

European Technical Approval ETA-08/0376

Handelsbezeichnung	Powers PURE150-PRO Verbundmörtel mit Ankerstange für Beton
<i>Trade nam</i> e	Powers PURE150-PRO injection resin with anchor rod for concrete
Zulassungsinhaber Holder of approval	Powers Fasteners Europe Stanley Black&Decker Deutschland GmbH Black-&-Decker Str. 40 65510 Idstein DEUTSCHLAND
Zulassungsgegenstand	Verbunddübel zur Verankerung im Beton unter statischer,
und Verwendungszweck	quasi-statischer oder seismischer Einwirkung (Leistungskategorie C1)
Generic type and use	Bonded anchor for use in concrete under static,
of construction product	quasi-static or seismic action (performance category C1)
Geltungsdauer: vom <i>Validity: from</i> bis <i>to</i>	4 April 2013 4 April 2018
Herstellwerk	Powers Fasteners Europe BV
Manufacturing plant	Factory 2, Germany

English translation prepared by DIBt - Original version in German language

Diese Zulassung umfasst 44 Seiten einschließlich 35 Anhänge This Approval contains 44 pages including 35 annexes Diese Zulassung ersetzt This Approval replaces

ETA-08/0376 mit Geltungsdauer vom 08.09.2011 bis 03.02.2014 ETA-08/0376 with validity from 08.09.2011 to 03.02.2014

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Z14391.13

Page 2 of 44 | 4 April 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12
- Official Journal of the European Communities L 220, 30 August 1993, p. 1
- ³ Official Journal of the European Union L 284, 31 October 2003, p. 25
- ⁴ Bundesgesetzblatt Teil I 1998, p. 812
 - *Bundesgesetzblatt Teil I 2011*, p. 2178

⁶ Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 44 | 4 April 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product/ products and intended use

1.1 Definition of the construction product

The "Powers PURE150-PRO Injection resin with anchor rod for concrete" is a bonded anchor consisting of a cartridge with injection mortar Powers PURE150-PRO and a steel element. The steel elements are commercial threaded rods according to Annex 3 in the range of M 8 to M 30, reinforcing bar according to Annex 4 in the range of Ø 8 to Ø 32 or threaded sleeves with internal thread according to annex 5 size M 8 to M 20.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

An illustration of the product and intended use is given in Annexes 1 and 2.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval.

The anchor is to be used only for anchorages subject to static or quasi-static actions in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be used in cracked or non-cracked concrete.

The anchor may be installed in dry or wet concrete or in flooded holes.

The anchor with threaded rods or rebar may also be used under seismic action (anchor performance category C1).

The anchor may be used in the following temperature ranges:

Temperature range I:	-40 °C to +40 °C	(max long term temperature +24 °C and
		max short term temperature +40 °C)
Temperature range II:	-40 °C to +60 °C	(max long term temperature +43 °C and
		max short term temperature +60 °C)
Temperature range III:	-40 °C to +72 °C	(max long term temperature +43 °C and
		max short term temperature +72 °C)

Elements made of zinc coated steel:

The element made of zinc plated or hot dipped galvanised steel may only be used in structures subject to dry internal conditions.

Elements made of stainless steel A4:

The element made of stainless steel 1.4401 or 1.4571 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure to permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Page 4 of 44 | 4 April 2013

Elements made of high corrosion resistant steel:

The element made of high corrosion resistant steel 1.4529 or 1.4565 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of reinforcing bars:

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 or CEN/TS 1992-4:2009. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with post-installed reinforcing bars in concrete structures designed in accordance with EN1992-1-1:2004 are not covered by this European technical approval.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and provisions given in the Annexes. The characteristic material values, dimensions and tolerances of the anchor not indicated in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic values for the design of anchorages are given in the Annexes.

The two components of the injection mortar are delivered in unmixed condition in side-by sidecartridges of sizes 385 ml, 585 ml or 1400 ml according to Annex 2. Each cartridge is marked with the imprint "Powers PURE150-PRO", with processing notes, charge code, storage life, hazard code and curing- and processing time depending on temperature.

Elements made of reinforcing bars shall comply with the specifications given in Annex 4.

Internal threaded sleeves shall comply with the specifications given in Annex 5.

The marking of embedment depth for threaded rods and rebar may be done on jobsite.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors", on the basis of Option 1 and ETAG 001 Annex E "Assessment of Metal Anchors under Seismic Action".

7

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 44 | 4 April 2013

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 96/582/EG of the European Commission⁸ system 2(i) (referred to as System 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 44 | 4 April 2013

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2 For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the holder of the approval (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1, Option 1, seismic performance category C1),
- size.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited at Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced.

Page 7 of 44 | 4 April 2013

Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed either in accordance with the

The anchorages are designed in accordance with the

- EOTA Technical Report TR 029 "Design of bonded anchors"¹⁰

or in accordance with the

- CEN/TS 1992-4:2009

and EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action" under the responsibility of an engineer experienced in anchorages and concrete work.

Anchorages shall be positioned outside of plastic hinges of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered by this European technical approval.

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 or CEN/TS 1992-4:2009. The basic assumptions for the design according to anchor theory shall be observed. This includes the consideration of tension and shear loads and the corresponding failure modes as well as the assumption that the base material (concrete structural element) remains essentially in the serviceability limit state (either non-cracked or cracked) when the connection is loaded to failure. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the rebars act as dowels to take up shear forces. Connections with reinforcing bars in concrete structures designed in accordance with EN 1992-1-1:2004 (e.g. connection of a wall loaded with tension forces in one layer of the reinforcement with the foundation) are not covered by this European technical approval.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- use of the anchor only as supplied by the manufacturer without exchanging the components,

10

Page 8 of 44 | 4 April 2013

- commercial standard threaded rods, washers and hexagon nuts may be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 3,
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
 - marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or the person on jobsite.
- embedded reinforcing bars shall comply with specifications given in Annex 4,
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- marking and keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drilling by hammer-drilling only,
- in case of aborted drill hole: the drill hole shall be filled with mortar,
- cleaning the drill hole in accordance with Annexes 7,
- during installation and curing of the chemical mortar the anchor component installation temperature shall be at least 5 °C; the temperature; observing the curing time according to Annex 7, Table 7 until the anchor may be loaded,
- for injection of the mortar in bore holes of diameter $d_0 > 20$ mm piston plugs according to Annex 8 shall be used for overhead or horizontal injection,
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in Annex 6 must not be exceeded.

5 Recommendations concerning packaging, transport and storage

5.1 Responsibility of the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2, 4.3 and 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval.

In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

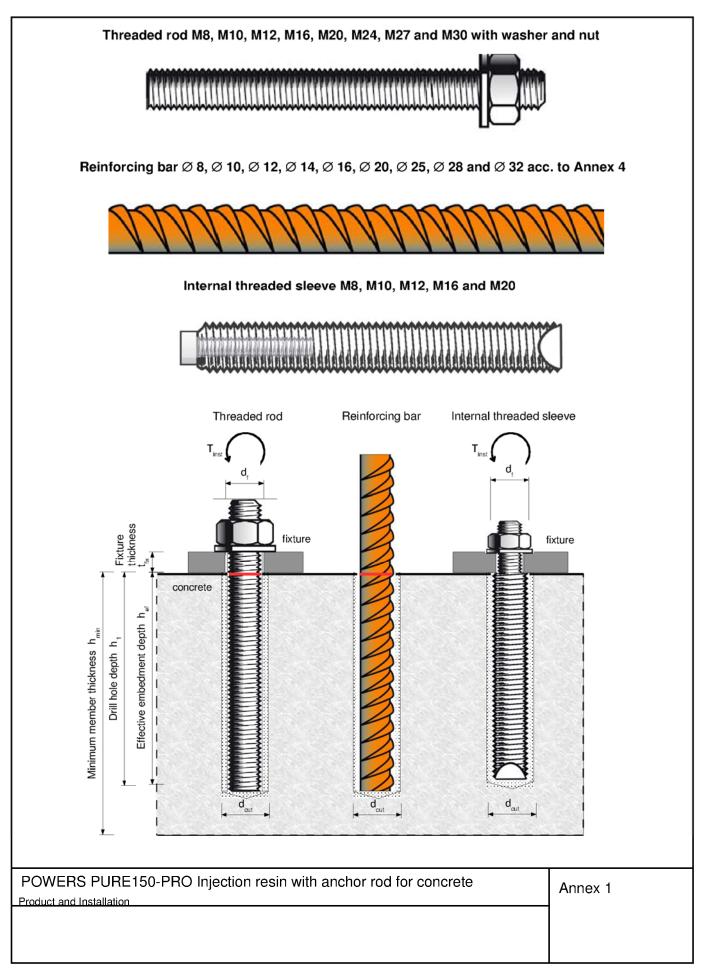
The minimum data required are:

- drill bit diameter,
- hole depth,
- diameter of anchor rod,
- minimum effective anchorage depth,
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- anchor component installation temperature,
- ambient temperature of the concrete during installation of the anchor,

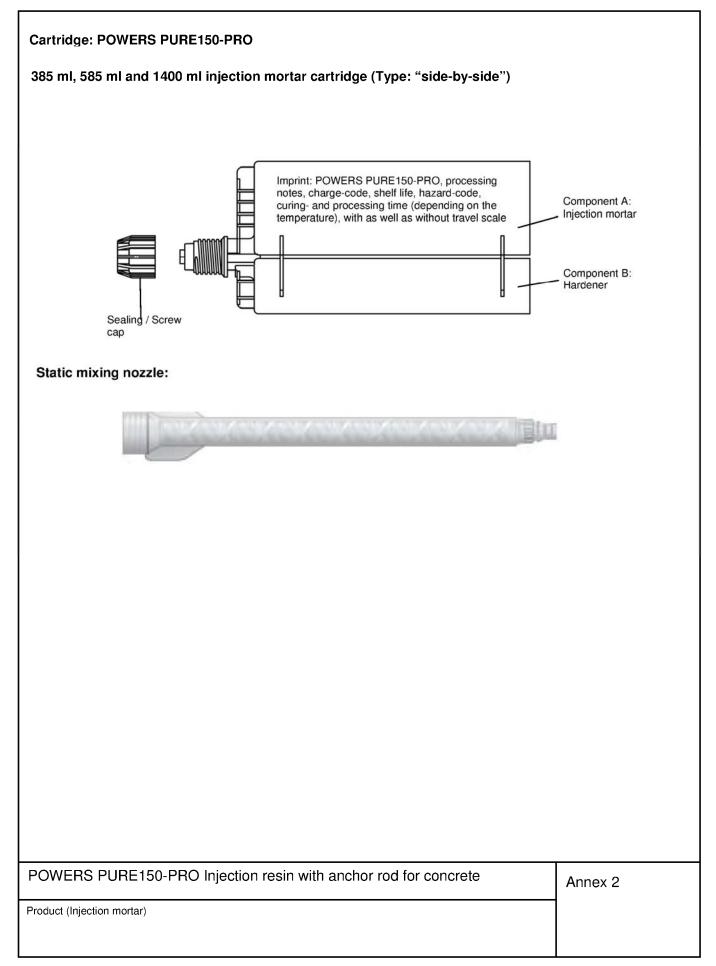
Page 9 of 44 | 4 April 2013

- admissible processing time (open time) of the mortar,
- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- maximum torque moment,
- identification of the manufacturing batch,
- All data shall be presented in a clear and explicit form.

5.2 Packaging, transport and storage


The cartridges shall be protected against sun radiation and shall be stored according to the manufacturer's installation instructions in dry condition at temperatures of at least +5 °C to not more than +25 °C.

Cartridges with expired shelf life must no longer be used.


The anchor shall only be packaged and supplied as a complete unit. Cartridges may be packed separately from metal parts.

Georg Feistel Head of Department *beglaubigt:* Lange

r

Part	5	Material							
	<u> </u>	ISO 4042 or Steel, hot-dip galvanised ≥ 40 μm Steel, EN 10087 or EN 10263	n acc. to EN ISO 1461						
1	Anchor rod	Property class 5.8, 8.8, EN ISO 898-1:1999							
2	Hexagon nut, EN ISO 4032	Property class 5 (for class 5.8 rod) EN ISO 898-2, Property class 8 (for class 8.8 rod) EN ISO 898-2	Property class 5 (for class 5.8 rod) EN ISO 898-2, Property class 8 (for class 8.8 rod) EN ISO 898-2						
3	Washer, EN ISO 7089, EN ISO 7093, or EN ISO 7094	Steel, zinc plated	Steel, zinc plated						
Stair	nless steel								
1	Anchor rod	Material 1.4401 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506							
2	Hexagon nut, EN ISO 4032	Material 1.4401 / 1.4571 EN 10088, > M24: Property class 50 (for class 50 rod) EN ISC < M24: Property class 70 (for class 70 rod) EN ISC							
3	Washer, EN ISO 7089, EN ISO 7093, or EN ISO 7094	Material 1.4401 or 1.4571, EN 10088							
High	corrosion resistance steel								
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506							
2	Hexagon nut, EN ISO 4032	Material 1.4529 / 1.4565 EN 10088, > M24: Property class 50 (for class 50 rod) EN ISC ≤ M24: Property class 70 (for class 70 rod) EN ISC							
3	Washer, EN ISO 7089, EN ISO 7093, or EN ISO 7094	Material 1.4529 / 1.4565, EN 10088							
N Ir	nercial standard rod with: laterials, dimensions and mechan nspection certificate 3.1 acc. to EN larking of embedment depth								
OW	ERS PURE150-PRO Injection	resin with anchor rod for concrete	Annex 3						

Product form		Bars and de	-coiled rods			
Class		В	С			
Characteristic yield s	trength f_{yk} or $f_{0,2k}$ [N/mm ²]	400 t	o 600			
Minimum value of k =	= (f _t / f _y) _k	≥ 1,08	≥ 1,15 < 1,35			
naracteristic strain at maximum force k [%]		≥ 5,0	≥7,5			
Bendability		Bend/ Re	lebend test			
Maximum deviation from nominal mass (individual bar) [%]	Nominal bar size [mm] ≤ 8 mm > 8 mm		6,0 4,5			
Abstract of EN 19	2-1-1 Anney C. Table C	ON Properties of reinforce	mont			
	92-1-1 Annex C, Table C.	2N, Properties of reinforce Bars and de				
Abstract of EN 199 Product form Class	92-1-1 Annex C, Table C.	· •	ement: -coiled rods C			

able	3: Materials (Internal three	eaded sleeve)
		A-A A-A CONTRACTOR CONTRACTOR A-A CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR In
Part	Designation	Material
Steel	I, zinc plated ≥ 5 μm acc. to EN ISO	4042
		Steel, EN 10087 or EN 10263
1	Internal threaded sleeve	Property class 5.8, EN ISO 898-1:1999
2	Corresponding steel screw	,
2		Property class 5.8, EN ISO 898-1:1999Steel screws property class 5.8 or 8.8, EN ISO 898-1
2	Corresponding steel screw	Property class 5.8, EN ISO 898-1:1999Steel screws property class 5.8 or 8.8, EN ISO 898-1
2 Stain	Corresponding steel screw	Property class 5.8, EN ISO 898-1:1999 Steel screws property class 5.8 or 8.8, EN ISO 898-1 Zinc plated ≥ 5 μm according to EN ISO 4042 Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506
2 Stain 1 2	Corresponding steel screw less steel Internal threaded sleeve	Property class 5.8, EN ISO 898-1:1999 Steel screws property class 5.8 or 8.8, EN ISO 898-1 Zinc plated ≥ 5 μm according to EN ISO 4042 Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506 Steel screws property class 50 or 70 EN ISO 3506
2 Stain 1 2	Corresponding steel screw less steel Internal threaded sleeve Corresponding steel screw	Property class 5.8, EN ISO 898-1:1999 Steel screws property class 5.8 or 8.8, EN ISO 898-1 Zinc plated ≥ 5 μm according to EN ISO 4042 Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506 Steel screws property class 50 or 70 EN ISO 3506

POWERS PURE150-PRO Injection resin with anchor rod for concrete

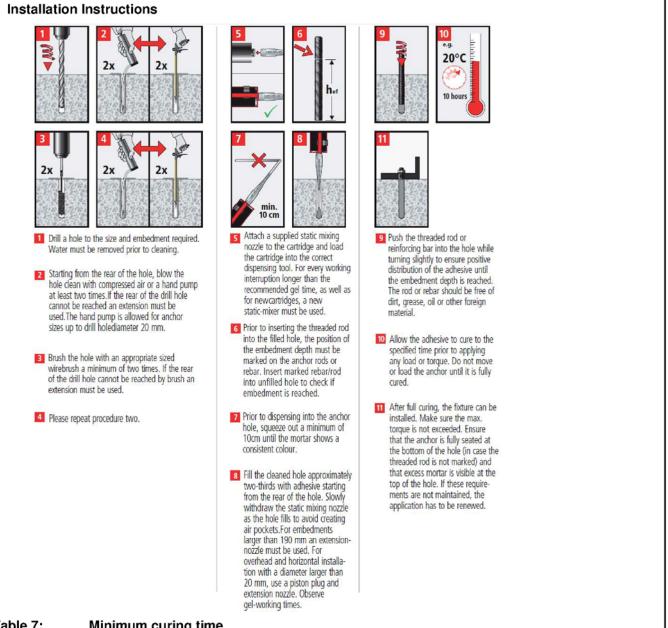
Annex 5

Materials (Internal threaded sleeves)

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30		
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35		
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120		
Ellective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600		
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33		
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37		
Torque moment	T _{inst} [Nm]	10	20	40	80	120	160	180	200		
Thickness of fixture	t _{fix,min} [mm] >				()					
	t _{fix,max} [mm] <				15	00		32 108 540 30 34 180			
Minimum thickness of member	h _{min} [mm]		n _{ef} + 30 mr ≥ 100 mm				h_{ef} + 2 d_0	h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150		
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150		

Table 5: Installation parameters for reinforcing bar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	37
Effective anchorage depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	500	560	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	40
Minimum thickness of member	h _{min} [mm]		30 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160


Table 6: Installation parameters for internal threaded sleeves

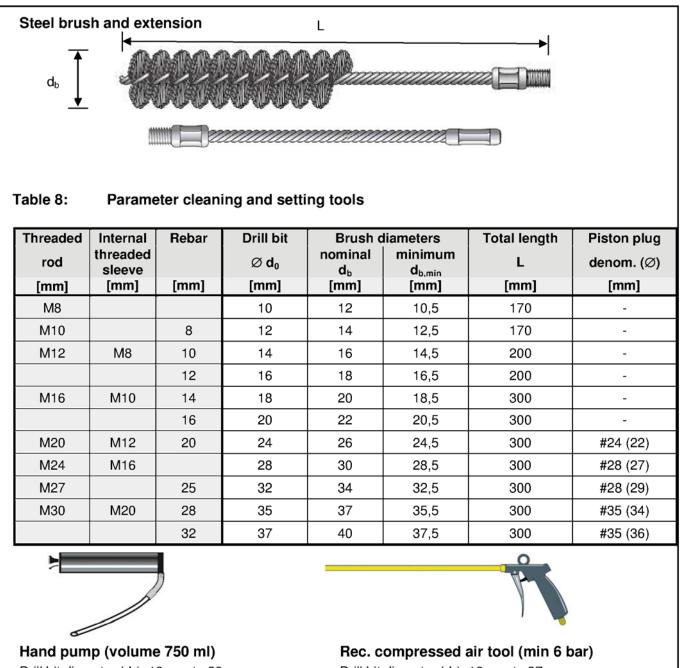
Internal thread size		M 8	M 10	M 12	M 16	M 20
External diameter size	[mm]	12	16	20	24	30
Nominal drill hole diameter	d₀ [mm]	14	18	24	28	35
Effective anchorage depth	h _{ef} [mm]	80	90	110	150	200
Diameter of clearance hole in the fixture	d _f [mm]	9	12	14	18	22
Diameter of steel brush	d _b [mm]	16	20	26	30	37
Torque moment	T _{inst} [Nm]	10	20	40	80	120
Minimum thickness of member	h _{min} [mm]	110	130	160	210	270
Minimum spacing	s _{min} [mm]	60	80	100	120	150
Minimum edge distance	c _{min} [mm]	60	80	100	120	150

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex 6

Installation parameters

Table 7: Minimum curing time


Concrete temperature	Gelling-working time	Minimum curing time in dry concrete	Minimum curing time in wet concrete
≥ + 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ + 40 °C	12 min	4 h	8 h

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex 7

Installation instructions

Drill bit diameter (d_0) : 10 mm to 20 mm

Drill bit diameter (d₀): 10 mm to 37 mm

Piston plug for overhead or horizontal installation

Drill bit diameter (d₀): 24 mm to 37 mm

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Cleaning and setting tools

Annex 8

Use category:

- Hammer-drilling
- Application in cracked concrete, option 1
- Installation in dry and wet concrete (for embedment depth h_{ef}≤20d)
 Static and quasi-static actions all steel elements
 Anchor seismic performance category C1 for threaded rods and rebar only
- Installation in flooded boreholes (for embedment depth h_{ef}≤12d) Only static and quasi-static actions all steel elements
- Overhead installation

Temperature ranges:

- 40°C to +40°C (max. short term temp. +40°C and max. long term temp. +24°C)
- 40°C to +60°C (max. short term temp. +60°C and max. long term temp. +43°C)
- 40°C to +72°C (max. short term temp. +72°C and max. long term temp. +43°C)

Design options:

- Annexes 10 to 21
 - Design according to TR029:
 - For static and quasi-static loading only
 - Design for applications in cracked and non cracked concrete
- Annexes 22 to 33
 - Design according to CEN/TS 1992-4
 - For static and quasi-static loading
 - Design for applications in cracked and non cracked concrete
- Annexes 34 to 35
 - Design for seismic action according to Technical Report "Design of Metal Anchors under Seismic Action"
 - Anchor seismic performance category C1 (see Annex 34)

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex 9

Use categories, temperature ranges and design options

Anchor size threaded re	od			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel failure											
Characteristic tension res Steel, property class 5.8	sistance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension res Steel, property class 8.8	sistance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Partial safety factor		γ _{Ms,N} ¹⁾					1,	50			
Characteristic tension res Stainless steel A4 and H property class 50 (>M24)	CR,	N _{Rk,s} [kN]		26	41	59	110	171	247	230	281
Partial safety factor		γ _{Ms,N} 1)				1,	87			2,	86
Combined pullout and	concrete cone failure										
Characteristic bond $\tau_{Rk,uc}$	r [N/mm ²] resistance in	uncracke	d concrete	C20/25	5						
Temperature range I ⁴⁾ :	dry and wet concrete		≤12d >12d	15 12	15 13	15 14	14 14	13 13	12 12	12 12	12 12
40°C/24°C	flooded bore hole ⁵⁾	h _{ef} ≤12d		15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II ⁴⁾ : 60°C/43°C	dry and wet concrete		≤12d >12d	9,5 7,5	9,5 8,0	9,0 8,0	8,5 8,5	8,0 8,0	7,5 7,5	7,5 7,5	7,5 7,5
00 0/43 0	flooded bore hole ⁵⁾		≤12d	9,5	9,5	9,0	8,5	7,5	7,0		
Temperature range III ⁴): 72°C/43°C	dry and wet concrete	h _{ef} :	≤12d >12d	8,5 7,0	8,5 7,0	8,0 7,0	7,5 7,5	7,0 7,0	7,0 7,0	6,5 6,5	6,5 6,5
	flooded bore hole ⁵⁾		≤12d	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
Partial safety factor (dry a		$\gamma_{Mp} = \gamma_M$			1,8	3 ²⁾		2)	2,	13)	
Partial safety factor (flood	ded bore hole)	$\gamma_{Mp} = \gamma_{Mc} \stackrel{(1)}{\longrightarrow} 2,1^{(3)}$									
Increasing factors for		C30/37		1,04							
concrete ψ_c		C40/50		1,08							
0		C50/60					1,	10			
Splitting failure			0.1					1			
Characteristic edge dista			2·h _{ef}	1,0·h _{ef}							
Characteristic edge dista			∙h>1,3•h _{ef} ,3•h _{ef}	$5 \cdot h_{ef} - 2 \cdot h$ $2,4 \cdot h_{ef}$							
Characteristic spacing			[mm]					cr,sp			
Partial safety factor (dry a	and wet concrete)	S _{cr,sp} γ _{Msp} ¹⁾	Tunul		1 5	3 ²⁾	20	cr,sp	2	1 ³⁾	
Partial safety factor (flood		γ _{Msp} 1) γ _{Msp}			1,0	,	2	1 ³⁾	۷,		
 In absence of other n The partial safety fact The partial safety fact The partial safety fact Explanations see cha Applications in floode 	for $\gamma_2 = 1,2$ is included. for $\gamma_2 = 1,4$ is included. pter 1.2										
POWERS PURE150)-PRO Injection res	in with a	anchor ro	d for (concre	ete		Δr	nex 1	0	

Anchor size threaded re	od			M 12	M 16	M 20	M 24	M 27	M 30		
Steel failure				-							
Characteristic tension res	sistance,	N _{Rk,s}	[kN]	42	78	122	176	230	280		
Steel, property class 5.8 Characteristic tension res	sistance,	N	[kN]	67	125	196	282	260	449		
Steel, property class 8.8		N _{Rk,s}		67	120			300	449		
Partial safety factor Characteristic tension res	sistance	γ _{Ms,N} ¹⁾		_		1	,50				
Stainless steel A4 and H0 property class 50 (>M24)	CR,	N _{Rk,s}	[kN]	59				230	281		
Partial safety factor		γ _{Ms,N} ¹⁾			1	,87		2,	86		
Combined pullout and o	concrete cone failure										
Characteristic bond resis	tance τ _{Rk,cr} [N/mm ²] in c	racked con	crete C20/	25							
Temperature range I ⁴⁾ :	dry and wet concrete		≤12d >12d	7,5 7.0	6,5 6,5	6,0 6.0	5,5 5,5	5,5 5.5	5,5 5,5		
40°C/24°C	flooded bore hole ⁵⁾		≤12d	7,5	6,0	5,0	4,5	2,86 2,86 5,5 5, 5,5 5, 4,0 4, 3,5 3, 3,5 3, 3,5 3, 3,5 3, 3,0 3,0 3, 3,0 3, 3,0 3,	4,0		
Temperature range II ⁴⁾ :	dry and wet concrete		≤12d >12d	4,5	4,0	3,5	3,5	230 2 368 4 230 2 2,86 2,86 5,5 5 5,5 5 4,0 4 3,5 3 3,5 3 3,5 3 3,5 3 3,5 3 3,5 3 3,5 3 3,5 3 3,5 3 3,5 3 3,0 3 3,0 3	3,5		
60°C/43°C	flooded bore hole ⁵⁾				7,0 6,5 6,0 5,5 5,5 7,5 6,0 5,0 4,5 4,0 4,5 4,0 3,5 3,5 3,5 4,0 4,0 3,5 3,5 3,5 4,0 4,0 3,5 3,5 3,5 4,5 4,0 3,5 3,5 3,5 4,0 3,5 3,0 3,0 3,0 4,0 3,5 3,0 3,0 3,0 3,5 3,5 3,0 3,0 3,0 4,0 3,5 3,0 3,0 3,0 4,0 3,5 3,0 3,0 3,0	3,5					
Temperature range III ⁴⁾ :	dry and wet concrete	h _{et} ≤12d h _{et} ≤12d h _{et} >12d		4,0	3,5	3,0	3,0	3,0	3,0 3,0		
72°C/43°C	flooded bore hole ⁵⁾		≤12d						3,0		
Partial safety factor (dry a	and wet concrete)	$\gamma_{Mp} = \gamma_{Mc}$ ¹		1,	8 ²⁾		2,	1 ³⁾			
Partial safety factor (flood	ded bore hole)	$\gamma_{Mp} = \gamma_{Mc}$ ¹)			2	2,1 ³⁾				
								04			
Increasing factors for concrete ψ_c		C40/50				1	,08				
10		C50/60				1	,10				
Splitting failure											
		h≥	2•h _{ef}			1,	0•h _{ef}				
Characteristic edge dista	nce c _{cr,sp} [mm]		h>1,3∙h _{ef}	5·h _{ef} – 2·h							
		h≤1	,3∙h _{ef}				4•h _{ef}				
Characteristic spacing		S _{cr,sp}	[mm]		- 2)	2.	C _{cr,sp}	. 2)			
Partial safety factor (dry a	,	γ _{Msp} ¹⁾		1,	8 ²⁾		-	1 "			
Partial safety factor (flood	ional regulations	γ _{Msp} ¹⁾				2	,1 ³⁾				
²⁾ The partial safety factor ³⁾ The partial safety factor ⁴⁾ Explanations see chapt ⁵⁾ Applications in flooded	$\gamma_2 = 1,4$ is included. er 1.2	allowed									

Design TR029

Table 11: Design according to TR029 Characteristic values for shear loads in cracked and uncracked concrete

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms,V} 1)					1,	25			
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Partial safety factor	γ _{Ms,V} 1)				1,	56			2,	38
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Partial safety factor	γ _{Ms,V} 1)					1,	25			
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Partial safety factor	γ _{Ms,V} 1)				1,	56			2,	38
Concrete pry out failure										
Factor k in Equation (5.7) of Technical Rep TR 029 for the design of Bonded Anchors	ort					2	,0			
Partial safety factor	γ _{Mcp} ¹⁾					1,5	0 2)			
Concrete edge failure										
See chapter 5.2.3.4 of Technical Report TF	R 029 for	the desig	gn of Bo	nded An	chors					
Partial safety factor	γ _{Mc} ¹⁾					1,5	0 2)			
1) In absence of other national regulations										

1) In absence of other national regulations

2) The partial safety factor γ_{2} = 1,0 is included.

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex 12
Application with threaded rod Design method A: Characteristic values for shear loads in cracked and uncracked concrete	
Design TR029	

Anchor size thre	aded rod		М 8	M 10	M 12	M 16	M 20	M 24	M 27	м 30
Temperature ran	ge 40°C/24°	°C for uncracked conci	rete C20/2	5						
Displacement	δ _{N0}	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature ran	ge 72°C/43°	°C and 60°C/43°C for u	ncracked o	concrete	e C20/25	;				
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16
Temperature ran	ge 40°C/24°	°C for cracked concrete	e C20/25							
Displacement	δ _{ΝΟ}	[mm/(N/mm ²)]	-	-	0,032	0,037	0,042	0,048	0,054	0,062
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	-	-	0,21	0,21	0,21	0,21	0,21	0,21
Temperature ran	ge 72°C/43°	°C and 60°C/43°C for ci	racked cor	ncrete C	20/25					
Displacement	δ _{N0}	[mm/(N/mm ²)]	-	-	0,037	0,043	0,049	0,055	0,063	0,07
Displacement	δ _{N∞}	[mm/(N/mm ²)]	-	-	0,24	0,24	0,24	0,24	0,24	0,24

 $^{1)}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{Sd} / 1,4;$ Displacement for long term load = $\delta_{N\infty} \cdot \tau_{Sd} / 1,4;$ (τ_{Sd} : design bond strength)

Table 13: Displacements for shear loads ²⁾

Anchor diameters			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Displacement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

 $^{2)}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4;$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4;$ (V_d: design shear load)

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex 13

Application with threaded rod Displacements

Design TR029

Anchor size reinforcing	bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
(Properties acc. to Annex	(4)											
Characteristic tension res B500B according to DIN4		N _{Rk,s}	[kN]	28	43	62	85	111	173	270	339	44
Partial safety factor	400-2.2009	γ _{Ms,N} 1)						1,40				
Combined pullout and co	ncrete cone failure	1110,11										
Characteristic bond resist	tance τ _{Rk,ucr} [N/mm ²	2] in uncra	acked conc	rete C	20/25							
Temperature range I ⁴⁾ :	dry and wet concrete		≤12d >12d	11 9,0	11 9,5	10 9,0	10 9,5	9,5 9,5	9,0 9,0	9,0 9,0	8,5 8,5	8, 8,
40°C/24°C	flooded bore hole ⁶⁾		≤12d	9,0 11	10	9,0	9,5 8,0	9,5 7,5	9,0 6,5	5,5	5,0	<u>,</u> 5,
Tomporature range (14).	dry and wet	h _{ef}	≤12d	6,5	6,5	6,5	6,0	6,0	5,5	5,5	5,0	5,
Temperature range II ⁴⁾ : 60°C/43°C	flooded bore		>12d ≤12d	5,0 6,5	5,5 6,5	6,0 6,5	5,5 6,0	6,0 6,0	5,5 5,5	5,5 4,5	5,0 4,5	5, 4,
	hole ⁶⁾ dry and wet	h _{ef}	≤12d	6,0	6,0	5,5	5,5	5,5	5,0	4,5	4,5	4,
Temperature range III ⁴⁾ : 72°C/43°C	concrete flooded bore		>12d ≤12d	5,0 6,0	5,0 6,0	5,0 5,5	5,0 5,5	5,5 5,5	5,0 5,0	4,5 4,0	4,5 4,0	4, 3,
Partial safety factor (dry a	hole ⁶⁾	γ _{Mp} = γ _N		0,0	0,0	1,8 ²⁾	5,5	5,5	5,0	4,0 2,1	,	3,
Partial safety factor (flood	,					1,0		2,1 ³⁾		۲,۱		
		$\frac{\gamma_{Mp} = \gamma_{Mc}}{C30/37}$						1,04				
creasing factors for oncrete ψ_{c}	C40/50						1,08					
	C50/60						1,10					
Splitting failure												
		h≥	:2·h _{ef}					1,0∙h _{ef}				
Characteristic edge dista	nce c _{cr,sp} [mm]	2,0·h _{ef} >	>h>1,3∙h _{ef}				5.	h _{ef} −2·	h			
		h≤	1,3•h _{ef}					2,4∙h _{ef}				
Characteristic spacing		S _{cr,sp}	[mm]					2·c _{cr,sp}	-			
Partial safety factor (dry a	and wet concrete)	γ _{Msp} ¹⁾				1,8 ²⁾				2,1	3)	
Partial safety factor (flood	ded bore hole)	γ _{Msp} ¹⁾						2,1 ³⁾				
 In absence of other The partial safety fa The partial safety fa The partial safety fa Explanations see ch For reinforcing bars determined acc. to Applications in flood Regarding design of post- 	actor $\gamma_2 = 1,2$ is inclu- actor $\gamma_2 = 1,4$ is inclu- napter 1.2 a, which do not com Technical Report T ded holes only for h	uded. µded. ply with [R 029, E _{lef} ≤ 12d a	quation (5. llowed	1).	racteris	tic resis	stance I	N _{Rk,s} sh	all be			

Page 24 of European technical approval ETA-08/0376 of 4 April 2013

Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure (Properties	acc. to Annex 4)									
Characteristic tension res B500B according to DIN4	istance,	N _{Rk,s}	[kN]	62	85	111	173	270	339	442
Partial safety factor	00-2.2009	γ _{Ms,N} ¹⁾					1,40			
Combined pullout and c	oncrete cone failure	1103,14								
Characteristic bond resist		cked concre	te C20/25							
Temperature range I ⁴⁾ :	dry and wet concrete	h _{ef} ≤	12d	5,5	4,5	4,5	4,0	3,5	3,5	3,5
40°C/24°C	flooded bore hole ⁶⁾	h _{ef} > h _{ef} ≤		5,0 5,5	4,5 4,5	4,5 4,0	4,0 3,5	3,5 3,0	3,5 3,0	3,5 3,0
		h _{ef} ≤		3,0	3,0	2,5	2,5	2,0	2,0	2,0
Temperature range II ⁴⁾ : 60°C/43°C	dry and wet concrete	h _{ef} >	12d	2,5	3,0	2,5	2,5	2,0	2,0	2,0
	flooded bore hole ⁶⁾	h _{ef} ≤12d h _{ef} ≤12d		3,0 3,0	3,0 2,5	2,5 2,5	2,5 2,0	2,0 2,0	2,0 2,0	2,0 2,0
Temperature range III ⁴⁾ :	dry and wet concrete	n _{ef} ≤ h _{ef} >		3,0 2,5	2,5 2,5	2,5 2,5	2,0 2,0	2,0 2,0	2,0 2,0	2,0
72°C/43°C	flooded bore hole ⁶⁾	h _{ef} ≤12d		3,0	2,5	2,5	2,0	2,0	2,0	2,0
Partial safety factor (dry a	nd wet concrete)	$\gamma_{Mp} = \gamma_{Mc}^{1}$		1,8 ²⁾ 2,1 ³⁾						
Partial safety factor (flood	ed bore hole)	$\gamma_{Mp} = \gamma_{Mc}^{1}$)		2,1 ³⁾					
		C30/37					1,04			
ncreasing factors for oncrete ψ_c		C40/50					1,08			
		C50/60					1,10			
Splitting failure										
		h≥2	?∙h _{ef}				1,0∙h _{ef}			
Characteristic edge distar	ice c _{cr,sp} [mm]	2,0∙h _{ef} >ł	ı>1,3∙h _{ef}			5	5•h _{ef} – 2	٠h		
		h≤1,	3∙h _{ef}				2,4·h _{ef}			
Characteristic spacing		S _{cr,sp}	[mm]	_			2·c _{cr,sp}		0	
Partial safety factor (dry a		γ _{Msp} ¹⁾		_	1,8 ²⁾		2)	2,1	3)	
Partial safety factor (flood	ed bore hole)	γ _{Msp} ¹⁾					2,1 ³⁾			
¹⁾ In absence of other nat	$r \gamma_2 = 1,2$ is included. $r \gamma_2 = 1.4$ is included.				No sha	ill be				
 ³⁾ The partial safety factor ⁴⁾ Explanations see chapt ⁵⁾ For reinforcing bars, where the same set of the same se	hich do not comply with DIN hnical Report TR 029, equa holes only for h _{ef} ≤ 12d allc	tion (5.1). wed		sistance						

Characteristic value	es for sl	near lo	ads in	cracke	ed and	uncra	cked c	oncret	e		
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm (Proper	rties acc	. Annex	(4)								
Characteristic shear resistance, B500B according to DIN488-2: 2009 ³⁾	V _{Rk,s}	[kN]	14	22	31	42	55	86	135	169	221
Partial safety factor	(Properties acc. Annex 4) γ_{009} 3) $V_{Rk,s}$ [KN] 14 22 31 42 55 86 135 169 $\gamma_{Ms,V}$ 1) 1,5 1,5 50 1,5 50 1012 1422 $\gamma_{Ms,V}$ 1) 133 65 112 178 265 518 1012 1422 $\gamma_{Ms,V}$ 1) 1,5 1,5 1,5 1,5 1,5 hnical Report 2.0										
Steel failure with lever arm (Properties	s acc. Ar	nnex 4)				-			-		
Characteristic bending moment, B500B according to DIN488-2: 2009 ⁴⁾			33	65	112	178	265	518	1012	1422	2123
Partial safety factor	γ _{Ms,V} 1)						1,5				
Concrete pry out failure											
Factor k in Equation (5.7) of Technical Re TR 029 for the design of Bonded Anchora	S						2,0				
Partial safety factor	γ _{Mcp} ¹⁾						1,50 ²⁾				
Concrete edge failure											
See chapter 5.2.3.4 of Technical Report	TR 029 f	or the d	esign o	f bonde	d ancho	rs					
Partial safety factor	γ _{Mc} ¹⁾						1,50 ²⁾				
Regarding design of post-installed re	bar as a	anchor :	see ch	apter 4	.2.						
POWERS PURE150-PRO Injectio	on resir	n with a	anchor	rod fo	or conc	rete		A	nnex ⁻	16	
Application with reinforcing bar Design method A: Characteristic values for she	ear loads	in cracke	d and ur	ncracked		esign ⁻	TR029				

Table 17:	Displac	cements for tens	ion load	ds ¹⁾							
Anchor size re	einforcing	bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Temperature	range 40	°C/24°C for unci	racked o	concrete	e C20/2	5					
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
Displacement	δ_{N^∞}	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature range 72°C/43°C and 60°C/43°C for uncracked concrete C20/25											
Displacement	δ _{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature	range 40	°C/24°C for crac	ked cor	ncrete C	20/25						
Displacement	δ_{N0}	[mm/(N/mm²)]	-	-	0,032	0,035	0,037	0,042	0,049	0,056	0,064
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	-	-	0,21	0,21	0,21	0,21	0,21	0,21	0,21
Temperature	range 72	°C/43°C and 60°	C/43°C 1	for crac	ked cor	ncrete C	20/25				
Displacement	δ_{N0}	[mm/(N/mm ²)]	-	-	0,037	0,040	0,043	0,049	0,056	0,064	0,073
Displacement	δ _{N∞}	[mm/(N/mm²)]	-	-	0,24	0,24	0,24	0,24	0,24	0,24	0,24

 $^{1)}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0}\cdot\tau_{Sd}$ / 1,4; Displacement for long term load = $\delta_{N\infty}\cdot\tau_{Sd}$ / 1,4; $(\tau_{Sd}$: design bond strength)

Table 18: Displacements for shear loads ²⁾

Anchor size reint	iorcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Displacement	δ_{V0}	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,04	0,04

 $\label{eq:starsest} \begin{array}{l} ^{2)} \mbox{ Calculation of the displacement for design load} \\ \mbox{ Displacement for short term load} = \delta_{Vo} \cdot V_d \ / \ 1,4; \\ \mbox{ Displacement for long term load} = \delta_{V\infty} \cdot V_d \ / \ 1,4; \\ (V_d: design shear load) \end{array}$

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex 17
Application with reinforcing bar Displacements	

Anchor size internal thr	eaded sleeve			M 8	M 10	M 12	M 16	M 20	
External diameter				12	16	20	24	30	
Effective anchorage dept	h	h _{ef}	[mm]	80	90	110	150	200	
Steel failure									
Characteristic tension res Steel, property class 5.8	sistance,	N _{Rk,s}	[kN]	18	29	42	78	122	
Characteristic tension res Steel, property class 8.8	sistance,	N _{Rk,s}	[kN]	29	46	67	125	196	
Partial safety factor		γ _{Ms,N} 1)				1,50			
Characteristic tension res Stainless steel A4 and H0 property class 50 (>M24) property class 70 (≤ M24)	CR, and	N _{Rk,s}	[kN]	26	41	59	110	171	
Partial safety factor		$\gamma_{Ms,N}$ 1)				1,87			
Combined pullout and o	concrete cone failure								
Characteristic bond resis	tance τ _{Rk,ucr} [N/mm ²] in un	cracked c	oncrete C20)/25					
Temperature range I ⁵⁾ :	dry and wet concrete	h _{ef} ≤12d		15,0	14,0	13,0	12,0	12,0	
40°C/24°C	flooded bore hole	h _{ef} ≤12d		13,0	10,0	9,5	8,5	7,0	
Temperature range II ⁵⁾ :	dry and wet concrete	h _{ef} ≤12d		9,0	8,5	8,0	7,5	7,5	
60°C/43°C	flooded bore hole	h _{ef} ≤12d		9,0	8,5	7,5	7,0	6,0	
Temperature range III ⁵⁾ :	dry and wet concrete	h _{ef} ≤12d	k	8,0	7,5	7,0	7,0	6,5	
72°C/43°C	flooded bore hole	h _{ef} ≤12d		8,0	7,5	7,0	6,0	5,5	
Partial safety factor (dry and wet concrete)		$\gamma_{Mp} = \gamma$	1) Mc	1,	8 ³⁾		2,1 ⁴⁾		
Partial safety factor (flooded bore hole)		$\gamma_{Mp} = \gamma$	1) Mc			2,1 ⁴⁾			
Increasing factors for		C30/37	7	1,04					
concrete ψ_c		C40/50)			1,08			
		C50/60)			1,10			
Splitting failure									
		h	≥2·h _{ef}			1,0•h _{ef}			
Characteristic edge dista	nce c _{cr,sp} [mm]	2,0·h _e	_f >h>1,3∙h _{ef}		Ę	5∙h _{ef} – 2∙h			
		h≤	1,3∙h _{ef}			2,4•h _{ef}			
Characteristic spacing		S _{cr,sp}	[mm]			2·c _{cr,sp}			
Partial safety factor (dry a	and wet concrete)	γ _{Msp} ¹⁾		1,	8 ³⁾		2,1 ⁴⁾		
Partial safety factor (flood	led bore hole)	γ _{Msp} ¹⁾				2,1 ⁴⁾			
3) The partial safety fa	actor $\gamma_2 = 1,0$ is included. actor $\gamma_2 = 1,2$ is included. actor $\gamma_2 = 1,4$ is included.								

Anchor size internal th	readed sleeve			M 8	M 10	M 12	M 16	M 20	
External diameter				12	16	20	24	30	
Effective anchorage dep	th	h _{ef}	[mm]	80	90	110	150	200	
Steel failure									
Characteristic tension re		N _{Rk,s}	[kN]	18	29	42	78	122	
Steel, property class 5.8 Characteristic tension re			[1.1.1]						
Steel, property class 8.8		N _{Rk,s}	[kN]	29	46	67	125	196	
Partial safety factor		γ _{Ms,N} 1)				1,50			
Characteristic tension re Stainless steel A4 and H property class 50 (>M24 property class 70 (\leq M2 ⁴	ICR,) and	N _{Rk,s}	[kN]	26	41	59	110	171	
Partial safety factor		γ _{Ms,N} 1)				1,87			
Combined pullout and	concrete cone failure								
Characteristic bond resis	concrete C2	0/25							
Temperature range I ⁵⁾ :	dry and wet concrete	h _{ef} ≤12d		7,5	6,5	6,0	5,5	5,5	
40°C/24°C	flooded bore hole	h _{ef} ≤12d		7,5	6,0	5,0	4,5	4,0	
Temperature range II ⁵⁾ :	dry and wet concrete	h _{ef} ≤12d		4,5	4,0	3,5	3,5	3,5	
60°C/43°C	flooded bore hole	h _{ef} ≤12d		4,5	4,0	3,5	3,5	3,5	
Temperature range III ⁵⁾ : 72°C/43°C	dry and wet concrete	h _{ef} ≤12d	(4,0	3,5	3,0	3,0	3,0	
III ⁵⁾ : 72°C/43°C	flooded bore hole	h _{ef} ≤12d	[4,0	3,5	3,0	3,0	3,0	
Partial safety factor (dry	and wet concrete)	$\gamma_{Mp} = \gamma_N$	1) Ac	1,8 ³⁾ 2,1 ⁴⁾					
Partial safety factor (floo	ded bore hole)	$\gamma_{Mp} = \gamma_N$	1) //c			2,1 ⁴⁾			
		C30/37				1,04			
Increasing factors for concrete ψ_c		C40/50				1,08			
		C50/60				1,10			
Splitting failure									
			h≥2•h _{ef}			1,0∙h _e	f		
Characteristic edge dista	ance c _{cr,sp} [mm]	2,0•h	_{ef} >h>1,3∙h _{ef}			5•h _{ef} – 2	?∙h		
		h	≤1,3∙h _{ef}			2,4∙h _e	f		
Characteristic spacing		S _{cr,sp}	[mm]			2·c _{cr,sp}	>		
Partial safety factor (dry	and wet concrete)	γ _{Msp} ¹⁾		1,8 ³⁾ 2,1 ⁴⁾					
Partial safety factor (floo	ded bore hole)	γ _{Msp} ¹⁾		2,1 ⁴⁾					

²⁾ The partial safety factor $\gamma_2 = 1,0$ is included. ³⁾ The partial safety factor $\gamma_2 = 1,2$ is included. ⁴⁾ The partial safety factor $\gamma_2 = 1,4$ is included. ⁵⁾ Explanations see chapter 1.2

Annex 19

Application with internal threaded sleeve

Design method A: Characteristic values for tension loads in cracked concrete

Design TR029

Page 29 of European technical approval ETA-08/0376 of 4 April 2013

English translation prepared by DIBt

			M 8	M 10	M 12	M 16	M 20
External diameter			12	16	20	24	30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	150	200
Steel failure without lever arm							
Characteristic shear resistance,	V _{Rk,s}	[kN]	9	15	21	39	61
Steel, property class 5.8 Characteristic shear resistance,			_				
Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98
Partial safety factor	γ _{Ms,V} 1)				1,25		
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s}	[kN]	13	20	30	55	86
Partial safety factor	γ _{Ms,V} 1)				1,56		
Steel failure with lever arm	1				-		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324
Steel, property class 5.8 Characteristic bending moment,			19	57	00		024
Steel, property class 8.8	M ⁰ Rk,s	[Nm]	30	60	105	266	519
Partial safety factor	γ _{Ms,V} 1)				1,25		
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ Rk,s	[Nm]	26	52	92	232	454
Partial safety factor	γ _{Ms,V} 1)				1,56		
Concrete pryout failure							
Factor k in Equation (5.7) of Technical Rep TR 029 for the design of Bonded Anchors					2,0		
Partial safety factor	γ _{Mcp} ¹⁾				1,50		
Concrete edge failure							
See chapter 5.2.3.4 of Technical Report Th	-	the desig	n of Bondeo	d Anchors			
Partial safety factor	γ _{Mc} ¹⁾				1,50		

Deutsches Institut für Bautechnik

Table 22:	Displacem	ents for tension lo	ads 1)				
Anchor size int	ternal thread	led sleeve	M 8	M 10	M 12	M 16	M 20
External diamet	er		12	16	20	24	30
Effective anchor	rage depth	h _{ef} [mm]	80	90	110	150	200
Temperature ra	ange 40°C/24	4°C for uncracked co	ncrete C20/2	25			
Displacement	δ _{N0}	[mm/ (N/mm²)]	0,015	0,020	0,024	0,029	0,035
Displacement	$\delta_{N\infty}$	[mm/ (N/mm²)]	0,061	0,079	0,096	0,114	0,140
Temperature ra	ange 72°C/43	3°C and 60°C/43°C fo	r uncracked	concrete C	20/25		
Displacement	δ _{N0}	[mm/ (N/mm²)]	0,018	0,023	0,028	0,033	0,043
Displacement	$\delta_{N\infty}$	[mm/ (N/mm ²)]	0,070	0,091	0,111	0,131	0,161
Temperature ra	ange 40°C/24	4°C for cracked conc	rete C20/25				
Displacement	δ _{N0}	[mm/ (N/mm²)]	0,032	0,037	0,042	0,048	0,055
Displacement	$\delta_{N\infty}$	[mm/ (N/mm ²)]	0,210	0,210	0,210	0,210	0,210
Temperature ra	ange 72°C/43	3°C and 60°C/43°C fo	r cracked co	ncrete C20/	/25		
Displacement	δ_{N0}	[mm/ (N/mm²)]	0,037	0,043	0,049	0,055	0,063
Displacement	$\delta_{N\infty}$	[mm/ (N/mm ²)]	0,240	0,240	0,240	0,240	0,240

 $^{1)}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{Sd} / 1,4;$ Displacement for long term load = $\delta_{N\infty} \cdot \tau_{Sd} / 1,4;$ (τ_{Sd} : design bond strength)

Table 23: Displacements for shear loads²⁾

Anchor size internal threaded sle	eve		M 8	M 10	M 12	M 16	M 20
External diameter			12	16	20	24	30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	150	200
Displacement	δ _{V0}	[mm/ kN]	0,05	0,04	0,04	0,03	0,03
Displacement	$\delta_{V\infty}$	[mm/ kN]	0,08	0,06	0,06	0,05	0,05

 $^{2)}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{Vo} \cdot V_d /$ 1,4; Displacement for long term load = $\delta_{V\infty} \cdot V_d /$ 1,4; (Vd: design shear load)

Annex 21

Application with internal threaded sleeve Displacements

Design TR029

Temperature range [*]:dry and wet concrete $h_{ef} > 12d$ $40^{\circ}C/24^{\circ}C$ flooded bore hole ⁵⁾ $h_{ef} \le 12d$ Temperature range III ⁴):dry and wet concrete $h_{ef} \le 12d$ $60^{\circ}C/43^{\circ}C$ flooded bore hole ⁵⁾ $h_{ef} \le 12d$ Temperature range III ⁴):dry and wet concrete $h_{ef} \le 12d$ Temperature range III ⁴):dry and wet concrete $h_{ef} \le 12d$ Temperature range III ⁴):dry and wet concrete $h_{ef} \le 12d$ Temperature range III ⁴):flooded bore hole ⁵⁾ $h_{ef} \le 12d$ Partial safety factor (dry and wet concrete) $\gamma_{Mp} = \gamma_{Mc}^{-1}$ Partial safety factor (dry and wet concrete) $\gamma_{Mp} = \gamma_{Mc}^{-1}$ Increasing factors forC30/37	18 29 26 26 15 15 12 15 9,5 7,5 9,5 8,5 7,0 8,5	15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	42 67 59 1,; 15 14 13 9,0 8,0 9,0 8,0 7,0 8,0 7,0 8,0 3 ²	110 87 14 14 10 8,5 8,5 7,5 7,5 7,5 7,5	122 196 50 171 171 13 13 9,5 8,0 8,0 7,5 7,0 7,0 7,0 7,0	$\begin{array}{c c c c c c c c } & 2&82 & 3&68 \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	280 449 281 86 12 7,0 7,5 7,5 6,0 6,5 6,5 5,5	
Steel, property class 5.8INRk.s[KN]Characteristic tension resistance, Steel, property class 8.8NRk.s[KN]Partial safety factor $\gamma_{Ms,N}^{1)}$ Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)NRk.s[KN]Partial safety factor $\gamma_{Ms,N}^{1)}$ Combined pullout and concrete cone failureNRk.s[KN]Combined pullout and concrete cone failure $\gamma_{Ms,N}^{1)}$ Combined pullout and concrete cone failureCombined pullout and concrete cone failureCharacteristic bond $\tau_{Rk,ucr}$ [N/mm ²] resistance in uncracked concrete CTemperature range I ⁴): flooded bore hole ⁵ $h_{ef} \leq 12d$ $h_{ef} < 12d$ Temperature range II ⁴): flooded bore hole ⁵ $h_{ef} \leq 12d$ $h_{ef} < 12d$ dry and wet concrete $h_{ef} \leq 12d$ $h_{ef} < 12d$ Temperature range III ⁴): 72°C/43°Cdry and wet concrete $h_{ef} < 12d$ $h_{ef} < 12d$ dry and wet concreteTemperature range III ⁴): 72°C/43°Cdry and wet concrete $h_{ef} < 12d$ $h_{ef} < 12d$ dry and wet concretePartial safety factor (dry and wet concrete) $\gamma_{Mp} = \gamma_{Mc}^{-1}$ Partial safety factor (flooded bore hole ⁵) $h_{ef} < 12d$ Partial safety factor (flooded bore hole) $\gamma_{Mp} = \gamma_{Mc}^{-1}$ C30/37C30/37Increasing factors for concrete ψ_c C30/37C30/37Increasing factors for concrete ψ_c KaKaFactor ref. bond strength $\tau_{Rk,c}$ KaKa	29 26 220/25 15 12 15 9,5 7,5 9,5 8,5 7,0	46 41 41 5 5 15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	67 59 1, 15 14 13 9,0 8,0 9,0 8,0 7,0 8,0 7,0 8,0	125 1, 110 87 14 14 14 10 8,5 8,5 8,5 7,5 7,5 7,5	196 50 171 13 13 9,5 8,0 7,5 7,0 7,0 7,0 7,0	282 247 12 12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	368 230 2,1 12 7,5 7,5 7,5 6,5 6,5 6,5 6,5	449 281 36 12 7,0 7,5 7,5 6,0 6,5 6,5
$\begin{array}{c c c c c c c } \hline Characteristic tension resistance, \\Steel, property class 8.8 & & & & & & & & & & & & & & & & & &$	26 15 12 15 9,5 7,5 9,5 8,5 7,0	41 5 15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	59 1, 15 14 13 9,0 8,0 9,0 8,0 7,0 8,0 7,0 8,0	1, 110 87 14 14 14 10 8,5 8,5 8,5 7,5 7,5 7,5 7,5	50 171 13 13 9,5 8,0 8,0 7,5 7,0 7,0 7,0 7,0	247 12 12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	230 2,: 12 7,5 7,5 7,5 6,5 6,5 6,5	281 36 12 7,0 7,5 7,5 6,0 6,5 6,5
Steel, property class 8.8Partial safety factorPartial safety factor $\gamma_{Ms,N}^{(1)}$ Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24) $N_{Rk,s}$ [[kN]Partial safety factor $\gamma_{Ms,N}^{(1)}$ $Partial safety factor\gamma_{Ms,N}^{(1)}Combined pullout and concrete cone failureCharacteristic bond \tau_{Rk,uer} [N/mm2] resistance in uncracked concrete CTemperature range I44:flooded bore hole5dry and wet concreteh_{ef} \leq 12dh_{ef} < 12dTemperature range II44:flooded bore hole5dry and wet concreteh_{ef} \leq 12dh_{ef} > 12dTemperature range III41:flooded bore hole5h_{ef} \leq 12dh_{ef} > 12dPartial safety factor (dry and wet concrete)flooded bore hole5h_{ef} \leq 12dh_{ef} > 12dPartial safety factor (flooded bore hole)\gamma_{Mp} = \gamma_{Mc}^{-1}C30/37C30/37C30/37C30/37CadvorFactor ref. bond strength \tau_{Rk,c}kaKa$	26 15 12 15 9,5 7,5 9,5 8,5 7,0	5 15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	1,; 15 14 13 9,0 8,0 9,0 8,0 7,0 8,0 7,0	1, 110 87 14 14 14 10 8,5 8,5 8,5 7,5 7,5 7,5 7,5	50 171 13 13 9,5 8,0 8,0 7,5 7,0 7,0 7,0 7,0	247 12 12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	230 2,: 12 7,5 7,5 7,5 6,5 6,5 6,5	86 12 12 7,0 7,5 7,5 6,0 6,5 6,5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C20/25 15 12 15 9,5 7,5 9,5 8,5 7,0	5 15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	1,; 15 14 13 9,0 8,0 9,0 8,0 7,0 8,0 7,0	110 87 14 14 10 8,5 8,5 7,5 7,5 7,5 7,5	171 13 13 9,5 8,0 8,0 7,5 7,0 7,0 7,0 7,0	12 12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	12 12 7,5 7,5 7,5 6,5 6,5 6,5	86 12 12 7,0 7,5 7,5 6,0 6,5 6,5
Partial safety factor $\gamma_{Ms,N}$ 1)Combined pullout and concrete cone failureCharacteristic bond $\tau_{Rk,ucr}$ [N/mm²] resistance in uncracked concreteCharacteristic bond $\tau_{Rk,ucr}$ [N/mm²] resistance in uncracked concretehef<12dTemperature range II ⁴): 40°C/24°Cdry and wet concretehef<12dImage: down and wet concretehef<12ddry and wet concretehef<12dflooded bore hole ⁵)hef<12ddry and wet concretehef<12dTemperature range III ⁴): 60°C/43°Cdry and wet concretehef<12ddry and wet concreteTemperature range III ⁴): 72°C/43°Cdry and wet concretehef<12d hef<12ddry and wet concretehef<12dTemperature range III ⁴): 72°C/43°Cdry and wet concretehef<12d hef<12ddry and wet concretehef<12dTemperature range III ⁴): 72°C/43°Cdry and wet concretehef<12d hef<12ddry and wet concretehef<12d hef<12ddry and wet concretehef<12d hef<12dPartial safety factor (dry and wet concrete) $\gamma_{Mp} = \gamma_{Mc}$ 1)C30/37C30/37dialIncreasing factors for concrete ψ_c K8K8Factor concrete cone equationKucrKac	15 12 9,5 7,5 9,5 8,5 7,0	15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	15 14 13 9,0 8,0 9,0 8,0 7,0 8,0	14 14 10 8,5 8,5 7,5 7,5 7,5 7,5	13 9,5 8,0 7,5 7,0 7,0 7,0 7,0	12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	12 12 7,5 7,5 7,5 6,5 6,5 6,5	12 12 7,0 7,5 7,5 6,0 6,5 6,5
$\begin{array}{c c} \mbox{Characteristic bond $\tau_{\text{Bk,uer}}$ [N/mm^2] resistance in uncracked concrete C \\ \hline Temperature range I^4: $ dry and wet concrete $ $h_{ef} \le 12d$ \\ \hline flooded bore hole^5$ $h_{ef} \le 12d$ \\ \hline flooded bore hole^5$ $h_{ef} \le 12d$ \\ \hline h_{ef} \le 12d$ \\ \hline flooded bore hole^5$ $h_{ef} \le 12d$ \\ \hline h_{ef} \le 12d$ \\ \hline flooded bore hole^5$ $h_{ef} \le 12d$ \\ \hline flooded bore hole^5$ $h_{ef} \le 12d$ \\ \hline flooded bore hole^5$ $h_{ef} \le 12d$ \\ \hline h_{ef} > 12d$ \\ \hline h_{ef} \le 12d$ \\ \hline flooded bore hole^5$ $h_{ef} \le 12d$ \\ \hline h_{ef} \le 12d$	15 12 9,5 7,5 9,5 8,5 7,0	15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	14 13 9,0 8,0 9,0 8,0 7,0 8,0	14 10 8,5 8,5 8,5 7,5 7,5 7,5	13 9,5 8,0 7,5 7,0 7,0 7,0 7,0	12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	12 7,5 7,5 6,5 6,5 6,5 6,5	12 7,0 7,5 7,5 6,0 6,5 6,5
$\begin{array}{c} \mbox{Temperature range I}^{4)}: \\ 40^{\circ}\mbox{C}/24^{\circ}\mbox{C} & \mbox{dry and wet concrete} & \mbox{h}_{ef} \le 12d \\ \hline \mbox{flooded bore hole}^{5)} & \mbox{h}_{ef} \le 12d \\ \hline \mbox{h}_{ef} $	15 12 9,5 7,5 9,5 8,5 7,0	15 13 14 9,5 8,0 9,5 8,5 7,0 8,5	14 13 9,0 8,0 9,0 8,0 7,0 8,0	14 10 8,5 8,5 8,5 7,5 7,5 7,5	13 9,5 8,0 7,5 7,0 7,0 7,0 7,0	12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	12 7,5 7,5 6,5 6,5 6,5 6,5	12 7,0 7,5 7,5 6,0 6,5 6,5
$\begin{array}{c} \mbox{Temperature range } \mbox{h^{\circ}$:} \\ \mbox{$40^{\circ}$C/24^{\circ}$C$} & \mbox{$h$^{\circ}$dry and wet concrete}$ & h^{\circ}$efs12d$ \\ \hline \mbox{$flooded bore hole$^{5)}$} & h^{\circ}$efs12d$ \\ \hline \mbox{h^{\circ}$efs12d$} \\ \hline \mbox{$flooded bore hole$^{5)}$} & h^{\circ}$efs12d$ \\ \hline \mbox{h^{\circ}$efs12d$} \\ \hline \mbox{$flooded bore hole$^{5)}$} & h^{\circ}$efs12d$ \\ \hline \mbox{h^{\circ}$efs12d$} \\ \hline \mbox{$flooded bore hole$^{5)}$} & h^{\circ}$efs12d$ \\ \hline \mbox{h^{\circ}$efs12d$} \\ \hline \mbox{$flooded bore hole$^{5)}$} & h^{\circ}$efs12d$ \\ \hline \mbox{h^{\circ}$efs12d$} \\ \hline \mbox{$flooded bore hole$^{5)}$} & h^{\circ}$efs12d$ \\ \hline \mbox{h^{\circ}$efs12d$} \\ \hline \mbox{$flooded bore hole$^{5)}$} & h^{\circ}$efs12d$ \\ \hline \mbox{h^{\circ}$efs12d$} \\ \hline \mbox{$Partial safety factor (dry $and wet concrete]$} & γ^{Mp} = $\gammaMc $^{1)}$ \\ \hline \mbox{$Partial safety factor (flooded bore hole$)} & γ^{Mp} = $\gammaMc $^{1)}$ \\ \hline \mbox{$Partial safety factor (flooded bore hole$)} & γ^{Mp} = $\gammaMc $^{1)}$ \\ \hline \mbox{$Partial safety factor (flooded bore hole$)} & γ^{Mp} = $\gammaMc $^{1)}$ \\ \hline \mbox{$Partial safety factor (flooded bore hole$)} & γ^{Mp} = $\gammaMc $^{1)}$ \\ \hline \mbox{C30/37$} & \hline \mbox{$C$40/50$} \\ \hline \mbox{C50/60$} & \hline \mbox{$Factor ref. bond strength $\tauRk,c} & k_8 \\ \hline \mbox{$Factor concrete cone equation} & k_{ucr} & \hline \end{tabular}$	12 15 9,5 7,5 9,5 8,5 7,0	13 14 9,5 8,0 9,5 8,5 7,0 8,5	14 13 9,0 8,0 9,0 8,0 7,0 8,0	14 10 8,5 8,5 8,5 7,5 7,5 7,5	13 9,5 8,0 7,5 7,0 7,0 7,0 7,0	12 8,5 7,5 7,5 7,0 7,0 7,0 7,0 6,0	12 7,5 7,5 6,5 6,5 6,5 6,5	12 7,0 7,5 7,5 6,0 6,5 6,5
$ \begin{array}{ c c c c c } \hline \mbox{flooded bore hole}^{(3)} & h_{ef} \leq 12d \\ \hline \mbox{flooded bore hole}^{(3)} & h_{ef} \leq 12d \\ \hline \mbox{h}_{ef} > 12d \\ \hline \mbox{flooded bore hole}^{(5)} & h_{ef} \leq 12d \\ \hline \mbox{h}_{ef} > 12d \\ \hline \mbox{flooded bore hole}^{(5)} & h_{ef} \leq 12d \\ \hline \mbox{h}_{ef} > 1d \\ \hline \$	9,5 7,5 9,5 8,5 7,0	9,5 8,0 9,5 8,5 7,0 8,5	9,0 8,0 9,0 8,0 7,0 8,0	8,5 8,5 8,5 7,5 7,5 7,5	8,0 8,0 7,5 7,0 7,0 7,0 7,0	7,5 7,5 7,0 7,0 7,0 6,0	7,5 7,5 6,5 6,5 6,5	7,5 7,5 6,0 6,5 6,5
$\begin{array}{c} \mbox{Temperature range ^{\gamma_1}:}\\ 60^{\circ}C/43^{\circ}C & \mbox{flooded bore hole}^{5)} & \mbox{h}_{ef} \leq 12d \\ \hline \mbox{flooded bore hole}^{5)} & \mbox{h}_{ef} \leq 12d \\ \mbox{h}_{ef} \leq 12d \\ \hline \mbox{h}_{ef} \leq 12d \\ \hline \mbox{h}_{ef} \leq 12d \\ \hline \mbox{flooded bore hole}^{5)} & \mbox{h}_{ef} \leq 12d \\ \hline \mbox{h}_{ef} \leq 12d \\ \hline \mbox{flooded bore hole}^{5)} & \mbox{h}_{ef} \leq 12d \\ \hline \mbox{h}_{e$	7,5 9,5 8,5 7,0	8,0 9,5 8,5 7,0 8,5	8,0 9,0 8,0 7,0 8,0	8,5 8,5 7,5 7,5 7,5	8,0 7,5 7,0 7,0 7,0 7,0	7,5 7,0 7,0 7,0 6,0	7,5 6,5 6,5 6,5	7,5 6,0 6,5 6,5
$ \begin{array}{c c c c c c } \hline & flooded \mbox{ bore hole}^{5)} & h_{ef} \le 12d \\ \hline & flooded \mbox{ bore hole}^{5)} & h_{ef} \le 12d \\ h_{ef} > 12d \\ \hline & h_{ef} \le 12d \\ \hline & h_{e$	9,5 8,5 7,0	9,5 8,5 7,0 8,5	9,0 8,0 7,0 8,0	8,5 7,5 7,5 7,5	7,5 7,0 7,0 7,0	7,0 7,0 7,0 6,0	6,5 6,5 6,5	6,0 6,5 6,5
$ \begin{array}{c} \mbox{dry and wet concrete} & h_{ef} > 12d \\ \hline \mbox{flooded bore hole}^{5)} & h_{ef} \le 12d \\ \hline \mbox{Partial safety factor (dry and wet concrete)} & \gamma_{Mp} = \gamma_{Mc} & 1 \\ \hline \mbox{Partial safety factor (flooded bore hole)} & \gamma_{Mp} = \gamma_{Mc} & 1 \\ \hline \mbox{Partial safety factor (flooded bore hole)} & \gamma_{Mp} = \gamma_{Mc} & 1 \\ \hline \mbox{Partial safety factor (flooded bore hole)} & \gamma_{Mp} = \gamma_{Mc} & 1 \\ \hline \mbox{C30/37} & \hline \\ \hline \mbox{C40/50} & \hline \\ \hline \mbox{C50/60} & \hline \\ \hline \mbox{Factor ref. bond strength } \tau_{\text{Rk,c}} & \text{K}_8 \\ \hline \mbox{Factor concrete cone equation} & \text{K}_{ucr} \end{array} $	7,0	7,0 8,5	7,0 8,0	7,5 7,5	7,0 7,0	7,0 6,0	6,5	6,5
$\begin{array}{ c c c c }\hline & flooded \mbox{ bore hole}^{5)} & h_{ef} \leq 12d \\ \hline Partial safety factor (dry and wet concrete) & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & & & \\ \hline & & & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & & \\ \hline & & & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & & \\ \hline & & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & & \\ \hline & & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & \\ \hline & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & \\ \hline & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & \\ \hline & & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & & \\ \hline & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & \\ \hline & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & \\ \hline & & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & \\ \hline & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & \\ \hline & & & \\ \hline Partial safety factor (flooded \mbox{ bore hole}) & & & \\ \hline \hline & & & \\ \hline$		8,5	8,0	7,5	7,0	6,0		
Partial safety factor (div and wet concrete) $\gamma_{Mp} = \gamma_{Mc}$ Partial safety factor (flooded bore hole) $\gamma_{Mp} = \gamma_{Mc}$ Increasing factors for concrete ψ_c C30/37C40/50C50/60Factor ref. bond strength $\tau_{Rk,c}$ k ₈ Factor concrete cone equationk _{ucr}		1,8	3 ²⁾	. 2.		2		
$\begin{tabular}{ c c c c } \hline C30/37 & \hline C40/50 & \hline C40/50 & \hline C50/60 & \hline \hline C50/60 & \hline \hline Factor ref. bond strength $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$				2.		۷,	1 ³⁾	
$\begin{tabular}{ c c c c } \hline C30/37 & \hline C40/50 & \hline C40/50 & \hline C50/60 & \hline \hline C50/60 & \hline \hline Factor ref. bond strength $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$				_,	1 ³⁾			
				1,	04			
C50/60 Factor ref. bond strength τ _{Rk,c} k ₈ Factor concrete cone equation k _{ucr}				1,	08			
Factor concrete cone equation k _{ucr}				1,	10			
				10	D,1			
Splitting failure				10	D,1			
h≥2·h _{ef}				1,0)∙h _{ef}			
$\label{eq:characteristic edge distance c_{cr,sp} [mm] \qquad 2,0 \cdot h_{ef} > h > 1,3 \cdot h_{ef}$					– 2·h			
h≤1,3∙h _{ef}					ŀ∙h _{ef}			
Characteristic spacing s _{cr,sp} [mm]			0)	2·c	cr,sp		2)	
Partial safety factor (dry and wet concrete) $\gamma_{Msp}^{(1)}$		1,8	3 ²⁾		2)	2,	1° [,]	
Partial safety factor (flooded bore hole) $\gamma_{Msp}^{1)}$				2,	1 ³⁾			
¹⁾ In absence of other national regulations ²⁾ The partial safety factor $\gamma_2 = 1,2$ is included. ³⁾ The partial safety factor $\gamma_2 = 1,4$ is included. ⁴⁾ Explanations see chapter 1.2 ⁵⁾ Applications in flooded holes only for h _{ef} ≤ 12d allowed								
POWERS PURE150-PRO Injection resin with anchor rod	d for c	concre	ete		Ar	nex 2	2	

Anchor size threaded ro	od			M 12	M 16	M 20	M 24	M 27	M 30		
Steel failure				•			1				
Characteristic tension res Steel, property class 5.8	istance,	N _{Rk,s}	[kN]	42	78	122	176	230	280		
Characteristic tension res Steel, property class 8.8	istance,	N _{Rk,s}	[kN]	67	125	196	282	368	449		
Partial safety factor		γ _{Ms,N} ¹⁾				1	,50				
Characteristic tension res Stainless steel A4 and H0 property class 50 (>M24)	CR,	N _{Rk,s}	[kN]	59	110	171	247	230	281		
Partial safety factor		γ _{Ms,N} ¹⁾			1	,87	196 282 368 1,50 171 247 230	86			
Combined pullout and o	tension resistance, y class 8.8 factor tension resistance, el A4 and HCR, s 50 (>M24) and 70 (\leq M24) factor ullout and concrete cone failure bond resistance $\tau_{Rk,cr}$ [N/mm ²] in c range II ⁴ : dry and wet concrete flooded bore hole ⁵) range III ⁴ : dry and wet concrete flooded bore hole ⁵) range III ⁴ : dry and wet concrete flooded bore hole ⁵) factor (dry and wet concrete) factor (flooded bore hole) tors for nd strength $\tau_{Rk,c}$ ete cone equation ure c edge distance $c_{cr,sp}$ [mm] c spacing factor (flooded bore hole) e of other national regulations I safety factor $\gamma_2 = 1,2$ is included. I safety factor $\gamma_2 = 1,4$ is included. I safety factor $\gamma_2 = 1,4$ is included. Ins see chapter 1.2 ns in flooded holes only for h _{ef} < 12c design see Annexes 34 and 35.										
Characteristic bond resist	ance $ au_{\text{Rk,cr}}$ [N/mm ²] in c	racked conc	crete C20/2	-				-			
Temperature range I ⁴⁾ :	dry and wet concrete	h _{ef} ≤ h _{ef} >		7,5 7,0	6,5 6,5				5,5 5,5		
40°C/24°C	flooded bore hole ⁵⁾	h _{ef} ≤		7,5	6,0				4,0		
Temperature range II ⁴⁾ :	dry and wet concrete	h _{ef} ≤ h _{ef} >		4,5 4,0	4,0 4,0				3,5 3,5		
60°C/43°C	flooded bore hole ⁵⁾	h _{ef} ≤	12d	4,5	4,0	3,5		3,5	3,5		
Temperature range III ⁴⁾ :	dry and wet concrete	h _{ef} ≤ h _{ef} >		4,0 3,5	3,5 3,5				3,0 3,0		
72°C/43°C	flooded bore hole ⁵⁾	h _{et} ≤	12d	4,0	3,5	3,0	-		3,0		
Partial safety factor (dry a	and wet concrete)	$\gamma_{Mp} = \gamma_{Mc}^{1)}$		1,	8 ²⁾			1 ³⁾			
Partial safety factor (flood	led bore hole)	$\gamma_{Mp} = \gamma_{Mc}$ ¹⁾				2	2,1 ³⁾				
Increasing factors for		C30/37				1	$\begin{array}{c c c c c c c } 282 & 368 & 4 \\ \hline 282 & 368 & 4 \\ \hline 282 & 368 & 4 \\ \hline 3,50 & 2,86 \\ \hline 247 & 230 & 2 \\ \hline 2,86 & - & & \\ \hline 3,5 & 5,5 & 5 \\ \hline 4,5 & 4,0 & - & \\ \hline 3,5 & 3,5 & 3 \\ \hline 3,5 & 3,5 & 3 \\ \hline 3,5 & 3,5 & 3 \\ \hline 3,0 & 3,0 & 3 \\ \hline 2,1^{3} & - & \\ \hline 1,04 & - & \\ \hline 1,08 & - & \\ \hline 1,00 & - & \\ \hline 7,2 & - & \\ 7,2 & - & \\ \hline 7,2 & - & \\ 7,2 & $				
concrete ψ_c		C40/50				1					
		C50/60					-				
Factor ref. bond strength		k .		_							
Factor concrete cone equ	lation	k,	cr				7,2				
Splitting failure		h≥2)-b				0-h				
Characteristic edge distar		2,0∙h _{ef} >h		<u> </u>							
characteristic cuye distai	ico oci,sp [mm]	2,0 ⁻ⁿ ef>i h≤1,5									
Characteristic spacing		S _{cr,sp}	[mm]								
	and wet concrete)	γ _{Msp} ¹⁾	1	1,3	8 ²⁾		-	1 ³⁾			
,	,	γ _{Msp} ¹⁾		1		2					
 ²⁾ The partial safety factor ³⁾ The partial safety factor ⁴⁾ Explanations see chap ⁵⁾ Applications in flooded For seismic design see a 	or $\gamma_2 = 1,2$ is included. or $\gamma_2 = 1,4$ is included. oter 1.2 d holes only for $h_{ef} \le 12d$ Annexes 34 and 35.						1				
POWERS PURE150	d			for con	crete		Anne	x 23			
Design method A: Character	ristic values for tension loa	ads in cracked			EN/TS ⁻	1000 4					

Table 26: Design according to Characteristic value				acked a	and une	cracked	d concr	rete		
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms,V} 1)					1,	25			
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Partial safety factor	γ _{Ms,V} 1)				1,	56			2,	38
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Partial safety factor	γ _{Ms,V} 1)					1,	25			
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Partial safety factor	γ _{Ms,V} 1)				1,	56			2,	38
Factor bending	k ₂					0,	80			
Concrete pry out failure										
Factor k ₃						2	,0			
Partial safety factor	γ _{Mcp} ¹⁾					1,5	0 ²⁾			
Concrete edge failure				Se	ee CEN/	TS 1992	2-4-5, Se	ction 6.3	3.4	
Partial safety factor	γ _{Mc} 1)					1,5	0 ²⁾			

 $^{1)}$ In absence of other national regulations $^{2)}$ The partial safety factor γ_2 = 1,0 is included.

For seismic design see Annexes 34 and 35.

POWERS PURE150-PRO Injection resin with anchor rod for concrete	Annex 24
Application with threaded rod	

Design method A: Characteristic values for shear loads in cracked and uncracked concrete

Anchor size thre	aded rod		М 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30
Temperature ran	ge 40°C/24°	°C for uncracked concre	ete C20/2	5						
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
Temperature ran	ge 72°C/43°	°C and 60°C/43°C for un	cracked o	concrete	e C20/25	;	-			
Displacement	δ _{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Temperature ran	ge 40°C/24°	C for cracked concrete	C20/25							
Displacement	δ _{N0}	[mm/(N/mm ²)]		-	0,032	0,037	0,042	0,048	0,054	0,062
Displacement	δ _{N∞}	[mm/(N/mm ²)]		-	0,21	0,21	0,21	0,21	0,21	0,21
Temperature ran	ge 72°C/43°	°C and 60°C/43°C for cra	cked cor	ncrete C	20/25					
Displacement	δ _{N0}	[mm/(N/mm ²)]	•	-	0,037	0,043	0,049	0,055	0,063	0,071
Displacement	δ _{N∞}	[mm/(N/mm ²)]	· .	-	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{Sd} / 1,4$; Displacement for long term load = $\delta_{N\infty} \cdot \tau_{Sd} / 1,4$; (τ_{Sd} : design bond strength)

Table 28: Displacements for shear loads ²⁾

Anchor diameters			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Displacement	δνο	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

²⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4$; Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4$; (V_d: design shear load)

Annex 25

Application with threaded rod Displacements

Page 35 of European technical approval ETA-08/0376 of 4 April 2013

Anchor size reinforcing	j bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure (Properties	s acc. to Annex 4)											
Characteristic tension res B500B according to DIN4		N _{Rk,s}	[kN]	28	43	62	85	111	173	270	339	44
Partial safety factor		γ _{Ms,N} 1)						1,40				
Combined pullout and	concrete cone fail											
Characteristic bond resis	tance τ _{Rk,ucr} [N/mm	²] in uncra	acked cond	crete C	20/25							
Temperature range I ⁴ :	dry and wet concrete		≤12d >12d	11 9,0	11 9,5	10 9,0	10 9,5	9,5 9,5	9,0 9,0	9,0 9,0	8,5 8,5	8, 8,
40°C/24°C	flooded bore hole ⁵⁾		≤12d	11	10	9,0	8,0	7,5	6,5	5,5	5,0	5,0
Temperature range II ⁴⁾ :	dry and wet concrete		≤12d >12d	6,5 5,0	6,5 5,5	6,5 6,0	6,0 5,5	6,0 6,0	5,5 5,5	5,5 5,5	5,0 5,0	5, 5,
60°C/43°C	flooded bore hole ⁵⁾		≤12d	6,5	6,5	6,5	6,0	6,0	5,5	4,5	4,5	4,
Temperature range III ⁴⁾ :	dry and wet concrete		≤12d >12d	6,0 5,0	6,0 5,0	5,5 5,0	5,5 5,0	5,5 5,5	5,0 5,0	4,5 4,5	4,5 4,5	4,9 4,9
72°C/43°C	flooded bore hole ⁵⁾	h _{ef}	≤12d	6,0	6,0	5,5	5,5	5,5	5,0	4,0	4,0	3,5
Partial safety factor (dry	and wet concrete)	$\gamma_{Mp} = \gamma_M$	1) 1c			1,8 ²⁾				2,1	3)	
Partial safety factor (flood	ded bore hole)	γ _{Mp} = γ _M	1) 1c					2,1 ³⁾				
		C30/37						1,04				
Increasing factors for concrete ψ_c		C40/50						1,08				
		C50/60						1,10				
Factor ref. bond strength	$\tau_{\text{Rk,c}}$		k ₈					10,1				
Factor concrete cone equ	uation	+	Kucr					10,1				
Splitting failure												
		h≥	:2·h _{ef}					1,0∙h _{ef}				_
Characteristic edge dista	nce c _{cr,sp} [mm]	2,0·h _{ef} >	>h>1,3⋅h _{ef}				5.	h _{ef} – 2·	h			
		h≤1	l,3∙h _{ef}					2,4·h _{ef}				
Characteristic spacing		S _{cr,sp}	[mm]					2·c _{cr,sp}				
Partial safety factor (dry	and wet concrete)	γ _{Msp} ¹⁾				1,8 ²⁾				2,1	3)	
Partial safety factor (floor	ded bore hole)	γ _{Msp} ¹⁾						2,1 ³⁾				
 In absence of other ²⁾ The partial safety fa ³⁾ The partial safety fa ⁴⁾ Explanations see cl ⁵⁾ Applications in floor Regarding design of post- 	actor $\gamma_2 = 1,2$ is inclu- actor $\gamma_2 = 1,4$ is inclu- hapter 1.2 ded holes only for h	uded. uded. n _{ef} ≤ 12d a		4.2.								
POWERS PURE150	-	resin w	ith ancho	or rod	for co	ncrete)		Anr	iex 26		
Design method A: Characte	ristic values for tension	on loads in	uncracked	concret	e							
				Des								

Page 36 of European technical approval ETA-08/0376 of 4 April 2013

Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure (Properties	acc. to Annex 4)									
Inter lating (Properties acc. to Annex 4) Diaracteristic tension resistance. (500B according to DIN48-2: 2009 N _{Rk.a} [KN] 62 85 111 173 270 339 Transacteristic tension resistance: (300B according to DIN48-2: 2009 N _{Rk.a} [KN] 62 85 111 173 270 339 Transacteristic bond resistance: (300C44*C Transacteristic bond resistance resc. N _{Rk.a} [KN] 62 85 4.5 4.0 3.5 3.5 3.0 3.0 2.5 2.5 4.5 4.0 3.5 3.0 3.0 2.5 2.5 2.0	442									
Partial safety factor		γ _{Ms,N} ¹⁾	•				1,40			
Combined pullout and co	oncrete cone failure									
Characteristic bond resista	ance τ _{Rk,cr} [N/mm²] in cra	cked concret	e C20/25							
Temperature range I ⁴⁾ :	dry and wet concrete									3,5 3,5
40°0/24°0	flooded bore hole ⁵⁾	h _{ef} ≤	12d	5,5	4,5	4,0	3,5	3,0	3,0	3,0
Temperature range II ⁴⁾ :	-									2,0 2,0
00 0/43 0	flooded bore hole ⁵⁾									2,0
Temperature range III ⁴⁾ : 72°C/43°C	-				2,5			$\begin{array}{c c c c c c c } 3 & 270 & 339 \\ \hline 0 & & & & \\ \hline 1 & & & & \\ \hline 0 & & & & \\ \hline 2,0 & & & \\ 2,0 & & & \\ \hline 2,0 & & & \\ 2,0 & & & \\ \hline 2,0 & & & \\ 2,0 & & & \\ \hline 2,0 & & & \\ 2,0 & & & \\ \hline 2,0 & & & \\ \hline 2,0 & & & \\ 2,0 & & & \\ \hline 2,0 & & & \\ 2,0 & $	2,0 2,0	
72 0/43 0	flooded bore hole ⁵⁾			3,0	,	2,5	2,0	,		2,0
Partial safety factor (dry an	nd wet concrete)	$\gamma_{Mp} = \gamma_{Mc}^{1}$			1,8 ²⁾			2,1	3)	
Partial safety factor (floode	ed bore hole)	$\gamma_{Mp} = \gamma_{Mc}^{1}$					2,1 ³⁾			
		C30/37					-			
							1,08			
		C50/60					-			
			~							
Factor concrete cone equa	ation	k	x				7,2			
Splitting failure										
		h≥2	•h _{ef}				1,0∙h _{ef}			
Characteristic edge distan	ce c _{cr,sp} [mm]	2,0∙h _{ef} >h	⊳1,3•h _{ef}			ŧ	5∙h _{ef} – 2	٠h		
		-	3•h _{ef}				2,4·h _{ef}	1		
Characteristic spacing			[mm]				2·c _{cr,sp}			
Partial safety factor (dry an	nd wet concrete)	γ _{Msp} ¹⁾			1,8 ²⁾			2,1	3)	
Partial safety factor (floode	ed bore hole)	γ _{Msp} ¹⁾					2,1 ³⁾			
 ²⁾ The partial safety fac ³⁾ The partial safety fac ⁴⁾ Explanations see cha ⁵⁾ Applications in floode Regarding design of post-in 	ctor $\gamma_2 = 1,2$ is included. ctor $\gamma_2 = 1,4$ is included. apter 1.2 ed holes only for h _{ef} ≤ 12c nstalled rebar as anchor s		1.2							
POWERS PURE150-PRO Injection resin with anchor rod for concrete Annex 27 Application with reinforcing bar Design method A: Characteristic values for tension loads in cracked concrete							7			

Table 31: Design according to Characteristic value				cracke	d and	uncrad	ked c	oncret	e		
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm (Prope	rties acc.	. Annex	4)								
Characteristic shear resistance, B500B according to DIN488-2: 2009	V _{Rk,s}	[kN]	14	22	31	42	55	86	135	169	221
Partial safety factor	γ _{Ms,V} 1)						1,5				
Steel failure with lever arm (Propertie											
Characteristic bending moment, B500B according to DIN488-2: 2009	M ⁰ _{Rk,s}	[Nm]	33	65	112	178	265	518	1012	1422	2123
Partial safety factor	γ _{Ms,V} 1)						1,5				
Factor bending	k ₂						0,8				
Concrete pry out failure											
Factor k ₃							2,0				
Partial safety factor	γ _{Mcp} ¹⁾						1,50 ²⁾				
Concrete edge failure	•				See CE	EN/TS 1	992-4-5	5, Sectio	on 6.3.4		
Partial safety factor	γ _{Mc} ¹⁾						1,50 ²⁾				

 $^{1)}$ In absence of other national regulations $^{2)}$ The partial safety factor γ_2 = 1,0 is included.

Regarding design of post-installed rebar as anchor see chapter 4.2

For seismic design see Annexes 34 and 35.

Annex 28

Application with reinforcing bar Design method A: Characteristic values for shear loads in cracked and uncracked concrete

Anchor size re	einforcing	bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Temperature	range 40	°C/24°C for uncr									
Displacement	δ _{N0}	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
Displacement	$\delta_{N\infty}$	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperature	range 72	°C/43°C and 60°	C/43°C 1	for uncr	acked o	oncrete	e C20/25	i			
Displacement	δ _{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
Displacement	δ _{N∞}	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperature	range 40	°C/24°C for crac	ked cor	ncrete C	20/25						
Displacement	δ _{N0}	[mm/(N/mm²)]	-	-	0,032	0,035	0,037	0,042	0,049	0,056	0,064
Displacement	δ_{N^∞}	[mm/(N/mm²)]	-	-	0,21	0,21	0,21	0,21	0,21	0,21	0,21
Temperature	range 72	°C/43°C and 60°	C/43°C 1	for crac	ked cor	ncrete C	20/25				
Displacement	δ _{N0}	[mm/(N/mm ²)]	-	-	0,037	0,040	0,043	0,049	0,056	0,064	0,073
Displacement	$\delta_{N\infty}$	[mm/(N/mm ²)]	-	-	0,24	0,24	0,24	0,24	0,24	0,24	0,24

 $^{1)}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0}\cdot\tau_{Sd}$ / 1,4; Displacement for long term load = $\delta_{N\infty}\cdot\tau_{Sd}$ / 1,4; (τ_{Sd} : design bond strength)

Table 33: Displacements for shear loads ²⁾

Anchor size reinf	forcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Displacement	δ _{vo}	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
Displacement	$\delta_{V\infty}$	[mm/kN]	0,09	0,08	0,07	0,06	0,06	0,05	0,05	0,04	0,04

 $^{2)}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4;$ Displacement for long term load = $\delta_{V\infty} \cdot V_d / 1,4;$ (V_d: design shear load)

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex 29

Application with reinforcing bar Displacements

Page 39 of European technical approval ETA-08/0376 of 4 April 2013

English translation prepared by DIBt

Deutsches Institut für Bautechnik

Anchor size internal thr	eaded sleeve			M 8	M 10	M 12	M 16	M 20
External diameter				12	16	20	24	30
Effective anchorage dept	h	h _{ef}	[mm]	80	90	110	150	200
Steel failure								
Characteristic tension res Steel, property class 5.8	sistance,	N _{Rk,s}	[kN]	18	29	42	78	122
Characteristic tension res	istance,	N _{Rk,s}	[kN]	29	46	67	125	196
Steel, property class 8.8 Partial safety factor		γ _{Ms,N} 1)	A A A			1,50		
Characteristic tension res	istance.	γMs,N				1,00		
Stainless steel A4 and H0 property class 50 (>M24) property class 70 (\leq M24)	CR, and	N _{Rk,s}	[kN]	26	41	59	110	171
Partial safety factor		γ _{Ms,N} ¹⁾				1,87		
Combined pullout and o	concrete cone failure							
Characteristic bond resist	tance τ _{Rk,ucr} [N/mm ²] in un	cracked c	oncrete C20	/25				
Temperature range I ⁵⁾ :	dry and wet concrete	h _{ef} ≤12c	k	15,0	14,0	13,0	12,0	12,0
40°C/24°C	flooded bore hole	h _{ef} ≤12c	k	13,0	10,0	9,5	8,5	7,0
Temperature range II ⁵⁾ :	dry and wet concrete $h_{ef} \le 12d$ 15,014,013,0looded bore hole $h_{ef} \le 12d$ 13,010,09,5dry and wet concrete $h_{ef} \le 12d$ 9,08,58,0	7,5	7,5					
60°C/43°C	flooded bore hole	h _{ef} ≤12c	ł	9,0	8,5	7,5	7,0	6,0
Temperature range III ⁵⁾ :	dry and wet concrete	h _{ef} ≤12c	ł	8,0	7,5	7,0	7,0	6,5
72°C/43°C	flooded bore hole	h _{ef} ≤12c		8,0	7,5	7,0	6,0	5,5
Partial safety factor (dry a	and wet concrete)	$\gamma_{Mp} = \gamma_{I}$	1) Mc	1,	8 ³⁾		2,14)	
Partial safety factor (flood	led bore hole)	$\gamma_{Mp} = \gamma_{1}$	1) Mc			2,1 ⁴⁾		
Increasing factors for		C30/37	,			1,04		
Increasing factors for concrete ψ_c		C40/50)			1,08		
		C50/60)			1,10		
Factor ref. bond strength	τ _{Rk,c}		k ₈			10,1		
Factor concrete cone equ	lation		k _{ucr}			10,1		
Splitting failure								
		h	≥2•h _{ef}			1,0•h _{ef}		
Characteristic edge dista	nce c _{cr,sp} [mm]	2,0·h _{ef}	>h>1,3∙h _{ef}		5	i∙h _{ef} – 2∙h		
		h≤	1,3•h _{ef}			2,4·h _{ef}		
Characteristic spacing		S _{cr,sp}	[mm]			2.c _{cr,sp}		
Partial safety factor (dry a	and wet concrete)	γ _{Msp} ¹⁾		1,	8 ³⁾		2,1 ⁴⁾	
Partial safety factor (flood	led bore hole)	γ _{Msp} ¹⁾				2,1 ⁴⁾		
3) The partial safety fa	actor $\gamma_2 = 1,0$ is included. actor $\gamma_2 = 1,2$ is included. actor $\gamma_2 = 1,4$ is included.							
POWERS PURE150	-PRO Injection resin	with anc	hor rod fo	r concrete	е	Ann	ex 30	
Application with internal threa	aded sleeve					-1		

Page 40 of European technical approval ETA-08/0376 of 4 April 2013

English translation prepared by DIBt

Deutsches Institut DIBt für Bautechnik

Anchor size internal th	readed sleeve			M 8	M 10	M 12	M 16	M 20
External diameter				12	16	20	24	30
Effective anchorage dep	th	h _{ef}	[mm]	80	90	110	150	200
Steel failure								
Characteristic tension re Steel, property class 5.8		N _{Rk,s}	[kN]	18	29	42	78	122
Characteristic tension re Steel, property class 8.8	sistance,	N _{Rk,s}	[kN]	29	46	67	125	196
Partial safety factor		γ _{Ms,N} 1)				1,50		
Characteristic tension re Stainless steel A4 and H property class 50 (>M24 property class 70 (\leq M24	ICR,) and	N _{Rk,s}	[kN]	26	41	59	110	171
Partial safety factor		γ _{Ms,N} 1)				1,87		
Combined pullout and	concrete cone failure							
Characteristic bond resis	stance τ _{Rk,cr} [N/mm ²] in	cracked	concrete C2	0/25				
Temperature range I ⁵⁾ :	dry and wet concrete	h _{ef} ≤12d	l	7,5	6,5	6,0	5,5	5,5
40°C/24°C	flooded bore hole	h _{ef} ≤12d	I	7,5	6,0	5,0	4,5	4,0
Temperature range II ⁵⁾ :	dry and wet concrete	h _{ef} ≤12d	l	4,5	4,0	3,5	3,5	3,5
60°C/43°C	flooded bore hole	h _{ef} ≤12d	l	4,5	4,0	3,5	3,5	3,5
Temperature range	dry and wet concrete	h _{ef} ≤12d	[4,0	3,5	3,0	3,0	3,0
III ⁵⁾ : 72°C/43°C	flooded bore hole	h _{ef} ≤12d	ĺ .	4,0	3,5	3,0	3,0	3,0
Partial safety factor (dry	and wet concrete)	$\gamma_{Mp} = \gamma_{N}$	1) Ac	1	,8 ³⁾		2,1 ⁴⁾	
Partial safety factor (floo	ded bore hole)	$\gamma_{Mp} = \gamma_N$	1) Mc			2,1 ⁴⁾		
		C30/37				1,04		
Increasing factors for concrete ψ_c		C40/50				1,08		
10		C50/60				1,10		
Factor ref. bond strength	ι τ _{Rk,c}		k ₈			7,2		
Factor concrete cone eq	uation		k _{cr}			7,2		
Splitting failure								
			h≥2•h _{ef}			1,0∙h _e	f	
Characteristic edge dista	ance c _{cr,sp} [mm]	2,0•h	_{ef} >h>1,3∙h _{ef}			5∙h _{ef} – 2	ŀh	
		h	l≤1,3∙h _{ef}			2,4·h _e	f	
Characteristic spacing		S _{cr,sp}	[mm]			2·c _{cr,sp}		
Partial safety factor (dry	and wet concrete)	γ _{Msp} ¹⁾		1,	8 ³⁾		2,1 ⁴⁾	
Partial safety factor (floo	ded bore hole)	γ _{Msp} ¹⁾				2,1 ⁴⁾		

²⁾ The partial safety factor $\gamma_2 = 1,0$ is included. ³⁾ The partial safety factor $\gamma_2 = 1,2$ is included.

⁴⁾ The partial safety factor $\gamma_2 = 1.4$ is included. ⁵⁾ Explanations see chapter 1.2

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Application with internal threaded sleeve

Design method A: Characteristic values for tension loads in cracked concrete

Annex 31

Anchor size internal threaded sleev	re 🛛		M 8	M 10	M 12	M 16	M 20
External diameter			12	16	20	24	30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	150	200
Steel failure without lever arm							
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s}	[kN]	9	15	21	39	61
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s}	[kN]	15	23	34	63	98
Partial safety factor	γ _{Ms,V} 1)				1,25		
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s}	[kN]	13	20	30	55	86
Partial safety factor	γ _{Ms,V} 1)				1,56		
Steel failure with lever arm							
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519
Partial safety factor	γ _{Ms,V} 1)				1,25		
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454
Partial safety factor	γ _{Ms,V} 1)				1,56		
Factor bending	k ₂				0,8		
Concrete pryout failure							
Factor k ₃					2,0		
Partial safety factor	γ _{Mcp} ¹⁾				1,50		
Concrete edge failure				See CEN/T	S 1992-4-5, S	Section 6.3.4	
Partial safety factor	γ _{Mc} ¹⁾				1,50		

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex 32

Application with internal threaded sleeve

Design method A: Characteristic values for shear loads in cracked and uncracked concrete

Table 37: Displace	ments for t	ension loads ¹⁾					
Anchor size inter	rnal thread	ed sleeve	M 8	M 10	M 12	M 16	M 20
External diameter			12	16	20	24	30
Effective anchorage	ge depth	h _{ef} [mm]	80	90	110	150	200
Temperature ran	ge 40°C/24	°C for uncracked co	oncrete C20/2	25			
Displacement	δ _{N0}	[mm/ (N/mm²)]	0,015	0,020	0,024	0,029	0,035
Displacement	δ _{N∞}	[mm/ (N/mm²)]	0,061	0,079	0,096	0,114	0,140
Temperature ran	ge 72°C/43	°C and 60°C/43°C fo	r uncracked	concrete C	20/25		
Displacement	δ _{N0}	[mm/ (N/mm²)]	0,018	0,023	0,028	0,033	0,043
Displacement	$\delta_{N\infty}$	[mm/ (N/mm²)]	0,070	0,091	0,111	0,131	0,161
Temperature ran	ge 40°C/24	°C for cracked conc	rete C20/25				
Displacement	δ _{N0}	[mm/ (N/mm²)]	0,032	0,037	0,042	0,048	0,055
Displacement	$\delta_{N\infty}$	[mm/ (N/mm²)]	0,210	0,210	0,210	0,210	0,210
Temperature ran	ge 72°C/43	°C and 60°C/43°C fo	r cracked co	ncrete C20/	/25		
Displacement	δ_{N0}	[mm/ (N/mm²)]	0,037	0,043	0,049	0,055	0,063
Displacement	δ_{N^∞}	[mm/ (N/mm²)]	0,240	0,240	0,240	0,240	0,240

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{N0} \cdot \tau_{Sd} / 1,4$; Displacement for long term load = $\delta_{N\infty} \cdot \tau_{Sd} / 1,4$; (τ_{Sd} : design bond strength)

Table 38: Displacements for shear loads²⁾

Anchor size internal threaded sleeve			M 8	M 10	M 12	M 16	M 20
External diameter			12	16	20	24	30
Effective anchorage depth	h _{ef}	[mm]	80	90	110	150	200
Displacement	δ _{vo}	[mm/ kN]	0,05	0,04	0,04	0,03	0,03
Displacement	$\delta_{V\infty}$	[mm/ kN]	0,08	0,06	0,06	0,05	0,05

 $\label{eq:starsest} \begin{array}{l} ^{2)} \mbox{Calculation of the displacement for design load} \\ \mbox{Displacement for short term load} = \delta_{V0} \cdot V_d \ / \ 1,4; \\ \mbox{Displacement for long term load} = \delta_{V\infty} \cdot V_d \ / \ 1,4; \\ (V_d: design shear load) \end{array}$

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Application with internal threaded sleeve Displacements

Annex 33

Seismic design according to Technical Report "Design of Metal Anchors under Seismic Action":

The decision of selection of a higher seismic performance category than given in Table 39 is in the responsibility of each individual Member State.

Furthermore, the values a_a·S assigned to the seismicity level may be different in the National Annexes to EN 1998-1: 2004 (EC8) compared to the values given in Table 39.

The recommended category C1 and C2 given in Table 39 are given in the case that no National Requirements are defined.

Table 39: Recommended seismic performance categories for anchors

Seismicity		Imj	oortance cla EN 1998-1:	ss accordin 2004, 4.2.5	g to
	$a_g \cdot S^{2)}$	I I	11	- 111	IV
Very low 1)	a _g ·S ≤0,05·g		no additiona	requirement	
Low 1)	0,05·g < a _g ·S≤ 0,1·g	C1	C1 ³⁾ c	or C2 ⁴⁾	C2
	a _g ⋅S> 0,1⋅g	C1		C2	

¹⁾ Definition according to EN 1998-1: 2004, 3.2.1

 $^{2)}a_{q} = \gamma_{1} \cdot a_{qR}$ Design ground acceleration on type A ground (Ground types as defined in EN1998-1:2004, Table 3.1 γ_1 = Importance factor (see EN1998-1: 2004, 4.2.5)

a_{gR}= Reference peak ground acceleration on type A ground (see EN1998-1: 2004, 3.2.1)

S= Soil factor (e.g. according to EN1998-1: 2004, 4.2.5)

 $R^{0}_{k,seis} = \alpha_{N,seis} \cdot R^{0}_{k}$

³⁾ C1 for fixing of non-structural elements to structures

⁴⁾ C2 for fixing of structural elements to structures

Seismic design equations to calculate characteristic seismic resistance for the relevant failure mode:

Basic characteristic seismic resistance R⁰_{k seis}

Tension:

with $R^0_k = N_{Rk,s}$, $\tau_{Rk,cr}$, $N_{Rk,c}$, $N_{Rk,sp}$ $\alpha_{N,seis}$ = see Table 41 or Table 42 for N_{Rk.s} and $\tau_{Rk.cr}$

Shear:

 $\begin{array}{ll} \alpha_{N,seis} = & 1,0 \text{ for } N_{Rk,c} \text{ and } N_{Rk,sp} \\ R^{0}_{k,seis} = & \alpha_{V,seis} \cdot R^{0}_{k} \\ \text{with } R^{0}_{k} = & V_{Rk,s}, V_{Rk,c}, V_{Rk,cn} \end{array}$

 $\alpha_{V seis}$ = see Table 41 or Table 42 for V_{Bks}

 $\alpha_{V,seis}$ = 1,0 for V_{Rk,c} and V_{Rk,cp}

Characteristic seismic resistance R_{k,seis}

 $R_{k,seis} = \alpha_{gap} \cdot \alpha_{seis} \cdot R^{0}_{k,seis}$ Tension: $R_{k,seis} = \alpha_{gap} \cdot \alpha_{seis} \cdot R^{0}_{k,seis}$ Shear:

with
$$\alpha_{seis}$$
 = see Table 40

 α_{gap} = see Table 40

Seismic design resistance R_{d,seis}

 $R_{d,seis} = R_{k,seis} / \gamma_{M,seis}$ with $\gamma_{M,seis} = \gamma_M$

POWERS PURE150-PRO Injection resin with anchor rod for concrete

Annex 34

Design for seismic actions

Loading	Failure modes				α_{gap}		sina	α _{seis} le fas	tener	fas	α _{sei} stener	
	Steel failure				1,0			1,0			1,0	
Tensien	Combined pullout and con	crete failu	re		1,0		<u> </u>	1,0		\vdash	0,8	5
Tension	Concrete cone failure				1,0			0,85		\square	0,7	5
	Splitting failure				1,0			1,0		\square	0,8	5
	Steel failure without lever a	arm			0,5 ¹⁾			1,0			0,8	5
Cheer	Steel failure with lever arm	ı			_2)			_2)		\square	_2)	
Shear	Concrete edge failure				0,5 ¹⁾			1,0			0,8	5
	Concrete pryout failure				0,5 ¹⁾			0,85			0,7	5
	Reduction factors for ze threaded rod			·	M 12	M 1		1 20	M24		M 27	М 3
				_								
		α _{N,seis}	[-]					1,	0			
	· · · · · · · · · · · · · · · · · · ·	failure		_		1						
Seismic rec	luction factor	$\alpha_{\text{N,seis}}$	[-]		0,92	0,9	05 (),95	1,0		1,0	1,0
Shear loa	ompbined pullout and concrete cone failureeismic reduction factor $\alpha_{N,seis}$ [-]0,920,950,951,01,01hear load without lever armeismic reduction factor $\alpha_{V,seis}$ [-]0,70											
	d without lever arm											
Seismic rec		α _{V,seis}	[-]	Т				0,7	70			
Seismic rec				jn ca	atego	ry C1	l for <i>i</i>			j bai	rs	
ble 42:	luction factor			gn ca Ø 1		ry C1 ð 14	l for <i>i</i> Ø 16	reinfo	orcing	y ba ı Ø 25	rs Ø 28	8 Ø
ble 42:	luction factor Reduction factors for reinforcing bar					-		reinfo	orcing			B Ø
ble 42: nchor size	luction factor Reduction factors for reinforcing bar					-		reinfo	orcing			B Ø
ble 42: nchor size ension load	luction factor Reduction factors for reinforcing bar					-		reinfo	orcing 10 Ø			B Ø
ble 42: nchor size ension load eel failure eismic reduct	luction factor Reduction factors for reinforcing bar	seismic	desig			-		reinfo Ø 2	orcing 10 Ø			3 Ø
ble 42: nchor size ension load eel failure eismic reduct	luction factor Reduction factors for reinforcing bar d ion factor llout and concrete cone failu	seismic	desig		12 Q	-		reinfo Ø 2	prcing 0 2			
ble 42: nchor size ension load eel failure eismic reduct ombined pu	luction factor Reduction factors for reinforcing bar d ion factor llout and concrete cone failu	seismic a _{N,seis} ire a _{N,seis}	desig	Ø1	12 Q	ð 14	Ø 16	reinfo Ø 2 1,0	prcing 0 2	ð 25	Ø 28	
ble 42: nchor size ension load eel failure eismic reduct ombined pu	Iuction factor Reduction factors for reinforcing bar ion factor Ilout and concrete cone failu ion factor Steel failure without lever	seismic a _{N,seis} ire a _{N,seis}	desig	Ø1	12 Q	ð 14	Ø 16	reinfo Ø 2 1,0	5 1	ð 25	Ø 28	
ble 42: enchor size ension load eel failure eismic reduct ombined pu eismic reduct	Iuction factor Reduction factors for reinforcing bar ion factor Ilout and concrete cone failu ion factor Steel failure without lever	seismic α _{N,seis} ire α _{N,seis}	desig	Ø1	12 Q	ð 14	Ø 16	reinfo Ø 2 1,0	5 1	ð 25	Ø 28	
ble 42: hchor size ension load eel failure eismic reduct bismic reduct hear load - eismic reduct	Iuction factor Reduction factors for reinforcing bar ion factor Ilout and concrete cone failu ion factor Steel failure without lever	seismic α _{N,seis} ire α _{N,seis} arm α _{V,seis}	desig	Ø 1	12 ¢	ð 14	Ø 16	reinfo Ø 2 1,0	5 1	ð 25	Ø 28	