

European Technical Approval ETA-07/0025

	0	, , , ,		•		0 0	
Handelsbezeichnung <i>Trade name</i>			•	sanker FH II, I ance Anchor		I	
Zulassungsinhaber Holder of approval		fischerwerke Weinhalde 1 72178 Wald DEUTSCHL	l4-18 achtal	& Co. KG			
Zulassungsgegenstan und Verwendungszwe				zender Metall rankerung im		n Größen 10	, 12, 15, 18,
Generic type and use of construction produc	t	Torque-cont 32 for use in		pansion anch e	or of sizes 1	0, 12, 15, 18	, 24, 28 and
Geltungsdauer: <i>Validity:</i>	vom from bis to	24 May 2013 24 May 2018					
Herstellwerk Manufacturing plant		fischerwerke	9				

English translation prepared by DIBt - Original version in German language

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 32 | 24 May 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 2: Torque controlled expansion anchors ", ETAG 001-02.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12

³ Official Journal of the European Union L 284, 31 October 2003, p. 25

Official Journal of the European Communities L 220, 30 August 1993, p. 1

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 32 | 24 May 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the product and intended use

1.1 Definition of the construction product

The fischer High-Performance Anchor FH II, FH II-I is an anchor made of galvanised steel (sizes with external diameter 10, 12, 15, 18, 24, 28 and 32, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) or stainless steel (sizes with external diameter 10, 12, 15, 18 and 24, sizes with internal thread 12/M6 I, 12/M8 I, 15/M10 I and 15/M12 I) which is placed into a drilled hole and anchored by torque-controlled expansion.

An illustration of the product and intended use is given in Annex 1 and 2.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences.

The anchor may be used for anchorages with requirements related to resistance to fire.

The anchor is to be used for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206: 2000-12. It may be anchored in cracked and non-cracked concrete.

The anchor may also be used under seismic action only for anchor sizes specified for in Annex 3 for performance category C1 according to Annex 21.

fischer High-Performance Anchor FH II, FH II-I made of galvanised steel:

The anchor may only be used in structures subject to dry internal conditions.

fischer High-Performance Anchor FH II, FH II-I A4 made of stainless steel:

The anchor made of stainless steel A4 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

Page 4 of 32 | 24 May 2013

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and provisions given in the Annexes. The characteristic material values, dimensions and tolerances of the anchor not given in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

Regarding the requirements concerning safety in case of fire it is assumed that the anchor meets the requirements of class A1 in relation to reaction to fire in accordance with the stipulations of the Commission decision 96/603/EC, amended by 2000/605/EC.

The characteristic values for the design of anchorages are given in the Annexes.

Each anchor is marked according to Annex 1 and 2.

The anchor shall only be supplied as a complete unit.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 2 "Torque-controlled expansion anchors", on the basis of Option 1 and ETAG 001 Annex E "Assessment of anchors under Seismic Action".

The assessment of the anchor for the intended use in relation to the requirements for resistance to fire has been made in accordance with the Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire".

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the decision 96/582/EG of the European Commission⁸ the system 2(i) (referred to as system 1) of attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;

⁷ The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Official Journal of the European Communities L 254 of 08.10.1996.

Page 5 of 32 | 24 May 2013

- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/ raw/ constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik⁹.

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks of manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks of approved bodies

The approved body shall perform the

- initial type-testing of the product ,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control,
- in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

The control plan is a confidential part of the documentation of the European technical approval, but not published together with the ETA and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 32 | 24 May 2013

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- The name and address of the producer (legal entity responsible for the manufacturer),
- The last two digits of the year in which the CE marking was affixed,
- The number of the EC certificate of conformity for the product,
- The number of the European technical approval,
- The number of the guideline for European technical approval,
- use category (ETAG 001-1 Option 1, seismic anchor performance category C1 where applicable),
- Size.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed either in accordance with the

- ETAG 001 "Guideline for European technical approval of Metal Anchors for use in concrete", Annex C, method A

or in accordance with the

- CEN/TS 1992-4:2009, design method A

and EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action" under the responsibility of an engineer experienced in anchorages and concrete work.

Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered by this European technical approval.

Verifiable calculation notes and drawings are taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports).

The minimum strength class and the minimum screwing depth of the fastening screw or threaded rod for installation of the fixture shall meet the requirements according to Annex 6. The length of the fastening screw or threaded rod shall be defined according to the available thread length, the minimum screwing depth, the thickness of fixture and tolerances of member and fixture.

Page 7 of 32 | 24 May 2013

The design of anchorages under fire exposure has to consider the conditions given in the Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire". The relevant characteristic values are given in the Annexes. The design method covers anchors with a fire attack from one side only. If the fire attack is from more than one side, the design method may be taken only, if the edge distance of the anchor is $c \ge 300$ mm.

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

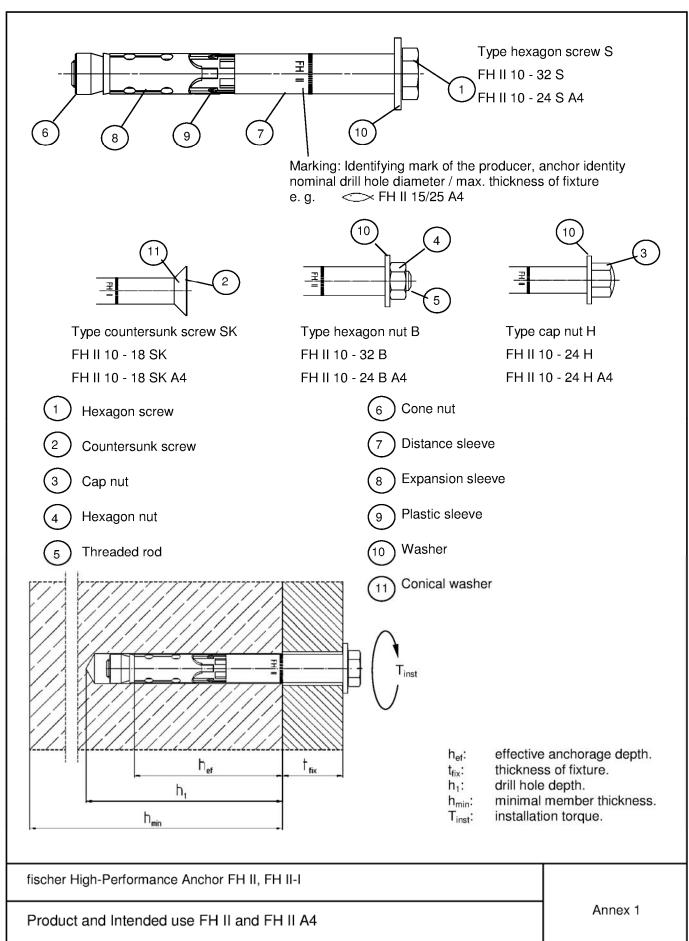
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor,
- For anchor version FH II-I the commercial standard rod may only be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 6, Table 6,
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools,
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.
- Positioning of the drill holes without damaging the reinforcement,
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application,
- Cleaning of the hole of drilling dust,
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured when the embedment mark of the anchor does no more exceed the concrete surface,
- For anchor version FH II application of the torque moment T_{inst} given in Annex 5 using a calibrated torque wrench.
- Control of appropriate setting of anchors with internal thread FH II-I by either
 - Application of the installation torque T_{inst} given in Annex 6 using a calibrated torque wrench or
 - checking the distance between anchor sleeve and concrete surface U acc. to Annex 24 Figure 4.).
- For anchors with internal thread FH II-I the torque moment on fixing elements (screws or threaded rods with washer and nut) shall not exceed the maximum torque moment T_{max} given in Annex 6.

Page 8 of 32 | 24 May 2013

5 Responsibility of the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2 and 4.3 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

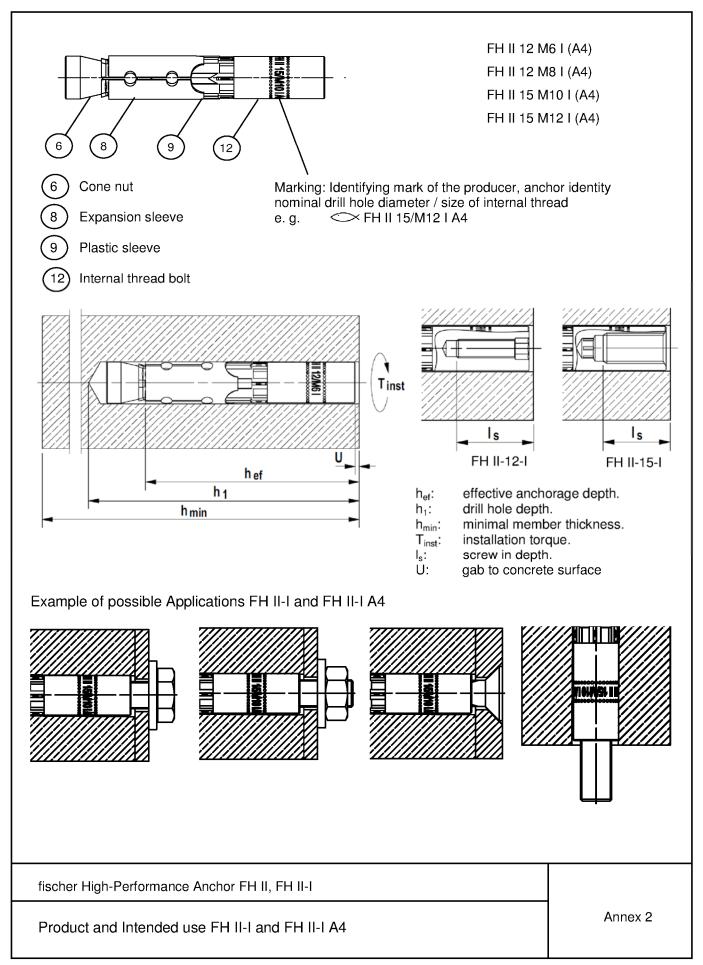
The minimum data required are:


- Diameter of drill bit,
- Thread diameter,
- Maximum thickness of the fixture,
- Minimum effective anchorage depth,
- Minimum hole depth,
- Torque moment,
- Information on the installation procedure, including cleaning of the hole, preferably by means of an illustration,
- Reference to any special installation equipment needed,
- Identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.

Uwe Bender Head of Department *beglaubigt:* Lange

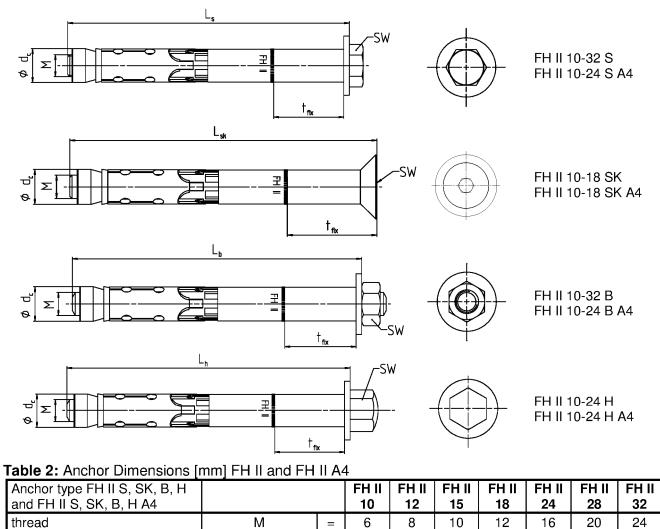
Page 9 of European technical approval ETA-07/0025 of 24 May 2013



Page 10 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

Table 1: Possible design methods FH II, FH II A4, FH II-I and FH II-I A4


	Possible design	methods		
Anchor type	Design under static action acc		Design under fire exposure	Design under seismic action
	ETAG 001, Annex C	CEN/TS 1992-4: 2009	R30-R120	Performance category C1
FH II 10 S, B, H, SK	X	X	X	
FH II 12 S, B, H, SK	X	X	X	Х
FH II 15 S, B, H, SK	Х	X	X	Х
FH II 18 S, B, H, SK	X	X	X	Х
FH II 24 S, B, H	X	X	X	Х
FH II 28 S, B	X	X	X	Х
FH II 32 S, B	X	X	X	Х
FH II 12/M6 I	X	X	X	
FH II 12/M8 I	Х	X	X	
FH II 15/M10 I	X	X	X	
FH II 15/M12 I	Х	X	X	
FH II 10 S, B, H, SK A4	Х	X	X	
FH II 12 S, B, H, SK A4	Х	X	X	
FH II 15 S, B, H, SK A4	Х	X	X	
FH II 18 S, B, H, SK A4	X	X	X	
FH II 24 S, B, H A4	Х	X	X	
FH II 12/M6 I A4	Х	X	X	
FH II 12/M8 I A4	Х	X	X	
FH II 15/M10 I A4	Х	X	Х	
FH II 15/M12 I A4	Х	X	X	

fischer High-Performance Anchor FH II, FH II-I

Scope of anchor design FH II, FH II A4, FH II-I and FH II-I A4

Page 12 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

thread	М	=	6	8	10	12	16	20	24
diameter conical nut	d _c	=	10	12	14,8	17,8	23,7	27,5	31,5
	FH II S, B		10	13	17	19	24	30	36
Wrench size SW FH II	FH II SK ¹⁾		4	5	6	8	-	-	-
	FHIIH	=	13	17	17	19	24	-	-
	FH II S, B, H A4		10	13	17	19	24	-	-
Wrench size SW FH II A4	FH II SK A4 ¹⁾		4	5	6	8	-	-	-
t _{fix} FH II + FH II A4 S, B, H	min		0	0	0	0	0	0	0
$t_{fix, red}$ FH II SK + FH II SK A4 $^{2)}$	min	=	5	6	6	8	-	-	-
t _{fix} FH II + FH II A4	max		250	250	300	350	400	500	500
length of screw / bolt	L _{s,} L _{h,} L _b (- t _{fix})	2	49	74	89	99	124	149	174
length of countersunk screw	L _{sk} (- t _{fix})	2	54	79	95	107	-	-	-

¹⁾ internal hexagon

²⁾ The influence of the thickness of fixture to the characteristic resistance for shear loads, steel failure without lever arm is taken into account, see tables 14 and 24.

fischer High-Performance Anchor FH II, FH II-I

Anchor types, anchor dimensions FH II and FH II A4

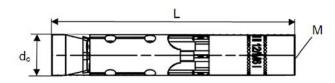
Nb.	Designation	FHI	FH II A4
1	Hexagon screw	Steel class 8.8; EN ISO 898-1 ¹⁾	
2	Countersunk screw	Steel class 8.8; EN ISO 898-1 ¹⁾	Strength class 70
3	Cap nut	Steel class 8 ¹⁾	EN ISO 3506
4	Hexagon nut	Steel class 8 ¹⁾	
5	Threaded rod	Steel $f_{uk} \ge 800 \text{ N/mm}^2$; $f_{yk} \ge 640 \text{ N/mm}^2$ ¹⁾	
6	Cone nut	Steel EN 10277 1)	
7	Distance sleeve	Steel EN 10305 ¹⁾	EN 10088
8	Expansion sleeve	Steel EN 10139 / EN 10277 ¹⁾	EN 10088
9	Plastic sleeve	ABS (plastic)	
10	Washer	Steel EN 10139 ¹⁾	EN 10088
11	Conical washer	Steel EN 10277 ¹⁾	EN 10088

 $^{1)}$ Galvanised according to EN ISO 4042, $\geq 5 \ \mu m$

Table 4: Installation parameters FH II and FH II A4

	e FH II S, SK, B, H 5, SK, B, H A4		FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Nominal dri	ill hole Diameter	$d_0 = [mm]$	10	12	15	18	24	28	32
Maximum c	liameter of drill bit	$d_{cut} \leq [mm]$	10,45	12,50	15,50	18,50	24,55	28,55	32,70
Depth of dr	ill hole	$h_1 \ge [mm]$	55	80	90	105	125	155	180
Diameter of	f clearance hole	d _f ≤ [mm]	12	14	17	20	26	31	35
Diameter of	f counter sunk	FH II SK	18	22	25	32	-	-	-
Depth of co	ounter sunk, 90°	FH II SK A4	5,0	5,8	5,8	8,0	-	-	-
	FH II S		10	22,5	40	80	160	180	200
Required	FH II B		10	17,5	38	80	120	180	200
installation torque	FHIIH		10	22,5	40	80	90	-	-
loique	FH II SK	$T_{inst} = [Nm]$	10	22,5	40	80	-	-	-
	FH II S, B, H A4		15	25	40	100	160	-	-
	FH II SK A4		10	25	40	100	-	-	-

fischer High-Performance Anchor FH II, FH II-I


Materials / Installation instruction FH II and FH II A4

Page 14 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

Table 5: Anchor Dimensio	ns [m	im] F	H II-I and Fl	H II-I A4		
Anchor type FH II-I and FH II-I A4			FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I
thread	М	=	6	8	10	12
diameter conical nut	d _c	=	12	12	14,8	14,8
Wrench size internal hexago	'n	=	6	8	6	8
anchor length	L	=	77,5	77,5	90	90

Table 6: Material FH II-I and FH II-I A4

Nb.	Designation	FH II-I	FH II-I A4
6	Cone nut	Steel EN 10277 ¹⁾	Strength class 70 EN ISO 3506
8	Expansion sleeve	Steel EN 10139 / EN 102771)	EN 10088
9	Plastic sleeve	ABS	(plastic)
12	Internal thread bolt	Steel EN 10277 ¹⁾ $f_{uk} \ge 750 \text{ N/mm}^2$, $f_{yk} \ge 600 \text{ N/mm}^2$	EN 10088 $f_{uk} \ge 750 \text{ N/mm}^2$, $f_{yk} \ge 600 \text{ N/mm}^2$
	uirements for fixing nents	Steel strength class 5.8, 6.8 or 8.8 EN ISO 898-1 ¹⁾	Steel strength class A50, A70 or A80 EN ISO 3506 1.4362, 1.4401, 1.4404, 1.4571, 1.4529

 $^{1)}$ Galvanised according to EN ISO 4042, $\geq 5~\mu m$

Table 7: Installation parameters FH II-I and FH II-I A4

Anchor type FH II-I and FH II	-I A4	FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I	
Nominal drill hole Diameter	$d_0 = [mm]$	1;	2	1	5	
Maximum diameter of drill bit	$d_{cut} \leq [mm]$	12,	50	15,	50	
Depth of drill hole	$h_1 \ge [mm]$	8:	5	9	5	
Diameter of clearance hole	$d_f \leq [mm]$	7	9	12	14	
Required gap after torquing ¹⁾	U = [mm]		3-5	5 mm		
Required installation torque ¹⁾	$T_{inst} = [Nm]$	1:	5	25		
Minimum screw in length	l _s ≥[mm]	11+U	13+U	10+U	12+U	
Maximum screw in length	l _s ≤ [mm]		2	0+U		
Maximum torque on fixture in combination with screws and threaded rods strength class \geq 5.8 and \geq A50	T _{max} ≤[Nm]	3	8	15	20	

¹⁾ Only one of both requirements has to be fulfilled.

fischer High-Performance Anchor FH II, FH II-I

Anchor dimensions / Materials / Installation instructions FH II-I and FH II-I A4 $\,$

Deutsches Institut für Bautechnik

Table 8: Minimum thickness of concrete member, min. spacing and min. edge distancesFH II, FH II A4

Anchor type FH II S, SK, B, and FH II S, SK, B, H A4	Η	FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Min. member thickness	h _{min} [mm]	80	120	140	160	200	250	300
Minimum spacing,	s _{min} [mm]	40	50	60	70	80	100	120
cracked concrete	for $c \ge [mm]$	40	80	120	140	180	200	260
Minimum edge distance,	c _{min} [mm]	40	50	60	70	80	100	120
cracked concrete	for $s \ge [mm]$	40	80	120	160	200	220	280
Minimum spacing,	s _{min} [mm]	40	60	70	80	100	120	160
uncracked concrete	for $c \ge [mm]$	70	100	100	160	200	220	360
Minimum edge distance,	c _{min} [mm]	40	60	70	80	100	120	180
uncracked concrete	for $s \ge [mm]$	70	100	140	200	220	240	380

Intermediate values may be calculated by linear interpolation.

Table 9: Minimum thickness of concrete member, min. spacing and min. edge distancesFH II-I, FH II-I A4

Anchor type FH II-I and FF	I II-I A4	FH II 12/M6 I FH II 12/M8 I	FH II 15/M10 I FH II 15/M12 I
Min. member thickness	h _{min} [mm]	125	150
Minimum spacing,	s _{min} [mm]	50	60
cracked concrete	for $c \ge [mm]$	80	120
Minimum edge distance,	c _{min} [mm]	50	60
cracked concrete	for $s \ge [mm]$	80	120
Minimum spacing,	s _{min} [mm]	60	70
uncracked concrete	for $c \ge [mm]$	100	100
Minimum edge distance,	c _{min} [mm]	60	70
uncracked concrete	for $s \ge [mm]$	100	140

Intermediate values may be calculated by linear interpolation.

fischer High-Performance Anchor FH II, FH II-I

Member dimensions FH II, FH II A4 and FH II-I, FH II-I A4

Annex 7

Electronic copy of the ETA by DIBt: ETA-07/0025

		FH II	FH II	FHI	FH II	FHI	FH II	FH II	
		10	12	15	18	24	28	32	
		101	00.0	40.4	07.4	105.0	105.0	000 (
							195,8	282,	
1)	נאוז	14,1	25,6	40,6		109,7	-	-	
	ilure				1,0				
						0	2	0)	
[kN]	C20/25	7,5	12	16	25	2)	2)	2)	
N _{Rk,p} [kN]	C20/25	2)	2)	2)	2)	2)	2)	2)	
N _{Rk,p} [kN]	C20/25	2)	20	2)	2)	2)	-	-	
	C25/30	1,10							
	C30/37	1,22							
	C35/45				1,34				
Ψc	C40/50				1,41				
	C45/55				1,48				
	C50/60				1,55				
1) γ _{Μp}					1,5 ³⁾				
oncrete o	cone failu	re and s	splitting	failure					
h _{ef}	[mm]	40	60	70	80	100	125	150	
S _{cr,N}	[mm]	120	180	210	240	300	375	450	
C _{cr,N}	[mm]	60	90	105	120	150	187,5	225	
S _{cr,sp}	[mm]	190	300	320	340	380	480	570	
C _{cr,sp}	[mm]	95	150	160	170	190	240	285	
	N _{Rk,s} N _{Rk,s} γ _{Ms} 1) Illout fai N _{Rk,p} [kN] V _c ψ_c ψ_c γ_{Mp} 0 ρ_{ef} S _{cr,N} C _{cr,N} S _{cr,sp}	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } & 10 \\ \hline eel failure \\ \hline N_{Rk,s} & [kN] & 16,1 \\ \hline N_{Rk,s} & [kN] & 14,1 \\ \hline \gamma_{Ms}^{(1)} & & & \\ \hline \\$	$\begin{array}{c c c c c c } \hline 10 & 12 \\ \hline 10 & 14,1 & 25,6 \\ \hline 14,1 $	$\begin{array}{c c c c c c c } \hline 10 & 12 & 15 \\ \hline eel failure \\ \hline N_{Rk,s} & [kN] & 16,1 & 29,3 & 46,4 \\ \hline N_{Rk,s} & [kN] & 14,1 & 25,6 & 40,6 \\ \hline \gamma_{Ms}^{1)} & & & \\ \hline \hline \\ \hline$	$\begin{array}{c c c c c c c c c } \hline 10 & 12 & 15 & 18 \\ \hline 10 & 12 & 15 & 18 \\ \hline 10 & 12 & 15 & 18 \\ \hline 10 & 12 & 15 & 18 \\ \hline 10 & 12 & 15 & 18 \\ \hline 10 & 12 & 15 & 18 \\ \hline 10 & 12 & 16 & 27 & 15 \\ \hline 10 & 14,1 & 25,6 & 40,6 & 59,0 \\ \hline 1,5 & 11 & 14,1 & 25,6 & 40,6 & 59,0 \\ \hline 1,5 & 11 & 14,1 & 25,6 & 40,6 & 59,0 \\ \hline 1,5 & 11 & 15 & 15 \\ \hline 10 & 14,1 & 25,6 & 40,6 & 59,0 \\ \hline 1,5 & 1,5 & 12 & 16 & 25 \\ \hline 10 & 16 & 25 & 2^2 & 2^2 & 2^2 & 2^2 \\ \hline 10 & 16 & 25 & 2^2 & 2^2 & 2^2 & 2^2 \\ \hline 10 & 16 & 25 & 2^2 & 20 & 2^2 & 2^2 \\ \hline 10 & 16 & 25 & 2^2 & 20 & 2^2 & 2^2 \\ \hline 10 & 16 & 10 & 20 & 2^2 & 2^2 & 2^2 \\ \hline 10 & 16 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 120 \\ \hline 10 & 10 & 10 & 10 & 120 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 \\ \hline 10 & 10 & 10 & 10 & 10 \\ \hline 1$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c } \hline 10 & 12 & 15 & 18 & 24 & 28 \\ \hline \begin{tabular}{ c c c c c } \hline \hline \\ \hline N_{Rk,s} & [kN] & 16,1 & 29,3 & 46,4 & 67,4 & 125,3 & 195,8 \\ \hline N_{Rk,s} & [kN] & 14,1 & 25,6 & 40,6 & 59,0 & 109,7 & - \\ \hline \hline \gamma_{Ms}^{1} & & & & & & & & & & & \\ \hline \hline \gamma_{Ms}^{1} & & & & & & & & & & & & & & & & \\ \hline \ \hline N_{Rk,p} & C20/25 & 7,5 & 12 & 16 & 25 & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} & 2^{2} \\ \hline N_{Rk,p} & C20/25 & 2^{2} & 20 & 2^{2} $	

¹⁾ In absence of other national regulations. ²⁾ Pullout failure is not decisive.

³⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

Table 11: Displacements under tension loads, FH II and FH II A4

Anchor type FH II S, SK, B, H and FH II S, SK, B, H A4			FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Tension load cracked concrete	Ν	[kN]	3,6	5,7	7,6	11,9	17,1	24,0	31,5
Corresponding displacements	δ_{N0}	[mm]	1,0	1,0	1,0	1,0	1,0	0,7	0,7
Corresponding displacements	δ_{N^∞}	[mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1
Tension load uncracked concrete	Ν	[kN]	6,0	11,2	14,1	17,2	24,0	33,6	44,2
Corresponding displacements	δ_{N0}	[mm]	0,6	1,0	1,0	1,0	1,0	0,3	0,3
Corresponding displacements	δ_{N^∞}	[mm]	1,7	1,6	1,6	1,6	1,8	1,3	1,1

fischer High-Performance Anchor FH II, FH II-I

Design method A according ETAG 001, Annex C: Characteristic values for tension loads under static and quasi-static action and displacements FH II and FH II A4

Annex 8

Electronic copy of the ETA by DIBt: ETA-07/0025

Anchor type FH II-I and FH II-I A	4		FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I			
Characteristic resistance ste	el failure								
Anchor in combination with	n screw / t	hreaded r	od of galvanise	d steel comply	ing with DIN E	N ISO 898			
Strength class 5.8	N _{Rk,s}	[kN]	10	19	29	43			
Strength class 6.8	$N_{Rk,s}$	[kN]	12	23	35	44			
Strength class 8.8	$N_{Rk,s}$	[kN]	16	27	44	44			
Partial safety factor	γMs	1)		1	1,5				
Anchor in combination with	n screw / t	hreaded	rod of stainless	steel complyir	ng with DIN EN	ISO 3506			
Screw/thread strength class A5	50 N _{Rk,s}	[kN]	10	19	29	43			
Partial safety factor		YMs ¹⁾		2	,86				
Screw/thread strength class A7			14	26	41	54			
Partial safety factor		YMs ¹⁾		1	1,87				
Screw/thread strength class A8			16	29	46	46			
Partial safety factor		YMs ¹⁾		1	,60				
Characteristic resistance pul	lout failu	re							
cracked concrete	N _{Rk,p} [kN]	C20/25	ç	9		12			
non-cracked concrete	N _{Rk,p} [kN]	C20/25	20)		2)			
		C25/30	1,10						
		C30/37		1,	22				
Increasing factors for N		C35/45		1,	34				
Increasing factors for $N_{Rk,p}$	Ψc	C40/50		1,	41				
		C45/55		1,	48				
		C50/60			55				
Partial safety factor		γ _{Mp} ¹⁾		1,	5 ³⁾				
Characteristic resistance con	ncrete co	ne failure	and splitting	failure					
Effective anchorage depth	h _{ef}	[mm]	60)	7	70			
Spacing	S _{cr,N}	[mm]	18	0	2	10			
Edge distance	C _{cr,N}	[mm]	90)		05			
Spacing (splitting)	S _{cr,sp}	[mm]	30		3	20			
Edge distance (splitting)	C _{cr,sp}	[mm]	15			60			
Partial safety factor	γn	1) //c		1,	5 ³⁾				

 $^{3)}$ The partial safety factor γ_2 = 1,0 is included.

Table 13: Displacements under tension loads, FH II-I and FH II-I A4

Anchor type FH II-I and FH II-I A4		FH II 12/M6 I FH II 12/M8 I	FH II 15/M10 I FH II 15/M12 I
Tension load cracked concrete Tension load uncracked concrete	N [kN]	4,3 9,5	5,7 14,1
Corresponding displacements	δ _{N0} [mm]	1,7	1,9
Corresponding displacements	δ _{N∞} [mm]	2,2	2,9

fischer High-Performance Anchor FH II, FH II-I

Design method A according ETAG 001, Annex C: Characteristic values for tension loads under static and quasi-static action and displacements FH II-I and FH II-I A4

Table 14:	Design method A, according to ETAG 001, Annex C: Characteristic values for shear
	loads under static and quasi-static action for FH II and FH II A4.

Anchor type FH II S, SK, B, H		FH II	FH II	FH II	FHI	FH II	FH II	FH II					
and FH II S, SK, B, H A4		10	12	15	18	24	28	32					
Characteristic resistance st	eel failure wi	thout le	ver arm		-	-							
FHIIS	V _{Rk,s} [kN]	18	33	59	76	146	174	217					
FH II B + FH II H	$V_{Rk,s}$ [kN]	16	27	41	62	119	146	169					
FH II S A4, FH II B A4, FH II H A4	V _{Rk,s} [kN]	18	28	43	66	119	-	-					
FH II SK for t _{fix} standard	V _{Rk,s} [kN]	18	33	59	76	-	-	-					
FH II SK A4 for t _{fix} standard	V _{Rk,s} [kN]	18	28	43	66	-	-	-					
t _{fix} standard for FH II SK	t _{fix} [mm]	≥10	≥10	≥15	≥15	-		-					
FH II SK for t _{fix} reduced	V _{Rk,s} [kN]	8	14	23	34	-	-	-					
FH II SK A4 for t _{fix} reduced	$V_{Rk,s}$ [kN]	7	13	20	30	-	-	-					
t _{fix} reduced for FH II SK	t _{fix} [mm]	<10	<10	<15	<15	-	-	-					
Partial safety factor	γ _{Ms} 1)				1,25								
Characteristic resistance st	eel failure wi	th lever	arm										
Bending FH II	$M^0_{Rk,s}$ [Nm]	12	30	60	105	266	518	896					
Bending FH II A4	$M^0_{\ Rk,s}$ [Nm]	11	26	52	92	232	-	-					
Partial safety factor	γ _{Ms} ¹⁾				1,25								
Characteristic resistance co	oncrete pryou	ut failure	•										
Factor in equation (5.6) of ETAG 001 Annex C, 5.2.3.3	k	1,0			2	,0							
Partial safety factor	1) γMcp				1,5 ²⁾			 - 					
Characteristic resistance co		failure											
Effective length of anchor under shear load	۔ ا _f [mm]	40	60	70	80	100	125	150					
Effective diameter of anchor	d _{nom} [mm]	10	12	15	18	24	28	32					
Partial safety factor	γ _{Mc} 1)				1,5 ²⁾								

¹⁾ In absence of other national regulations. ²⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

fischer High-Performance Anchor FH II, FH II-I

Design method A according ETAG 001, Annex C: Characteristic values for shear loads under static and quasi-static action FH II and FH II A4

Table 15: Design method A, according to ETAG 001, Annex C: Characteristic values for shear loads under static and quasi-static action for FH II-I and FH II-I A4.

Anchor type FH II-I and FH II-I A4			FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12
Characteristic resistance steel f	ailure w	vithout	lever arm			
In combination with screw	/ threac	led rod	of galvanised s	teel complying	g with DIN EN IS	O 898
Strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21
Strength class 6.8	$V_{Rk,s}$	[kN]	6	11	18	24
Strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	24
Partial safety factor		γ _{Ms} 1)			1,25	
In combination with screw	/ thread	ded rod	of stainless ste	el complying v	with DIN EN ISC) 3506
Screw/thread strength class A50	$V_{Rk,s}$	[kN]	5	9	15	21
Partial safety factor		γ _{Ms} 1)		2	2,38	
Screw/thread strength class A70	$V_{Rk,s}$	[kN]	7	13	20	30
Partial safety factor		γ _{Ms} 1)			1,56	
Screw/thread strength class A80	$V_{Rk,s}$	[kN]	8	15	23	32
Partial safety factor		1) γ _{Ms}		•	1,33	
Characteristic resistance steel f	ailure v	vith leve	er arm			
In combination with screw	/ threac	led rod	of galvanised s	teel complying	g with DIN EN IS	O 898
Strength class 5.8	M ⁰ _{Rk,s}	[Nm]	8	19	37	65
Strength class 6.8	M ⁰ _{Bk.s}	[Nm]	9	23	44	78
Strength class 8.8	M ⁰ _{Rk,s}	[Nm]	12	30	60	105
Partial safety factor		γ _{Ms} 1)		-	1,25	
In combination with screw	/ thread	ded rod	of stainless ste	el complying v	with DIN EN ISC	3506
Strength class A50	М ⁰ _{Rk,s}	[Nm]	8	19	37	65
Partial safety factor	110,5	γ _{Ms} 1)			2,38	
Strength class A70	M ⁰ _{Rk,s}	[Nm]	11	26	52	92
Partial safety factor	111,5	γ _{Ms} 1)			1,56	
Strength class A80	M ⁰ _{Rk,s}	[Nm]	12	30	60	105
Partial safety factor	110,3	γ _{Ms} ¹⁾			1,33	
Characteristic resistance concre	te prvo		re			
Factor in equation (5.6) of ETAG 001 Annex C, 5.2.3.3		k			2,0	
Partial safety factor	ŶΜ	1) cp		1	,5 ²⁾	
Characteristic resistance concre	te edge	failure				
Effective length of anchor under shear load	l _f	[mm]		60		70
Effective diameter of anchor	d _{nom}	[mm]	-	12		15
Partial safety factor		γ _{Mc} ¹⁾			,5 ²⁾	

²⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

fischer High-Performance Anchor FH II, FH II-I

Design method A according ETAG 001, Annex C: Characteristic values for shear loads under static and quasi-static action FH II-I and FH II-I A4

Page 20 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Anchor type FH II S and FH II SK			FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Shear load in cracked and non-cracked concrete	V	[kN]	10,3	18,9	33,7	43,4	83,4	99,4	124,0
Corresponding	δ_{V0}	[mm]	2,4	2,7	4,4	5,0	7,0	6,0	8,0
displacements	$\delta_{V\infty}$	[mm]	3,6	4,1	6,6	7,5	10,5	9,0	12,0

¹⁾ Tolerance of clearance hole not included in the displacements.

Table 17: Displacements under shear loads FH II B and H¹⁾

Anchor type: FH II B and FH	IIIH		FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Shear load in cracked and non-cracked concrete	V	[kN]	8,9	15,4	23,4	35,4	68,0	83,4	96,6
Corresponding	δ_{V0}	[mm]	2,2	2,3	3,0	5,0	7,0	5,0	5,0
displacements	$\delta_{V\infty}$	[mm]	3,3	3,5	4,5	7,5	10,5	7,5	7,5

¹⁾ Tolerance of clearance hole not included in the displacements.

Table 18: Displacements under shear loads FH II S A4, FH II SK A4, FH II B A4 and FH II H A4¹⁾

Anchor type: FH II S A4, FH FH II B A4, FH II H A4	4, FH II H A4				FH II 15	FH II 18	FH II 24
Shear load in cracked and non-cracked concrete	V	[kN]	10,3	16,0	24,6	37,7	68,0
Corresponding	δ_{V0}	[mm	3,5	3,5	3,7	5,7	9,0
displacements	$\delta_{V\infty}$	[mm	5,3	5,3	5,6	8,6	13,5

¹⁾ Tolerance of clearance hole not included in the displacements.

Table 19: Displacements under shear loads FH II-I and FH II-I A4¹¹

Anchor type FH II-I and FH II-I A4			FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I
Shear load in cracked and non-cracked concrete	V	[kN]	4,6	8,3	13,3	13,7
Corresponding	δ_{V0}	[mm]	2,6	2,6	2,2	2,2
displacements	$\delta_{V\infty}$	[mm]	3,9	3,9	3,3	3,3

¹⁾ Tolerance of clearance hole not included in the displacements.

fischer High-Performance Anchor FH II, FH II-I

Design method A according ETAG 001, Annex C: Characteristic displacements for shear loads Annex 12

Electronic copy of the ETA by DIBt: ETA-07/0025

Page 21 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

Table 20: Design method A, according to ETAG 001, Annex C: Characteristic values for tension loads under fire exposure.

				R30			R60	R60			
Ar	nchor type		N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]			
FH	I II 10 (A4)		0,2	1,8	1,8	0,2	1,8	1,8			
	I II 12 (A4)		2,0	3,0	5,0	1,3	3,0	5,0			
	I II 15 (A4)		3,2	4,0	7,4	2,3	4,0	7,4			
	I II 18 (A4)		4,8	6,3	10,3	3,9	6,3	10,3			
FH	I II 24 (A4)		8,9	9,0	18,0	7,3	9,0	18,0			
	FH II 28		13,9	12,6	31,4	11,3	12,6	31,4			
	FH II 32		20,0	16,5	49,6	16,3	16,5	49,6			
	FH II 12/M6 I (A4) 5.8/A50 ¹⁾		0,1			0,1	· · · ·				
	ner 8.8, A70		0,2			0,2					
	18 I (A4) 5.8		1,3	2,3	5,0	0,8	2,3	5,0			
	ner 8.8, A70		2,0			1,3					
	HII 15/M10 I (A4)5.8/A50 ¹⁾		2,0			1,4					
	ner 8.8, A70		3,2			2,3	3,0				
	12 I (A4) 5.8		3,0	3,0	7,4	2,4		7,4			
	ner 8.8, A70		4,8			3,9					
	,	,	.,-	R90		-,-	R120				
			N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120} [kN]	N ⁰ _{Rk,c,fi,1} [kN]			
FH	I II 10 (A4)		0,1	1,8	1,8	0,1	1,5	1,5			
FH II 12 (A4)		0,6	3,0	5,0	0,2	2,4	4,0				
	I II 15 (A4)		1,4	4,0	7,4	1,0	3,2	5,9			
	I II 18 (A4)		3,0	6,3	10,3	2,6	5,0	8,2			
	I II 24 (A4)		5,6	9,0	18,0	4,8	7,2	14,4			
	FH II 28		8,8	12,6	31,4	7,5	10,1	25,2			
	FH II 32		12,6	16,5	49,6	10,8	13,2	39,7			
	16 I (A4) 5.8	/A50 ¹⁾	0,1	,.		0,1	,_	,-			
	ner 8.8, A70		0,1			0,1					
	18 I (A4) 5.8		0,4	2,3	5,0	0,1	1,8	4,0			
	ner 8.8, A70		0,6			0,2					
	10 I (A4) 5.8		0,9			0,6					
	ner 8.8, A70		1,4			1,0					
	12 I (A4) 5.8		1,9	3,0	7,4	1,6	2,4	5,9			
	ner 8.8, A70		3,0			2,6					
		, , .00	0,0			_,0					
A I		FH II	FH II 12	FH II ⁻	I5 FH II	FH II	FH II				
Ancho	Anchor type 10		FH II 12-			24	28	FH II 32			
One office of	Spacing S _{cr.N [mm]}			•	4x h _e	1					
Spacing	S _{min [mm]}	40	60	70	80	100	125	150			
F -1			2 x h _{ef}								
Edge distance	C _{min [mm]}				$c_{min} = 2 x$	h _{ef} ,	000				
	▲umi [umi]		tor fire e	xposure fro	om more tha	an one side	c _{min} <u>≥</u> 300 r	nm			

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

fischer High-Performance Anchor FH II, FH II-I

Characteristic tension load resistance under fire exposure according to TR 020 and ETAG 001, Annex C

Page 22 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

Table 21: Design method A, according to ETAG 001, Annex C: Characteristic values for shear loads under fire exposure.

Anchor type R30 Fire resistance 30 minu V _{Rk,s,fi,30} M ⁰ _{Rk,s,fi,30}		
		R60
Anchor type		tance 60 minutes
V Rk.s.fi.30 VI Rk.s.fi.30	V _{Rk,s,fi,60}	M ⁰ _{Rk,s,fi,60}
[kN] [Nm]	[kN]	[Nm]
FH II 10 (A4) 0,3 0	0,3	0
FH II 12 (A4) 2,0 2	1,3	1
FH II 15 (A4) 3,2 4	2,3	3
FH II 18 (A4) 4,8 7	3,9	6
FH II 24 (A4) 8,9 19	7,3	15
FH II 28 13,9 37	11,3	30
FH II 32 20,0 64	16,3	52
FH II 12/M6 I (A4) 5.8/A50 0,2 0	0,2	0
with fastener 8.8, A70, A80 0,3 0	0,3	0
FH II 12/M8 I (A4) 5.8/A50 1,3 1	0,8	1
with fastener 8.8, A70, A80 2,0 2	1,3	1
FH II 15/M10 I (A4) 5.8/A50 2,0 3	1,4	2
with fastener 8.8, A70, A80 3,2 4	2,3	3
FH II 15/M12 I (A4) 5.8/A50 3,0 4	2,4	4
with fastener 8.8, A70, A80 4,8 7	3,9	6
R90		R120
Fire resistance 90 minu	utes Fire resist	ance 120 minutes
V _{Rk,s,fi,90} M ⁰ _{Rk,s,fi,90}	V _{Rk,s,fi,120}	M ⁰ _{Rk,s,fi,120}
[kN] [Nm]	[kN]	[Nm]
FH II 10 (A4) 0,2 0	0,1	0
FH II 12 (A4) 0,6 1	0,2	0
FH II 15 (A4) 1,4 2	1,0	1
FH II 18 (A4) 3,0 5	2,6	4
FH II 24 (A4) 5,6 12	4,8	10
FH II 28 8,8 23	7,5	20
	10,8	34
FH II 32 12,6 40	0,1	0
FH II 32 12,6 40 FH II 12/M6 I (A4) 5.8/A50 0,1 0		
FH II 3212,640FH II 12/M6 I (A4) 5.8/A500,10with fastener 8.8, A70, A800,20	0,1	0
FH II 32 12,6 40 FH II 12/M6 I (A4) 5.8/A50 0,1 0 with fastener 8.8, A70, A80 0,2 0 FH II 12/M8 I (A4) 5.8/A50 0,4 1	0,1	0
FH II 32 12,6 40 FH II 12/M6 I (A4) 5.8/A50 0,1 0 with fastener 8.8, A70, A80 0,2 0 FH II 12/M8 I (A4) 5.8/A50 0,4 1 with fastener 8.8, A70, A80 0,6 1		0 0
FH II 3212,640FH II 12/M6 I (A4) 5.8/A500,10with fastener 8.8, A70, A800,20FH II 12/M8 I (A4) 5.8/A500,41with fastener 8.8, A70, A800,61FH II 15/M10 I (A4) 5.8/A500,92	0,1	0
FH II 3212,640FH II 12/M6 I (A4) 5.8/A500,10with fastener 8.8, A70, A800,20FH II 12/M8 I (A4) 5.8/A500,41with fastener 8.8, A70, A800,61FH II 15/M10 I (A4) 5.8/A500,92with fastener 8.8, A70, A801,43	0,1 0,2	0 0 1 1
FH II 3212,640FH II 12/M6 I (A4) 5.8/A500,10with fastener 8.8, A70, A800,20FH II 12/M8 I (A4) 5.8/A500,41with fastener 8.8, A70, A800,61FH II 15/M10 I (A4) 5.8/A500,92	0,1 0,2 0,6	0 0 1

Concrete pryout failure: In Equation (5.6) of ETAG 001, Annex C, 5.2.3.3, the k-factor for FH II 12-32 is 2,0, respectively 1,0 for FH II 10 and the relevant values of $N_{Rk,c,fi}$ of Table 14 have to be considered in the design.

Concrete edge failure: The characteristic resistance $V_{0Rk,c,fi}$ in concrete C20/25 to C50/60 is determined by: $V_{Rk,c,fi}^{0} = 0,25 \times V_{Rk,c}^{0}$ (R30, R60, R90), $V_{Rk,c,fi}^{0} = 0,20 \times V_{Rk,c}^{0}$ (R120) with $V_{Rk,c}^{0}$ as initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to ETAG 001, Annex C, 5.2.3.4.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

fischer High-Performance Anchor FH II, FH II-I

Characteristic shear load resistance under fire exposure according to TR 020 and ETAG 001, Annex C $\,$

Anchor type FH II S, SK, B, H and FH II S, SK, B, H A4	ł		FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32	
Characteristic resistance s	steel failu	re								
FH II	N _{Rk,s}	[kN]	16,1	29,3	46,4	67,4	125,3	195,8	282,0	
FH II A4	N _{Rk,s}	[kN]	14,1	25,6	40,6	59,0	109,7	-	-	
Partial safety factor	1) YMs	[-]				1,5				
Characteristic resistance p	oullout fai	ilure								
cracked concrete FH II and FH II A4	$N^0_{\ Rk,p}$	[kN]	7,5	12	16	25	2)	2)	2)	
non-cracked concrete FH II	N ⁰ _{Rk,p}	[kN]	2)	2)	2)	2)	2)	2)	2)	
non-cracked concrete FH II A4	$N^0_{Rk,p}$	[kN]	2)	20	2)	2)	2)	-	-	
		C25/30				1,10				
		C30/37				1,22				
Increasing factors for N _{Rk.p}		C35/45				1,34				
increasing factors for th _{Rk,p}	Ψc	C40/50	1,41							
		C45/55				1,48				
		C50/60				1,55				
Partial safety factor	γ _{Mp} 1)					1,5 ³⁾				
Characteristic resistance of			re and s	· ·						
Effective anchorage depth	h _{ef}	[mm]	40	60	70	80	100	125	150	
Factor for non-cracked conci	rete k _{ucr}	[-]				10,1				
Factor for cracked concrete	k _{cr}	[-]				7,2				
Spacing	S _{cr,N}	[mm]	120	180	210	240	300	375	450	
Edge distance	C _{cr,N}	[mm]	60	90	105	120	150	187,5	225	
Spacing (splitting)	S _{cr,sp}	[mm]	190	300	320	340	380	480	570	
Edge distance (splitting)	C _{cr,sp}	[mm]	95	150	160	170	190	240	285	
Partial safety factor γ_{Mc}	$^{1)} = \gamma_{Msp}^{1)}$	[-]				1,5 ³⁾				

¹⁾ In absence of other national regulations. ²⁾ Pullout failure is not decisive. ³⁾ The partial safety factor $\gamma_{inst} = 1,0$ is included.

fischer High-Performance Anchor FH II, FH II-I

Design method A according CEN/TS 1992-4: 2009: Characteristic values for tension loads under static and quasi-static action FH II and FH II A4

Anchor type FH II-I and FH II-I A4	1		FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I
Characteristic resistance stee	l failure	9				
Anchor in combination with	screw /	threaded	rod of galvanise	d steel comply	ing with DIN E	V ISO 898
Strength class 5.8	N _{Rk,s}	[kN]	10	19	29	43
Strength class 6.8	$N_{Rk,s}$	[kN]	12	23	35	44
Strength class 8.8	$N_{Rk,s}$	[kN]	16	27	44	44
Partial safety factor	γ _{Ms} ¹⁾	[-]		-	1,5	
Anchor in combination with	screw /	threaded	rod of stainless	steel complyir	ng with DIN EN	ISO 3506
Screw/thread strength class A50		[kN]	10	19	29	43
Partial safety factor	γ _{Ms} 1)	[-]		2	,86	
Screw/thread strength class A70	$N_{Rk,s}$	[kN]	14	26	41	54
Partial safety factor	γ _{Ms} 1)	[-]		1	,87	
Screw/thread strength class A80	N _{Rk,s}	[kN]	16	29	46	46
Partial safety factor	γ _{Ms} 1)	[-]		1	,60	
Characteristic resistance pullo	out failu	ire				
cracked concrete	N ⁰ _{Rk,p}	[kN]	9)	1	2
non-cracked concrete	N ⁰ _{Rk,p}	[kN]	20)	2)
		C25/30		1,	,10	
		C30/37		1,	,22	
Increasing factors for N		C35/45		1,	34	
Increasing factors for $N_{Rk,p}$	Ψc	C40/50		1,	,41	
		C45/55		1,	48	
		C50/60		1,	55	
Partial safety factor	γ _{Mp} ¹⁾	[-]		1,	5 ³⁾	
Characteristic resistance cond		one failur	e and splitting	failure		
Effective anchorage depth	h _{ef}	[mm]	60)	7	0
Factor for non-cracked concrete	k _{ucr}	[-]		1	D,1	
Factor for cracked concrete	k _{cr}	[-]		7	<i>,</i> ,2	
Spacing	S _{cr,N}	[mm]	18	0	2-	10
Edge distance	C _{cr,N}	[mm]	90)	1()5
Spacing (splitting)	S _{cr,sp}	[mm]	30	0	32	20
				-		
Edge distance (splitting)	C _{cr,sp}	[mm]	15		16 5 ³⁾	60

¹⁾ In absence of other national regulations. ²⁾ Pullout failure is not decisive. ³⁾ The partial safety factor $\gamma_{inst} = 1,0$ is included.

fischer High-Performance Anchor FH II, FH II-I

Design method A according CEN/TS 1992-4: 2009: Characteristic values for tension loads under static and quasi-static action FH II-I and FH II-I A4

Page 25 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

Table 24: Design method A according CEN/TS 1992-4: 2009: Characteristic values for shear loads under static and quasi-static action for FH II und FH II A4								
Anchor type FH II S, SK, B, H and FH II S, SK, B, H A4	4	FH II 10	FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32
Characteristic resistance s	teel failure wi	thout le	ver arm					
FHIIS	V _{Rk,s} [kN]	18	33	59	76	146	174	217
FH II B + FH II H	$V_{Rk,s}[kN]$	16	27	41	62	119	146	169
FH II S A4, FH II B A4, FH II H A4	V _{Rk,s} [kN]	18	28	43	66	119	-	-
FH II SK for t _{fix} standard	V _{Rk,s} [kN]	18	33	59	76	-	-	-
FH II SK A4 for t _{fix} standard	V _{Rk,s} [kN]	18	28	43	66	-	-	-
$t_{\mbox{\scriptsize fix}}$ standard for FH II SK	t _{fix} [mm]	≥10	≥10	≥15	≥15	-		-
FH II SK for t _{fix} reduced	V _{Rk,s} [kN]	8	14	23	34	-	-	-
FH II SK A4 for t _{fix} reduced	V _{Rk,s} [kN]	7	13	20	30	-	-	-
t _{fix} reduced for FH II SK	t _{fix} [mm]	<10	<10	<15	<15	-	-	-
Partial safety factor	γ _{Ms} ¹⁾ [-]				1,25			
Characteristic resistance s	teel failure wi	th lever	arm		-	-		
Bending FH II	M ⁰ _{Rk,s} [Nm]	12	30	60	105	266	518	896
Bending FH II A4	M ⁰ _{Rk,s} [Nm]	11	26	52	92	232	-	-
Partial safety factor	γ _{Ms} 1)				1,25			
Ductility factor								
Characteristic resistance c	oncrete pryou	ut failure	9					
Factor in equation (16) CEN/TS 1992-4-4:2009, Section 6.2.2.3	k ₃ [-]	1,0			2	,0		
Partial safety factor	γ _{Mcp} ¹⁾		•		1,5 ²⁾			
Characteristic resistance c	oncrete edge	failure						
Effective length of anchor under shear load	l _f [mm]	40	60	70	80	100	125	150
Effective diameter of anchor	d _{nom} [mm]	10	12	15	18	24	28	32
Partial safety factor	1) γMc				1,5 ²⁾			

¹⁾ In absence of other national regulations. ²⁾ The partial safety factor $\gamma_{inst} = 1,0$ is included.

fischer High-Performance Anchor FH II, FH II-I

Design method A according CEN/TS 1992-4: 2009: Characteristic values for shear loads under static and quasi-static action FH II and FH II A4

Anchor type FH II-I and FH II-I A4			FH II 12/M6 I	FH II 12/M8 I	FH II 15/M10 I	FH II 15/M12 I
Characteristic resistance steel f	ailure v	vithout	lever arm			
In combination with screw	/ thread	led rod	of galvanised s	teel complying	with DIN EN IS	SO 898
Strength class 5.8	$V_{Rk,s}$	[kN]	5	9	15	21
Strength class 6.8	$V_{Rk,s}$	[kN]	6	11	18	24
Strength class 8.8	$V_{Rk,s}$	[kN]	8	14	23	24
Partial safety factor		γ _{Ms} 1)		-	1,25	
In combination with screw	/ thread	ded rod	of stainless ste	el complying v	with DIN EN ISC	0 3506
Screw/thread strength class A50	$V_{Rk,s}$	[kN]	5	9	15	21
Partial safety factor		γ _{Ms} 1)		(2	2,38	
Screw/thread strength class A70	$V_{Rk,s}$	[kN]	7	13	20	30
Partial safety factor		γ _{Ms} 1)		-	1,56	
Screw/thread strength class A80	$V_{Rk,s}$	[kN]	8	15	23	32 ⁵⁾
Partial safety factor		γ _{Ms} ¹⁾		-	1,33	
Characteristic resistance steel f	ailure v	vith leve	er arm			
In combination with screw	/ thread	led rod	of galvanised s	teel complying) with DIN EN IS	SO 898
Strength class 5.8	${\sf M}^0_{\sf Rk,s}$	[Nm]	8	19	37	65
Strength class 6.8	M ⁰ _{Rk,s}	[Nm]	9	23	44	78
Strength class 8.8	$M^0_{Rk,s}$	[Nm]	12	30	60	105
Partial safety factor		γ _{Ms} ¹⁾		1	,25	
In combination with screw			of stainless ste	el complying v	with DIN EN ISC	D 3506
Strength class A50	M ⁰ _{Rk,s}	[Nm]	8	19	37	65
Partial safety factor		γ _{Ms} 1)			2,38	•
Strength class A70	M ⁰ _{Rk,s}		11	26	52	92
Partial safety factor		γ _{Me} ¹⁾		· · · · · ·	1,56	•
Strength class A80	${\sf M}^0_{\sf Rk,s}$	[Nm]	12	30	60	105
Partial safety factor		γ _{Ms} 1)			,33	•
Ductility factor	k ₂	[-]			1,0	
Characteristic resistance concre	ete pryo		re			
Factor in equation (16) CEN/TS 1992-4-4:2009, Section 6.2.2.3	k ₃	[-]			2,0	
Partial safety factor	γ	1) Mcp		1	,5 ²⁾	
Characteristic resistance concre	ete edge	e failure	9			
Effective length of anchor under shear load	_f	[mm]	6	60		70
Effective diameter of anchor	d _{nom}	[mm]		12		15
Partial safety factor		1) Mc		1	,5 ²⁾	

²⁾ The partial safety factor $\gamma_{inst} = 1,0$ is included.

fischer High-Performance Anchor FH II, FH II-I

Design method A according CEN/TS 1992-4: 2009: Characteristic values for shear loads under static and quasi-static action FH II-I and FH II-I A4

Page 27 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

Table 26: Design method A according CEN/TS 1992-4: 2009: Characteristic values for tension loads under fire exposure.

		R30	R60				
Anchor type	N _{Rk,s,fi,30} [kN]	N _{Rk,p,fi,30} [kN]	N ⁰ _{Rk,c,fi,30} [kN]	N _{Rk,s,fi,60} [kN]	N _{Rk,p,fi,60} [kN]	N ⁰ _{Rk,c,fi,60} [kN]	
FH II 10 (A4)	0,2	1,8	1,8	0,2	1,8	1,8	
FH II 12 (A4)	2,0	3,0	5,0	1,3	3,0	5,0	
FH II 15 (A4)	3,2	4,0	7,4	2,3	4,0	7,4	
FH II 18 (A4)	4,8	6,3	10,3	3,9	6,3	10,3	
FH II 24 (A4)	8,9	9,0	18,0	7,3	9,0	18,0	
FH II 28	13,9	12,6	31,4	11,3	12,6	31,4	
FH II 32	20,0	16,5	49,6	16,3	16,5	49,6	
FH II 12/M6 I (A4) 5.8/A50 ¹⁾	0,1			0,1			
with fastener 8.8, A70, A80 ¹⁾	0,2		F 0	0,2			
FH II 12/M8 I (A4) 5.8/A50 ¹⁾	1,3	2,3	5,0	0,8	2,3	5,0	
with fastener 8.8, A70, A80 ¹⁾	2,0			1,3			
FH II 15/M10 I (A4)5.8/A50 ¹⁾	2,0			1,4			
with fastener 8.8, A70, A80 ¹⁾	3,2			2,3			
FH II 15/M12 I (A4) 5.8/A50 ¹⁾	3,0	3,0	7,4	2,4	3,0	7,4	
with fastener 8.8, A70, A80 ¹⁾	4,8			3,9			
	, -	R90		R120			
	N _{Rk,s,fi,90} [kN]	N _{Rk,p,fi,90} [kN]	N ⁰ _{Rk,c,fi,90} [kN]	N _{Rk,s,fi,120} [kN]	N _{Rk,p,fi,120} [kN]	N ⁰ _{Rk,c,fi,120} [kN]	
FH II 10 (A4)	0,1	1,8	1,8	0,1	1,5	1,5	
FH II 12 (A4)	0,6	3,0	5,0	0,2	2,4	4,0	
FH II 15 (A4)	1,4	4,0	7,4	1,0	3,2	5,9	
FH II 18 (A4)	3,0	6,3	10,3	2,6	5,0	8,2	
FH II 24 (A4)	5,6	9,0	18,0	4,8	7,2	14,4	
FH II 28	8,8	12,6	31,4	7,5	10,1	25,2	
FH II 32	12,6	16,5	49,6	10,8	13,2	39,7	
FH II 12/M6 I (A4) 5.8/A50 ¹⁾	0,1			0,1			
with fastener 8.8, A70, A80 ¹⁾	0,1	1	_	0,1			
FH II 12/M8 I (A4) 5.8/A50 ¹⁾	0,4	2,3	5,0	0,1	1,8	4,0	
with fastener 8.8, $A70$, $A80^{11}$	0,6	1		0,2			
FH II 15/M10 I (A4) 5.8/A50 ¹⁾	0,9			0,6			
with fastener 8.8, $A70$, $A80^{11}$	1,4	1	/	1,0			
FH II 15/M12 I (A4) 5.8/A50 ¹⁾	1,9	3,0	7,4	1,6	2,4	5,9	
with fastener 8.8, A70, $A80^{11}$	3,0	1		2,6			
	-,-			_,-			
Anchor type FH II 10	FH II 12 FH II 12-			FH II 24	FH II 28	FH II 32	
Specing S _{cr,N [mm]}			4x h _{ef}				
Spacing S _{cr.N [mm]} 40	60	70	80	100	125	150	
	2 x h _{ef}						
Edge C _{cr,n [mm]}	$\begin{array}{l} 2 \ x \ h_{ef} \\ c_{min} = 2 \ x \ h_{ef} \ , \\ \mbox{for fire exposure from more than one side } c_{min} \geq 300 \ \mbox{mm} \end{array}$						

¹⁾ Intermediate values by linear interpolation

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

fischer High-Performance Anchor FH II, FH II-I

Characteristic tension load resistance under fire exposure according to TR 020 and CEN/TS 1992-4: 2009

Page 28 of European technical approval ETA-07/0025 of 24 May 2013

English translation prepared by DIBt

able 27: Design method A accord loads under fire exposu		TS 1992-4: 2009: (Characterist	ic values for shear		
		R30		R60		
A weak ow to we a	Fire resi	stance 30 minutes	Fire resistance 60 minutes			
Anchor type	V _{Rk,s,fi,30} [kN]	M ⁰ _{Rk,s,fi,30} [Nm]	V _{Rk,s,fi,60} [kN]	M ⁰ _{Rk,s,fi,60} [Nm]		
FH II 10 (A4)	0,3	0	0,3	0		
FH II 12 (A4)	2,0	2	1,3	1		
FH II 15 (A4)	3,2	4	2,3	3		
FH II 18 (A4)	4,8	7	3,9	6		
FH II 24 (A4)	8,9	19	7,3	15		
FH II 28	13,9	37	11,3	30		
FH II 32	20,0	64	16,3	52		
FH II 12/M6 I (A4) 5.8/A50	0,2	0	0,2	0		
with fastener 8.8, A70, A80	0,3	0	0,3	0		
FH II 12/M8 I (A4) 5.8/A50	1,3	1	0,8	1		
with fastener 8.8, A70, A80	2,0	2	1,3	1		
FH II 15/M10 I (A4) 5.8/A50	2,0	3	1,4	2		
with fastener 8.8, A70, A80	3,2	4	2,3	3		
FH II 15/M12 I (A4) 5.8/A50	3,0	4	2,4	4		
with fastener 8.8, A70, A80	4,8	7	3,9	6		
	Fire resi	R90 stance 90 minutes	Fire resist	R120 ance 120 minutes		
	V _{Rk,s,fi,90} [kN]	M ⁰ _{Rk,s,fi,90} [Nm]	V _{Rk,s,fi,120} [kN]	M ⁰ _{Rk,s,fi,120} [Nm]		
FH II 10 (A4)	0,2	0	0,1	0		
FH II 12 (A4)	0,6	1	0,2	0		
FH II 15 (A4)	1,4	2	1,0	1		
FH II 18 (A4)	3,0	5	2,6	4		
FH II 24 (A4)	5,6	12	4,8	10		
FH II 28	8,8	23	7,5	20		
FH II 32	12,6	40	10,8	34		
FH II 12/M6 I (A4) 5.8/A50	0,1	0	0,1	0		
with fastener 8.8, A70, A80	0,2	0	0,1	0		
FH II 12/M8 I (A4) 5.8/A50	0,4	1	0,1	0		
with fastener 8.8, A70, A80	0,6	1	0,2	0		
FH II 15/M10 I (A4) 5.8/A50	0,9	2	0,6	1		
with fastener 8.8, A70, A80	1,4	3	1,0	1		
FH II 15/M12 I (A4) 5.8/A50	1,9	4	1,6	3		
with fastener 8.8, A70, A80	3,0	6	2,6	4		

Concrete pryout failure: In Equation (16) CEN/TS 1992-4-4: 2009, section 6.2.2.3, the k₃factor for FH II 12-32 is 2,0, respectively 1,0 for FH II 10 and the relevant values of N_{Bk.c.fi} of Table 26 have to be considered in the design.

Concrete edge failure: The characteristic resistance $V_{0Rk,c,fi}$ in concrete C20/25 to C50/60 is determined by: $V_{Rk,c,fi}^{0} = 0.25 \times V_{Rk,c}^{0}$ (R30, R60, R90), $V_{Rk,c,fi}^{0} = 0.20 \times V_{Rk,c}^{0}$ (R120) with $V_{Rk,c}^{0}$ as initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature according to CEN/TS 1992-4-4: 2009, section 5.2.2.4.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi} = 1,0$ is recommended.

fischer High-Performance Anchor FH II, FH II-I

Characteristic shear load resistance under fire exposure according to TR 020 and CEN/TS 1992-4: 2009

The recommended seismic performance categories are given in Table 28. The value of a_{α} or that of the product a_g. S used in a Member State to define thresholds for the seismicity classes may be found in its National Annex of EN 1998-1:2004 and may be different to the values given in Table 28. Furthermore, the assignment of the seismic performance categories C1 and C2 to the seismicity level and building importance classes is in the responsibility of each individual Member State.

 Table 28: Recommended seismic performance categories for anchors

Seismicity level ¹		Importa	ance Class acc	. to EN 1998-1:	2004,4.2.5	
Class	a _g ·S ³	I II III				
Very low ²	a _g ·S ≤ 0,05 g		No addition	al requirement		
Low ²	0,05 g < a _g ·S ≤ 0,1 g	C1	$C1^4$ or $C2^5$		C2	
> low	a _g ⋅S > 0,1 g	C1 C2				

¹⁾ The values defining the seismicity levels are may be found in the National Annex of EN 1988-1:2004.

²⁾ Definition according to EN 1998-1:2004, 3.2.1. ³⁾ $a_g = design ground acceleration on Type A ground (EN 1998-1:2004, 3.2.1).$ ⁴⁾ C1 for fixing non-structural elements to structures

⁵⁾ C2 for fixing structural elements to structures

The characteristic seismic design resistance $R_{k,seis}$ of a fastening shall be determined as follows:

$$R_{k,seis} = \alpha_{gap} \times \alpha_{seis} \times R^{0}_{k,seis}$$

The basic characteristic seismic resistance R⁰_{k,seis} shall be taken from table 30 for steel and pullout failure under tension load and steel failure under shear load. For all other failure modes $R^{0}_{k,seis}$ shall be determined as for static and quasi-static action according to tables 22 and 24. The reduction factors α_{seis} and α_{gap} are given in table 29.

Table 29:	Reduction	factors	α_{seis} and	α_{gap}
-----------	-----------	---------	---------------------	----------------

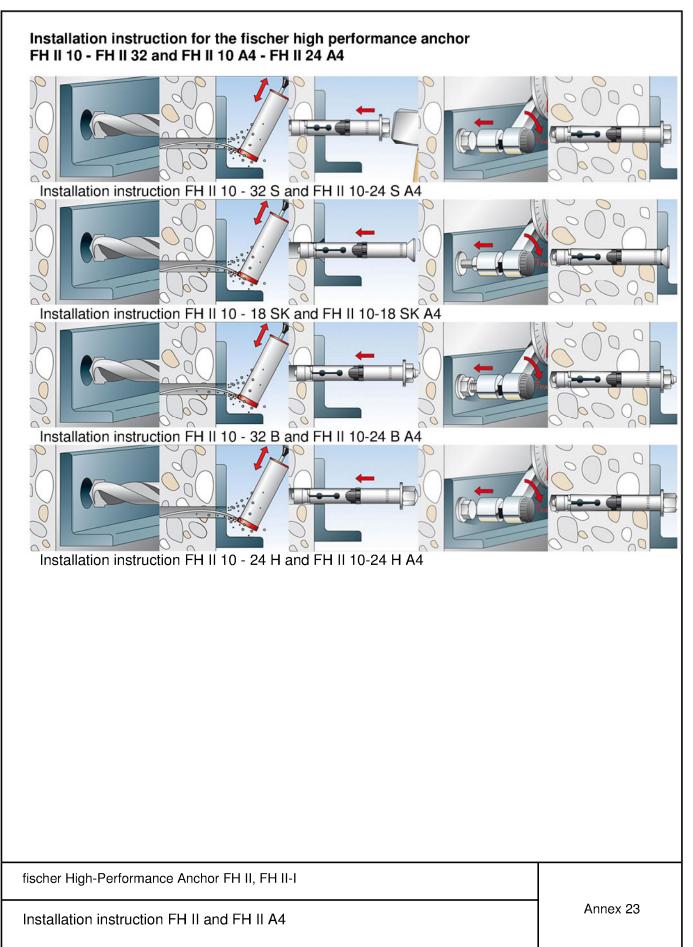
		0	seis	α _{gap}		
Loading			Fastener group	Connections with hole clearance ¹⁾	Connections without hole clearance	
	Steel failure	1,00	1,00			
Tension	Pull-out failure	1,00	0,85	1.00		
rension	Concrete cone failure	0,85	0,75] 1,00		
	Splitting failure	1,00	0,85		1,00	
	Steel failure	1,00	0,85			
Shear	Concrete edge failure	1,00	0,85] 0,50		
	Concrete pry-out failure	0,85	0,75			

¹⁾ Connections with hole clearance according to CEN/TS 1992-4-4: 2009, table 1

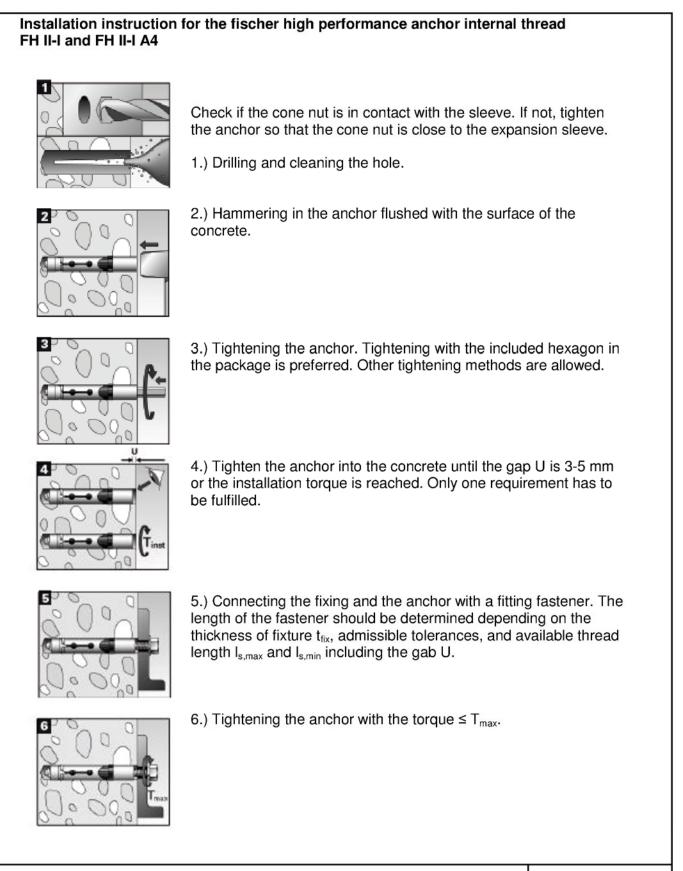
fischer High-Performance Anchor FH II, FH II-I

Recommended performance categories and reduction factors for loads under seismic action FH II

Table 30: Characteristic values for seismic action valid for performance category C1 for FH I										
		FH II 12	FH II 15	FH II 18	FH II 24	FH II 28	FH II 32			
Characteristic resistance tension load, steel failure										
Anchor type FH II S, SK, B, H	N ⁰ _{Rk,s,seis} [kN]	29,3	46,4	67,4	125,3	195,8	282,0			
Anchor type FH II S, SK, B, H	γ _{Ms,seis} ¹⁾ [-]	1,5								
Characteristic resistance tensio	on load, pullout fa	ailure								
Anchor type FH II S, SK, B, H	N ⁰ _{Rk,P,seis} [kN]	12,0	16,0	25,0	36,0	50,3	66,1			
Anchor type FH II S, SK, B, H	γ _{Mp,seis} ¹⁾ [-]			1	,5					
Characteristic resistance shear			ut lever a	arm						
Anchor type FH II S, SK	V ⁰ _{Rk,s,seis} [kN]	25	41	60	123	141	200			
Anchor type FH II B, H	V ⁰ _{Rk,s,seis} [kN]	17	30	46	103	117	169			
Anchor type FH II S, SK, B, H	γ _{Ms,seis} ¹⁾ [-]			1,:	25					


¹⁾ In absence of other national regulations.

Characteristic values for loads under seismic action FH II


Annex 22

Electronic copy of the ETA by DIBt: ETA-07/0025

fischer High-Performance Anchor FH II, FH II-I

Installation instruction FH II-I and FH II-I A4