMUNGEN

- 1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 4 Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-253

Seite 3 von 9 | 30. August 2012

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

Der Aschwanden Schubdorn CRET SERIE 100 (siehe Anlage 1) ist Verbindungselement zwischen Bauteilen aus Stahlbeton nach DIN 1045-1:2008-08 oder DIN EN 1992-1-1:2011-01 und dient zur planmäßigen Übertragung von Querkräften. Die Anwendung ist auf Normalbeton (Rohdichte zwischen 2000kg/m³ bis 2600 kg/m³) der Festigkeitsklassen C20/25 bis C50/60 beschränkt.

Der Schubdorn darf als formschlüssiges Verbindungselement zwischen Stahlbetonbauteilen, welche die Bedingungen zur Beschränkung der Durchbiegung nach DIN 1045-1, Abschnitt 11.3.2 oder nach DIN EN 1992-1-1, 7.4.2 unter Beachtung von DIN EN 1992-1-1/NA:2011-01, NCI Zu 7.4.2(2) erfüllen, unter vorwiegend ruhender Belastung verwendet werden.

Die zulässigen Umgebungsbedingungen richten sich nach den Expositionsklassen (DIN 1045-1, Tabelle 3 oder DIN EN 1992-1-1, Tabelle 4.1) sowie nach den Korrosionswiderstandsklassen der eingesetzten Stähle nach der allgemeinen bauaufsichtlichen Zulassung Nr. Z-30.3-6 vom 20. April 2009, ergänzt durch Bescheid vom 2. Mai 2011.

Der Schubdorn besteht aus einem Dornteil und einem dazugehörigen Hülsenteil, die beide über einen Ankerkörper die Lasten in den Beton einleiten. Der Ankerkörper besteht aus einer in den Beton abgekanteten Frontplatte, welche zur Verbesserung der Lasteinleitung in den Beton mit Schrauben in Belastungsrichtung verstärkt sind.

Die Schubdorne werden in den Typen CRET SERIE 100 und CRET SERIE 100 V 122, 124, 126, 128, 130, 132, 134, 136, 138 und 140 zugelassen.

Beim Typ CRET SERIE 100 ist die Hülse das runde Gegenstück zum Schubdorn, so dass Bewegungen nur in Richtung der Längsachsen des Schubdorns möglich sind.

Beim Typ CRET SERIE 100 V ist das Hülsenteil als Rechteckhülse ausgebildet, wobei der Dorn in einem entsprechend breiteren Rechteckrohr eingelagert ist. Dadurch wird eine zusätzliche horizontale Verschieblichkeit senkrecht zur Dornlängsachse erreicht.

Die Fugenbreite zwischen den zu verbindenden Bauteilen darf maximal 60 mm betragen.

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

2.1.1 Baustoffe

Es sind folgende Baustoffe zu verwenden:

Für die Herstellung des Ankerkörpers:	nichtrostender Stahl mit Werkstoffnummer 1.4404 lt. allgemeiner bauaufsichtlicher Zulassung Nr. Z-30.3-6 mindestens der Korrosionswiderstandsklasse III und mindestens der Festigkeitsklasse S 275
Verankerungsstäbe (Gewindestangen und Muttern)	nichtrostender Stahl mit Werkstoffnummer 1.4401 lt. allge- meiner bauaufsichtlicher Zulassung Nr. Z-30.3-6 mindestens der Korrosionswiderstandsklasse III und mindestens der Festigkeitsklasse 70
Anforderungen an das	tragende Dornmaterial
CRET SERIE 100	nichtrostender Stahl mit der Werkstoffnummer 1.4462 der Festigkeitsklasse S 690 sowie Eigenschaften nach hinter- legtem Datenblatt

Nr. Z-15.7-253

Seite 4 von 9 | 30. August 2012

2.1.2 Abmessungen

Die Abmessungen der Schubdorne sind in den Anlagen 1 bis 9 festgelegt. Die Mindestabmessungen der zu verbindenden Bauteile sind in den Anlagen 14 bis 18 angegeben. Bei Ausnutzung der in den Anlagen 20 bis 24 angegebenen Bemessungswiderstände müssen die Rand- und Achsabstände Anlage 10, Bild 1 und die Bewehrung den Angaben in den Anlagen 14 bis 18 entsprechen. Der Einbau der Schubdorne in ausschließlich auf Zug beanspruchten Bereichen ist ausgeschlossen.

2.1.3 Brandschutz

Der Nachweis der Verwendbarkeit des Schubdorns in Bauteilen, an die Anforderungen hinsichtlich der Feuerwiderstandsdauer gestellt werden, ist mit dieser Zulassung nicht erbracht.

2.2 Herstellung und Kennzeichnung

2.2.1 Herstellung

Für das Schweißen gelten DIN 18800-1 und DIN 18800-7. Für die Ausführung der Schweißarbeiten dürfen nur entsprechend DIN EN 287-1 geprüfte Schweißer eingesetzt werden.

Der Schweißbetrieb ist verpflichtet, sich ggf. durch Arbeitsproben zu vergewissern, dass die Schweißarbeiten die an das Bauprodukt gestellten Qualitätsanforderungen erfüllen. Es gelten außerdem die Festlegungen der allgemeinen bauaufsichtlichen Zulassung Nr. Z-30.3-6 "Erzeugnisse, Verbindungsmittel und Bauteile aus nichtrostenden Stählen".

Die Oberflächen müssen gereinigt und glatt sein, Anlauffarben sind zu entfernen.

2.2.2 Kennzeichnung

Jede Verpackungseinheit des Schubdorns muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden.

Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 "Übereinstimmungsnachweis" erfüllt sind. Außerdem muss die Kennzeichnung mindestens folgende Angaben enthalten:

- Die Bezeichnung des Zulassungsgegenstandes
- Typenbezeichnung.

Der Hersteller hat jeder Lieferung eine Einbauanleitung beizufügen.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des Bauprodukts mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung des Bauproduktes nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Bauprodukts eine für die Zertifizierung von Ankerschienen (Lfd. Nr. 10.4) anerkannte Zertifizierungsstelle sowie eine die Überwachung von Ankerschienen (Lfd. Nr. 10.4) anerkannte Überwachungsstelle einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Nr. Z-15.7-253

Seite 5 von 9 | 30. August 2012

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle soll mindestens die im hinterlegten Prüfplan sowie die im Folgenden aufgeführten Maßnahmen einschließen. Der Prüfplan ist beim Deutschen Institut für Bautechnik und der für die Überwachung eingeschalteten Stelle hinterlegt.

Überprüfung des Ausgangsmaterials und der Bestandteile:

Für den Schubdorn dürfen nur Baustoffe verwendet werden, für die entsprechend den geltenden Normen und Zulassungen der Nachweis der Übereinstimmung geführt wurde.

Für den nichtrostenden Stahl gilt die allgemeine bauaufsichtliche Zulassung Nr. Z-30.3-6.

Für den Werkstoff 1.4462 zur Verwendung als Dornquerschnitt sind die mechanischen Eigenschaften gemäß dem beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegten Datenblatt durch ein spezifisches Werksprüfzeugnis 3.1 nach DIN EN 10204 zu belegen.

• Nachweise und Prüfungen, die am fertigen Bauprodukt durchzuführen sind:

Die Bauteilabmessungen der Aschwanden Schubdorne sind für jedes Teil zu überprüfen und mit den Anforderungen It. beim Deutschen Institut für Bautechnik und der fremdüberwachenden Stelle hinterlegten Prüfplan zu vergleichen. Die Oberflächenbeschaffenheit ist zu prüfen und mit den Anforderungen zu vergleichen.

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen neben den im Prüfplan festgelegten Aufzeichnungen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile
- Art der Kontrolle oder Prüfung
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile
- Ergebnis der Kontrollen und Prüfungen und soweit zutreffend Vergleich mit den Anforderungen
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden.

Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

Nr. Z-15.7-253

Seite 6 von 9 | 30. August 2012

2.3.3 Erstprüfung des Bauprodukts

Im Rahmen der Erstprüfung ist Folgendes zu prüfen:

- Regelgerechte Oberflächenbehandlung des Vormaterials
- Regelgerechte Ausführung der Schweißnähte für alle Schubdornklassen.
- Einhaltung der Abmessungen nach Zulassung für die Schubdornklassen sowie Mittel zur Sicherstellung der Maßhaltigkeit.

2.3.4 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung der Schubdorne, insbesondere der Schweißnähte und der Oberflächen durchzuführen und es sind auch Proben für Stichprobenprüfungen zu entnehmen und wie im Prüfplan festgelegt zu überprüfen. Die Werte des Vormaterials sind laut Datenblatt zu überprüfen.

Die Probenahme und Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik vorzulegen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsicht auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung

Es gilt entweder DIN 1045-1 oder DIN EN 1992-1-1, falls im Folgenden nicht anders bestimmt. Eine Mischung beider technischer Baubestimmungen ist nicht zulässig. DIN EN 1992-1-1 gilt stets zusammen mit DIN EN 1992-1-1/NA.

3.1 Bestimmungen für den Entwurf

3.1.1 Allgemeines

Die Weiterleitung (Verteilung und Aufnahme) der vom Schubdorn übertragenen Kräfte in die anschließenden Bauteile ist für jeden Einzelfall nachzuweisen.

Die übertragbaren Querkräfte gelten nur für die angegebenen Fugenbreiten (Anlage 19). Wenn die Möglichkeit nicht ausgeschlossen werden kann, dass die rechnerischen Fugenbreiten überschritten werden, sind die übertragbaren Querkräfte der nächstgrößeren Fugenbreite anzusetzen.

Der Schubdorn vom Typ CRET SERIE 100 ist zur Verbindung von Bauteilen vorgesehen, bei denen zum Beispiel infolge unterschiedlicher Temperaturverformungen keine horizontalen Beanspruchungen senkrecht zur Schubdornachse auftreten.

Sind horizontale Verschiebungen in Richtung der Dornachsen und senkrecht dazu möglich, sind Schubdorne vom Typ CRET SERIE 100 V zu verwenden.

Schubdorne dürfen nur in Platten mit geraden Rändern eingebaut werden. In allen anderen Fällen ist für jeden Schubdorn eine ausreichende Verschieblichkeit nachzuweisen.

Bei Einbau der Schubdorne über Eck muss eine ausreichende Verschieblichkeit nachgewiesen werden.

Die Längsbewehrung A_{sy} am Plattenrand darf unter Annahme eines durchlaufenden Randträgers - mit Spannweiten entsprechend den Abständen der Schubdorne - ermittelt werden. Dabei darf die aus der Anlage 10 ersichtliche Verteilerbewehrung A_{sy} in Ansatz gebracht werden.

Für die bauseitige Bewehrung ist Betonstabstahl B500B gemäß DIN 488-1 zu verwenden.

Nr. Z-15.7-253

Seite 7 von 9 | 30. August 2012

3.2 Nachweise in den Grenzzuständen der Tragfähigkeit

3.2.1 Allgemeines

Die Anwendung ist auf Normalbeton der Festigkeitsklassen C20/25 bis C50/60 beschränkt.

Für die Betonfestigkeiten C20/25 bis C40/50 sind die Bemessungswiderstände in den Anlagen 20 bis 24 angegeben und gelten nur

- bei Einbau des Verbindungselementes in guten Verbundbereichen (Dorn und bauseitige Bewehrung),
- wenn der Achsabstand der Verbindungselemente (Achse Dorn) mindestens 3 · d_m + l_{c1} beträgt (s. Anlage 13)
- und wenn die bauseitige Bewehrung mit den angegebenen Durchmessern und den Mindestabständen nach 3.4.2 gemäß Anlagen 14 bis 18 eingebaut worden ist.

Der Nachweis der Gebrauchstauglichkeit ist hiermit nicht erbracht.

Bei Verwendung der Dorne im Beton der Betonfestigkeitsklasse C50/60 dürfen die angenommenen Tragfähigkeiten die Bemessungswiderstände gemäß Anlagen 20 bis 24 für die Betonfestigkeitsklasse C40/50 nicht überschreiten.

3.2.2 Stahlversagen

Die Bemessungswiderstandswerte für die Schubdornquerschnitte sind in Abhängigkeit von der Fugenbreite in Anlage 19 angegeben. Als rechnerische Fugenbreite f ist f = 20 mm, f = 30 mm, f = 40 mm, f = 50 mm, f = 60 mm anzusetzen.

3.2.3 Durchstanznachweis

Für den einzelnen Dorn ist der Bemessungswert des Widerstandes gegen Durchstanzen $V_{Rd,ct}$ in den Anlagen 20 bis 24 angegeben. Eine Beeinflussung von Rändern oder anderen Durchstanzkegeln ist hierbei ausgeschlossen (s. Anlage 13, Bild 2 obere Darstellung).

Bei abweichenden Einbausituationen gilt der Durchstanznachweis nach Anlage 13, wobei ggf. die gegenseitige Beeinflussung der Durchstanzkegel zu berücksichtigen ist.

Die Führung des kritischen Rundschnitts und die Bestimmung der Abstände der Schubdorne untereinander sowie minimaler Randabstände sind entsprechend Anlage 13 zu wählen. Abschnitt 10.5.6 von DIN 1045-1 bzw. Abschnitt 6.4.5 von DIN EN 1992-1-1 zusammen mit DIN EN 1992-1-1/NA, NCI Zu 6.4.5 ist zu berücksichtigen.

Die Anordnung einer Durchstanzbewehrung ist nicht zulässig.

Die Radien des kritischen Rundschnitts beginnen auf Höhe der direkt neben den Schubdornen angeordneten Bügel (Anlage 13, Bild 2).

Die Bewehrung A_{sx} und A_{sy} ist mit I_{b,net} nach Anlage 10. An Plattenecken oder schmalen Plattenstreifen ist sie durch Steckbügel gleichen Querschnitts zu verankern.

Die Anordnung der Aufhängebewehrung A_{sx} und Querbewehrung A_{sy} ist in Anlage 10 festgelegt.

3.2.4 Betonkantenbruch

Der Bemessungswert des Widerstandes gegenüber Betonkantenbruch $V_{Rd,c}$ ist in den Anlagen 20 bis 24 unter Berücksichtigung der konstruktiven Regeln nach 3.4.2 angegeben.

3.2.5 Berücksichtigung von Reibungskräften

Bei der Bemessung des Schubdornquerschnitts und der bauseitigen Bewehrung sind Reibungskräfte durch die Abminderung der Bemessungswiderstände durch den Faktor f_{μ} wie folgt zu berücksichtigen:

- Für die Bemessung der Stahltragfähigkeit (Dornquerschnitt) ist die Abminderung in den Tabellen in Anlage 19 berücksichtigt.

Nr. Z-15.7-253

Seite 8 von 9 | 30. August 2012

- Für den Nachweis der Betontragfähigkeit ist die Abminderung der Tragfähigkeit der Bewehrung A_{Sx1} für den Betonkantenbruch $V_{\text{Rd,c}}$ durch den Faktor f_{μ} = 0,9 in den Tabellen der Anlagen 20 bis 24 berücksichtigt

3.3 Nachweise in den Grenzzuständen der Gebrauchstauglichkeit

3.3.1 Begrenzung der Rissbreiten

Der Rissbreitennachweis des Plattenrandbalkens ist nach DIN 1045-1, Abschnitt 11.2 oder DIN EN 1992-1-1, 7.3 unter Beachtung der entsprechenden Abschnitte von DIN EN 1992-1-1/NA, zu führen.

3.3.2 Begrenzung der Verformung

Der Schubdorn darf hinsichtlich der Querkraft als formschlüssiges Verbindungselement zwischen Stahlbetonbauteilen, welche die Bedingungen zur Beschränkung der Durchbiegung nach DIN 1045-1, Abschnitt 11.3.2 oder nach DIN EN 1992-1-1, 7.4.2 unter Beachtung von DIN EN 1992-1-1/NA:2011-01, NCI Zu 7.4.2(2) erfüllen, eingesetzt werden.

3.4 Konstruktive Durchbildung

3.4.1 Werkseitige Durchbildung

Die Oberfläche von Hülse und Schubdorn sind werkseitig zur Minimierung der Reibung behandelt worden. Es dürfen bauseitig keine Änderungen der Oberfläche vorgenommen werden, welche zu einer Erhöhung der Oberflächenrauheit führen.

Die Kanten der Hülsenöffnung müssen gratfrei ausgeführt sein.

3.4.2 Bauseitig Durchbildung

Die Bauteildicke h nach den Anlagen 14 bis 18 bzw. Anlagen 20 bis 24 darf für die jeweils zugehörigen Bemessungswerte der Betontragfähigkeiten nicht unterschritten werden.

Die ersten Rückhängebügel $A_{\text{SX},1}$ sind direkt an den Ankerkörper des Schubdorns anzulegen.

Der folgende lichte Abstand zwischen den Rückhängebügeln A_{sx,1} bzw. A_{sx,2} neben dem Schubdorn ist einzuhalten:

(s₁, s₂, s₃ siehe Anlage 10)

Für die Anzahl $n_{B\ddot{u}gel}$ der Rückhängebügel $A_{sx,1}$ bzw. $A_{sx,2}$ im rechnerischen Bruchkegel ist die Bedingung $3 \le n_{B\ddot{u}gel} \le 8$ einzuhalten.

Der Durchmesser der Rückhängebewehrung A_{sx1} beträgt:

 $\begin{aligned} &d_S \leq 16 \text{ mm f\"{u}r} & &h < 30 \text{ cm} \\ &d_S \leq 20 \text{ mm f\"{u}r} & &30 \text{ cm} \leq h \leq 40 \text{ cm} \\ &d_S \leq 25 \text{ mm f\"{u}r} & &40 \text{ cm} < h \end{aligned}$

Das Verhältnis Plattendicke zu Schubdorndurchmesser h/D ≥ 7 ist einzuhalten.

Für das Verhältnis der Durchmesser d_{sy} der Längsbewehrung A_{sy} zu d_{sx} der Bügel $A_{sx,1}$ muss gelten d_{sy} / $d_{sy} \ge 1$.

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-253

Seite 9 von 9 | 30. August 2012

4 Bestimmungen für die Ausführung

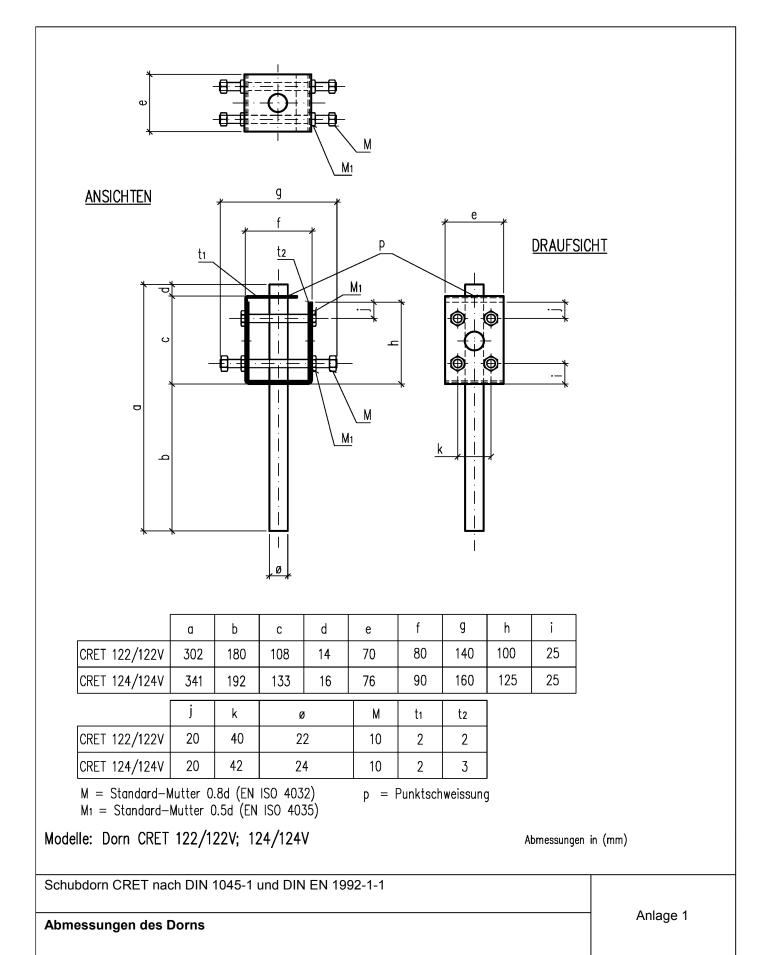
Beim Einbau der Schubdorne dürfen die Mindestabstände $h_{min}/2$ von Ober- und Unterkanten der anzuschließenden Bauteile zur Mitte des Schubdorns nicht unterschritten werden.

Es ist sorgfältig darauf zu achten, dass keine Winkelabweichungen zwischen benachbarten Schubdornen auftreten und die vorgegebenen Fugenbreiten eingehalten werden.

Beim Einbau der Hülsen für den querverschieblichen Typ ist darauf zu achten, dass alle Hülsen in einem Fugenbereich hinsichtlich der Richtung der Querverschieblichkeit parallel und fluchtgenau eingebaut werden. Dies kann z. B. dadurch realisiert werden, dass die Hülsen an einem durchgehenden Bewehrungsstab oder einer entsprechenden Schablone fixiert werden.

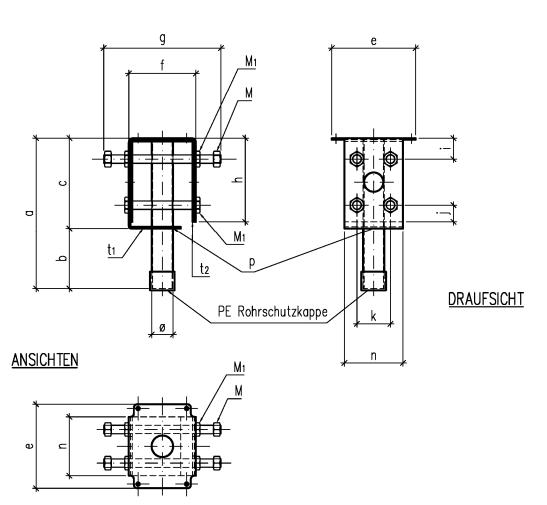
Folgende Normen, Zulassungen und Verweise werden in dieser allgemeinen bauaufsichtlichen Zulassung in Bezug genommen:

-	DIN 488-1:2009-08	Betonstahl - Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung
-	DIN 1045-1:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 1: Bemessung und Konstruktion
-	DIN 18800-1:2008-11	Stahlbauten - Teil 1: Bemessung und Konstruktion
-	DIN 18800-7:2008-11	Stahlbauten - Teil 7: Ausführung und Herstellerqualifikation
-	DIN EN 287-1:2006-06	Prüfung von Schweißern - Schmelzschweißen - Teil 1: Stähle; Deutsche Fassung EN 287-1:2004 + A2:2006
-	DIN EN 1992-1-1:2011-01	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004+AC:2010 und
	DIN EN 1992-1-1/NA:2011-01	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
-	DIN EN 10204:2005-01	Metallische Erzeugnisse - Arten von Prüfbescheinigungen; Deutsche Fassung EN 10204:2004
-	Zulassung Nr. Z-30.3-6	Erzeugnisse, Verbindungsmittel und Bauteile aus nichtrostenden Stählen vom 20. April 2009 ergänzt durch Bescheid vom 2. Mai 2011


 Das Datenblatt ist beim Deutschen Institut für Bautechnik und der für die Fremdüberwachung eingeschalteten Stelle hinterlegt.

 Der Prüfplan ist beim Deutschen Institut für Bautechnik und der für die Fremdüberwachung eingeschalteten Stelle hinterlegt.

Andreas Kummerow Referatsleiter


Beglaubigt

<u>HÜLSE (Modell Standard) Gleiten in der Längsachse</u>

	а	b	С	е	f	g	h	i
CRET 122	180	72	108	100	80	140	100	25
CRET 124	192	59	133	106	90	160	125	25
	j	k	n	Ø	ts	М	t1	t2
CRET 122	20	40	70	25.4	1.5	10	2	2
CRET 124	20	42	76	28	1.5	10	2	3

M = Standard-Mutter 0.8d (EN ISO 4032)

ø = Aussendurchmesser (Rohr)

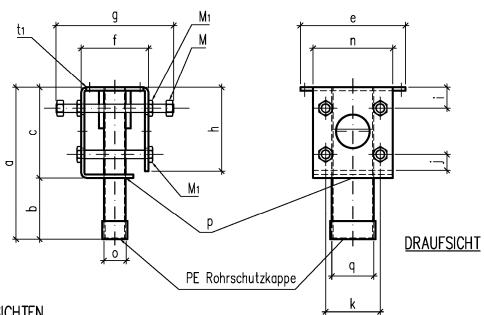
 $M_1 = Standard-Mutter 0.5d (EN ISO 4035)$

t3 = Wandstärke (Rohr)

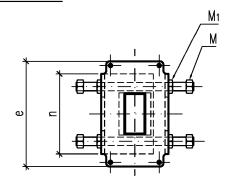
p = Punktschweissung

Modelle: Hülse CRET 122; 124

Abmessungen in (mm)


Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

Abmessungen der Hülse


Anlage 2

HÜLSE (Modell V) Gleiten in der Längsachse und quer dazu

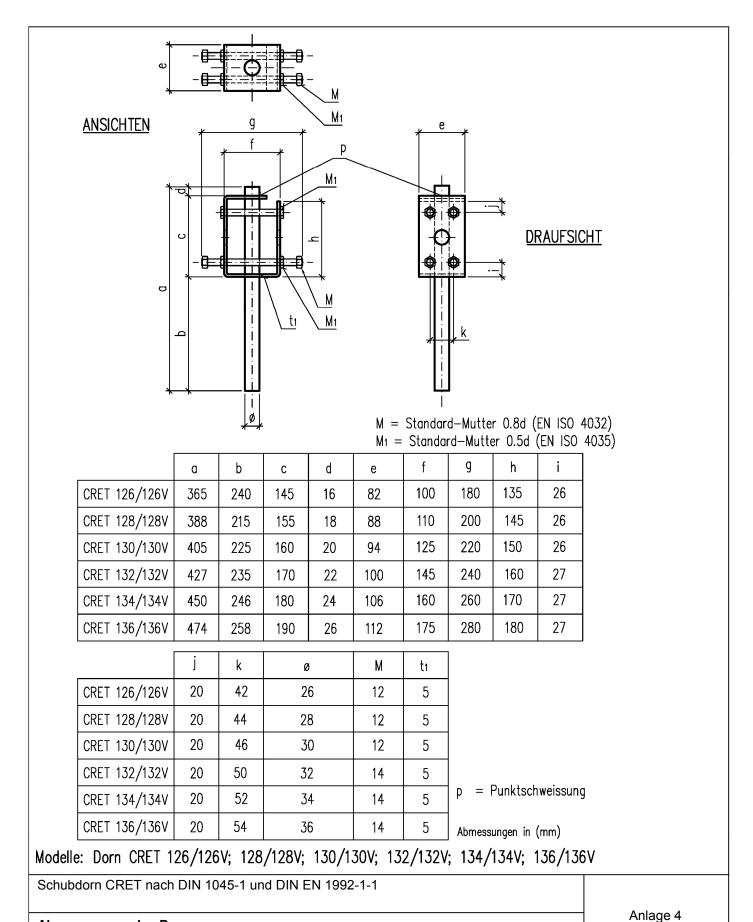
ANSICHTEN

	а	b	С	e	f	g	h	i
CRET 122V	181.5	73.5	108	125	80	140	100	25
CRET 124V	193.5	60.5	133	133	90	160	125	25
	j	k	n	0	q	t3	М	t1
CRET 122V	20	65	95	26	50	1.5	10	4
CRET 124V		69		28	55	1.5	10	5

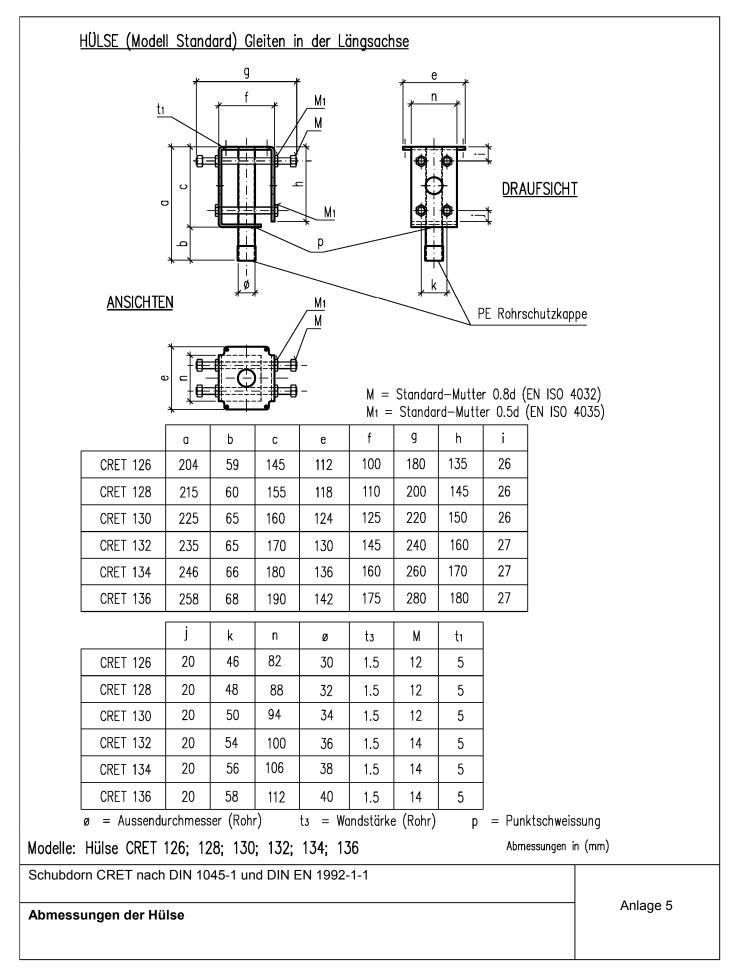
M = Standard-Mutter 0.8d (EN ISO 4032) $t_3 = Wandstärke (Rohr)$ $M_1 = Standard-Mutter 0.5d (EN ISO 4035)$ p = Punktschweissung

Modelle: Hülse CRET 122V; 124V

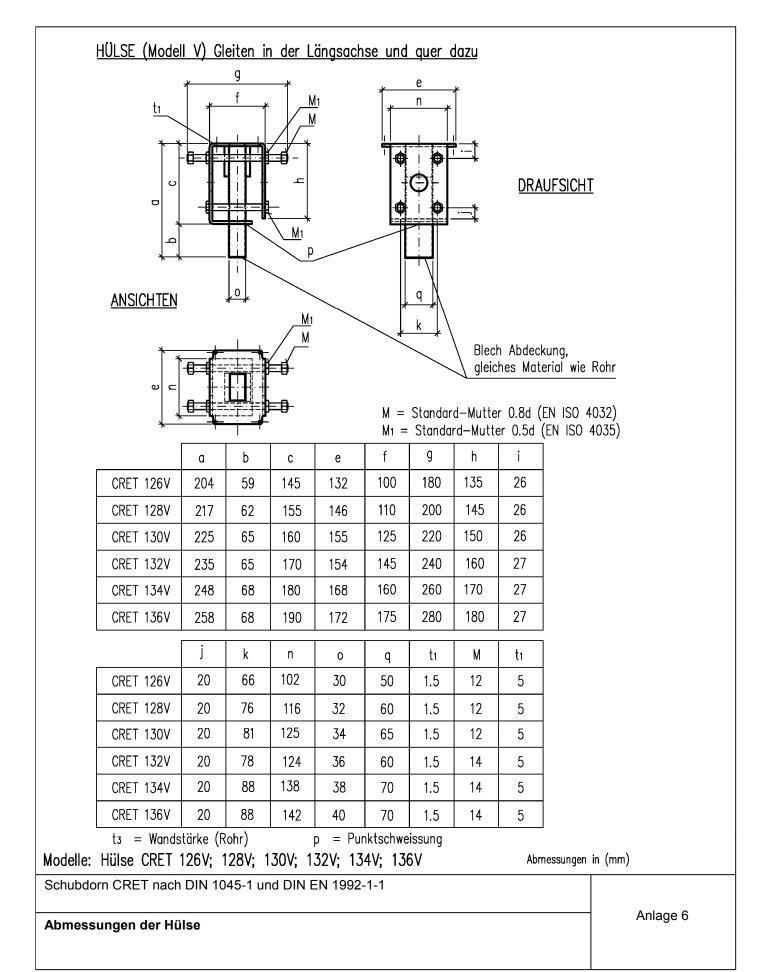
Abmessungen in (mm)

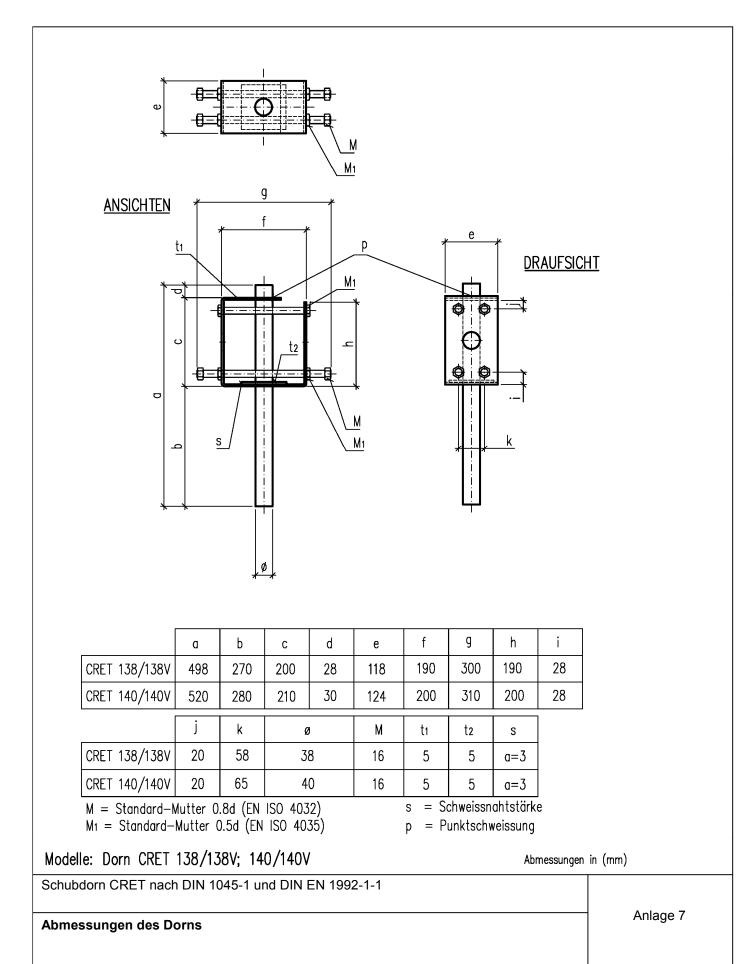

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

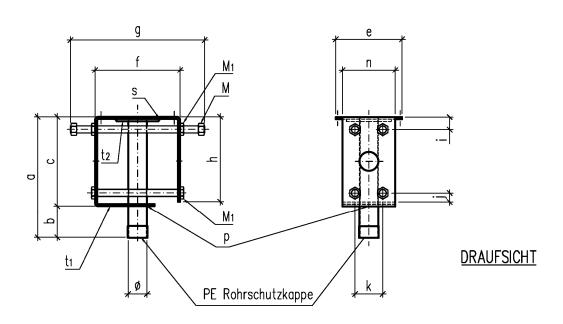
Abmessungen der Hülse

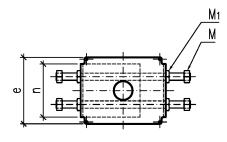

Anlage 3

Abmessungen des Dorns









HÜLSE (Modell Standard) Gleiten in der Längsachse

ANSICHTEN

	a	b	С	е	f	g	h	i
CRET 138	270	70	200	148	190	300	190	28
CRET 140	280	70	210	154	200	310	200	28

	j	k	n	Ø	t3	М	t1	t2	S
CRET 138	20	62	118	42	1.5	16	5	5	a=3
CRET 140	20	65	124	44	1.5	16	5	5	a=3

M = Standard-Mutter 0.8d (EN ISO 4032)

 $M_1 = Standard-Mutter 0.5d$ (EN ISO 4035)

s = Schweissnahtstärke

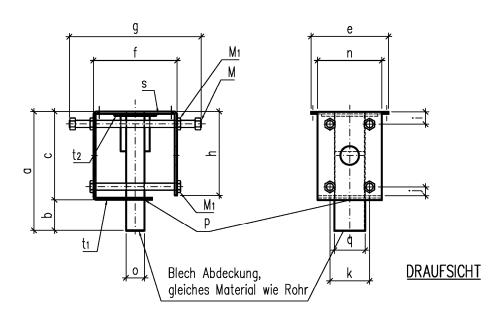
ø = Aussendurchmesser (Rohr)

t₃ = Wandstärke (Rohr)

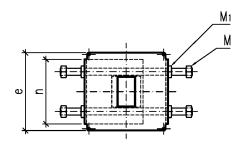
Modelle: Hülse CRET 138; 140

p = Punktschweissung

Abmessungen in (mm)


Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

Abmessungen der Hülse


Anlage 8

HÜLSE (Modell V) Gleiten in der Längsachse und quer dazu

ANSICHTEN

	a	b	С	е	f	g	h	i	
CRET 138V	270	70	200	176	190	300	190	28	
CRET 140V	281.5	71.5	210	190	200	310	200	28	
	j	k	n	0	q	ts	М	t ₁	t ₂
CRET 138V	20	90	146	42	70	1.5	16	5	5

44

75

1.5

16

M = Standard-Mutter 0.8d (EN ISO 4032) $M_1 = Standard-Mutter 0.5d$ (EN ISO 4035)

20

5 s = Schweissnahtstärke

t₃ = Wandstärke (Rohr)

p = Punktschweissung

Modelle: Hülse CRET 138V; 140V

Abmessungen in (mm)

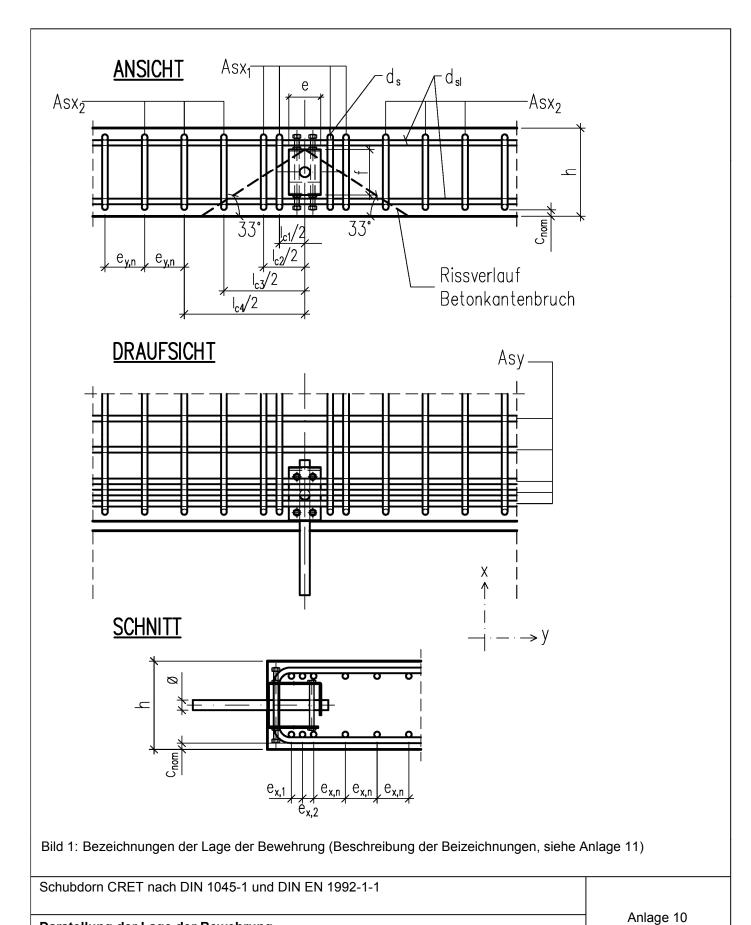
S a=3

a=3

Schubdorn CRET	nach DIN	1045-1 und	DIN EN	1992-1-1

95

160


Abmessungen der Hülse

CRET 140V

Anlage 9

Darstellung der Lage der Bewehrung

Beschreibung der in Anlage 10, Bild 1 gewählten Bezeichnungen:

- l_{c1}/2 = Abstand zwischen Symmetrieachse des Dorns und der ersten Bügelbewehrung (Symmetrieachse)
- l_{c2}/2 = Abstand zwischen Symmetrieachse des Dorns und der zweiten Bügelbewehrung (Symmetrieachse)
- l_{c3}/2 = Abstand zwischen Symmetrieachse des Dorns und der dritten Bügelbewehrung (Symmetrieachse)
- I_{c4}/2 = Abstand zwischen Symmetrieachse des Dorns und der vierten Bügelbewehrung (Symmetrieachse)
- e_{y,n} = Abstand zwischen den Bügelbewehrungen (Symmetrieachse, ab 5. Bügel)
- e_{x,1} = Abstand zwischen 1. Längsbewehrung (Symmetrieachse, Nummerierung vom Betonrand aufsteigend) und Achse 2. Längsbewehrung
- e_{x,2} = Abstand zwischen 2. Längsbewehrung (Symmetrieachse, Nummerierung vom Betonrand aufsteigend) und Achse 3. Längsbewehrung
- $e_{x,n}$ = Abstand zwischen den weiteren Längsbewehrungsstäben (Symmetrieachse)
- d_s = Stabdurchmesser der Bügelbewehrung
- d_{si} = Stabdurchmesser der Längsbewehrung
- A_{sx,1} = Bügelbewehrung die innerhalb des Betonkantenbruchkegels liegt und mit min I_{b,net} außerhalb des Betonkantenbruchkegels verankert ist.
- A_{sx,2} = Bügelbewehrung die außerhalb des Betonkantenbruchkegels, aber innerhalb des kritischen Rundschnittes (Durchstanznachweis) liegt und mit min I_{b,net} außerhalb des Durchstanzkegels verankert ist.
- A sy = Längsbewehrung in Y-Richtung, die innerhalb des kritischen Rundschnittes (Durchstanznachweis) liegt und mit min l_{b,net} außerhalb des Durchstanzkegels verankert ist.

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

Darstellung der Lage der Bewehrung

Anlage 11

Erforderliche Nachweise

$$V_{Rd} = min(V_{Rd,s(Schubdorn)}; V_{Rd,c}; V_{Rd,ct})$$
(1)

Mit

 $V_{\scriptscriptstyle Rd,s(Schubdorn)}$ Bemessungswert der Stahltragfähigkeit des Dornes nach

Tabelle 7 und Tabelle 8

 $V_{\scriptscriptstyle Rd,c}$ Bemessungswert der innerhalb der Rückhängebewehrung übertragbaren Last

(Betonkantenbruch) nach Tabelle 9 bis Tabelle 14

 ${
m V}_{
m Rd.ct}$ Bemessungswert der außerhalb der Rückhängebewehrung übertragbaren Last

(Durchstanzen) nach Tabelle 9 bis Tabelle 14 in Anlage 20 - 24

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

Nachweise

Anlage 12

Durchstanznachweis

Nachweis außerhalb der Rückhängebewehrung nach DIN 1045-1:2008-08; Abschnitt 10.5.4

$$V_{Rd,ct} = \left[0.14 \cdot \eta_1 \cdot \kappa \cdot \left(100 \cdot \rho_l \cdot f_{ck} \right)_3^{1} \right] \cdot d_m \cdot \frac{u_{crit}}{\beta_0}$$

mit

 η_1 = 1,0 für Normalbeton

$$\kappa = 1 + \sqrt{\frac{200}{d_m}} \le 2.0$$

 ρ_1 = mittlerer Längsbewehrungsgrad innerhalb des betrachteten Rundschnitts mit A_{sx} und A_{sy}

$$\rho_{l} = \sqrt{\rho_{lx} \cdot \rho_{ly}} \quad \begin{cases} \leq 0.4 \cdot f_{cd} / \left(f_{yd} \cdot 0.85 \right) \\ \leq 0.02 \end{cases}$$

f_{ck} = charakteristische Zylinderdruckfestigkeit des Betons, DIN 1045-1, Tab. 9

d_m = mittlere statische Nutzhöhe [mm]

 $d_{\rm m} = (d_{\rm x} + dy_{\rm Y})/2$

u_{crit} = Umfang des betrachteten Rundschnitts des Durchstanzkegels nach Bild 2

 β_{o} = Beiwert zur Berücksichtigung der nichtrotationssymmetrischen Querkraftverteilung

$$\beta_0 = 1.4$$

$$\rho_{|X} = \frac{A_{sx}}{d_m \cdot b_v}$$

mit b_y: Bereich der Bewehrung A_{sx}

$$\rho_{ly} = \frac{A_{sy}}{d_m \cdot b_x}$$

mit b_x: Bereich der Bewehrung A_{sy}

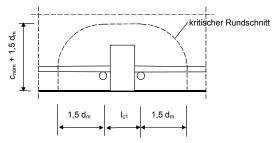


Bild 2: Rundschnitt des Durchstanzkegels

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

Durchstanznachweis

Anlage 13

Stababstände, für die die Bemessungswerte der Tabelle 9 bis Tabelle 14 gültig sind:

Regeln für die Bewehrungsanordnungen (Anlagen 14 - 18, Tabelle 1 bis Tabelle 6):

Bauteildicke h ≤ 300 mm = 20 mm

 $s_{2,3} = 40 \text{ mm} - d_s \ge d_s$

Bauteildicke h > 300 mm $s_{1,2,3} = 40 \text{ mm} - d_s \ge d_s$

somit ergeben sich $I_{c1}/2 \ge n + 11,5 \text{ mm} + d_s/2$

> $I_{c2}/2 \ge s_1 + I_{c1}/2 + d_s$ $I_{c3}/2 \ge s_2 + I_{c2}/2 + d_s$

 $I_{c4}/2 \ge s_3 + I_{c3}/2 + d_s$

mit n = maßgebende Breite der Hülse, siehe Anlage 2, 3, 5, 6, 8 oder 9

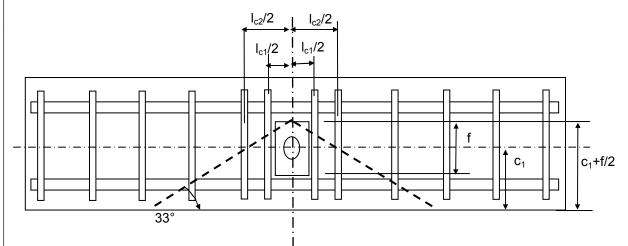


Bild 3: Darstellung des Bruchkegels für Betonkantenbruch bei den Schubdornen der Serie CRET 100

Die Bemessungswerte gelten für die Bewehrungsanordnungen in Tabelle 1 bis Tabelle 6.

Tabelle 1: Stababstände für die Schubdorne CRET 122 bis CRET 124 nach Anlage 1 und Anlage 2

Schubdorn	Bauteil-	C _{nom}		Bewehrungsdurchmesser und -abstände								
	dicke		ds	d _{sl}	I _{c1} /2	I _{c2} /2	I _{c3} /2	I _{c4} /2	e _y , _n	e _{x,1}	e _{x,2}	e _x ,n
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
CRET 122	180	25	12	12		87	137	187				
	200	23	14	14		89	139	189	_		-	
	220	30	16	16	55	91	141	191	150	50		-
	240	25	14	14		89	139	189	150		50	
	250	23	14	14		09	139	109	150		50	
CRET 124	200	25	14	14		94	144	194				
	220	30	16	16		96	146	196	_		-	_
	240	25	14	14	60	94	144	194		50		_
	250	25	14	14	- 50	34	144	194	150	50	100	
	260	30	16	16		96	146	196	130		100	150
	280	30	10	10		90	140	190				130

Bezeichnungen siehe Anlage 10 und 11

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bewehrungsanordnung	Anlage 14

Tabelle 2: Stababstände für die Schubdorne CRET 126 bis CRET 136 nach Anlage 4 und Anlage 5

Schubdorn Bauteil- dicke Cnom Close Close	e _{x,n} [mm]
[mm] [mm] <th< td=""><td>[mm] - 150</td></th<>	[mm] - 150
CRET 126	150
240 25 14 14 60 94 144 194 150 50 100 250 260 30 16 16 65 101 151 201 150 50 100 CRET 128 240 25 14 14 99 149 199 250 250 100	150
250 14 14 94 144 194 150 50 100 260 280 30 16 16 65 101 151 201 50 CRET 128 240 25 14 14 99 149 199 100	150
250 30 16 16 65 101 151 201 CRET 128 240 25 14 14 99 149 199 250 100	
260 30 16 16 65 101 151 201 CRET 128 240 25 14 14 99 149 199 250 100	
CRET 128 240 25 14 14 99 149 199 250 100	
250	
	_
260 30 16 16 101 151 201	120
	150
280 65 70 50	
300 25 14 14 99 149 199	100
320	150
340 30 16 16	
CRET 130 260 30 16 16 16 106 156 206	150
280 25 14 14 104 154 204	
300 70 106 156 206 70 50 50	120
320 30 46 46	
340 120 170 220	150
350	100
CRET 132 280 106 156 206	
320	70
340 30 16 16 70 70 50 50	, ,
350 120 170 220	
360	
380	120
CRET 134 300 111 161 211 50	
320	
340 30 16 16 75 125 175 225 70 50 50	70
360	
CRET 136 320	
340 30 16 16 80 130 180 230 70 50 50	70
350	10
360	

Bezeichnungen siehe Anlage 10 und 11

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bewehrungsanordnung	Anlage 15

Tabelle 3: Stababstände für die Schubdorne CRET 138 bis CRET 140 nach Anlage 7 und Anlage 8

Schubdorn	Bauteil-	C _{nom}			Bew	ehrung:	sdurchm	esser ui	nd -abst	ände		
	dicke		ds	d _{sl}	I _{c1} /2	I _{c2} /2	I _{c3} /2	I _{c4} /2	e _{y,n}	e _{x,1}	e _{x,2}	e _{x,n}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
CRET 138	340											
	350		16	16	80	130	180	230				
	360											70
			20	20	85	135	185	235				70
	380	30	16	16	80	130	180	230				
			20	20	85	135	185	235	70	50	50	
	400		16	16	80	130	180	230				
			20	20	85	135	185	235				
	450		16	16	80	130	180	230				100
			20	20	85	135	185	235				
		35	25	25	85	135	185	235				
CRET 140	350		16	16								
			20	20								
	360		16	16								
			20	20								
	380	30	16	16	85	135	185	235				
			20	20		100	100		70	50	50	70
	400		16	16								
			20	20								
	450		16	16								
			20	20								
		35	25	25	90	140	190	240				

Bezeichnungen siehe Anlage 10 und 11

Tabelle 4: Stababstände für die Schubdorne CRET 122 V bis CRET 124 V nach Anlage 1 und Anlage 3

Schubdorn	Bauteil-	C _{nom}			Bev	vehrungs	sdurchm	esser u	nd -abst	ände		
	dicke		ds	d _{sl}	I _{c1} /2	I _{c2} /2	I _{c3} /2	I _{c4} /2	e _{y,n}	e _{x,1}	e _{x,2}	e _{x,n}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
CRET 122 V	180	25	12	12	65	97	147	197				
	200	25	14	14		104	154	204	-			
	220				70					-	-	-
	240	30	16	16	70	106	156	206	150			
	250								130			
CRET 124 V	200	25	14	14	70	104	154	204	_			
	220	30	16	16	75	111	161	211		_		
	240	30	10	10	75	111	101	211			_	_
	250	25	14	14	70	104	154	204	150			
	260	23	17	17	70	104	134	204	130	50		
	280	30	16	16	75	111	161	211				

Bezeichnungen siehe Anlage 10 und 11

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1

Bewehrungsanordnung

Anlage 16

Tabelle 5: Stababstände für die Schubdorne CRET 126 V bis CRET 136 V nach Anlage 4 und Anlage 6

Schubdorn	Bauteil-	C _{nom}			Bev	vehrungs	sdurchm	esser ui	nd -absta	ände		
	dicke		ds	d _{sl}	I _{c1} /2	I _{c2} /2	I _{c3} /2	I _{c4} /2	e _y , _n	e _{x,1}	e _{x,2}	e _{x,n}
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
CRET 126 V	220		12	12		102	152	202	-			
	240	25			70						_	
	250	23	14	14	10	104	154	204	150	50	_	-
	260								150			
	280	30	16	16	75	111	161	211			100	
CRET 128 V	240											
	250	25	14	14		114	164	214	70			
	260											
	280				80	116	166	216		50	-	-
	300	30	16	16		110	100	210	100			
	320	30	10	10		130	180	230	100			
	340					130	100	230				
CRET 130 V	260											
	280					121	171	221				
	300	30	16	16	85				70	50	100	_
	320		10	10					10		100	
	340					135	185	235				150
	350											150
CRET 132 V	280	25	14	14		119	169	219				
	300					121	171	221			50	120
	320											120
	340	30	16	16	85				70	50		
	350	30	10	10		135	185	235			70	
	360										100	150
	380										150	
CRET 134 V	300					126	176	226				
	320											
	340	30	16	16	90	140	190	240	70	50	50	120
	350					170	130	270				
	360											
CRET 136 V	320											
	340	30	16	16	95	145	195	245	70	50	50	120
	350								. 0			0
	360											

Bezeichnungen siehe Anlage 10 und 11

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bewehrungsanordnung	Anlage 17

Tabelle 6: Stababstände für die Schubdorne CRET 138 V bis CRET 140 V nach Anlage 7 und 9

Schubdorn	Bauteil-	C _{nom}			Bew	ehrung:	sdurchm	esser ui	nd -abst	ände		
	dicke		ds	d _{sl}	I _{c1} /2	I _{c2} /2	I _{c3} /2	I _{c4} /2	$e_{y,n}$	e _x ,1	e _x , ₂	$e_{x,n}$
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
CRET 138 V	340											
	350		16	16								
	360		10	10								
	380											
		30	20	20	95	145	195	245	70	50	50	100
	400		16	16					'			100
			20	20								
	450		16	16								
			20	20								
		35	25	25	100	150	200	250				
CRET 140 V	350											
	360		16	16	100	150	200	250				
	380											
		30	20	20	105	155	205	255				
	400		16	16	100	150	200	250	70	50	50	100
			20	20	105	155	205	255				
	450		16	16	100	150	200	250				
			20	20	105	155	205	255				
		35	25	25	105	155	205	255				

Bezeichnungen siehe Anlage 10 und 11

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bewehrungsanordnung	Anlage 18

Bemessungswert der Stahltragfähigkeit V_{Rd,s} des Schubdorns

Tabelle 7: Bemessungswert der Stahltragfähigkeit $V_{Rd,s}$ der Schubdorne für Dornstahl mit f_{yk} = 690 N/mm², Typ CRET 122 bis CRET 140, unter Berücksichtigung von Reibungskräften (f_{μ} = 0,9) in Längsoder Querrichtung

Schubdorn	В	emessungswe	ert der Stahltra	agfähigkeit V _R	d,s
			Fugenbreite		
	20 mm	30 mm	40 mm	50 mm	60 mm
	[kN]	[kN]	[kN]	[kN]	[kN]
CRET 122	85,6	66,4	50,1	40,1	33,4
CRET 124	105,7	84,8	65,0	52,0	43,4
CRET 126	127,8	105,1	82,7	66,1	55,1
CRET 128	151,9	127,6	103,2	82,6	68,8
CRET 130	178,2	152,0	125,9	101,6	84,7
CRET 132	206,4	178,6	150,7	123,3	102,8
CRET 134	236,7	207,1	177,5	147,9	123,3
CRET 136	269,1	237,7	206,4	175,1	146,3
CRET 138	303,5	270,4	237,3	204,2	172,1
CRET 140	339,9	305,1	270,3	235,5	200,7

Tabelle 8: Bemessungswert der Stahltragfähigkeit $V_{Rd,s}$ der Schubdorne für Dornstahl mit f_{yk} = 690 N/mm², Typ CRET 122 V bis CRET 140 V, unter Berücksichtigung von Reibungskräften (f_{μ} = 0,81) in Längs- und Querrichtung

Schubdorn	В	emessungswe	ert der Stahltra	agfähigkeit V _R	d,s
			Fugenbreite		
	20 mm	30 mm	40 mm	50 mm	60 mm
	[kN]	[kN]	[kN]	[kN]	[kN]
CRET 122 V	77,0	59,8	45,1	36,1	30,1
CRET 124 V	95,1	76,3	58,5	46,8	39,0
CRET 126 V	115,0	94,6	74,4	59,5	49,6
CRET 128 V	136,8	114,8	92,9	74,4	62,0
CRET 130 V	160,3	136,8	113,3	91,5	76,2
CRET 132 V	185,8	160,7	135,6	111,0	92,5
CRET 134 V	213,1	186,4	159,8	133,1	110,9
CRET 136 V	242,2	214,0	185,8	157,6	131,7
CRET 138 V	273,1	243,4	213,6	183,8	154,9
CRET 140 V	305,9	274,6	243,3	211,9	180,7

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bemessungswerte Stahltragfähigkeit	Anlage 19

Bemessungswerte der Betontragfähigkeit $V_{Rd,ct}$ und $V_{Rd,c}$ der Schubdorne CRET 122 bis CRET 140 bzw. CRET 122 V bis CRET 140 V

Die im Folgenden angegebenen Bemessungswerte der Betontragfähigkeit gelten für:

- einen Mindestabstand der Schubdornachsen von: b_{Kegel} / 2 ≤ a ≤ 3 d_m + I_{c1}
- die in Tabelle 1 bis Tabelle 6 aufgeführten Bewehrungsabstände, Betondeckungen und Bewehrungsstabdurchmesser

Tabelle 9: Bemessungswerte $V_{Rd,ct}$ (Durchstanznachweis) und $V_{Rd,c}$ (Nachweis innerhalb der Rückhängebewehrung) der Betontragfähigkeit der Schubdorne CRET 122 und CRET 124

Schubdorn	Bauteil-		$V_{Rd,ct}$			$V_{Rd,c}$		A _{sx,1}	A _{sx,2}	A _{sy}
	dicke	C20/25	C30/37	C40/50	C20/25	C30/37	C40/50			,
	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]			
CRET 122	180	62,0	71,0	78,2	45,0	55,8	65,1	4 ø12	4 ø12	2 ø12
	200	79,3	90,7	99,9	61,9	76,8	89,4	4 ø14	4 ø14	2 ø14
	220	95,9	109,8	120,8	79,2	98,0	114,1	4 ø16	4 ø16	2 ø16
	240	115,2	131,8	145,1	95,1	118,1	137,8	6 ø14	4 ø14	3 ø14
	250	120,8	138,3	152,2	98,7	122,8	143,5	0 Ø 14	4 Ø 14	3 Ø 14
CRET 124	200	79,9	91,5	100,7	62,0	77,0	89,7	4 ø14	4 ø14	2 ø14
	220	96,6	110,6	121,7	79,4	98,2	114,4	4 ø16	4 ø16	2 ø16
	240	115,9	132,7	146,1	95,4	118,6	138,5	6 ~14	1 ~11	3 ø14
	250	121,6	139,2	153,2	99,1	123,3	144,2	6 ø14	4 ø14	3 Ø 14
	260	142,2	162,8	179,2	121,2	150,3	175,2	6 ø16	1 016	4 ø16
	280	155,3	177,7	195,6	129,5	161,1	188,2	סועט	4 ø16	4 0 10

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	A 1 00
Bemessungswerte Betontragfähigkeit	Anlage 20

Tabelle 10: Bemessungswerte $V_{Rd,ct}$ (Durchstanznachweis) und $V_{Rd,c}$ (Nachweis innerhalb der Rückhängebewehrung) der Betontragfähigkeit der Schubdorne CRET 126 bis CRET 136

Schubdorn	Bauteil-		$V_{Rd,ct}$			$V_{Rd,c}$		A _{sx,1}	A _{sx,2}	A _{sy}
	dicke	C20/25	C30/37	C40/50	C20/25	C30/37	C40/50		,	-,
	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]			
CRET 126	220	90,0	103,1	113,4	72,7	90,7	106,1	6 ø12	2 ø12	3 ø12
	240	115,9	132,7	146,1	98,5	122,6	143,3	6 ø14	4 ø14	3 ø14
	250	127,5	146,0	160,7	102,1	127,3	149,0	0 Ø 14	4 Ø 14	4 ø14
	260	143,1	163,8	180,3	121,5	150,8	175,9	6 ø16	4 ø16	4 ø16
	280	156,2	178,8	196,8	129,9	161,7	188,9	טושט	טושד	טושד
CRET 128	240	120,3	137,7	151,6	98,8	123,1	144,0	6 ø14	6 ø14	3 ø14
	250	135,8	161,2	177,4	120,8	149,9	174,8		6 ø16	
	260	146,6	168,9	185,8	125,0	155,4	181,5	6 ø16	טושט	4 ø16
	280	165,2	189,1	208,1	133,4	166,3	194,5		8 ø16	
	300	173,9	199,1	219,1	144,0	180,3	211,5	8 ø14	6 ø14	5 ø14
	320	187,4	214,5	236,1	145,3	182,0	213,6	0 9 14	0 0 14	3 0 14
	340	220,4	252,2	277,6	182,9	228,5	267,7	8 ø16	8 ø16	5 ø16
CRET 130	260	147,8	169,9	187,0	127,1	158,2	184,9	6 ø16	6 ø16	4 ø16
	280	161,5	184,9	203,5	137,0	171,3	200,8	8 ø14	6 ø14	5 ø14
	300	186,9	214,0	235,5	172,3	214,8	251,2		6 ~16	
	320	201,6	230,8	254,1	174,9	218,3	255,5	8 ø16	6 ø16	5 ø16
	340	221,4	253,4	278,9	185,9	232,5	272,7	טושס	0 a16	5010
	350	229,0	262,2	288,6	191,4	239,6	281,2		8 ø16	
CRET 132	280	170,5	203,5	223,9	170,3	212,3	248,4			6 ø16
	300	192,7	220,6	242,8	181,6	227,0	266,1		6 ø16	0 0 10
	320	213,3	244,1	268,7	184,3	230,5	270,4			
	340	234,2	268,0	295,0	195,3	244,8	287,5	8 ø16		7 ø16
	350	242,3	277,3	305,2	200,7	251,8	296,0		8 ø16	
	360	256,0	293,1	322,6	206,1	258,8	304,4			8 ø16
	380	265,2	303,6	334,1	216,7	272,7	321,1		10 ø16	6 ø16
CRET 134	300	196,0	226,8	249,6	184,5	230,9	270,9		8 ø16	6 ø16
	320	214,3	245,4	270,1	187,3	234,5	275,3		6 ø16	
	340	235,3	269,3	296,4	198,3	248,9	292,5	8 ø16		7 ø16
	350	243,4	278,6	306,6	203,8	255,9	301,0		8 ø16	
	360	257,2	294,4	324,0	209,2	263,0	309,5			8 ø16
CRET 136	320	215,4	246,6	271,4	190,3	238,5	280,2		6 ø16	
	340	236,3	270,5	297,8	201,4	252,9	297,5	2 a16		7 ø16
	350	244,5	279,8	308,0	206,9	260,0	306,1		8 ø16	
	360	258,3	295,7	325,4	212,3	267,1	314,6			8 ø16

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bemessungswerte Betontragfähigkeit	Anlage 21

Tabelle 11: Bemessungswerte $V_{Rd,ct}$ (Durchstanznachweis) und $V_{Rd,c}$ (Nachweis innerhalb der Rückhängebewehrung) der Betontragfähigkeit der Schubdorne CRET 138 bis CRET 140

Schubdorn	Bauteil-		$V_{Rd,ct}$			$V_{Rd,c}$			A _{sx,2}	A_{sy}
	dicke	C20/25	C30/37	C40/50	C20/25	C30/37	C40/50			
	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]			
CRET 138	340	236,3	270,5	297,8	208,4	262,1	308,6			7 ø16
	350	244,5	279,8	308,0	213,9	269,2	317,2	8 ø16	8 ø16	7 9 10
	360	258,3	295,7	325,4	219,3	276,3	325,7			8 ø16
		274,6	332,7	366,2	260,4	324,0	378,6	8 ø20	8 ø20	7 ø20
	380	280,6	321,2	353,5	230,0	290,2	342,5	8 ø16	10 ø16	8 ø16
		304,4	362,4	398,9	274,3	342,1	400,3	8 ø20	8 ø20	8 ø20
	400	291,3	333,5	367,0	240,6	304,0	359,1	8 ø16	10 ø16	7 ø16
		335,4	383,9	422,6	288,1	359,9	421,8	8 ø20	10 ø20	7 ø20
	450	340,2	389,4	428,6	266,7	337,9	400,0	8 ø16	12 ø16	7 ø16
		392,0	448,8	494,0	321,6	403,4	474,2	8 ø20	12 ø20	7 ø20
		404,1	508,9	560,2	427,3	531,9	621,7	8 ø25	12 ø25	7 ø25
CRET 140	350	245,6	281,1	309,4	214,6	270,3	318,5	8 ø16	8 ø16	7 ø16
		260,3	321,9	354,3	259,2	322,5	376,8	8 ø20	8 ø20	7 ø20
	360	259,4	297,0	326,9	220,1	277,3	327,1	8 ø16	8 ø16	8 ø16
		274,6	332,7	366,2	266,2	331,7	387,8	8 ø20	8 ø20	7 ø20
	380	281,7	322,5	354,9	230,8	291,4	343,9	8 ø16	10 ø16	8 ø16
		304,4	362,4	398,9	280,2	349,7	409,6	8 ø20	8 ø20	8 ø20
	400	299,0	342,3	376,7	241,5	305,2	360,6	8 ø16	10 ø16	8 ø16
		335,6	392,6	432,1	293,9	367,6	431,0	8 ø20	10 ø20	8 ø20
	450	356,0	407,5	448,5	267,6	339,2	401,6	8 ø16	12 ø16	9 ø16
		408,8	468,0	515,1	327,4	411,1	483,4	8 ø20	12 ø20	9 ø20
		406,0	532,1	586,2	428,2	533,2	623,3	8 ø25	12 ø25	9 ø25

Tabelle 12: Bemessungswerte $V_{Rd,ct}$ (Durchstanznachweis) und $V_{Rd,c}$ (Nachweis innerhalb der Rückhängebewehrung) der Betontragfähigkeit der Schubdorne CRET 122 V und CRET 124 V, mit Berücksichtigung von Reibungskräften (f_{μ} = 0,9)

Schubdorn	Bauteil-		$V_{Rd,ct}$			$V_{Rd,c}$		$A_{sx,1}$	$A_{sx,2}$	A _{sy}
	dicke	C20/25	C30/37	C40/50	C20/25	C30/37	C40/50			-
	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]			
CRET 122 V	180	56,3	64,4	70,9	37,6	46,5	54,1	4 ø12	4 ø12	1 ø12
	200	72,3	82,8	91,1	50,5	62,4	72,5	4 ø14	4 ø14	1 ø14
	220	87,3	100,0	110,0	65,3	80,5	93,4		4 ø16	
	240	103,2	118,2	130,1	70,5	87,2	101,4	4 ø16	6 ø16	1 ø16
	250	109,1	124,9	137,5	73,0	90,4	105,4		טושט	
CRET 124 V	200	72,3	82,8	91,1	52,4	64,8	75,4	4 ø14	4 ø14	1 ø14
	220	88,0	100,7	110,8	65,4	80,7	93,7	4 ø16	4 ø16	1 ø16
	240	103,9	119,0	130,9	70,6	87,4	101,8	4 0 10	6 ø16	טושו
	250	115,1	131,7	145,0	84,3	104,7	122,2	6 014	1 ~11	2 ø14
	260	120,4	137,8	151,7	87,6	109,0	127,4	6 ø14	4 ø14	2014
	280	140,7	161,1	177,3	108,1	134,2	156,4	6 ø16	4 ø16	2 ø16

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bemessungswerte Betontragfähigkeit	Anlage 22

Tabelle 13: Bemessungswerte $V_{Rd,ct}$ (Durchstanznachweis) und $V_{Rd,c}$ (Nachweis innerhalb der Rückhängebewehrung) der Betontragfähigkeit der Schubdorne CRET 126 V bis CRET 136 V, mit Berücksichtigung von Reibungskräften (f_{μ} = 0,9)

Schubdorn	Bauteil-		$V_{Rd,ct}$			$V_{Rd,c}$			A _{sx,2}	A _{sy}
	dicke	C20/25	C30/37	C40/50	C20/25	C30/37	C40/50	$A_{sx,1}$,
	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]			
CRET 126 V	220	85,4	97,7	107,5	61,3	76,3	89,1	6 ø12	2 ø12	2 ø12
	240	109,8	125,7	138,3	83,7	104,0	121,4			
	250	115,1	131,7	145,0	87,0	108,3	126,6	6 ø14	4 ø14	2 ø14
	260	120,4	137,8	151,7	90,3	112,6	131,8			
	280	150,6	172,3	189,7	111,3	138,3	161,4	6 ø16	4 ø16	3 ø16
CRET 128 V	240	114,7	131,3	144,5	81,5	101,3	118,2			
	250	120,1	137,5	151,3	84,9	105,7	123,5	6 ø14	6 ø14	2 ø14
	260	125,6	143,8	158,2	88,3	110,0	128,7			
	280	145,9	167,0	183,8	111,6	138,8	162,1			2 ø16
	300	158,1	180,9	199,1	119,2	148,6	173,8	6 ø16	6 ø16	
	320	170,4	195,0	214,7	121,5	151,6	177,5	סושט	טושט	
	340	182,8	209,3	230,4	128,8	161,1	189,0			
CRET 130 V	260	144,1	164,9	181,5	105,8	131,4	153,2		6 ø16	
	280	161,0	184,4	202,9	113,6	141,4	165,3	6 ø16		3 ø16
	300	174,4	199,7	219,8	121,1	151,2	177,1	טושט		טושט
	320	188,0	215,2	236,8	123,5	154,3	180,8		8 ø16	
	340	216,3	247,6	272,5	156,7	195,5	228,9	8 ø16		4 ø16
	350	223,7	256,1	281,8	161,6	202,0	236,7	טושט		4 0 10
CRET 132 V	280	164,2	188,0	206,9	121,2	151,6	177,7	8 ø14	6 ø14	5 ø14
	300	189,9	217,4	239,3	152,4	190,1	222,5		6 ø16	
	320	204,7	234,3	257,8	155,0	193,5	226,6		0 0 10	
	340	224,5	257,0	282,8	165,1	206,5	242,3	8 ø16		5 ø16
	350	232,2	265,8	292,5	170,0	213,0	250,0	טושט	8 ø16	
	360	239,9	274,6	302,2	174,9	219,3	257,7			
	380	251,0	287,3	316,2	184,7	232,0	272,9		10 ø16	4 ø16
CRET 134 V	300	190,9	218,5	240,5	155,1	193,7	226,8		6 ø16	
	320	205,7	235,4	259,1	157,7	197,1	231,0		0 0 10	
	340	225,5	258,2	284,1	167,8	210,2	246,8	8 ø16		5 ø16
	350	233,2	267,0	293,8	172,8	216,7	254,5		8 ø16	
	360	240,9	275,8	303,5	177,7	223,1	262,3			
CRET 136 V	320	206,7	236,6	260,4	160,4	200,7	235,5		6 ø16	
	340	226,6	259,3	285,4	170,6	213,9	251,3	8 ø16	_	5 ø16
	350	234,2	268,1	295,1	175,6	220,4	259,1	טושט	8 ø16	טושט
	360	242,0	277,0	304,9	180,5	226,8	266,8			

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bemessungswerte Betontragfähigkeit	Anlage 23

Tabelle 14: Bemessungswerte $V_{Rd,ct}$ (Durchstanznachweis) und $V_{Rd,c}$ (Nachweis innerhalb der Rückhängebewehrung) der Betontragfähigkeit der Schubdorne CRET 138 V und CRET 140 V, mit Berücksichtigung von Reibungskräften (f_{μ} = 0,9)

Schubdorn	Bauteil-		$V_{Rd,ct}$			$V_{Rd,c}$		A _{sx,1}	A _{sx,2}	A_{sy}
	dicke	C20/25	C30/37	C40/50	C20/25	C30/37	C40/50			,
	[mm]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]			
CRET 138 V	340	233,5	267,3	294,3	176,9	222,1	261,3			
	350	241,5	276,4	304,2	181,9	228,6	269,1	8 ø16	8 ø16	6 ø16
	360	249,4	285,5	314,3	186,8	235,0	276,8	טושט		
	380	270,7	309,9	341,1	196,6	247,8	292,1		10 ø16	
		304,3	348,4	383,4	237,8	296,1	346,2	8 ø20	8 ø20	6 ø20
	400	294,7	337,4	371,3	206,3	260,3	307,2	8 ø16	10 ø16	7 ø16
		338,1	387,0	425,9	250,2	312,3	365,6	8 ø20	10 ø20	7 ø20
	450	343,8	393,5	433,1	229,9	291,1	344,3	8 ø16	12 ø16	7 ø16
		394,8	451,9	497,4	280,6	351,8	413,2	8 ø20	12 ø20	7 ø20
		409,9	514,4	566,2	367,2	456,4	532,7	8 ø25	12 ø25	7 ø25
CRET 140 V	350	242,5	277,6	305,6	182,5	229,6	270,3		8 ø16	
	360	250,5	286,8	315,6	187,5	236,0	278,0	8 ø16	טושט	6 ø16
	380	271,8	311,2	342,5	197,4	248,8	293,4		10 ø16	
		306,8	351,2	386,6	233,9	291,2	340,4	8 ø20	8 ø20	6 ø20
	400	295,9	338,7	372,8	207,1	261,4	308,6	8 ø16	10 ø16	7 ø16
		340,7	390,0	429,3	246,5	307,5	360,0	8 ø20	10 ø20	7 ø20
	450	345,0	394,9	434,6	230,8	292,3	345,8	8 ø16	12 ø16	7 ø16
		397,6	455,1	500,9	277,1	347,3	407,9	8 ø20	12 ø20	7 ø20
		411,9	516,2	568,2	368,0	457,5	534,2	8 ø25	12 ø25	7 ø25

Schubdorn CRET nach DIN 1045-1 und DIN EN 1992-1-1	
Bemessungswerte Betontragfähigkeit	Anlage 24