

European Technical Approval ETA-07/0121

	9	
Handelsbezeichnung <i>Trade nam</i> e		fischer Rahmendübel SXR / SXRL fischer frame fixing SXR / SXRL
Zulassungsinhaber Holder of approval		fischerwerke GmbH & Co. KG Weinhalde 14-18 72178 Waldachtal DEUTSCHLAND
Zulassungsgegenstar und Verwendungszwe		Kunststoffdübel als Mehrfachbefestigung von nichttragenden Systemen zur Verankerung im Beton und Mauerwerk
Generic type and use of construction produc	t	Plastic anchor for multiple use in concrete and masonry for non- structural applications
Geltungsdauer: <i>Validity:</i>	vom from bis to	26 June 2013 20 December 2017
Herstellwerk Manufacturing plant		fischerwerke

English translation prepared by DIBt - Original version in German language

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 32 | 26 June 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Plastic Anchors for Multiple Use in Concrete and Masonry for Non-structural Applications Part 1: General", ETAG 020-01.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12
- Official Journal of the European Communities L 220, 30 August 1993, p. 1
- ³ Official Journal of the European Union L 284, 31 October 2003, p. 25
- Bundesgesetzblatt Teil I 1998, p. 812
- ⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 32 | 26 June 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the product and intended use

1.1 Definition of the construction product

The fischer frame fixing in the range SXR 8, SXR 10 and SXRL 10 is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel, of galvanised steel with an additional Duplex-coating or of stainless steel.

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The installed anchor is shown in Annex 1.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for safety in use in the sense of the Essential Requirement 4 of Council Directive 89/106/EEC shall be fulfilled and failure of the fixture represents an immediate risk to human life.

The anchor is to be used only for multiple fixing for non-structural applications.

The base material may consist of use category a, b, c and d as given in the following Table:

Use category	Anchor type	Remarks
а	fischer SXR 8 fischer SXR 10 fischer SXRL 10	 Normal weight concrete Strength class C12/15 at minimum and C50/60 at maximum according to EN 206-1:2000-12 Cracked and non-cracked concrete
b	fischer SXR 8 fischer SXR 10 fischer SXRL 10	 Masonry walls according to Annex 6, 10, 11 and 17 Mortar strength class ≥ M 2,5 according to EN 998-2:2003
С	fischer SXR 8 fischer SXR 10 fischer SXRL 10	 Masonry walls according to Annex 7, 8, 9, 12 - 18 Mortar strength class ≥ M 2,5 according to EN 998-2:2003
d	fischer SXR 10 fischer SXRL 10	 Masonry walls made of (non-cracked) autoclaved aerated concrete blocks (AAC) according to Annex 20

Specific screw of galvanised steel or galvanised steel with Duplex-coating:

The specific screw made of galvanised steel or galvanised steel with an additional Duplexcoating may only be used in structures subject to dry internal conditions.

The specific screw made of galvanised steel or galvanised steel with an additional Duplexcoating may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e.g. undercoating or body cavity protection for cars).

Page 4 of 32 | 26 June 2013

Specific screw made of stainless steel:

The specific screw made of stainless steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

The anchor may be used in the following temperature range:

Temperature range b): -40 °C to +80 °C and for SXRL-version: -20 °C to +80 °C

(max long term temperature +50 °C and max short term temperature +80 °C)

Temperature range c): -40 °C to +50 °C and for SXRL-version: -20 °C to +50 °C

(max long term temperature +30 °C and max short term temperature +50 °C)

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and information given in Annex 2 and 3. The characteristic material values, dimensions and tolerances of the anchor not given in these Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic values for the design of the anchorages are given in Annex 3, 4, 6 - 18 and 20.

Each anchor is to be marked with the identifying mark, the type, the diameter and the length of the anchor according to Annex 2.

The minimum embedment depth shall be marked.

The anchor shall only be packaged and supplied as a complete unit.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e. g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

2.2 Methods of verification

The assessment of the fitness of the anchor for the intended use in relation to the requirements for safety in use in the sense of the Essential Requirement 4 has been made in compliance with the Guideline for European technical approval of "Plastic Anchors for Multiple Use in Concrete and Masonry for Non-structural Applications", ETAG 020,

- Part 1: "General",
- Part 2: "Plastic Anchors for Use in Normal Weight Concrete",
- Part 3: "Plastic Anchors for Use in Solid Masonry Materials" and

7

Electronic copy of the ETA by DIBt: ETA-07/0121

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 32 | 26 June 2013

- Part 4: "Plastic Anchors for Use in Hollow or Perforated Masonry",
- Part 5: "Plastic Anchors for Use in Autoclaved Aerated Concrete (AAC)" based on the use categories a, b, c and d.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the decision 97/463/EG of the European Commission⁸ the system 2(ii) (referred to as system 2+) of attestation of conformity applies.

This system of attestation of conformity is defined as follows.

System 2+: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
 - (1) initial type-testing of the product;
 - (2) factory production control;
 - (3) testing of samples taken at the factory in accordance with a prescribed test plan.
- (b) Tasks for the approved body:
 - (4) certification of factory production control on the basis of:
 - initial inspection of factory and of factory production control;
 - continuous surveillance, assessment and approval of factory production control.

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use raw materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks of manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

⁸ Official Journal of the European Communities L 198 of 25.07.1997.

The control plan is a confidential part of the documentation of the European technical approval, but not published together with the ETA and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 32 | 26 June 2013

3.2.2 Tasks of approved bodies

The approved body shall perform the

- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control,
- in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the factory production control stating the conformity with the factory production control of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacturer),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate for the factory production control,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use categories a, b, c and d ("d" only for anchor type SXR 10 and SXRL 10).

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA shall be necessary.

4.2 Design of anchorages

4.2.1 General

Fitness for the intended use of the anchor is given under the following conditions:

- The design of anchorages is carried out in compliance with ETAG 020, Guideline for European technical approval of "Plastic Anchors for Multiple Use in Concrete and Masonry for Non-structural Applications", Annex C under the responsibility of an engineer experienced in anchorages.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the nature and strength of the base materials and the dimensions of the anchorage members as well as of the relevant tolerances.

Page 7 of 32 | 26 June 2013

- The anchor is to be used only for multiple fixing for non-structural applications.

Therefore the design of the fixture may specify the number n_1 of fixing points to fasten the fixture and the number n_2 of anchors per fixing point. Furthermore the design value of actions N_{Sd} on a fixing point to a value $\leq n_3$ (kN) is specified up to which the strength and stiffness of the fixture are fulfilled and the load transfer in the case of excessive slip or failure of one anchor need not be taken into account in the design of the fixture.

The following default values for n_1 , n_2 and n_3 may be taken:

n₁ ≥ 4;	n₂ ≥ 1	and	$n_3 \leq 4,5 \text{ kN}$	or
n₁ ≥ 3:	n₂ ≥ 1	and	n₃ ≤ 3.0 kN.	

- Shear loads acting on an anchor may be assumed to act without lever arm if both of the following conditions are fulfilled:
 - The fixture shall be made of metal and in the area of the anchorage be fixed directly to the base material either without an intermediate layer or with a levelling layer of mortar with a thickness ≤ 3 mm.
 - The fixture shall be in contact with the anchor over its entire thickness. (Therefore the diameter of clearance hole in the fixture d_f has to be equal or smaller than the value given in Annex 3, Table 3.)

If these two conditions are not fulfilled the lever arm is calculated according to ETAG 020, Annex C. The characteristic bending moment is given in Annex 3, Table 4.

4.2.2 Resistance in concrete (use category "a")

The characteristic values of resistance of the anchor for use in concrete are given in Annex 4. The design method is valid for cracked and non-cracked concrete.

According to the Technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire" it can be assumed that for fastening of facade systems the load bearing behaviour of the fischer long shaft fixing SXR 10 and SXRL 10 has a sufficient resistance to fire at least 90 minutes (R90) if the admissible load $[F_{Rk}/(\gamma_M \cdot \gamma_F)]$ is ≤ 0.8 kN (no permanent centric tension load).

4.2.3 Resistance in solid masonry (use category "b")

The characteristic values of resistance of the anchor for use in solid masonry are given in Annex 6, 10, 11 and 17. These values are independent of the load direction (tension, shear or combined tension and shear) and the mode of failure.

The characteristic resistances given in Annex 6, 10, 11 and 17 for use in solid masonry are only valid for the base material and the bricks according this table or larger brick sizes and larger compressive strength of the masonry unit.

If smaller brick sizes are present on the construction site or if the mortar strength is smaller than the required value, the characteristic resistance of the anchor may be determined by job site tests according to 4.4.

4.2.4 Resistance in hollow or perforated masonry (use category "c")

The characteristic resistances for use in hollow or perforated masonry given in Annex 7 - 9 and 12 - 18 are only valid for the bricks and blocks according this table regarding base material, size of the units, compressive strength and configuration of the voids.

These values are independent of the load direction (tension, shear or combined tension and shear) and the mode of failure and are valid for the given h_{nom} only.

The influence of larger embedment depths and/or different bricks and blocks (according Annex 7 - 9 and 12 - 18 regarding base material, size of the units, compressive strength and configuration of the voids) has to be detected by job site tests according to 4.4.

Page 8 of 32 | 26 June 2013

4.2.5 Resistance in (non-cracked) autoclaved aerated concrete blocks (AAC, use category "d")

The characteristic values of resistance of the anchor type SXR 10 for use in masonry made of (non-cracked) autoclaved aerated concrete blocks (AAC) are given in Annex 20. These values are independent of the load direction (tension, shear or combined tension and shear) and the mode of failure.

The anchor shall not be installed and used in water saturated aerated concrete.

4.2.6 Specific conditions for the design method in solid masonry, hollow or perforated masonry and AAC blocks

The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2003 at minimum.

The characteristic resistance F_{Rk} for a single plastic anchor may also be taken for a group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} .

The distance between single plastic anchors or a group of anchors should be $s \ge 250$ mm.

If the vertical joints of the wall are designed not to be filled with mortar then the design resistance N_{Rd} has to be limited to 2,0 kN to ensure that a pull-out of one brick out of the wall will be prevented. This limitation can be omitted if interlocking units are used for the wall or when the joints are designed to be filled with mortar.

If the joints of the masonry are not visible the characteristic resistance F_{Rk} has to be reduced with the factor $\alpha_i = 0.5$.

If the joints of the masonry are visible (e.g. unplastered wall) following has to be taken into account:

- The characteristic resistance F_{Rk} may be used only, if the wall is designed such that the joints are to be filled with mortar.
- If the wall is designed such that the joints are not to be filled with mortar then the characteristic resistance F_{Rk} may be used only, if the minimum edge distance c_{min} to the vertical joints is observed. If this minimum edge distance c_{min} can not be observed then the characteristic resistance F_{Rk} has to be reduced with the factor $\alpha_i = 0.5$.

4.2.7 Characteristic values, spacing and dimensions of anchorage member

The minimum spacing and dimensions of anchorage member according to Annex 5, 19 and 21 shall be observed depending on the base material.

4.2.8 Displacement behaviour

The displacements under tension and shear loading in concrete and masonry are given in Annex 5 and Annex 21.

4.3 Installation of anchor

The fitness for use of the anchor can only be assumed if the following conditions of installation are met:

- Anchor installation carried out by appropriately qualified personnel under the supervision of the person responsible for technical matters on site.
- Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in this European technical approval.
- Checks before placing the anchor, to ensure that the characteristic values of the base material in which the anchor is to be placed, is identical with the values, which the characteristic loads apply for.

Page 9 of 32 | 26 June 2013

- Observation of the drill method (Drill holes in some hollow or perforated masonry may only be drilled using the rotary drill. Other drilling methods may also be used if job-site tests according to 4.4 evaluate the influence of hammer or impact drilling.).
- For the fixing of the anchor type SXR 10 in autoclaved aerated concrete blocks with a nominal compressive strength $f_{ck} < 4$ N/mm² the hole is made by using the accompanying AAC Hole Punch according Annex 20. The Hole Punch is driven into the autoclaved aerated concrete by using the hammer drilling of the power drill. To ensure the correct application of the Hole Punch a marking flute at the surface of the fixture around the hole is visible.

Drill holes in autoclaved aerated concrete blocks with a compressive strength $f_{ck} \ge 4 \text{ N/mm}^2$ have to be drilled with a drill bit using the rotary drill.

- Placing drill holes without damaging the reinforcement.
- The anchor shall not be installed and used in water saturated aerated concrete (AAC).
- Holes to be cleaned of drilling dust.
- In case of aborted hole: New drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar.
- The flat collar anchor sleeve combined with the hexagonal head screw with washer can be used for anchorage in slotted holes.
- The plastic sleeve is inserted through the fixture by slight hammer blows and the special screw is screwed in until the head of the screw touches the sleeve. The anchor is correct mounted, if there is no turn-through of the plastic sleeve in the drill hole and if slightly move on turning of the screw is impossible after the complete turn-in of the screw.
- Temperature during installation of the anchor SXR \ge -5°C (plastic sleeve and base material), Temperature during installation of the anchor SXRL 10 \ge -20°C.
- Exposure to UV due to solar radiation of the anchor not protected \leq 6 weeks.

4.4 Job site tests according to ETAG 020, Annex B

4.4.1 General

In the absence of national requirements the characteristic resistance of the plastic anchor may be determined by job site tests, if the plastic anchor has already characteristic values given in Annex 4 and 6 to 18 for the same base material as it is present on the construction works.

Furthermore job site tests for use in (different) solid masonry are possible only if the plastic anchor has already characteristic values given in Annex 6, 10, 11 and 17 for use in solid masonry.

Job site tests for use in (different) hollow or perforated masonry are possible only if the plastic anchor has already characteristic values given in Annex 7 - 9 and 12 - 18 for use in hollow or perforated masonry.

Furthermore job site tests for use in different concrete and non-cracked autoclaved aerated concrete (AAC blocks) are possible only if the plastic anchor has already characteristic values given in Annex 4 and 20 for use in the equivalent base material.

Job site tests are also possible, if another drill method is been used as it is given in the Annexes.

The characteristic resistance to be applied to a plastic anchor should be determined by means of at least 15 pull-out tests carried out on the construction work with a centric tension load acting on the plastic anchor. These tests may also performed in a laboratory under equivalent conditions as used on construction work.

Page 10 of 32 | 26 June 2013

Execution and evaluation of the tests as well as issue of the test report and determination of the characteristic resistance should be supervised by the person responsible for execution of works on site and be carried out by a competent person.

Number and position of the plastic anchors to be tested should be adapted to the relevant special conditions of the construction work in question and, for example, in the case of blind and larger areas be increased such that a reliable information about the characteristic resistance of the plastic anchor embedded in the base material in question can be derived. The tests should take account of the unfavourable conditions of practical execution.

4.4.2 Assembly

The plastic anchor to be tested shall be installed (e. g. preparation of drill hole, drilling tool to be used, drill bit, type of drilling hammer or rotation, thickness of fixture) and as far as spacing and edge distances are concerned be distributed in the same way as foreseen for the intended use.

Depending on the drilling tool hard metal hammer drill bits or hard metal percussion drill bits, respectively, according to ISO 5468 should be used. New drill bits should be used for one test series or drill bits with $d_{cut,m} = 8,25 \text{ mm} < d_{cut} \le 8,45 \text{ mm} = d_{cut,max}$ (SXR 8) or $d_{cut,m} = 10,25 \text{ mm} < d_{cut} \le 10,45 \text{ mm} = d_{cut,max}$ (SXR 10, SXRL 10) respectively.

4.4.3 Execution of test

The test rig used for the pull-out tests shall provide a continuous slow increase of the load, controlled by a calibrated load cell. The load shall apply perpendicular to the surface of the base material and shall be transmitted to the anchor via a hinge. The reaction forces shall be transmitted into the base material such that possible breakout of the masonry is not restricted. This condition is considered as fulfilled, if the support reaction forces are transmitted either in adjacent masonry units or at a distance of at least 150 mm from the plastic anchors. The load shall be increased continuously in a way that the ultimate load is reached after about 1 minute. The load is measured when the ultimate load (N_1) is achieved.

If no pull-out failure occurs, other test methods are needed, e.g. proof-loading.

4.4.4 Test report

The test report shall include all information necessary to assess the resistance of the tested anchor. It shall be given to the person responsible for the design of the fastening and shall be included in the construction dossier.

The minimum data required are:

- Name of product
- Construction site, owner of building; date and location of the tests, air temperature
- Test rig
- Type of structure to be fixed
- Base material (e.g. strength class)
- Masonry (type of brick, strength class, all dimensions of bricks, mortar group if possible); visual assessment of masonry (flush joints, joint clearance, regularity)
- Plastic anchor and special screw
- value of the cutting diameter of hard metal hammer-drill bits, measured before and after drilling if no new drill bits are used
- Results of tests including the indication of value N₁; mode of failure
- Tests carried out or supervised by ...; signature

Page 11 of 32 | 26 June 2013

4.4.5 Evaluation of test results

The characteristic resistance F_{Rk1} is derived from the measured values N_1 as follows

 $F_{Rk1} = 0.5 \cdot N_1$

The characteristic resistance F_{Rk1} has to be equal or smaller than the characteristic resistance F_{Rk} which is given in the ETA for similar masonry (bricks or blocks)

 N_1 = the mean value of the five smallest measured values at ultimate load

In absence of national regulations the partial safety factors for the resistance of the plastic anchor may be taken as γ_M = 2,5 for use in masonry, γ_{MAAC} = 2.0 for use in AAC (only SXR / SXRL 10) and γ_{Mc} = 1.8 for use in concrete.

5 Indications to the manufacturer

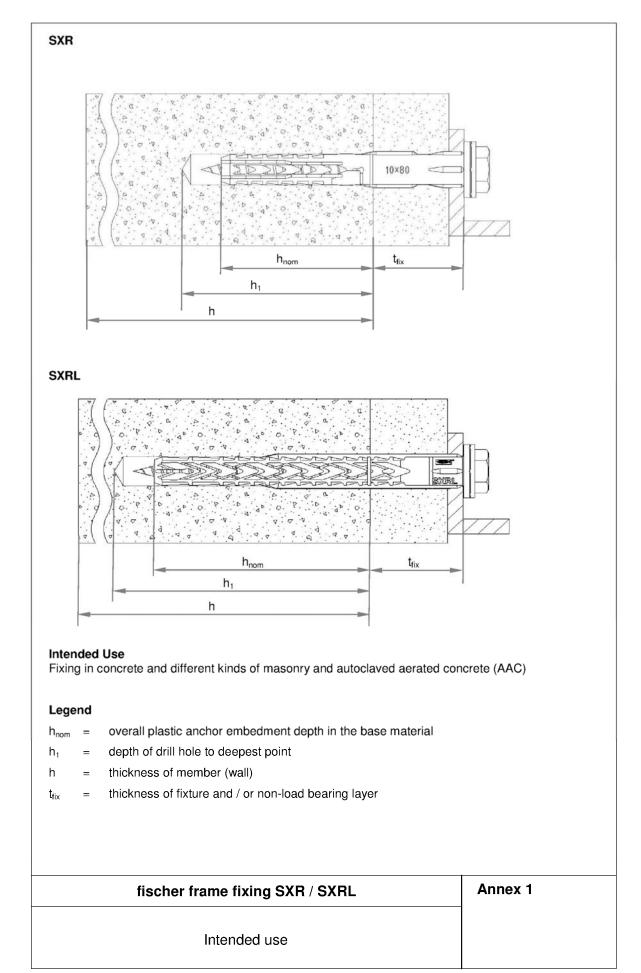
5.1 Responsibility of the manufacturer

It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to 4 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition, all installation data shall be shown clearly on the packaging and/or on an enclosed instruction sheet, preferably using illustrations.

The minimum data required are:

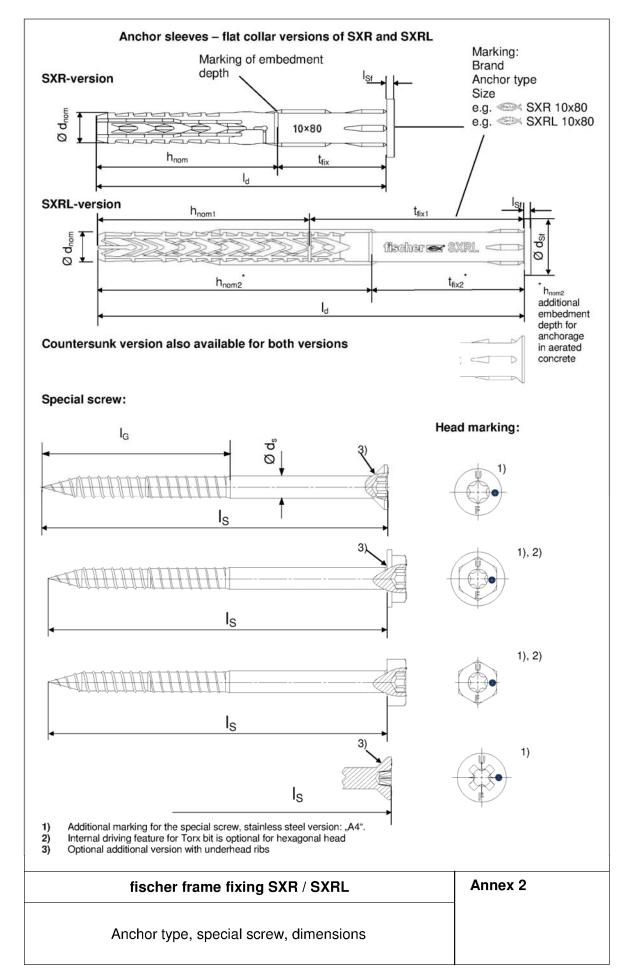
- base material for the intended use,
- ambient temperature of the base material during installation of the anchor,
- drill bit diameter (d_{cut}),
- overall anchor embedment depth in the base material (h_{nom}),
- minimum hole depth (h_0) ,
- information on the installation procedure,
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.


5.2 Packaging, transport and storage

The anchor shall only be packaged and supplied as a complete unit. The anchor shall be stored under normal climatic conditions in its original light-proof packaging. Before installation, it shall not be extremely dried nor frozen.

Uwe Bender Head of Department *beglaubigt:* Bürger


Page 12 of European technical approval ETA-07/0121 of 26 June 2013

Page 13 of European technical approval ETA-07/0121 of 26 June 2013

Anchor	Anchor sleeve Special screw								
type	h _{nom} [mm]	Ød _{nom} [mm]	t _{fix} [mm]	l _d [mm]	l _{sf} ³⁾ [mm]	Ø d_{sf} [mm]	Ød _s [mm]	l _G [mm]	l _s [mm]
SXR 8	50	8	≥1	51-360	1,8	15,0	6,0	≥ 55	≥ 57 ²⁾
SXR 10	50	10	≥ 1	51-360	2,2	18,5	7,0	≥ 57	≥ 58 ¹⁾
SXRL 10	70/90 ⁴⁾	10	≥1	71/91 ⁴⁾ -360	2,2	18,5	7,0	≥ 77	≥ 78/98

To insure that the screw penetrates the anchor sleeve, $I_{\rm s}$ must be $I_{\rm d}$ + $I_{\rm SI}^{31}$ + 7 mm To insure that the screw penetrates the anchor sleeve, $I_{\rm s}$ must be $I_{\rm d}$ + $I_{\rm SI}^{31}$ + 6 mm 1) 2) 3) 4)

Only valid for flat collar version Additional for use in aerated concrete

Table 2: Materials

Name	Material
Anchor sleeve	Polyamide, PA6, colour grey
Special screw	 Steel gvz A2G or A2F acc. to EN ISO 4042 <u>or</u> Steel gvz A2G or A2F acc. to EN ISO 4042 + Duplex-coating type Delta-Seal in three layers (total layer thickness ≥ 6 µm) <u>or</u> Stainless steel to EN 10 088

Table 3: Installation parameters

Anchor type				SXR 8	SXR 10	SXRL 10
Drill hole diameter	d ₀	=	[mm]	8	10	10
Cutting diameter of drill bit	\mathbf{d}_{cut}	\leq	[mm]	8,45	10,45	10,45
Depth of drill hole to deepest point 1)	h ₁	\geq	[mm]	60	60	80/100 ³⁾
Overall plastic anchor embedment depth in the base material ^{1) 2)}	h _{nom}	≥	[mm]	50	50	70/90 ³⁾
Diameter of clearance hole in the fixture	d _f	\leq	[mm]	8,5	10,5/12,54)	10,5/12,54)

See Annex 1 1)

If the embedment depth is higher than h_{nom} given in Table 3 (only for hollow and perforated masonry), job site tests have 2) to be carried out according to 4.4.

3) 4) Only for use in aerated concrete See Table 7, Annex 5

Table 4: Characteristic bending resistance of the screw

Anchor type		SXR	8	SXI	R10	SXRL 10		
Material		galvanised steel	stainless steel	galvanised steel	stainless steel	galvanised steel	stainless steel	
Characteristic bending resistance	M_{Rk,s} [Nm]	12,4	10,4	20,6	20,6	20,6/ 23,6 ²⁾	20,6	
Partial safety factor	γ _{Ms} ¹⁾	1,25	1,29	1,25	1,25	1,25	1,25	

1) 2) In absence of other national regulations

"High load" screw version on request only for countersunk screws - head marking is

fischer frame fixing SXR / SXRL

Annex 3

Dimensions, materials, Installation parameters, Characteristic bending resistance

Deutsches Institut) für Bautechnik

Table 5	Characteristic	rocietanco	of the screw
rable 5:	Characteristic	resistance	of the screw

Failure of expansion element (special screw)		SXR	SXR 8		10	SXRL 10		
		galvanized steel	stainless steel	galvanized steel	stainless steel	galvanized steel	stainless steel	
Characteristic tension resistance	N _{Rk,s} [kN	14,8	12,3	21,7	21,7	21,7 /24,9 ²⁾	21,7	
Partial safety factor	γ _{Ms} 1)	1,50	1,55	1,55	1,55	1,55	1,55	
Characteristic shear resistance	V _{Rk,s} [kN]	7,4	6,2	10,8	10,8	10,8/ 12,4 ²⁾	10,8	
Partial safety factor	γ _{Ms} ¹⁾	1,25	1,29	1,29	1,29	1,29	1,29	

In absence of other national regulations
 "High load" screw version on request only for countersunk screws – head marking is

Table 6: Characteristic resistance for use in concrete

Pull-out failure (plastic sleeve) SX	(R 8	SX	(R 10	SXRL 10			
Temperature ran	ge	30/50 ℃	50/80 ℃	30/50 ℃	50/80 °C	30/50 °C 50/80 °			
Concrete ≥ C12/	15								
Characteristic resistance	N _{Rk,p} [kN]	3,0	2,5 / 3,0 ³⁾	5,0	4,5	6,5	6,5		
Partial safety factor	үмс ¹⁾				1,8				
Concrete cone fa	ailure and con	crete edge	failure for	single anc	hor and and	hor group			
Tension load ²⁾ N _{Rk,c} = 7,2 · √f _{ck,cut}	$\overline{\mathbf{b}}_{ef} \cdot \mathbf{h}_{ef}^{1,5} \cdot \frac{\mathbf{c}}{\mathbf{c}_{cr,N}}$	$= N_{Rk,p} \cdot \frac{c}{c_{cr,r}}$	— N			$h_{ef}^{1,5} = \frac{N}{7,2}$ $\frac{C}{C_{cr,N}} \leq 1$	R _{K.p} √f _{ck,cube}		
c ₂ Edge dist f _{ck,cube} Nominal	n · (h _{nom} /d _{nom}) ^{0,;} tance closest to tance perpendi characteristic c C50/60 at max	o the edge in cular to dire concrete con	n loading di ction 1	rection		$\left(\frac{h}{1,5c_1}\right)^{0.5} \le$			
Partial safety fact	Or		γ _{Mc} ¹⁾		1,8	3			
2) The design met	ther national regula hod according to E nds to concrete cla	TAG 020, Ann	ex C is to be u	sed					
f	ischer fram	e fixing S	XR / SXR	L		Annex 4			
Cł	naracteristic (Use	resistance category '		ete					

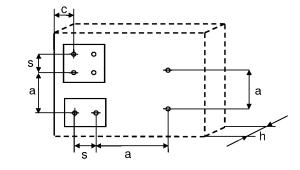
Table 7: Displa	Table 7: Displacements under tension und shear loading in concrete ¹⁾ and masonry ¹⁾										
Anchor type		Tension load	²⁾	Shear load ²⁾							
	F [kN]	δ _{NO} [mm]	δ _{Ν∞} [mm]	δ _{vo} [mm]	δ _{γ∞} [mm]						
SXR 8	1,2	0,65	1,30	1,02	1,53						
SXR 10	2,0	1,29	2,58	1,15/3,05 ³⁾	1,74/4,58 ³⁾						
SXRL 10	2,6	1,67	3,34	1,15/3,05 ³⁾	1,74/4,58 ³⁾						

1)

Valid for all ranges of temperatures Intermediate values by linear interpolation Valid for diameter in the clearance hole ≤ 12,5 mm (see Annex 3, Table 4) 2) 3)

Table 8: Minimum thickness of member, edge distance and spacing in concrete

Anchor	type	Minimum thickness of member h _{min}	Characteristic edge distance c _{cr,N}	e distance spacing s edg		spa	m al cing dista				
		[mm]	[mm]	[mm]				[mm]			
SXR 8	≥ C16/20		50	65	S _{min} C _{min}	= =	50 50	for for	C S	≥ ≥	50 50
574.0	C12/15	100	70	70	S _{min} C _{min}	=	70 70	for for	C S	≥ ≥	70 70
SXR 10	≥ C16/20	100	100	90	S _{min} C _{min}	=	50 60	for for	C S	≥ ≥	150 70
SAR IU	C12/15		140	100	S _{min} C _{min}	=	70 85	for for	C S		210 100
SXRL 10 ²⁾	≥ C16/20	100	100	105	S _{min} C _{min}	=	50 50	for for	C S		100 125
SARL 10	C12/15	100	140	120	S _{min} C _{min}	=	70 70	for for	C S	_	140 175


1) 2) Intermediate values by linear interpolation

Values valid for reinforced concrete Please note: values for non-reinforced-concrete are as follows: $h_{min} = 110 mm / concrete \ge C16/20 \rightarrow c_{min} = s_{min} = 80 mm$;

 $C12/15 \rightarrow c_{min} = s_{min} = 110mm$

Fixing points with a spacing \leq a are considered as a group with a max. characteristic resistance N_{Rk,p} acc. to Table 6. For a spacing > a the anchors are always considered as single anchors, each with a characteristic resistance N_{Bk,p} acc. to Table 6.

Scheme of distance and spacing in concrete

fischer	frame	fixina	SXR	1	SXRL

Annex 5

Displacements Minimum thickness of member Minimum spacing and edge distances in concrete English translation prepared by DIBt

Base material [Supplier <i>Title</i>]	Min. DF or min. size (L x W x H)	Bulk density class p	Minimum compressive strength f _b	Drill method	Characteristic resistance F _{RK} ¹⁾ SXR 8 [kN]
	[mm]	[kg/dm ³]	[N/mm²]		50/80 °C
Clay brick Mz, e.g. Mz acc. to DIN 105-100,	3 DF	≥ 1,8	20	H ²⁾	3,0
EN 771-1 e.g. Schlagmann, <i>Mz</i>	(240x175x113)		10		2,0
Clay brick Mz, e.g. Mz acc. to DIN 105-100,	NF	≥ 1,8	20	H ²⁾	2,5
EN 771-1	(240x115x71)	≥ 1,0	10		2,0
Clay brick Mz, e.g. Mz acc. to DIN EN 771-1+ A1:2005, e.g. Wienerberger DK <i>MS</i>	DE		28		3,0
	DF (240x115x52)	≥ 1,8	20	H ²⁾	2,0
	, ,		10		1,5
Calcium silicate solid brick	NF (240x115x71)	≥ 1,8	20		2,5
e.g. KS acc. to DIN V 106, EN 771-2			10	H ²⁾	2,0
e.g. KS Wemding, KS	(175x500x235)	≥ 2,0	20		3,0
č	(17686668266)		10		2,5
Lightweight solid brick,	(240x115x113)	≥1,2	2		0,9
e.g. acc. to DIN V 18152-100, EN 771-3	(240x490x115)	≥ 1,0	2		1,2
e.g. KLB V	(240x490x115)	≥ 1,8	8	H ²⁾	2,5
•	(240,430,113)	≥ 1,0	4		1,2
	(240x240x245)	≥1,4	6		0,9
		≤ 1, 4	4		0,6 (0,75) ⁴⁾
Solid block normal concrete			12		2,5
VBN acc. to DIN 18153, EN 771-3	(246x240x245)	≥ 1,8	8	H ²⁾	1,5
e.g. Adolf Blatt, VBN			4		0,75
Partial safety factor ³⁾		-		Ϋ́Mm	2,5

1) Characteristic resistance F_{RK} for tension, shear or combined tension and shear loading.

The characteristic resistance is valid for single plastic anchor or for a group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table 11. The specific conditions for the design method have to be considered according to chapter 4.2.6 of the ETA.

2) H = Hammer drilling, R = Rotary drilling

3) In absence of other national regulations

4) The value in brackets (**F**_{RK}) is valid for temperature range c) 30/50° C only (compare chapter 1.2 of the ETA).

fischer frame fixing SXR / SXRL	Annex 6
Anchor type SXR 8: Characteristic resistance in solid masonry (Use category "b")	

Page 18 of European technical approval ETA-07/0121 of 26 June 2013

Base material [Supplier Title]	Geometry and min. DF or min. size (L x W x H) and drilling method	min. compressive strength f _b [N/mm ²]	Characteristic resistance F _{RK} ¹⁾ SXR 8 [kN]
	[mm]	bulk density ≥ρ[kg/dm ³]	50/80 °C
Clay brick Form B, HLz acc. to DIN 105-100, EN 771-1		20/1.2	1,2
e.g. Wienerberger HLz	2 DF (240x115x113) by rotary drilling	8/1.2	0,5
		28/1.5	2,5
Clay brick, HLz acc. DIN EN 771-1+ A1:2005, e.g. Wienerberger BS		20/1.5	1,2 (1,5) ⁴⁾
	DF (240x110x52) by hammer drilling	10/1.5	0,6 (0,9) ⁴⁾
Clay brick Form B, HLz acc. to DIN 105-100, EN 771-1 e.g. Schlagmann		12/1.0	0,6
	2 DF (240x115x113) by rotary drilling	8/1.0	0,4
	260 20000000000000000000000000000000000	8/0.9	0,9
		6/0.9	0,6
	(260x240x440) by rotary drilling	4/0.9	0,4
Clay brick Form B,		6/0.7	1,2
HLz acc. to DIN 105-100, EN 771-1, Schlagmann Planfüllziegel		4/0.7	0,75
J	12 DF (380x240x240) by rotary drilling	2/0.7	0,4
Partial safety factor 3)		γ̈́мm	2,5
For footnotes 1), 3), 4) see	e Annex 6		
fischer f	rame fixing SXR / SXRL	Annex	: 7
Characteristic resista	nchor type SXR 8: ance in hollow or perforated masonry Jse category "c")		

Page 19 of European technical approval ETA-07/0121 of 26 June 2013

Base material [Supplier Title]	Geometry and min. DF or min. size (L x W x H) and drilling method	min. compressive strength f _b [N/m ²] /	Characteristic resistance F _{RK} ¹⁾ SXR 8 [kN]
	[mm]	bulk density ≥ρ[kg/dm ³]	50/80 °C
	240 240 000000 000000000000000000000000	16/1.4	2,0
	5 DF (300x240x115) by hammer drilling	6/1.4	0,75 (0,9) ⁴⁾
Hollow calcium silicate brick acc. to DIN V 106, EN 771-2 e.g. KS Wemding,KSL		6/1.2	1,2 (1,5) ⁴⁾
	P10 (495x98x248) by hammer drilling	2/1.2	0,4 (0,5) ⁴⁾
	EL SE	20/1.4	1,2 (1,5) ⁴⁾
	$3 \text{ DF } (240 \times 175 \times 113)$ by hammer drilling	8/1.4	0,5 (0,6) ⁴⁾
		12/1.4	2,0
	240 2 DF (240x115x113) by hammer drilling	6/1.4	0,9
Partial safety factor 3)		Ϋ́мm	2,5
For footnotes 1), 3), 4) se	e Annex 6		
fischer f	rame fixing SXR / SXRL	Annex	8
	nchor type SXR 8: ance in hollow or perforated masonry		

Page 20 of European technical approval ETA-07/0121 of 26 June 2013

Base material [Supplier Title]	Geometry and min. DF or min. size (L x W x H) and drilling method	min. compressive strength f _b [N/mm ²] / bulk density	Characteristic resistance F _{Rк} ¹⁾ SXR 8 [kN]
	[mm]	$\geq \rho [kg/dm^3]$	50/80 °C
Hollow block lightweight concrete, acc. to NF-P 14- 301, EN 771-3, e.g. Sepa Parpaing Hbl	000 000 000 000 000 000 000 000	4/0.9	0,3 (0,4) ⁴⁾
Hollow brick lightweight concrete, e.g. acc. to DIN V 18151-100, EN 771-3, e.g. KLB, Hbl	977 977 977 977 977 977 977 977	6/1.0	1,5
Hollow brick lightweight concrete, e.g. acc. to EN 771-3, e.g. Roadstone masonry	012	10/1.2	2,5
	(440x210x215) by hammer drilling	6/1.2	1,5
Partial safety factor 3)		γMm	2,5
For footnotes 1), 3), 4) se	e Annex 6		
fischer f	rame fixing SXR / SXRL	Annex	9
Characteristic resista	nchor type SXR 8: ance in hollow or perforated masonry Use category "c")		

English translation prepared by DIBt

Base material [Supplier <i>Title</i>]	Min. DF or min. size	Minimum compressive strength	Drill method	Chai	racteristi F _{RK} [k]	c resistance	
	(L x W x H)	f _b [N/mm²] bulk density		SXF h _{ef} 5	R 10 0mm	SXRL 10 h _{ef} 70mm	
	[mm]	$\geq \rho [kg/dm^3]$		30/50 ℃	50/80 ℃	50/80 °C	
Clay brick,		36/1,8		5,0	5,0		
Mz e.g. acc. to	NF	20/1,8	H ²⁾	3,5	3,0		
DIN 105-100, EN 771-1, e.g.	(240x115x71)	12/1,8	''	2,0	2,0	4,0 / 5,5 ⁵⁾	
Vollmeter, Schlagmann, Mz		10/1,8]	2,0	2,0	3,5 / 4,5 ⁵⁾	
		20/1,8		2,0	2,0		
	3 DF	20/1,0	H ²⁾	4,5 ⁴⁾	4,0 ⁴⁾		
	(240x175x113) 10/1,8		1,5	1,5	-		
		10/1,8		3,0 ⁴⁾	3,0 4)		
Clay brick, Mz e.g. acc. to DIN EN 771-1 + A1:2005, e.g. Wienerberger MS	DF	28/1,8	H ²⁾	3,0	3,0	5,5 / 6,5 ⁵⁾	
	(240x115x52)	20/1,8		2,0	2,0	4,0 / 4,5 ⁵⁾	
		10/1,8		1,2	1,2	2,5 / 3 ⁵⁾	
Clay brick,	NF (240x111x71)	20/1,8	H ²⁾	3,0	3,0		
Mz e.g. acc. to DIN 105-100, EN 771-1, Mz		10/1,8		2,0	2,0		
Calcium silicate solid brick KS e.g. acc. to DIN V 106, EN 771-2	NF (240x115x71)		H ²⁾	2,5 / 4,0 ⁴⁾	2,5 / 4,0 ⁴⁾	3,5	
e.g. KS Wemding, KS	、	10/1,8		1,5	1,5	2,5	
	NF	36/2,0		5,0	5,0	•	
	(240x115x71)	20/2,0	H ²⁾	3,5	3,0	•	
	()	10/2,0		2,0	2,0	-	
		28/2,0		5,0	5,0		
	(500x175x240)	20/2,0	H ²⁾	4,5	4,5		
	(300,173,240)	12/1,8		-	-	6,5 / 8,5 ⁴⁾	
		10/2,0		3,0	3,0	5,5 / 7,0 ⁴⁾	
ightweight solid brick, e.g. acc. o DIN V 18152-100, EN 771-3, e.g. Liapor Super-K	(500x240x248)	2/0,8	R ²⁾	-	-	0,5	
Partial safety factor 3)	•						

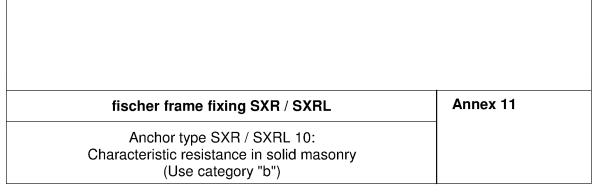
 Characteristic resistance F_{RK} for tension, shear or combined tension and shear loading. The characteristic resistance is valid for single plastic anchor or for a group of two or four plastic anchors with a spacing equal or larger than the minimum spacing s_{min} according to Table 11. The specific conditions for the design method have to be considered according to chapter 4.2.6 of the ETA.

2) H = Hammer drilling, R = Rotary drilling

3) In absence of other national regulations

4) Only for edge distance $c \ge 200$ mm; intermediate values by linear interpolation

5) Only for edge distance $c \ge 150$ mm; intermediate values by linear interpolation


fischer frame fixing SXR / SXRL	Annex 10
Anchor type SXR / SXRL 10:	
Characteristic resistance in solid masonry (Use category "b")	

English translation prepared by DIBt

Base material [Supplier <i>Title</i>]	or compress min. size strengt		Minimum compressive strength Drill method		or compressive method min. size strength		Characteristic resistance F _{RK} ¹⁾ [kN]		
		f _b [N/mm²]		SXR 10 h _{ef} 50mm		SXRL 10 h _{ef} 70mm			
	[mm]	bulk density ≥ρ[kg/dm³]		30/50 ℃	50/80 ℃	50/80 ℃			
Lightweight solid brick, e.g. acc. to DIN V 18152-100 EN 771-3	2 DF	4/1,4	2)	-	-	2,5			
	(240x115x113)	2/1,2	H ²⁾	0,75 0,9 ⁴⁾	0,75 0,9 ⁴⁾	1,2			
e.g. KLB V	(490x115x240)	2/1,2	H ²⁾	1,2	1,2	-			
	(250x240x245) 10/1,6 6/1,6	10/1,6	H ²⁾			7,5			
		6/1,6		2,5	2,5	4,5			
	(490x115x240)	12/1,8	H ²⁾	-	-	3,0 / 4,5 ⁵⁾			
	(49021132240)	8/1,8		3,0	3,0	2,0 / 3,0 ⁵⁾			
Solid block normal concrete VBN acc. to DIN 18153,	(250x240x250)	20/1,8	H ²⁾	4,5	4,5	-			
EN 771-3 e.g. Adolf Blatt , <i>VBN</i>		10/1,8		3,0	3,0	-			
Partial safety factor 3)			γ̈́Mm		2,	5			

For footnotes 1), 2), 3), 4) and 5) see Annex 10

Page 23 of European technical approval ETA-07/0121 of 26 June 2013

Base material [Supplier Title]	Geometry and min. DF or min. size (L x W x H)	min. compressive strength	Chara	acteristi F _{RK} [kî	
	and drilling method	f _b [N/mm²] /		R 10 0mm	SXRL 10 h _{ef} 70mm
	[mm]	bulk density ρ[kg/dm ³]	30/50 ℃	50/80 ℃	50/80 ℃
Clay brick Form B, HLz acc. to DIN 105-100,	ال ال ال ال ال ال ال ال ال ال ال ال ال ا	20/1,0	2,0	2,0	-
EN 771-1 e.g. Wienerberger		10/1,0	1,2	1,2	-
	240 2DF	20/1,2	3,0 ⁴⁾	2,5	-
	(240x115x113) by rotary drilling	10/1,2	2,0	1,5	-
Clay brick HLz	000000000	28/1,2	-	-	2,0
e.g. acc. to EN 771-1		20/1,2	-	-	1,2
		10/1,2	-	-	0,6
	240	12/1,0	0,9	0,9	0,75
	2DF	10/1,0	0,75	0,75	0,6
	(240x115x113) by rotary drilling	8/1,0	0,6	0,6	-
Clay brick Form B, HLz acc. to DIN 105-100, EN 771-1, e.g. Schlagmann Planfüllziegel	12 DF (380x240x240) by rotary drilling	6/0,7	2,0	2,0	-
Clay brick Form B, HLz acc. to DIN 105-100, EN 771-1 e.g. Schlagmann Poroton T14	0 ⁷⁷ 0 ¹⁰ 0	6/0,7	0,4	0,3	0,5
Partial safety factor 3)		γMm		2,	5
For footnotes 1), 3) u	und 4) see Annex 10				
fisch	ner frame fixing SXR / SXRL		An	nex 12	2
	nchor type SXR / SXRL 10: esistance in hollow or perforated (Use category "c")	masonry	1		

Page 24 of European technical approval ETA-07/0121 of 26 June 2013

English translation prepared by DIBt

Base material [Supplier Title]	Geometry and min. DF or min. size (L x W x H)	min. compressive strength	Cha	racteristi F _{RK} [kl	c resistance
	and drilling method	f ь [N/mm²] /	SXF h _{ef} 50	R 10 0mm	SXRL 10 h _{ef} 70mm
	[mm]	bulk density ρ [kg/dm ³]	30/50 °C	50/80 ℃	50/80 °C
Clay brick, HLz acc. to DIN EN 771-1+A1:2005,	110 16 10 10 10 10 10 10 10 10 10 10 10 10 10	28/1,5	2,5	2,5	-
e.g. Wienerberger BS		20/1,5	2,0	2,0	
	DF (240x110x52) by hammer drilling	10/1,5	1,2	1,2	-
Clay brick, HLz acc. to EN 771-1, e.g. Schlagmann		8/0,8	-	-	1,5
Poroton S 11		6/0,8	-		1,2
	(248x365x250) by rotary drilling	4/0,8	-	-	0,75
Clay brick, HLz acc. to EN 771-1, e.g. Schlagmann Poroton S 10	0. 24 (57 2	6/0,7	-	-	1,5
	(248x300x249) by rotary drilling	4/0,7	-	-	0,9
Clay brick, HLz acc. to EN 771-1, e.g. Schlagmann Poroton T8	248 105 114 114 114 114 114 114 114 114 114 11	4/0,6	-	-	1,2
	(248x365x249) by rotary drilling	2/0,6	-	-	0,6
Partial safety factor ³⁾		Ϋ́мm		2,	5
For footnotes 1), 3) s	ee Annex 10				
	her frame fixing SXR / SXRL			Annex	12

(Use category "c")

Page 25 of European technical approval ETA-07/0121 of 26 June 2013

Supplier Title]	Geometry and min. DF or min. size (L x W x H)	min. compressive strength	Cha	racteristic F_{RK} [k1	
	and drilling method	f _b [N/mm²] /		R 10 0mm	SXRL 10 h _{ef} 70mm
	[mm]	bulk density ρ [kg/dm ³]	30/50 ℃	50/80 ℃	50/80 ℃
Clay brick, HLz acc. o EN 771-1, e.g. Hörl & Hartmann Coriso WS 09		6/0,8	-	-	0,9
	CS 7 7	4/0,8	-		0,6
	<u>360</u> 365 (245x3 65x248) by rotary drilling	2/0,8	-	-	0,3
Clay brick, KHLz acc. o EN 771-1, e.g. Wienerberger		48/1,6	-	-	4,5
VHLz		20/1,6	-		1,5
	2 DF (240x115x113) by rotary drilling	10/1,6	-		0,9
Clay brick, HLz acc. to EN 771-1, e.g. Hörl & Hartmann Deckenhängerziegel		10/0,7	-		2,0
		8/0,7	-		1,5
	(240x235x310) by rotary drilling	6/0,7	-	-	1,2
Clay brick, HLz acc. o EN 771-1, e.g. Hörl & Hartmann	470 No. 115	8/0,7	-	-	1,5
Deckenelement		6/0,7	-		1,2
	0x210x250) by rotary drilling	4/0,7	-	-	0,9
Partial safety factor ³ For footnotes 1), 3) s		Ϋ́мm		2,	5

Page 26 of European technical approval ETA-07/0121 of 26 June 2013

English translation prepared by DIBt

Base material Supplier Title]	Geometry and min. DF or min. size (L x W x H)	min. compressive strength	Cha	Characteristic resistance F _{RK} ¹⁾ [kN]			
	and drilling method	f _b [N/mm²] /	SXR 10 h _{ef} 50mm		SXRL 10 h _{ef} 70mm		
	[mm]	bulk density ρ [kg/dm ³]	30/50 ℃	50/80 ℃	50/80 °C		
Hollow calcium silicate prick,acc. to DIN V 106, 771-2 e.g. KS Wemding,		16/1,4	3,5 ⁴⁾	3,0	-		
SL	5 DF(300x240x115) by hammer drilling	10/1,4	1,5	1,5	-		
			1,5	1,5	-		
	P10 (495x98x248) by hammer drilling	6/1,2	2,5 ⁴⁾	2,0 ⁴⁾	-		
Hollow calcium silicate brick acc. to		12/1,4	2,5	2,0	2,5		
		10/1,4	2,0	2,0	2,0		
	240 2 DF (240x115x113) by hammer drilling	8/1,4	1,5	1,5	1,5		
DIN V 106, EN 771-2 e.g. KS	0000	16/1,4	X	-	1,5		
Wemding,KSL		10/1,4	-	-	0,9		
	55 ^m / ₆ 240	8/1,4		-	0,75		
	3 DF (240x175x113) by hammer drilling	6/1,4	-	-	0,6		
Hollow calcium silicate brick acc. to DIN V 106, EN 771-2 e.g . Xella KS	w calcium te brick acc. to / 106, EN 771-2	20/1,4	-		3,5		
	9 DF (380x175x240) by hammer drilling	10/1,4	-	-	2,0		
Partial safety factor ³		Ϋ́Μm		2,5	5		
For footnotes 1), 3) a	na 4) see Annex 10						
fisch	er frame fixing SXR / SXR			Annex	15		

(Use category "c")

Electronic copy of the ETA by DIBt: ETA-07/0121

8.06.04-260/13

Page 27 of European technical approval ETA-07/0121 of 26 June 2013

English translation prepared by DIBt

Base material [Supplier Title]	Geometry and min. DF or min. size (L x W x H)	min. compressive strength	Characteristic resistance F_{пк} ¹⁾ [kN]			
	and drilling method	f _b [N/mm²] /	SXR 10 h _{ef} 50mm		SXRL 10 h _{ef} 70mm	
	[mm]	bulk density ρ [kg/dm ³]	30/50 °C	50/80 °C	50/80 °C	
Hollow brick normal concrete,e.g. acc. to DIN V 18151-100, EN 771-3, e.g. Adolf Blatt, Hbn	540	6/1,6	2,5	2,5	2,0	
Hollow brick eightweight concrete, e.g. acc. to DIN V18153- 100, EN 771-3, e.g. KLB, Hbl	(300x240x240) by hammer drilling	2/1,2	1,5	1,5	-	
Hollow brick ightweight concrete, e.g. acc. to EN 771-3, e.g. Roadstone		10/1,2	-		2,5	
masonry		8/1,2	2,5	2,5	2,0	
	440 (440x210x215) by hammer drilling	6/1,6	2,0	2,0	1,5	
Hollow brick lightweight concrete, e.g. acc. to EN 771-3, Knobel	240x500x240) by rotary drilling	2/0,7	-	-	2,5	
Hollow brick lightweight concrete, e.g. acc. to DIN V 18151-100, EN 771-3, e.g. KLB, Hbl		2/0,9	-	-	0,75	
	(250x360x250) by rotary drilling					
Partial safety factor ³)	γMm		2,	5	

fischer frame fixing SXR / SXRL

Annex 16

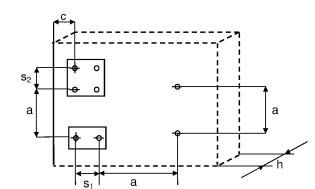
Anchor type SXR / SXRL 10: Characteristic resistance in hollow or perforated masonry (Use category "c")

Page 28 of European technical approval ETA-07/0121 of 26 June 2013

Base material [Supplier Title]	Geometry and min. DF or min. size (L x W x H)	min. compressive strength	Cha	Characteristic resistance F _{RK} ¹⁾ [kN]		
	and drilling method	f _b [N/mm²] /	SXR 10 h _{ef} 50mm		SXRL 10 h _{ef} 70mm	
	[mm]	bulk density ρ [kg/dm ³]	30/50 °C	50/80 °C	50/80 °C	
Solid brick, normal weight concrete, e.g.	(440x100x215)	16/1,8	4,5	4,0	5,5	
Tarmac Vbn	by hammer drilling	10/1,8	3,0	2,5	3,5	
Solid brick, lightweight concrete, e.g. Tarmac Vbl	(440 x100x215) by rotary drilling	6/1,4	2,0 2,5 ⁴⁾	2,0 2,5 ⁴⁾	2,0 3,0 ⁵⁾	
Heat insulation block e.g. Gisoton WDB	10 DF (390x240x240) by hammer drilling	2/0,7	1,5	1,5	-	
Hollow block, lightweight concrete, acc. to NF-P 14-301, EN 771-3, e.g. Sepa Parpaing		6/0,9	-		0,5	
e.g. Sepa Parpaing	(500x200x200) by rotary drilling	4/0,9	0,9 1,5 ⁴⁾	0,9 1,2 ⁴⁾	0,3	
Clay bricks, HLz acc. to NF-P 13-301		6/0,6	0,6 0,75 ⁴⁾	0,6	1,5	
EN 771-1, e.g. I merys Gelimatic		4/0,6	-	-	0,9	
	(500x200 x 270) by rotary drilling	2/0,6	-	-	0,5	
Clay bricks, HLz acc. to NF-P 13-301		8/0,7	0,6 ⁾ 0,75 ⁴⁾	0,6	0,9	
EN 771-1, e.g. Terreal Calibric		6/0,7	-	-	0,75	
	(500 x200x220) by rotary drilling	4/0,7	-	-	0,4	
Partial safety factor ³ For footnotes 1), 3) 4) and 5) see Annex 10	Ϋ́мm		2,	5	
fisch	ner frame fixing SXR / SXRL nchor type SXR / SXRL 10: tance in solid, hollow or perfo			Annex	17	

Page 29 of European technical approval ETA-07/0121 of 26 June 2013

Base material Supplier Title]	Geometry and min. DF or min. size (L x W x H)	min. compressive strength	Characteristic resistance F _{вк} ¹⁾ [kN]		
	and drilling method	f ь [N/mm²] /	SXR 10 h _{ef} 50mm		SXRL 10 h _{ef} 70mm
	[mm]	bulk density ρ [kg/dm ³]	30/50	50/80 ℃	50/80
Clay bricks Form B, HLz acc. to NF-P 13-	,	10/0,6	1,2	1,2	1,5
301, EN 771-1,		8/0,6	-	-	1,2
e.g. Imerys Optibric	10 50 560	6/0,6		-	0,9
	(560x200x275) by rotary drilling	4/0,6	-	-	0,6
Clay brick, HLz acc. to NF-P 13-301, EN 771-1, e.g. Bouyer Leroux BGV	000 (570x200x315) by rotary drilling	6/0,6	0,75 1,2 ⁴⁾	0,75 0,9 ⁴⁾	0,9
Clay brick, HLz acc. to NF-P 13-301, EN 771-1, e.g. Wienerberger Porotherm 30 R	00 00 00 0 0 0 0 0 0 0 0 0 0	10/0,7	0,5 0,6 ⁴⁾	0,5 0,6 ⁴⁾	-
Clay brick Form B, Hlz acc. NF-P 13-301 EN 771-1, e.g. Wienerberger Porotherm GF R20	00 00 00 00 00 00 00 00 00 00	10/0,7	0,6 0,75 ⁴⁾	0,6 0,75 ⁴⁾	0,9
Partial safety factor ³⁾ Y _{Mm}				2,	5
For footnotes 1), 3) a	nd 4) see Annex 10				
fisch	er frame fixing SXR / SXRL			Annex	18
	nchor type SXR / SXRL 10: sistance in hollow or perforat (Use category "c")	ed masonry			


Page 30 of European technical approval ETA-07/0121 of 26 June 2013

English translation prepared by DIBt

Anchor type			SXR 8	SXR 10	SXRL 10
Minimum thickness of member	h _{min}	[mm]	100	100	110
Single anchor					
Minimum allowable spacing	a _{min}	[mm]	250	250	250
Minimum allowable edge distance	C _{min}	[mm]	100	100	100
Anchor Group					
Minimum allowable spacing perpendicular to free edge	S _{1,min}	[mm]	100	100	100
Minimum allowable spacing parallel to free edge	S _{2,min}	[mm]	100	100	100
Minimum allowable edge distance	C _{min}	[mm]	100	100	100

Scheme of distance and spacing in masonry

fischer frame fixing SXR / SXRL	Annex 19
Minimum thickness of member, minimum spacing and edge distances in masonry	

English translation prepared by DIBt

Minimum compres sive strength	Characteristic resistance F _{RK} ¹⁾ [kN] SXR 10			npres F _{RK} ¹⁾ F _{RK} ¹⁾ ive [kN] [kN]			tance
f _b	Drilling	h _{nom} §	50mm	Drilling	Drilling 50/80 °C		
[N/mm²]	method	30/50 °C	50/80 °C	method	h _{om1} 70mm	h _{nom2} 90mm	
2	with AAC Hole Punch ²⁾ , using the hammer drilling of the power drill	0,5	0,4	hammer or rotary drilling	0,75	0,9	
3	-	0,5	0,4	hammer or rotary drilling	1,2	1,5	
4	Drill bit, rotary drilling	0,9	0,75	hammer or rotary drilling	2,0	2,5	
6	-	0,9	0,75	hammer or rotary drilling	3,0	4,0	
	compres sive strength f _b [N/mm ²] 2 3 4	compres sive strength fbFRK 1) [KN]fbDrilling Drilling method[N/mm2]Drilling method2With AAC Hole Punch 2), using the hammer drilling of the power drill3-4Drill bit, rotary drilling	compressive sive strength fbFRK ¹ [[KN] SXR 10fbImage: complex strength Drilling methodImage: complex strength SXR 10[N/mm2]Drilling methodImage: complex strength 30/50 °C2With AAC Hole Punch 2°, using the hammer drilling of the power drill0,53-0,53-0,54Drill bit, rotary drilling0,9	Compressive sive sive sive sive sive strength fbFRK ¹¹ fb h_{nom} SXR 10fb h_{nom} Drilling Drilling method $30/50$ $50/80$ [N/mm²]with AAC Hole Punch ^{2?} , using the hammer drilling of the power drill $0,5$ $0,4$ 3 $ 0,5$ $0,4$ 4Drill bit, rotary drilling $0,9$ $0,75$	compres sive strengthFRK ¹⁾ [KN] SXR 10Image: Sive (KN] SXR 10fb $h_{nom} SXR 10$ Drilling Drilling $30/50$ Drilling Drilling $30/50$ Drilling Drilling method[N/mm2]with AAC Hole Punch 2), using the hammer drilling of the power drill0,50,4hammer or rotary drilling2with AAC Hole Punch 2), using the hammer drilling of the power drill0,50,4hammer or rotary drilling3-0,50,50,4hammer or rotary drilling4Drill bit, rotary drilling0,90,75hammer or rotary drilling	compres sive strength \mathbf{f}_{b} FRK 11fbFRK 11fbMnom SXR 10fbDrilling methodMnom 50mm 30/50Drilling method[N/mm2]Drilling methodMnom 50mm 30/50Drilling methodFRK 11Mnom SXR 10Drilling Mnom 500MDrilling Monu 170MM[N/mm2]Drilling 30/50Drilling °CDrilling methodMnom 50/802with AAC Hole Punch 20 using the hammer drilling of the power drillO,5O,4hammer or rotary drillingO,753O,5O,4hammer or rotary drillingAnomer or story drilling4Drill bit, rotary drillingO,9O,756Drill bit, rotary drillingAnomer or story drilling	

1) Characteristic resistance F_{RK} for tension, shear or combined tension and shear loading.

The characteristic resistance is valid for single plastic anchor or for a group of two or four plastic anchors with a spacing equal or larger than the minimum spacing smin according to Table 15. The specific conditions for the design method have to be considered according to chapter 4.2.6 of the ETA.

2) For the fixing in autoclaved aerated concrete with a nominal compressive strength f_{ck} < 4 N/mm² the hole is made by using the accompanying AAC Hole Punch according Table 13.

3) In absence of other national regulations

Table 13: Assignment AAC Hole Punch type – anchor type (length) only for AAC 2 (SXR 10 h_{enom}50)

	,				
		AAC Hole Punch	ı		Anchor type
Туре	a ₁	a ₂	b	1	(length)
					SXR 10 x 52
GBS 10 x 80			80	85	SXR 10 x 60
					SXR 10 x 80
GBS 10 x 100				105	SXR 10 x 100
GBS 10 x 135	9	10	90	140	SXR 10 x 120
GBS 10 x 160	Ũ			165	SXR 10 x 140
					SXR 10 x 160
GBS 10 x 185				190	SXR 10 x 180
GBS 10 x 230				235	SXR 10 x 200
					SXR 10 x 230
			`	— Type marki	<
fischer frame fixing SXR / SXRL					Annex 20
aera	ated concrete	cteristic resista (AAC - use ca unch type – ar	ategory "d"),		

Anchor type		Tension load ²⁾		Shear lo	ad ²⁾
	F [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	δ _{vo} [mm]	δ _{v∞} [mm]
SXR 10	0,32	0,03	0,06	0,21	0,31
SXRL 10 AAC2	0,32	0,23	0,46	0,64	0,96
SXRL 10 AAC6	1,43	0,65	1,3	2,86	4,29

1) Valid for all ranges of temperatures

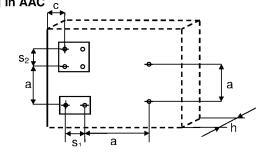

2) Intermediate values by linear interpolation

Table 15: Minimum distances and dimensions in AAC

Anchor type			SXR 10	SXRL 10
Minimum thickness of member	h _{min}	[mm]	100	175
Single anchor				
Minimum allowable spacing	\mathbf{a}_{min}	[mm]	250	250
Minimum allowable edge distance	C _{min}	[mm]	100	100/120 ¹⁾
Anchor Group				
Minimum allowable spacing perpendicular to free edge	S _{1,min}	[mm]	200	100/120 ¹⁾
Minimum allowable spacing parallel to free edge	S _{2,min}	[mm]	400	100/120 ¹⁾
Minimum allowable edge distance	C _{min}	[mm]	100	100/120 ¹⁾

ⁱ⁾ Valid for AAC ≥ 600 kg/m³ Scheme of distance

and spacing in AAC

fischer frame fixing SXR / SXRL	Annex 21
Anchor type SXR / SXRL 10: displacements, dimensions, minimum distances and spacings in AAC	