Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

European Technical Approval ETA-10/0184

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity: vom from bis

to

Herstellwerke *Manufacturing plants*

Befestigungsschrauben Zebra Pias, Zebra Piasta und FABA® Fastening screws Zebra Pias, Zebra Piasta and FABA®

Adolf Würth GmbH & Co. KG 74650 Künzelsau DEUTSCHLAND

Befestigungsschrauben für Bauteile und Bleche aus Metall

Fastening screws for metal members and sheeting

31 March 2013

31 March 2018

Würth, Werk 15 Würth, Werk 16 Würth, Werk 19

Würth, Werk 21 Würth, Werk 22

Würth, Werk 25 Würth, Werk 26

Würth, Plant 15 Würth, Plant 16

Würth, Plant 19 Würth, Plant 21

Würth, Plant 22

Würth, Plant 25 Würth, Plant 26

Diese Zulassung umfasst This Approval contains 77 Seiten einschließlich 67 Anhänge 77 pages including 67 annexes

Diese Zulassung ersetzt This Approval replaces ETA-10/0184 mit Geltungsdauer vom 17.08.2010 bis 17.08.2015 ETA-10/0184 with validity from 17.08.2010 to 17.08.2015

Page 2 of 77 | 31 March 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 77 | 31 March 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of the product and intended use

1.1 Definition of the construction product

The fastening screws Zebra Pias, Zebra Piasta and FABA® are self drilling or self tapping screws listed in Table 1. The fastening screws are made of case hardened carbon steel or stainless steel. They are partly completed with metallic washers and EPDM sealing rings. For details see the appropriate Annexes.

Screws or washers for which the stainless steel grade A2 according to EN ISO 3506-1 is given in the respective Annexes (e. g. 1.4301 or 1.4567) may be made of stainless steel grade A4 (e. g. 1.4401 or 1.4578) as well.

Examples of fastening screws and the corresponding connections are shown in Annex 1.

The fastening screws and the corresponding connections are subject to tension and shear forces.

 Table 1
 Different types of fastening screws

Annex	Fastening screw	Description
Annex 6	ZEBRA Pias Ø 4,2 x L	with cross recessed pan head
Annex 7	ZEBRA Pias Ø 4,2 x L	with pan head with AW drive
Annex 8	ZEBRA Pias Ø 4,8 x L	with cross recessed pan head
Annex 9	ZEBRA Pias Ø 4,8 x L	with pan head with AW drive
Annex 10	ZEBRA Pias Ø 4,2 x L	with hexagon head
Annex 11	ZEBRA Pias Ø 4,2 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 12	ZEBRA Pias Ø 4,8 x L	with hexagon head
Annex 13	ZEBRA Pias Ø 4,8 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 14	ZEBRA Pias Ø 5,5 x L	with hexagon head
Annex 15	ZEBRA Pias Ø 5,5 x L	with hexagon head
Annex 16	ZEBRA Pias Ø 5,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 17	ZEBRA Pias Ø 5,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 18	ZEBRA Pias Ø 5,5 -12 x L	with hexagon head and extra-long drill bit
Annex 19	ZEBRA Pias Ø 5,5 -12 x L	with hexagon head, sealing washer ≥ Ø16 mm and extra-long drill bit
Annex 20	ZEBRA Pias Ø 6,3 x L	with hexagon head
Annex 21	ZEBRA Pias Ø 6,3 x L	with hexagon head
Annex 22	ZEBRA Pias Ø 6,3 x L	with hexagon head and sealing washer ≥ Ø16 mm

Page 4 of 77 | 31 March 2013

ZEBRA Pias Ø 6,3 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Pias Ø 6,0 x L	with stainless steel protection cap and sealing washer ≥ Ø16 mm
ZEBRA Pias Ø 6,0 x L	with stainless steel protection cap and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 4,2 - AW	with pan head with AW drive
ZEBRA Piasta Ø 4,8 - AW	with pan head with AW drive
ZEBRA Piasta Ø 4,2 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 4,8 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 5,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 5,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 5,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 6,3 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 6,3 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 5,5 x L	with hexagon head, sealing washer ≥ Ø16 mm and extra-long drill bit
ZEBRA Piasta Ø 4,8 r x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 6,3 r x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA Piasta Ø 4,8 x L	with undercut, hexagon head and sealing washer ≥ Ø14 mm
ZEBRA Piasta Ø 5,5 x L	with undercut, hexagon head and sealing washer ≥ Ø14 mm
ZEBRA Piasta Ø 5,5 x L	with undercut, hexagon head and sealing washer ≥ Ø14 mm
ZEBRA Piasta Ø 6,0 x L	with wood thread and sealing washer ≥ Ø14 mm
ZEBRA Piasta Ø 6,0 x L	with wood thread and sealing washer ≥ Ø16 mm
FABA® Typ A 6,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
FABA® Typ BZ 6,3 x L	with hexagon head and sealing washer ≥ Ø16 mm
ZEBRA DBS Bimetall – 4,5 x L	with hexagon head or pan head with AW drive
ZEBRA DBS Bimetall – 4,5 x L	with hexagon head or pan head with AW drive and sealing washer ≥ Ø14 mm
ZEBRA DBS Bimetall – 6,0 x L	with hexagon head or pan head with AW drive
ZEBRA DBS Bimetall – 6,0 x L	with hexagon head or pan head with AW drive and sealing washer ≥ Ø16 mm
Dünnblechschraube DBS Ø 4,8	with hexagon head or pan head with AW drive
	EBRA Pias Ø 6,0 x L EBRA Pias Ø 6,0 x L EBRA Piasta Ø 4,2 - AW EBRA Piasta Ø 4,8 - AW EBRA Piasta Ø 4,8 x L EBRA Piasta Ø 5,5 x L EBRA Piasta Ø 5,5 x L EBRA Piasta Ø 6,3 r x L EBRA Piasta Ø 6,3 r x L EBRA Piasta Ø 6,3 r x L EBRA Piasta Ø 6,0 x L

Page 5 of 77 | 31 March 2013

Annex 50	ZEBRA Piasta Ø 4,8 - AW	with pan head with AW drive
Annex 51	ZEBRA Piasta Ø 4,8 - K	with hexagon head
Annex 52	ZEBRA Piasta Ø 4,8 x L	with undercut, hexagon head and sealing washer ≥ Ø14 mm
Annex 53	ZEBRA Piasta Ø 5,5 x L	with undercut, hexagon head and sealing washer ≥ Ø14 mm
Annex 54	ZEBRA DBS Bimetall 4,5 x L	with hexagon head or pan head with AW drive and sealing washer ≥ Ø14 mm
Annex 55	ZEBRA DBS Bimetall 6,0 x L	with hexagon head or pan head with AW drive and sealing washer ≥ Ø16 mm
Annex 56	ZEBRA Piasta Ø 4,8 - AW	with pan head with AW drive
Annex 57	ZEBRA Piasta Ø 4,8 - K	with hexagon head
Annex 58	ZEBRA Piasta Ø 4,8 x L	with undercut, hexagon head and sealing washer ≥ Ø14 mm
Annex 59	ZEBRA Piasta Ø 5,5 x L	with undercut, hexagon head and sealing washer ≥ Ø14 mm
Annex 60	ZEBRA DBS Bimetall 4,5 x L	with hexagon head or pan head with AW drive and sealing washer ≥ Ø14 mm
Annex 61	ZEBRA DBS Bimetall 6,0 x L	with hexagon head or pan head with AW drive and sealing washer ≥ Ø16 mm
Annex 62 ^{*)}	PIASTA 6,0 x L Timber-threat	with hexagon head and sealing washer ≥ Ø14 mm with thread for timber
Annex 63	FABA Typ BZ 6,3 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 64*)	FABA Typ A 6,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 65	FABA Typ BZ 6,3 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 66 ^{*)}	FABA Typ A 6,5 x L	with hexagon head and sealing washer ≥ Ø16 mm
Annex 67	FABA Typ A 7,2 x L	with hexagon head and sealing washer ≥ Ø19 mm
. \	-	

^{*)} These fastening screws are applicable for fastening to timber supporting structures

1.2 Intended use

The fastening screws are intended to be used for fastening steel sheeting to steel supporting structures and as far as stated in Table 1 to timber supporting structures. The sheeting can either be used as wall or roof cladding or as load bearing wall and roof element.

The fastening screws can also be used for the fastening of other thin gauge steel members.

The component to be fastened is component I and the supporting structure is component II.

The intended use comprises fastening screws and connections for indoor and outdoor applications. Fastening screws which are made of stainless steel are intended to be used in external environments with a high or very high corrosion category.

The intended use comprises connections with predominantly static loads (e.g. wind loads, dead loads).

Page 6 of 77 | 31 March 2013

The provisions made in this European technical approval are based on an assumed working life of the fastening screws of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The fastening screws shall correspond to the drawings given in the appropriate Annexes (see Table 1).

The characteristic material values, dimensions and tolerances of the fastening screws neither indicated in this section nor in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ to this European technical approval.

The characteristic values of the shear and tension resistance of the connections made with the fastening screws are given in the appropriate Annexes or in section 4.2.

The fastening screws are considered to satisfy the requirements of performance class A1 of the characteristic reaction to fire.

2.2 Methods of verification

The assessment of the fitness of the fastening screws for the intended use in relation to the Essential Requirements ER 1 (Mechanical resistance and stability), ER 2 (Safety in case of fire), ER 4 (Safety in use) and additional aspects of durability has been made in accordance with section 3.2 of the Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.

The assessment of the resistance to fire performance is only relevant to the assembled system (fastening screws, sheeting, supporting structure) which is not part of the ETA.

The fastening screws are considered to satisfy the requirements of performance class A 1 of the characteristic reaction to fire, in accordance with the provisions of the EC Decision 96/603/EC (as amended) without the need for testing on the basis of its listing in that decision.

Concerning Essential Requirements No. 1 (Mechanical resistance and stability) and No. 4 (Safety in use) the following applies:

The characteristic values of resistance given in the Annexes were determined by shear and tension tests.

The formulas to calculate the design resistance are given in clause 4.2.1.

The technical documentation to this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as relevant fort the tasks of the approved bodies involved in the attestation of conformity procedure is handed over to the approved bodies.

Page 7 of 77 | 31 March 2013

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 99/92 of the European Commission⁸ system 3 of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 3: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
- (b) Tasks for the approved body:
 - initial type-testing of the product.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the "control plan relating to this European technical approval" which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of fastening screws in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

Official Journal of the European Communities L 80 of 18.03.1998.

The "control plan" is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 8 of 77 | 31 March 2013

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in written reports.

3.3 CE marking

The CE marking shall be affixed on each packaging of fastening screws. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the European technical approval,
- the name of the product.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The fastening screws are manufactured in accordance with the provisions of the European technical approval using the manufacturing process as laid down in the technical documentation.

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design

4.2.1 General

Fastening screws completely or partly exposed to external weather or similar conditions are made of stainless steel or are protected against corrosion. For the corrosion protection the rules given in EN 1090-2:2008 + A1:2011, EN 1993-1-3:2006 + AC:2009 and EN 1993-1-4:2006 are taken into account.

For the types of connection (a, b, c, d) listed in the Annexes it is not necessary to take into account the effect of constraints due to temperature. For other types of connection it shall be considered for design as long as constraining forces due to temperature do not occur or are not significant (e. g. sufficient flexibility of the structure).

The loading is predominantly static. (Remark: Wind loads are regarded as predominantly static.) Dimensions, material properties, torque moments $M_{t,norm}$, minimum effective screw-in length l_{ef} and nominal material thicknesses t_N as stated in the ETA or in the Annexes are observed.

Page 9 of 77 | 31 March 2013

The verification concept stated in EN 1990:2002 + A1:2005 +A1:2005/AC:2010 is used for the design of the connections made with the fastening screws. The characteristic values (shear and tension resistance) stated in the Annexes are used for the design of the entire connections.

The following formulas are used to calculate the values of design resistance:

$$N_{Rd} = \frac{N_{Rk}}{\gamma_M}$$

$$V_{Rd} = \frac{V_{Rk}}{\gamma_M}$$

The recommended partial safety factor γ_M = 1.33 is used in order to determine the corresponding design resistances, provided no values are given in national regulations of the member state in which the fastening screws are used or in the respective National Annex to Eurocode 3.

In case of combined tension and shear forces the linear interaction formula according to EN 1993-1-3:2006 + AC:2009, section 8.3 (8) is taken into account.

$$\frac{N_{Sd}}{N_{Rd}} + \frac{V_{Sd}}{V_{Rd}} \le 1.0$$

The possibly required reduction of the tension resistance (pull-through resistance) due to the position of the fastener is taken into account:

- in accordance with EN 1993 1 3:2006+ AC:2009, section 8.3 (7) and Fig. 8.2 (component I is made of steel) or EN 1999-1-4:2007 + A1:2011, section 8.1 (6) and Table 8.3 (component I is made of aluminium),
- of 0.7 if the supporting structure is an asymmetric profile (e.g. Z-profile) with t_{II} < 5 mm

4.2.2 Additional rules for connections with timber supporting structures

As far as no other provisions are made in the following EN 1995-1-1:2004 + A1:2008 applies.

Drill points of self drilling screws or not cylindrical tips of flow drilling screws are not taken into account for the effective screw-in length.

The following terms are used:

d - nominal diameter of the fastening screw

I_α - Screw-in length - part of thread screwed into component II including drill point.

I_b - Length of unthreaded part of the drill-point or I_b = d for flow drilling screws

 I_{ef} - effective screw-in length $I_{ef} = I_a - I_b$

 $N_{R,k}$ = $F_{ax,Rk} \cdot k_{mod}$ $V_{R,k}$ = $F_{v,Rk} \cdot k_{mod}$

F_{ax,Rk} according to EN 1995-1-1:2004 + A1:2008, equation (8.40a)

Remark: $F_{ax,Rk} = F_{ax,\alpha,Rk}$ with $\alpha = 90^{\circ}$

 $F_{v,Rk}$ according to EN 1995-1-1:2004 + A1:2008, clause 8.2.3 k_{mod} according to EN 1995-1-1:2004 + A1:2008, Table 3.1

 $M_{y,Rk}$ in equation (8.9) of EN 1995-1-1:2004 + A1:2008 and $f_{ax,k}$ in equation (8.40a) of EN 1995-1-1:2004 + A1:2008 are given in the Annexes of this ETA.

Page 10 of 77 | 31 March 2013

The characteristic values for pullout and bearing resistance (timber supporting structure) calculated according to EN 1995-1-1:2004 + A1:2008 are compared with the characteristic values for component I (pull over and bearing resistance) stated in the right column of the table in the appropriate Annexes. The lower value is used for further calculations.

4.2.3 Additional rules for fastening of perforated sheets

For the fastening of perforated sheets (structural part I) only fastening screws with diameters given in Annexes 2, 3, 4 or 5 are used for which characteristic values are given in the following Annexes for unperforated sheets of same thickness and strength class as for the perforated sheets.

For the calculation of the connection the characteristic values for the connection of unperforated sheets according to the relevant Annex and the characteristic values for the connection of perforated sheets according to Annex 2, 3, 4 or 5 are determined. The lower values are used for further calculations.

The fastening to perforated sheets (structural part II) is not ruled in this ETA.

4.3 Installation

The installation is only carried out according to the manufacturer's instructions. The manufacturer hands over the assembly instructions to the assembler.

It is guaranteed by the execution that no bimetallic corrosion will occur.

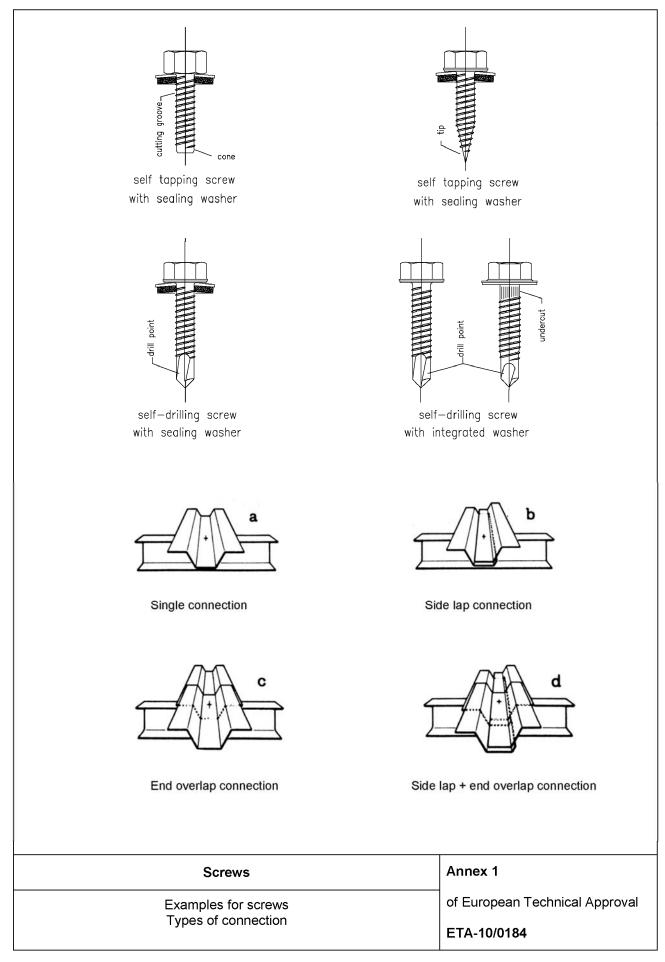
For regular shear forces the components I and II are directly connected to each other so that the fastening screws do not get additional bending. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

The fastening screws are fixed rectangular to the surface of the components to guarantee a correct load bearing and if necessary rain-proof connection.

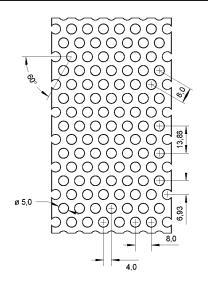
Fastening screws for steel supporting structures are screwed in with the cylindrical part of the thread at least 6 mm if the supporting structure has a thickness over 6 mm unless otherwise declared in the manufacturer's instruction. Welded drill points are not taken into account for the screw-in length.

The conformity of the installed fasteners with the provisions of the ETA is attested by the executing company.

5 Indications to the manufacturer


It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1, 2, 4.2 and 4.3 (including Annexes referred to) is given to those who are concerned. This information may be given by reproduction of the respective parts of the European technical approval.

In addition all installation data (predrill diameter, torque moment, application limits) shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).


Andreas Kummerow p. p. Head of Department

beglaubigt: Ulbrich

<u>Fastener</u> an

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088 EPDM sealing washer

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

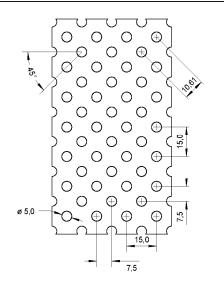
structural timber at least strength grade C24

Hole pattern I	
----------------	--

	perforated sheets sheet / made of S280GD					erforate			perforated sheets made of S350GD				
sheet / made of \$280GD Ø washer with R _{m,min} = 360 N/mm ²					R _{m,min} =			with R _{m,min} = 420 N/mm ²					
~	washor	16 mm 19 mm 22 mm 25 mm				l		1		1		1	
	VI t,nom	5 Nm											
	0,50	_				_		_					
=	0.55	_	_	_	_	_	_	_	_	 	_	_	_
"	0,63	_	_	_	_	_	_	_	_	_	_	_	_
for t _{N I} [mm]	0,75	2,16	2,22	2,24	2,38	2,34	2,40	2,44	2,58	2,54	2,60	2,62	2,78
Į.	0,88	2,56	2,64	2,64	2,78	2,78	2,86	2,86	3,02	3,00	3,10	3,10	3,26
ΙŹ	1,00	2,92	3,04	3,02	3,16	3,16	3,30	3,26	3,42	3,42	3,56	3,52	3,68
V _{R k} [kN]	1,13	3,32	3,48	3,42	3,56	3,60	3,76	3,70	3,86	3,88	4,10	4,00	4,16
5	1,25	3,70	3,88	3,80	3,94	4,00	4,20	4,10	4,26	4,32	4,54	4,42	4,60
	1,50	4,46	4,74	4,56	4,72	4,84	5,12	4,96	5,10	5,22	5,54	5,34	5,50
	0,50	_	_	_	_	_	_	_	_	_	_	_	_
=	0,55	_	_	_	_	_	—	_	_	—	_	_	_
<u> </u>	0,63	_	_	_	_	_	_	_	_	—	_	_	_
for t _{N I} [mm]	0,75	1,40	1,94	2,14	2,22	1,52	2,08	3,32	2,42	1,64	2,26	2,50	2,60
ģ	0,88	1,82	2,34	2,62	2,70	1,96	2,54	2,82	2,92	2,12	2,74	3,04	3,14
ΙZ	1,00	2,24	2,74	3,06	3,14	2,44	2,96	3,32	3,42	2,62	3,20	3,58	3,68
N _{R K} [KN]	1,13	2,74	3,18	3,58	3,64	2,98	3,44	3,88	3,96	3,20	3,70	4,18	4,26
2	1,25	3,24	3,58	4,08	4,12	3,52	3,88	4,40	4,46	3,78	4,18	4,76	4,80
	1,50	4,36	4,46	5,12	5,12	4,74	4,84	5,56	5,56	5,10	5,22	5,98	5,98

The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.


Fastening of perforated sheets

Annex 2

of European technical approval

ETA-10/0184

Fastener an

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088 EPDM sealing washer

Component I: S280GD - EN 10346

Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

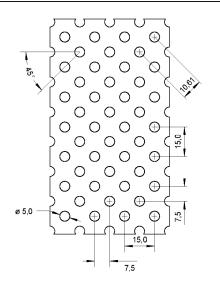
structural timber at least strength grade C24

Hole pattern I

	rew /	self drillin	g screws Ø	5,5 mm and	Ø6,0 mm			screws and 6,3 mm and			
Øw	Ø washer 16 mm 19 mm 22 mm 25 mm					16 mm	19 mm	22 mm	25 mm		
М	t,nom				5 N	Nm					
	0,50	_	_	_		_		_	_		
두	0,55	_	_	_	_	_	_	<u> </u>	_		
<u> </u>	0,63	_	_	_	_	_	_	_	_		
ż	0,75	2,48	2,52	2,84	2,76	2,38	2,64	3,16	3,24		
for	0,88	3,04	3,12	3,42	3,32	3,02	3,28	3,78	3,88		
V _{R.k} [kN] for t _{N,I} [mm]	1,00	3,56	3,70	3,84	3,84	3,64	3,96	4,36	4,50		
] ×.	1,13	4,14	4,26	4,40	4,40	4,36	4,70	5,00	5,18		
>	1,25	4,68	4,84	4,92	4,94	5,06	5,40	5,60	5,84		
	1,50	5,76	6,04	5,90	6,10	6,62	6,94	6,88	7,16		
	0,50	_	_	_	_	_	_	_	_		
=	0,55	_	_	_	_	_	_	_	_		
<u>u</u>	0,63	_	_	<u> </u>	_	_	_	<u> </u>	_		
ŤŽ.	0,75	2,88	3,16	3,24	3,14	2,86	3,46	3,72	3,92		
for	0,88	3,42	3,72	3,76	3,70	3,40	4,02	4,30	4,46		
ΙŽ	1,00	3,92	4,28	4,28	4,20	3,90	4,56	4,82	4,96		
N _{R,k} [kN] for t _{N,I} [mm]	1,13	4,46	4,86	4,88	4,72	4,44	5,12	5,38	5,48		
ĮΖ̈	1,25	4,96	5,42	5,42	5,26	4,94	5,66	5,88	5,94		
	1,50	6,04	6,60	6,60	6,38	6,00	6,74	6,92	6,90		

The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.


Fastening of perforated sheets

Annex 3

of European technical approval

ETA-10/0184

<u>Fastener</u> an

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088 EPDM sealing washer

LEDIVI Sealing Washer

Component I: S320GD - EN 10346

Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

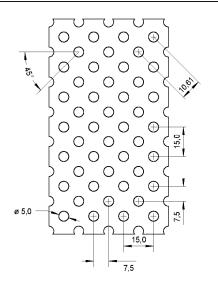
structural timber at least strength grade C24

Ho	le	pattern	I

	rew /	self drillin	g screws Ø	5,5 mm and	Ø6,0 mm			screws and 6,3 mm and	
Øw	Ø washer		25 mm	16 mm	19 mm	22 mm	25 mm		
M	t,nom				5 N	N m			
	0,50		_	_	-		_	_	_
=	0,55	_	_	_	_	_	_	_	_
<u>E</u>	0,63	_	_	_	_	_	_	_	_
ż.	0,75	2,68	2,74	3,08	3,00	2,68	2,88	3,42	3,50
for	0,88	3,30	3,38	3,70	3,60	3,36	3,60	4,10	4,22
V _{R,k} [kN] for t _{N,I} [mm]	1,00	3,86	4,00	4,16	4,16	4,02	4,30	4,72	4,88
] ×.	1,13	4,48	4,62	4,76	4,76	4,76	5,08	5,42	5,60
>	1,25	5,06	5,24	5,32	5,36	5,50	5,84	6,08	6,30
	1,50	6,24	6,54	6,40	6,60	7,10	7,52	7,46	7,76
	0,50	-	_	_	_		_	_	_
=	0,55	_	_	_	_	_	_	<u> </u>	_
<u>E</u>	0,63	_	_	_	_	_	_	_	_
Ť <u>z</u>	0,75	3,12	3,42	3,50	3,40	3,12	3,68	4,06	4,26
for	0,88	3,70	4,04	4,08	4,00	3,70	4,32	4,68	4,86
ΙZ	1,00	4,24	4,64	4,64	4,54	4,24	4,92	5,24	5,40
N _{R,k} [kN] for t _{N,I} [mm]	1,13	4,84	5,26	5,28	5,12	4,84	5,54	5,86	5,96
Ž	1,25	5,38	5,88	5,88	5,70	5,38	6,14	6,40	6,48
	1,50	6,54	7,16	7,16	6,92	6,54	7,38	7,54	7,52

The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.


Fastening of perforated sheets

Annex 4

of European technical approval

ETA-10/0184

<u>Fastener</u> an

self drilling screw from Ø5,5 mm to Ø6,3 mm

<u>Materials</u>

Fastener: stainless steel - EN 10088 or similiar

Washer: stainless steel - EN 10088 EPDM sealing washer

Component I: S350GD - EN 10346

Component II: at least S235 - EN 10025-1 or

at least S280GD - EN 10346 or

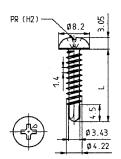
structural timber at least strength grade C24

Hole pattern II

sc	rew /	self drillin	g screws ø	5,5 mm and	Ø6,0 mm			screws and 6,3 mm and	
Ø washer		16 mm	19 mm	22 mm	25 mm	16 mm	19 mm	22 mm	25 mm
М	t,nom				5 N	Nm			
	0,50	-	_	_	_	_	_	_	_
_	0,55	_	_	<u> </u>	_	_	_	<u> </u>	_
for t _{N,I} [mm]	0,63	_	_	_	_	_	_	_	_
ż	0,75	2,88	2,92	3,30	3,20	2,98	3,20	3,72	3,92
for	0,88	3,54	3,62	3,96	3,86	3,62	3,88	4,42	4,54
V _{R,k} [kN]	1,00	4,14	4,28	4,46	4,46	4,24	4,52	5,08	5,12
] ×.	1,13	4,80	4,94	5,10	5,10	4,92	5,24	5,78	5,74
>	1,25	5,44	5,62	5,62 5,70		5,56	5,92	6,46	6,32
	1,50	6,24	6,54	6,40	7,02	6,94	7,36	7,86	7,48
	0,50	1	-	_	_	_	_	_	_
=	0,55	_	_	_	_	_	_	_	_
<u>Ē</u>	0,63	_	_	_	_	_	_	_	_
for t _{N,1} [mm]	0,75	3,34	3,66	3,76	3,64	3,52	4,16	4,52	4,64
ρ	0,88	3,96	4,36	4,38	4,28	3,98	4,74	5,04	5,24
	1,00	4,54	4,98	4,96	4,86	4,40	5,24	5,50	5,76
N _{R,k} [kN]	1,13	5,16	5,64	5,64	5,48	4,86	5,76	5,96	6,32
Z	1,25	5,80	6,28	6,28	6,14	5,38	6,24	6,40	6,80
	1,50	6,54	7,16	7,16	7,46	6,54	7,38	7,54	7,80

The thickness of the perforated sheets which are exposed to wind loads shall be at least 1,00 mm.

For intermediate values of the washer diameter the characteristic values for the washer with the smaller diameter shall be used.


Fastening of perforated sheets

Annex 5

of European technical approval

ETA-10/0184

Fastener: carbon steel; case hardened and galvanized

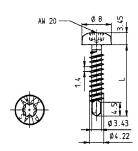
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346


Timber substructures

no performance determined

t _N	ı,ıı =	0,6	3	0,7	'5	0,8	38	1,00 1,13		1,2	25	1,5	0	2,00			
$M_{t,}$	nom =			3 N	m				4 Nm						5 1	Nm	
	0,50	_	_	—	_	_	_	-	_	-	_	-	_	_	_	-	-
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_
=	0,63	1,30	ac	1,40	ac	1,50	ac	1,60	ac	1,70	ac	1,80	ac	2,00	ac	2,20	ac
<u> </u>	0,75	1,30	_	1,40	_	1,60	ac	1,70	ac	1,90	ac	2,00	ac	2,20	ac	2,60	а
Ţ.	0,88	1,40	_	1,50	_	1,70	_	1,80	_	2,10	а	2,20	ac	2,50	а	3,00	а
for	1,00	1,40	_	1,70	_	1,90	_	2,10	_	2,30	_	2,50	а	2,80	а	3,40	_
ΙZ	1,13	1,40	_	1,70	_	2,00	_	2,20	_	2,60	_	2,60	а	3,10	а	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,50	_	1,80	_	2,00	_	2,30	_	2,60	_	2,90	_	3,40	_	l —	_
>	1,50	1,50	_	1,80	_	2,00	_	2,30	_	2,60	_	3,00	_	3,90	_	l —	_
	1,75	1,50	_	1,80	_	2,00	_	2,30	_	2,60	_	3,00	_	—	_	l —	_
	2,00	1,50	_	1,80	_	2,00	_	2,30	_	 	_	—	_	—	_	—	_
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	—		—	_	—	_	—		—	_
=	0,63	0,50	ac	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,70	ac	1,70	ac
<u> </u>	0,75	0,50	_	0,60	_	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,70	ac	2,00	а
Ţ,	88,0	0,50	_	0,60	_	0,80	_	1,00	_	1,20	а	1,40	ac	1,70	а	2,40	а
fo	1,00	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	а	1,70	а	2,40	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	а	1,70	а	—	_
*	1,25	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	—	_
ĮΖ̈́	1,50	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	—	_	—	_
	1,75	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	—	_	—	_
	2,00	0,50	_	0,60	_	0,80	_	1,00	_	—	_	—	_	—	_	—	_

Self drilling screw	
	Annex 6
ZEBRA Pias Ø 4,2 x L	of European technical approval
with cross recessed pan head	ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

similiar to carbon steel (1.1147) - EN 10263

Washer: none

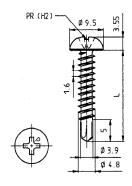
Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity Σt_i ≤

 $\Sigma t_i \le 3,00 \text{ mm}$


Timber substructures

no performance determined

t	N,II =	0,6	3	0,7	7 5	0,8	38	1,0	1,00		1,13		25	1,5	50	2,0	0
М	t,nom =			3 N	m					4 N	lm				5 1	N m	
	0,50	-	_		_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_
1=	0,63	1,20	ac	1,30	ac	1,40	ac	1,40	ac	1,50	ac	1,60	ac	1,80	ac	2,00	ac
<u>E</u>	0,75	1,20	_	1,30	_	1,40	ac	1,50	ac	1,70	ac	1,80	ac	2,00	ac	2,30	а
Ţ,	88,0	1,30	_	1,40	_	1,50	_	1,60	_	1,90	а	2,00	ac	2,20	а	2,70	а
for	1,00	1,30	_	1,50	_	1,70	_	1,90	_	2,10	_	2,20	а	2,50	а	3,10	_
Z	1,13	1,30	_	1,50	_	1,80	_	2,00	_	2,30	_	2,30	а	2,80	а	—	_
V _{R,k} [kN] for t _{N,1} [mm]	1,25	1,40	_	1,60	_	1,80	_	2,10	_	2,30	_	2,60	_	3,10	_	—	-
>	1,50	1,40	_	1,60	_	1,80	_	2,10	_	2,30	_	2,70	_	3,50	_	l —	_
	1,75	1,40	_	1,60	_	1,80	_	2,10	_	2,30	_	2,70	_	 —	_	l —	_
	2,00	1,40	_	1,60	_	1,80	_	2,10	_	—	_	_	_	—	_	—	_
	0,50	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_
1=	0,63	0,50	ac	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,70	ac	1,70	ac
<u>E</u>	0,75	0,50		0,60		0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,70	ac	2,00	а
Ę,	88,0	0,50		0,60		0,80	_	1,00	_	1,20	а	1,40	ac	1,70	а	2,40	а
for	1,00	0,50		0,60		0,80	_	1,00	_	1,20	_	1,40	а	1,70	а	2,40	_
ΙŹ	1,13	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	а	1,70	а	—	_
N _{R.k} [kN] for t _{N,I} [mm]	1,25	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	—	_
=	1,50	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	—	_
	1,75	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	—	_	—	_
	2,00	0,50	_	0,60	_	0,80	_	1,00	_	—	_	_	_	—	_	—	_

Self drilling screw	
	Annex 7
ZEBRA Pias Ø 4,2 x L with pan head with AW drive	of European technical approval ETA-10/0184

Electronic copy of the ETA by DIBt: ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

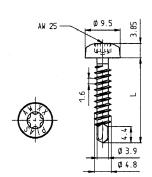
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

 $\underline{\text{Drilling capacity}} \qquad \qquad \Sigma t_i \leq 4{,}40 \text{ mm}$


Timber substructures

no performance determined

	t _{N,II} = 0,63 0,75 0,88 1,00				1,13 1,25				1,5	0	2,00		3,0	00					
M _{t,n}	om =							2 Nm											
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	_	_	_	_	—	_	_	_	—	_	—	_	—	_	—	_	—	-
=	0,63	1,50	_	1,50	_	1,50	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac	1,70	ac	1,90	ac
<u> </u>	0,75	1,50	_	1,60	_	1,70	_	1,80	ac	1,90	ac	2,10	ac	2,20	ac	2,20	ac	2,20	ac
Ž,	0,88	1,50	_	1,70	_	1,90	_	2,10	_	2,30	ac	2,60	_	2,80	ac	2,80	ac	2,80	ac
for	1,00	1,50	_	1,70	_	2,10	_	2,50	_	2,90	_	2,90	_	3,00	ac	3,10	ac	3,60	ac
V _{R,k} [kN] for t _{N,I} [mm]	1,13	1,50	_	1,70	_	2,10	_	2,50	_	2,90	_	2,90	_	3,30	_	3,50	ac	4,80	а
<u>*</u>	1,25	1,50	_	1,70	_	2,10	_	2,50	_	2,90	_	2,90	_	3,60	_	4,00	_	5,20	-
>	1,50	1,50	_	1,70	_	2,10	_	2,50	_	2,90	_	2,90	_	4,20	_	4,60	_	5,80	-
	1,75	1,50	_	1,70	_	2,10	_	2,50	_	2,90	_	2,90	_	4,20	_	4,60	_	—	_
	2,00	1,50	_	1,70	_	2,10	_	2,50	_	2,90	_	2,90	_	4,20	_	4,60	_	_	_
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	_	_	_	_	—	_	_	_	—	_	—	_	—	_	_	_	—	-
=	0,63	0,50	_	0,70	_	0,90	ac	1,10	ac	1,30	ac	1,40	ac	1,40	ac	1,40	ac	1,40	ac
<u> </u>	0,75	0,50	_	0,70	_	0,90	_	1,10	ac	1,30	ac	1,40	ac	1,80	ac	1,80	ac	1,80	ac
ţţ.	0,88	0,50	_	0,70	_	0,90	_	1,10	_	1,30	ac	1,40	_	2,00	ac	2,30	ac	2,30	ac
ξ	1,00	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	ac	2,70	ac	2,70	ac
ΙŜ	1,13	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	ac	3,40	а
N _{R,k} [kN] for t _{N,I} [mm]	1,25	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	3,90	_
ž	1,50	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	4,60	_
	1,75	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	_	_
	2,00	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	—	_

Self drilling screw	
	Annex 8
ZEBRA Pias Ø 4,8 x L	of European technical approval
with cross recessed pan head	ETA-10/0184

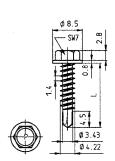
Fastener: carbon steel; case hardened and galvanized

similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component II: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346


Timber substructures

no performance determined

t _N	t _{N,II} = 0,63 0,75 0,88 1,00				1,13 1,25				1,5	0	2,00		3,0	0					
M _{t,}	nom =									2 Nm									
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	_	_	—	_	_	_	—	_	_	_	—	_	—	_	—	_
=	0,63	1,40	_	1,40	_	1,40	ac	1,40	ac	1,40	ac	1,40	ac	1,40	ac	1,50	ac	1,70	ac
<u> </u>	0,75	1,40	_	1,40	_	1,50	_	1,60	ac	1,70	ac	1,90	ac	2,00	ac	2,00	ac	2,00	ac
<u>z</u> ,	88,0	1,40	_	1,50	_	1,70	_	1,90	_	2,10	ac	2,30	_	2,50	ac	2,50	ac	2,50	ac
V _{R,k} [kN] for t _{N,1} [mm]	1,00	1,40	_	1,50	_	1,90	_	2,30	_	2,60	_	2,60	_	2,70	ac	2,80	ac	3,20	ac
ĮŽ	1,13	1,40	_	1,50	_	1,90	_	2,30	_	2,60	_	2,60	_	3,00	_	3,20	ac	4,30	а
<u>*</u>	1,25	1,40	_	1,50	_	1,90	_	2,30	_	2,60	_	2,60	_	3,20	_	3,60	_	4,70	_
5	1,50	1,40	_	1,50	_	1,90	_	2,30	_	2,60	_	2,60	_	3,80	_	4,10	_	5,20	_
	1,75	1,40	_	1,50	_	1,90	_	2,30	_	2,60	_	2,60	_	3,80	_	4,10	_	—	_
	2,00	1,40	_	1,50	_	1,90	_	2,30	_	2,60	_	2,60	_	3,80	_	4,10	_	_	_
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	_	—	—	_	_	_	—	_	_	_	—	_	—	_	—	_
=	0,63	0,50	_	0,70	—	0,90	ac	1,10	ac	1,30	ac	1,40	ac	1,40	ac	1,40	ac	1,40	ac
<u>Ē</u>	0,75	0,50	_	0,70	—	0,90	_	1,10	ac	1,30	ac	1,40	ac	1,80	ac	1,80	ac	1,80	ac
Ţ	88,0	0,50	_	0,70	_	0,90	_	1,10	_	1,30	ac	1,40	_	2,00	ac	2,30	ac	2,30	ac
fo	1,00	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	ac	2,70	ac	2,70	ac
N _{R.k} [kN] for t _{N,I} [mm]	1,13	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	ac	3,40	а
×	1,25	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	3,90	_
=	1,50	0,50	_	0,70	_	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	4,60	_
	1,75	0,50	_	0,70	—	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	_	_
	2,00	0,50	_	0,70	—	0,90	_	1,10	_	1,30	_	1,40	_	2,00	_	3,10	_	_	_

Self drilling screw	
	Annex 9
ZEBRA Pias Ø 4,8 x L with pan head with AW drive	of European technical approval ETA-10/0184

Fastener:

carbon steel; case hardened and galvanized similiar to carbon steel (1.1147) - EN 10263

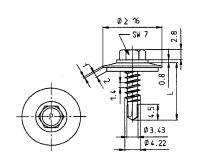
Washer: none

Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,00 \text{ mm}$


Timber substructures

no performance determined

t _N		-,		1,0	0	1,1	3	1,2	25	1,5	50	2,0	00				
$M_{t,i}$	nom =		2 N	lm			2,5	Nm					1 8	Vm			
	0,50	_	_	_	_	_	_	—	_	—	_	—	_	—	_	-	
	0,55	—	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	_
=	0,63	1,20	_	1,30	ac	1,50	ac	1,60	ac	1,80	ac	2,10	ac	2,30	ac	2,60	ac
<u> </u>	0,75	1,20	_	1,40	_	1,70	_	1,90	_	2,00	ac	2,20	ac	2,50	ac	2,80	а
Ţ.	88,0	1,20	_	1,50	_	1,80	_	2,10	_	2,20	_	2,40	ac	2,70	а	3,00	а
for	1,00	1,20	_	1,50	_	1,90	_	2,20	_	2,30	_	2,60	_	2,80	а	3,40	а
ΙZ	1,13	1,20	_	1,50	_	2,00	_	2,20	_	2,40	_	2,70	_	3,10	_	3,70	_
V _{R,k} [kN] for t _{N,1} [mm]	1,25	1,20	_	1,60	_	2,00	_	2,30	_	2,60	_	2,80	_	3,30	_	4,00	_
> "	1,50	1,20	_	1,60	_	2,00	_	2,30	_	2,80	_	3,20	_	3,70	_	—	_
	1,75	1,20	_	1,60	_	2,00	_	2,30	_	2,80	_	3,20	_	l —	_	l —	_
	2,00	1,20	_	1,60	_	2,00	_	2,30	_	l —	_	l —	_	l —	_	l —	_
	0,50	0,27	_	0,32	ac	0,43	ac	0,54	ac	0,65	ac	0,76	ac	0,86	ac	0,92	ac
	0,55	0,34	_	0,41	ac	0,55	ac	0,68	ac	0,82	ac	0,95	ac	1,09	ac	1,16	ac
=	0,63	0,50	_	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,60	ac	1,70	ac
<u> </u>	0,75	0,50	_	0,60	_	0,80	_	1,00	_	1,20	ac	1,40	ac	1,70	ac	2,00	а
Ţ.	88,0	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	ac	1,70	а	2,40	а
for	1,00	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	а	2,40	а
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	2,40	_
*	1,25	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	2,40	_
=	1,50	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	—	_
	1,75	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	—	_	—	_
	2,00	0,50	_	0,60	_	0,80	_	1,00	_	—	_	—	_	—	_	—	_

Self drilling screw	
	Annex 10
ZEBRA Pias Ø 4,2 x L	of European technical approval
with hexagon head	ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

similiar to carbon steel (1.1147) - EN 10263

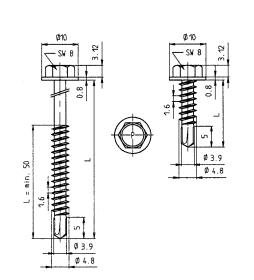
Washer: carbon steel, galvanized

Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,00 \text{ mm}$


Timber substructures

no performance determined

-	,,i = 0,63 0,75 0,88 1,00					10	1 1 1	2	1 1 2) E	1,5		2.0	10			
	1,11	0,0	3	0,7	3	,		1,0	,,,	1,1	3	1,2	.5			2,0	0
$M_{t,}$	nom =					2 N	m							4 N	ım		
	0,50	—	_	—	_	—	_	—	_	—	_	—	_	-		—	_
	0,55		_	—	_	—	_	—	_	—	_	—	_	 —	_	—	_
=	0,63	0,90	ac	1,10	ac	1,40	ac	1,50	ac	1,60	ac	1,70	ac	2,10	ac	2,50	ac
ΙĒ	0,75	0,90	ac	1,10	ac	1,40	ac	1,60	ac	1,80	ac	2,00	ac	2,30	ac	2,80	а
Ţ.	88,0	0,90	ac	1,10	ac	1,40	ac	1,70	ac	2,10	ac	2,30	ac	2,60	а	3,20	а
Į.	1,00	0,90	ac	1,10	ac	1,40	ac	1,80	а	2,40	а	2,60	а	2,90	а	3,60	_
V _{R,k} [kN] for t _{N,I} [mm]	1,13	0,90	ac	1,10	а	1,50	а	1,90	а	2,50	а	2,80	а	3,10	а	3,80	_
🕺	1,25	0,90	а	1,10	а	1,70	_	2,00	_	2,70	_	3,10	_	3,40	_	4,00	_
>	1,50	1,20	_	1,60	_	2,00	_	2,50	_	3,00	_	3,60	_	4,00	_	l —	_
	1,75	1,20	_	1,60	_	2,00		2,50		3,00		3,60	_	l —	_	l —	_
	2,00	1,20	_	1,60	_	2,00	_	2,50	_	l —		l —	_	l —	_	l —	_
	0,50	0,27	ac	0,32	ac	0,43	ac	0,54	ac	0,65	ac	0,76	ac	0,86	ac	1,30	ac
	0,55	0,34	ac	0,41	ac	0,55	ac	0,68	ac	0,82	ac	0,95	ac	1,09	ac	1,64	ac
1=	0,63	0,50	ac	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,60	ac	2,40	ac
l E	0,75	0,50	ac	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,60	ac	2,40	а
Į į	0,88	0,50	ac	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,60	а	2,40	а
l jo	1,00	0,50	ac	0,60	ac	0,80	ac	1,00	а	1,20	а	1,40	а	1,60	а	2,40	_
N _{R.k} [kN] for t _{N,I} [mm]	1,13	0.50	ac	0,60	а	0,80	а	1.00	а	1,20	а	1,40	а	1,60	а	2,40	_
¥	1,25	0.50	а	0.60	а	0.80	_	1.00	_	1,20		1,40	_	1.60	_	2,40	_
N N	1,50	0,50	_	0,60	_	0.80	_	1,00	_	1,20	_	1,40	_	1,60	_		_
	1,75	0,50	_	0,60	_	0.80	_	1.00	_	1,20	_	1,40	_	_	_	l	_
	2,00	0,50	_	0,60	_	0,80	_	1,00	_		_	_	_	_	_	_	_

Self drilling screw	
	Annex 11
ZEBRA Pias Ø 4,2 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

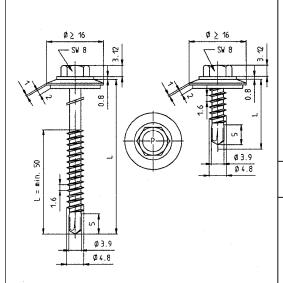
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 4,40 \text{ mm}$


Timber substructures

no performance determined

t	, _{II} =	0,6	3	0,7	5	0,8	8	1,00		1,1	3	1,2	5	1,5	0	2,0	0	3,0	0
M	,nom =			2 N	m			2,5 1	2,5 Nm		m	4 N	m			5 N	lm		
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
	0,55	—	_	_	_	—	_	_	_	_	_	_	_	_	_	—	_	—	_
=	0,63	1,20	_	1,40	ac	1,50	ac	1,70	ac	1,90	ac	2,00	ac	2,30	ac	2,40	ac	2,40	ac
<u>E</u>	0,75	1,30	_	1,50	ac	1,70	ac	1,90	ac	2,00	ac	2,20	ac	2,50	ac	3,00	ac	3,00	ac
Ţ.	0,88	1,40	_	1,70	_	1,90	ac	2,10	ac	2,30	ac	2,50	ac	2,80	ac	3,40	ac	3,40	ac
ρ	1,00	1,40	_	1,80	_	2,00	_	2,30	ac	2,50	ac	2,70	ac	3,10	ac	3,70	ac	2,10	ac
ΙZ	1,13	1,50	_	1,90	_	2,20	_	2,50	_	2,90	_	3,10	_	3,40	ac	4,10	ac	4,50	а
V _{R,k} [kN] for t _{N,1} [mm]	1,25	1,50	_	1,90	_	2,30	_	2,70	_	3,10	_	3,30	_	3,70	_	4,40	_	4,80	_
5	1,50	1,50	_	2,00	_	2,40	_	3,00	_	3,60	_	3,90	_	4,50	_	5,00	_	l —	_
	1,75	1,50	_	2,00	_	2,40	_	3,00	_	3,60	_	3,90	_	4,50	_	5,00	_	 	_
	2,00	1,50	_	2,00	_	2,40	_	3,00	_	3,60	_	3,90	_	4,50	_	5,00	_	_	_
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	_	_	—	_	_	_	_	_	—	_	_	_	 	_	—	_
=	0,63	0,50	_	0,70	ac	0,80	ac	1,00	ac	1,10	ac	1,30	ac	1,70	ac	2,10	ac	2,10	ac
<u> </u>	0,75	0,50	_	0,70	ac	0,80	ac	1,00	ac	1,10	ac	1,30	ac	1,70	ac	2,30	ac	2,30	ac
Ţ.	0,88	0,50	_	0,70	_	0,80	ac	1,00	ac	1,10	ac	1,30	ac	1,70	ac	2,50	ac	2,50	ac
ģ	1,00	0,50	_	0,70	_	0,80	_	1,00	ac	1,10	ac	1,30	ac	1,70	ac	2,50	ac	2,50	ac
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,50	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,70	ac	2,50	ac	2,50	а
×	1,25	0,50	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,70	_	2,50	_	2,50	_
🛎	1,50	0,50	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,70	_	2,50	_	2,50	_
	1,75	0,50	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,70	_	2,50	_	_	_
	2,00	0,50	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,70	_	2,50	_	_	_

Self drilling screw	
	Annex 12
ZEBRA Pias Ø 4,8 x L with hexagon head	of European technical approval
	ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

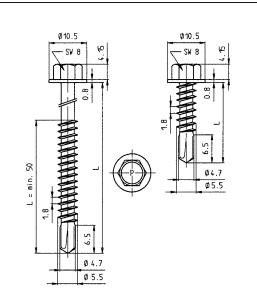
similiar to carbon steel (1.1147) - EN 10263

Washer: carbon steel, galvanized

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 4,40 \text{ mm}$


Timber substructures

no performance determined

t _N	,,, =	0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	0	3,	00
$M_{t,r}$	nom =					3 N	m							4 N	m			4,5	Nm
	0,50	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	- 1
	0,55	_	_	_	_	—	_	_	_	—	_	_	_	—	_	—	_	—	-
=	0,63	1,00	_	1,30	ac	1,40	ac	1,60	ac	1,70	ac	1,80	ac	2,00	ac	2,40	ac	2,80	abcd
<u>Ē</u>	0,75	1,00	_	1,30	ac	1,50	ac	1,70	ac	1,90	ac	2,10	ac	2,40	ac	2,90	ac	2,90	ac
<u>z</u> ,	88,0	1,00	_	1,40	_	1,60	ac	1,80	ac	2,10	ac	2,40	ac	2,70	ac	3,50	ac	3,50	ac
V _{R,k} [kN] for t _{N,1} [mm]	1,00	1,00	_	1,40	_	1,60	ac	2,00	ac	2,30	ac	2,60	ac	3,10	_	4,10	_	4,10	a
ĮŹ	1,13	1,00	_	1,40	_	1,70	_	2,10	_	2,50	_	2,90	_	3,50	_	4,03	_	4,30	-
×	1,25	1,00	_	1,50	_	1,80	_	2,20	_	2,60	_	3,00	_	3,50	_	4,30	_	5,10	-
5	1,50	1,00	_	1,60	_	2,10	_	2,50	_	2,91	_	3,20	_	3,50	_	4,30	_	6,70	-
	1,75	1,00	_	1,60	_	2,10	_	2,50	_	2,91	_	3,20	_	3,50	_	4,30	_	—	-
	2,00	1,00	_	1,60	_	2,10	_	2,50	_	2,91	_	3,20	_	3,50	_	4,30	_	—	-
	0,50	0,32	_	0,38	ac	0,43	ac	0,54	ac	0,59	ac	0,70	ac	0,81	ac	0,92	ac	1,08	abcd
	0,55	0,41	_	0,48	ac	0,55	ac	0,68	ac	0,75	ac	0,89	ac	1,02	ac	1,16	ac	1,36	abcd
=	0,63	0,60	_	0,70	ac	0,80	ac	1,00	ac	1,10	ac	1,30	ac	1,50	ac	1,70	ac	2,00	abcd
<u> </u>	0,75	0,60	_	0,70	ac	0,80	ac	1,00	ac	1,10	ac	1,30	ac	1,50	ac	1,70	ac	2,00	ac
ž,	88,0	0,60	_	0,70	_	0,80	ac	1,00	ac	1,10	ac	1,30	ac	1,50	ac	1,70	ac	2,00	ac
for	1,00	0,60	_	0,70	_	0,80	ac	1,00	ac	1,10	ac	1,30	ac	1,50	_	1,70	_	2,00	а
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,60	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,50	_	1,70	_	2,00	_
×	1,25	0,60	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,50	_	1,70	_	2,00	-
Ζ̈	1,50	0,60	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,50	_	1,70	_	2,00	- 1
	1,75	0,60	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,50	_	1,70	_	—	-
	2,00	0,60	_	0,70	_	0,80	_	1,00	_	1,10	_	1,30	_	1,50	_	1,70	_	_	

Self drilling screw	
	Annex 13
ZEBRA Pias Ø 4,8 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener: carbon steel; case hardened and galvanized

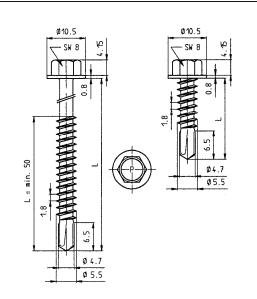
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 5,25 \text{ mm}$


Timber substructures

no performance determined

t _N		0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	25	1,5	50	2,00	
$M_{t,}$	nom =		3 N	۱m						4 N	m					5 N	lm
	0,50	-	_	—	_	_	_	—	_	_	_	—	_	-	_	-	-
	0,55	—	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	_
=	0,63	1,40	_	1,50	ac	1,50	ac	1,50	ac	1,50	ac	1,70	ac	1,90	ac	2,40	ac
<u>E</u>	0,75	1,40	_	1,60	ac	1,70	ac	1,80	ac	1,90	ac	2,10	ac	2,50	ac	2,80	ac
Ţ.	88,0	1,40	_	1,70	_	1,90	ac	2,10	ac	2,30	ac	2,50	ac	2,70	ac	3,30	ac
for	1,00	1,40	_	1,80	_	2,00	_	2,20		2,50		2,70	ac	3,00	ac	3,60	ac
ΙZ	1,13	1,50	_	1,80	_	2,10	_	2,30	_	2,60	_	2,90	_	3,40	_	4,00	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,50	_	1,90	_	2,20	_	2,50	_	2,80	_	3,10	_	3,60	_	4,40	_
>	1,50	1,60	_	2,00	_	2,40	_	2,70	_	3,10	_	3,50	_	4,30	_	5,10	_
	1,75	1,60	_	2,00	_	2,40	_	2,70	_	3,10	_	3,50	_	4,30	_	5,10	_
	2,00	1,60	_	2,00	_	2,40	_	2,70	_	3,10	_	3,50	_	4,30	_	5,10	_
	0,50	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	l —	_	<u> </u>	_
	0,55	—	_	—	_	—	_	l —	_	 —	_	—	_	l —	_	_	_
=	0,63	0,40	_	0,50	ac	0,60	ac	0,80	ac	0,90	ac	1,10	ac	1,50	ac	1,90	ac
<u> </u>	0,75	0,40	_	0,50	ac	0,60	ac	0,80	ac	0,90	ac	1,10	ac	1,50	ac	2,30	ac
Ţ.	88,0	0,40	_	0,50	_	0,60	ac	0,80	ac	0,90	ac	1,10	ac	1,50	ac	2,40	ac
for	1,00	0,40	_	0,50	_	0,60	_	0,80	_	0,90	_	1,10	ac	1,50	ac	2,40	ac
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,40	_	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,50	_	2,40	_
*	1,25	0,40	_	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,50	_	2,40	_
=	1,50	0,40	_	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,50	_	2,40	_
	1,75	0,40	_	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,50	_	2,40	_
	2,00	0,40	_	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,50	_	2,40	_

Self drilling screw	
Annex	14
ZEBRA Pias Ø 5,5 x L with hexagon head ETA-10	pean technical approval

Materials

Fastener: carbon steel; case hardened and galvanized

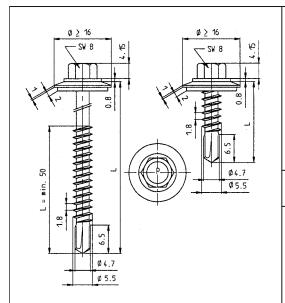
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 5,25 \text{ mm}$


Timber substructures

no performance determined

t	, _{II} =	2,5	0	3,0	0	4,0	0	5,00		6,0	00	7,00		8,00		10	,0
M	,nom =		5 1	l m		6 N	lm					_	_				
	0,50	_	_		_	_	_	_		_	_	_	_	_	_	_	_
	0,55	l —	_	—	_	—	_	—	_	_	_	_	_	_	_	—	_
1-	0,63	2,40	ac	2,40	ac	2,40	ac	_	_	_	_	_	_	_	_	—	_
] =	0,75	2,85	ac	2,90	ac	2,90	ac	_	_	_	_	_	_	<u> </u>	_	 	_
Z.	88,0	3,35	ac	3,40	ac	3,50	а	_	_	_	_	_	_	_	_	—	_
Į.	1,00	3,75	ac	3,90	ac	4,20	а	_	_	_	_	_	_	_	_	—	_
V _{R,k} [kN] for t _{N,1} [mm]	1,13	4,30		4,60	а	5,20	а	_	_	_	_	_	_	_	_	_	_
デ	1,25	4,90	_	5,40	_	6,00	_	_	_	_	_	_	_	_	_	_	_
> =	1,50	5,70	_	6,30	_	_	_	_	_	_	_	_	_	_	_	_	_
	1,75	5,70	_	6,30	_	l —	_	_	_	_	_	_	_	_	_	l —	_
	2,00	5,70	_	6,30	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,50	_		_	_	_		_		_	_	_	_	_	_	_	_
	0,55	l —		—	_	—	_	_	_	_	_	_	_	_	_	_	_
1=	0,63	1,90	ac	1,90	ac	1,90	ac	_	_	_	_	_	_	_	_	_	_
1 💆	0,75	2,30	ac	2,30	ac	2,30	ac	_	_	_	_	_	_	_	_	_	_
Ĭ,	88,0	2,65	ac	2,90	ac	2,90	а	_	_	_	_	_	_	_	_	_	_
Į.	1,00	2,85	ac	3,30	ac	3,30	а	_	_	_	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	3,20	_	4,00	а	4,00	а	_	_	_	_	_	_	_	_	_	_
デ	1,25	3,40		4,40		4,40	_	l —	_	_	_	_	_	_	_	_	_
ž	1,50	3,60	_	4,80	_	_	_	l —	_	_	_	_	_	_	_	_	_
	1,75	3,60	_	4,80	_	l —	_	l —	_	_	_	_	_	_	_	_	_
	2,00	3,60	_	4,80	_	_	_	l —	_	_	_	_	_	_	_	_	_

Self drilling screw	
	Annex 15
ZEBRA Pias Ø 5,5 x L	of European technical approval
with hexagon head	ETA-10/0184

Fastener: carbon steel; case hardened and galvanized

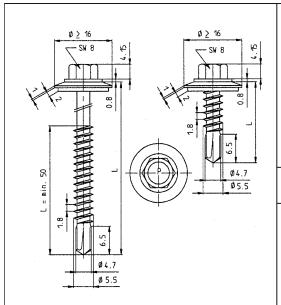
similiar to carbon steel (1.1147) - EN 10263

Washer: carbon steel, galvanized

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 5,25 \text{ mm}$


Timber substructures

no performance determined

t _N	1,11 =	0,6	3	0,7	'5	0,8	88	1,0	0	1,1	3	1,25		1,50		2,0	00
M _{t,}	nom =	2 N	m	2,5	٧m					3 N	m					3,5 [٧m
	0,50	_	_		_	_	_			_		_	_		_	-	
	0,55	—	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	_
1=	0,63	1,00	_	1,20	_	1,30	_	1,40	ac	1,60	ac	1,70	ac	2,00	ac	2,40	ac
<u> </u>	0,75	1,00	_	1,20	_	1,40	_	1,60	_	1,80	ac	2,00	ac	2,40	ac	2,60	ac
, Z	88,0	1,00	_	1,20	_	1,40	_	1,60		1,90	_	2,20	ac	2,90	ac	3,60	ac
for	1,00	1,00	_	1,20	_	1,40	_	1,70		2,00		2,40	_	3,10	_	3,80	_
ΙZ	1,13	1,00	_	1,20	_	1,40	_	1,70	_	2,10	_	2,50	_	3,20	_	4,00	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,00	_	1,20	_	1,50	_	1,80	_	2,10	_	2,50	_	3,30	_	4,20	_
> =	1,50	1,00	_	1,20	_	1,50	_	1,80	_	2,30	_	2,70	_	3,60	_	4,70	_
	1,75	1,00	_	1,20	_	1,50	_	1,80	_	2,30	_	2,70	_	3,60	_	4,70	_
	2,00	1,00	_	1,20	_	1,50	_	1,80	_	2,30	_	2,70	_	3,60	_	4,70	_
	0,50	0,22	_	0,32	_	0,38	_	0,43	ac	0,54	ac	0,65	ac	0,86	ac	1,30	ac
	0,55	0,27	_	0,41	_	0,48	_	0,55	ac	0,68	ac	0,82	ac	1,09	ac	1,64	ac
1=	0,63	0,40	_	0,60	_	0,70	_	0,80	ac	1,00	ac	1,20	ac	1,60	ac	2,40	ac
<u> </u>	0,75	0,40	_	0,60	_	0,70	_	0,80	_	1,00	ac	1,20	ac	1,60	ac	2,40	ac
Ţ.	88,0	0,40	_	0,60	_	0,70	_	0,80	_	1,00	_	1,20	ac	1,60	ac	2,40	ac
ρ	1,00	0,40	_	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	_	2,40	_
Z	1,13	0,40	_	0,60	_	0,70	_	0,80		1,00	_	1,20	_	1,60	_	2,40	_
N _{R.k} [kN] for t _{N,I} [mm]	1,25	0,40	_	0,60		0,70	_	0,80		1,00		1,20	_	1,60	_	2,40	_
=	1,50	0,40	_	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	_	2,40	_
1	1,75	0,40	_	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	_	2,40	_
	2,00	0,40	_	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	_	2,40	_

Self drilling screw	
	Annex 16
ZEBRA Pias Ø 5,5 x L with hexagon head and sealing washer ≥ Ø16 mm	of European technical approval ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

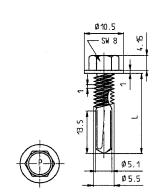
similiar to carbon steel (1.1147) - EN 10263

Washer: carbon steel, galvanized

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

<u>Drilling capacity</u> $\Sigma t_i \le 5,25 \text{ mm}$


Timber substructures

no performance determined

t _N	, _{II} =	2,5	0	3,0	00	4,0	00	5,0	00	6,0	00	7,0	00	8,0	00	10	,0
	nom =	3,51	Νm		4 1	Vm.						_	=				
	0,50		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	l —	_	l —	_	l —	_	—	_	_	_	_	_	_	_	—	_
1=	0,63	2,55	ac	2,70	ac	2,70	ac	—	_	_	_	_	_	_	_	—	_
1 🖺	0,75	2,80	ac	3,00	ac	3,30	ac	<u> </u>	_	_	_	_	_	_	_	<u> </u>	_
Ţ.	88,0	3,75	ac	3,90	ac	3,90	ac	—	_	_	_	_	_	_	_	—	_
وا	1,00	4,10	ac	4,40	ac	4,40	а	—	_	_	_	_	_	_	_	—	_
ΙZ	1,13	4,45	_	4,90	_	5,10	а	—	_	_	_	_	_	_	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	4,70	_	5,20	_	5,70	_	_	_	_	_	_	_	_	_	_	_
> =	1,50	5,30	_	5,90	_	_	_		_	_	_	_	_	_	_	_	_
	1,75	5,30	_	5,90	_	_	_	_	_	_	_	_	_	_	_	_	_
	2,00	5,30	_	5,90	_	l —	_	_	_	_	_	_	_	_	_	_	_
	0,50	1,51	ac	1,73	ac	1,73	ac	_	_	_	_	_	_	_	_	_	_
	0,55	1,91	ac	2,18	ac	2,18	ac	—	_	_	_	_	_	_	_	_	_
1=	0,63	2,80	ac	3,20	ac	3,20	ac	_	_	_	_	_	_	_	_	_	_
<u> </u>	0,75	3,10	ac	3,80	ac	3,80	ac	_	_	_	_	_	_	_	_	_	_
Z.	88,0	3,45	ac	4,50	ac	4,50	ac	_	_	_	_	_	_	_	_	_	_
ق ا	1,00	3,45	ac	4,50	ac	5,10	а	_	_	_	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	3,45	_	4,50	_	5,60	а	_	_	_	_	_	_	_	_	_	_
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	1,25	3,45	_	4,50	_	6,20	_	_	_	_	_	_	_	_	_	_	_
ž	1,50	3,45	_	4,50	_	—	_	—	_	_		_	_	_	_	_	_
	1,75	3,45	_	4,50	_	—	_	—	_	_	_	_	_	_	_	_	_
	2,00	3,45	_	4,50	_	—	_	—	_	_	_	_	_	_	_	—	_

Self drilling screw	
	Annex 17
ZEBRA Pias Ø 5,5 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener: carbon steel; case hardened and galvanized

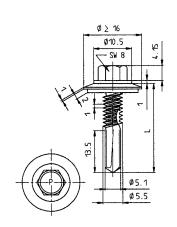
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

 $\underline{Drilling\ capacity}\qquad \quad \Sigma t_i \leq 13{,}50\ mm$


Timber substructures

no performance determined

t _N	_{I,II} =	4,0	4,00 5,00 6,00		00	8,	00	10	0,0	12	,0	13,	00	14,0			
$M_{t,}$	nom =		_	-		6 1	l m			1 8	٧m					_	
	0,50	_		_	_	_	_	_	_	_	_	_		_	_	_	_
	0,55	_	_	_	_	 	_	_	_	_	_	_	_	_	_	—	_
=	0,63	_	_	_	_	2,60	abcd	2,60	abcd	2,60	abcd	2,60	ac	_	_	—	_
٤	0,75	_	_	_	_	2,90	abcd	2,90	abcd	2,90	abcd	2,90	ac	_	_	—	_
Ţ.	88,0	_	_	_	_	3,30	abcd	3,30	abcd	3,30	abcd	3,30	а	_	_	—	_
Į.	1,00	_	_	_	_	3,70	abcd	3,70	abcd	3,70	ac	3,70	а	_	_	—	_
ΙZ	1,13	_	_	_	_	4,10	ac	4,10	ac	4,10	ac	4,10	а	_	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	_	_	4,50	ac	4,50	ac	4,50	ac	4,50	а	_	_	—	_
>	1,50	_	_	_	_	5,20	ac	5,20	ac	5,20	ac	5,20	а	_	_	_	_
	1,75	_	_	_	_	5,20	_	5,20	_	5,20	_	_	_	_	_	_	_
	2,00	_	_	_	_	5,20	_	5,20	_	5,20	_	_	_	_	_	—	_
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	_	_	_	_	 	_	_	_	_	_	_	_	_	_	—	_
=	0,63	_	_	_	_	1,60	abcd	1,60	abcd	1,60	abcd	1,60	ac	_	_	—	_
<u> </u>	0,75	_	_	_	_	2,10	abcd	2,10	abcd	2,10	abcd	2,10	ac	_	_	—	_
ż	88,0	_	_	_	_	2,60	abcd	2,60	abcd	2,60	abcd	2,60	а	_	_	—	_
ρ	1,00	_	_	_	_	3,10	abcd	3,10	abcd	3,10	ac	3,10	а	_	_	—	_
ΙΞ	1,13	_	_	_	_	3,60	ac	3,60	ac	3,60	ac	3,60	а	_	_	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	_	_	4,10	ac	4,10	ac	4,10	ac	4,10	а	_	_	—	_
=	1,50	_	_	_	_	5,20	ac	5,20	ac	5,20	ac	5,20	а	_	_	—	_
	1,75	_	_	_	_	5,20	_	5,20	_	5,20	_	_	_	_	_	—	_
	2,00		_			5,20	_	5,20		5,20		_	_	_	_		_

Self drilling screw	
	Annex 18
ZEBRA Pias Ø 5,5 -12 x L with hexagon head and extra-long drill bit	of European technical approval ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

similiar to carbon steel (1.1147) - EN 10263

Washer: carbon steel, galvanized

Component II: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

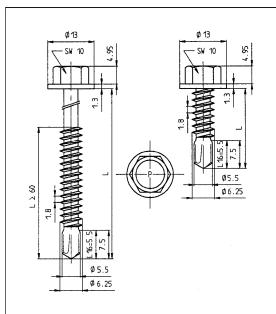
S280GD, S320GD, S350GD - EN 10346

Drilling capacity

 $\Sigma t_i \le 13,50 \text{ mm}$

Timber substructures

no performance determined


t _N	ı, _{II} =	4,0	00	5,0	00	6,	00	8,	00	10	0,0	12	,0	13	,0	14	,0
$M_{t,}$	nom =		_	_		61	l m			1 8	Nm				_	_	
	0,50	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	_	_	_	_	—	_	_		_	_	_	_	_	_	—	_
=	0,63	_	_	_	_	2,60	abcd	2,60	abcd	2,60	abcd	2,60	ac	_	_	—	_
<u>E</u>	0,75	_	_	_	_	3,10	abcd	3,10	abcd	3,10	abcd	3,10	ac	_	_	<u> </u>	_
Ţ.	0,88	_	_	_	_	3,60	abcd	3,60	abcd	3,60	abcd	3,60	а	_	_	—	_
for	1,00	_	_	_	_	4,10	abcd	4,10	ac	4,10	ac	4,10	а	_	_	—	_
ΙŜ	1,13	_	_	_	_	4,60	ac	4,60	ac	4,60	ac	4,60	а	_	_	—	_
V _{R,k} [kN] for t _{N,1} [mm]	1,25	_	_	_	_	5,10	ac	5,10	ac	5,10	ac	5,10	а	_	_	-	_
>	1,50	_	_	_	_	6,00	ac	6,00	ac	6,00	ac	6,00	а	_	_	—	_
	1,75	_	_	_	_	6,00	_	6,00	_	6,00	_	_	_	_	_	—	_
	2,00	_	_	_	_	6,00	_	6,00	_	6,00	_	_	_	_	_	—	_
	0,50	_	_	_	_	1,89	abcd	1,89	abcd	1,89	abcd	1,89	ac	_	_	_	_
	0,55	_	_	_	_	2,39	abcd	2,39	abcd	2,39	abcd	2,39	ac	_	_	—	_
=	0,63	_	_	_	_	3,50	abcd	3,50	abcd	3,50	abcd	3,50	ac	_	_	—	_
<u> </u>	0,75	_	_	_	_	4,00	abcd	4,00	abcd	4,00	abcd	4,00	ac	_	_	—	_
ţ,	0,88	_	_	_	_	4,60	abcd	4,60	abcd	4,60	abcd	4,60	а	_	_	—	_
for	1,00	_	_	_	_	5,00	abcd	5,00	ac	5,00	ac	5,00	а	_	_	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	_	_	_	_	5,60	ac	5,60	ac	5,60	ac	5,60	а	_	_	—	_
*	1,25	_	_	_	_	6,00	ac	6,00	ac	6,00	ac	6,00	а	_	_	—	_
=	1,50	_	_	_	_	7,00	ac	7,00	ac	7,00	ac	7,00	а	_	_	—	_
	1,75	_	_	_	_	7,00	_	7,00	_	7,00	_	_	_	_	_	—	_
L	2,00	_	_	_	_	7,00	_	7,00	_	7,00	_	_	_	_	_	_	_

Self drilling screw	
	Annex 19
ZEBRA Pias Ø 5,5 -12 x L	of European technical approval
with hexagon head, sealing washer ≥ Ø16 mm and extra-long drill bit	ETA-10/0184

8.06.02-349/11

Z54047.13

Fastener: carbon steel; case hardened and galvanized

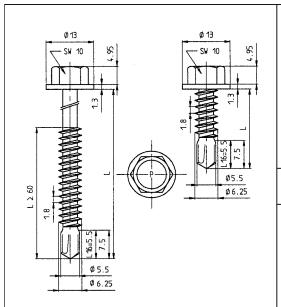
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

<u>Drilling capacity</u> $\Sigma t_i \le 6,00 \text{ mm}$


Timber substructures

no performance determined

t _r	, _{II} =	0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	25	1,5	50	2,0	0
M _t	, _{nom} =	2 N	m	2,5	Nm				3 N	l m				3,5	Nm	5 N	lm
	0,50	I —	_		_	_				_		_	_		_	-	
	0,55	—	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	_
1=	0,63	0,80	ac	1,10	ac	1,40	ac	1,70	ac	1,90	ac	2,00	ac	2,20	ac	2,60	ac
٤	0,75	1,00	ac	1,30	ac	1,50	ac	1,80	ac	2,20	ac	2,40	ac	2,60	ac	3,20	ac
Ţ.	0,88	1,20	ac	1,50	ac	1,70	ac	2,00	ac	2,40	ac	2,80	ac	3,00	ac	3,70	ac
for	1,00	1,30	_	1,60	ac	1,90	ac	2,10	ac	2,80	ac	3,00	ac	3,40	ac	4,00	ac
Z	1,13	1,40	_	1,70	_	2,00	_	2,30	_	3,00	_	3,40	_	3,70	_	4,40	ac
V _{R.k} [kN] for t _{N,1} [mm]	1,25	1,50	_	1,80	_	2,10	_	2,50	_	3,20	_	3,50	_	4,00	_	4,90	_
> =	1,50	1,60		2,00	_	2,40	_	2,80	_	3,30	_	3,80	_	4,60	_	5,80	_
	1,75	1,60	_	2,00	_	2,40	_	2,80	_	3,30	_	3,80	_	4,60	_	5,80	_
	2,00	1,60	_	2,00	_	2,40	_	2,80	_	3,30	_	3,80	_	4,60	_	5,80	_
	0,50	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_
	0,55	l —	_	l —	_	_	_	l —	_	l —	_	—	_	l —	_	_	_
=	0,63	0,60	ac	0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,90	ac	2,40	ac
<u> </u>	0,75	0,60	ac	0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,90	ac	2,70	ac
Ϊż	88,0	0,60	ac	0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,90	ac	2,70	ac
fo	1,00	0,60		0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,90	ac	2,70	ac
Z	1,13	0,60		0,70	_	0,80	_	1,00	_	1,20	_	1,40	_	1,90	_	2,70	ac
N _{R,k} [kN] for t _{N,I} [mm]	1,25	0,60		0,70		0,80	_	1,00		1,20		1,40	_	1,90	_	2,70	_
z	1,50	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,40	_	1,90	_	2,70	_
	1,75	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,40	_	1,90	_	2,70	_
	2,00	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,40	_	1,90	_	2,70	_

Self drilling screw	
	Annex 20
ZEBRA Pias Ø 6,3 x L	of European technical approval
with hexagon head	ETA-10/0184

Fastener: carbon steel; case hardened and galvanized

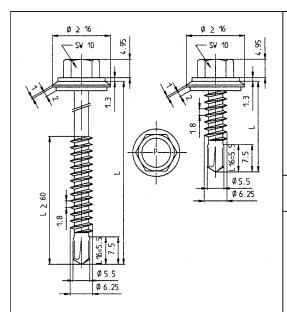
similiar to carbon steel (1.1147) - EN 10263

Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$


Timber substructures

no performance determined

t _N	,,, =	2,5	0	3,0	00	4,0	0	5,0	00	6,0	00	7,0	00	8,0	00	10	,0
$M_{t,}$			5 N	vm			6 1	Vm.					_	_			
	0,50	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	l —	_	_	_	_	_	_	_	—	_
=	0,63	2,60	ac	2,60	ac	2,60	ac	2,60	а	_	_	_	_	_	_	—	_
<u> </u>	0,75	3,20	ac	3,20	ac	3,20	ac	3,20	а	_	_	_	_	_	_	—	_
Ţ.	88,0	3,70	ac	3,70	ac	3,70	ac	3,70	а	_	_	_	_	_	_	—	_
for	1,00	4,40	ac	4,80	ac	4,80	ac	4,80	а	_	_	_	_	_	_	—	_
ΙZ	1,13	5,05	ac	5,70	ac	5,80	а	l —	_	_	_	_	_	_	_	—	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	5,55	_	6,20	_	6,60	а	l —	_	_	_	_	_	_	_	_	_
> =	1,50	6,75	_	7,70	_	8,50	_	l —	_	_	_	_	_	_	_	_	_
	1,75	6,75	_	7,70	_	l —	_	l —	_	_	_	_	_	_	_	_	_
	2,00	6,75	_	7,70	_	l —	_	l —	_	_	_	_	_	_	_	_	_
	0,50		_	_	_	_	_		_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	l —	_	_	_	_	_	_	_	—	_
=	0,63	2,40	ac	2,40	ac	2,40	ac	2,40	а	_	_	_	_	_	_	—	_
<u>اق</u> ا	0,75	2,85	ac	3,00	ac	3,00	ac	3,00	а	_	_	_	_	_	_	_	_
Ţ.	88,0	3,30	ac	3,90	ac	3,90	ac	3,90	а	_	_	_	_	_	_	_	_
Į.	1,00	3,50	ac	4,30	ac	4,30	ac	4,30	а	_	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	3,70	ac	4,70	ac	5,00	а	_	_	_	_	_	_	_	_	_	_
 	1,25	3,70	_	4,70	_	5,70	а	—	_	_	_	_	_	_	_	_	_
ž	1,50	3,70	_	4,70	_	6,60	_	_	_	_	_	_	_	_	_	_	_
	1,75	3,70	_	4,70	_	_	_	_	_	_	_	_	_	_	_	_	_
	2,00	3,70		4,70	_	_			_		_	_	_		_	_	_

Self drilling screw	
	Annex 21
ZEBRA Pias Ø 6,3 x L	of European technical approval
with hexagon head	ETA-10/0184

Materials

Fastener: carbon steel; case hardened and galvanized

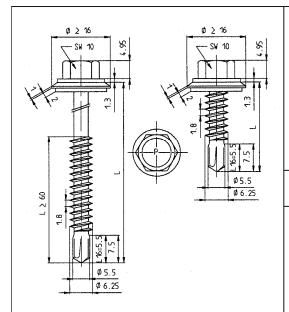
similiar to carbon steel (1.1147) - EN 10263

Washer: carbon steel, galvanized

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$


Timber substructures

no performance determined

t _N	 _{I,II} =	0,6	3	0,7	75	0,8	38	1,0	00	1,1	3	1,2	25	1,5	50	2,0	0
M _{t,}	nom =	2 N	m	2,5	Nm				1 8	lm				3,5	Nm	4 N	lm
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_
	0,55	—	_	—	_	—	_	—	_	—	_	—	_		_	-	-
=	0,63	1,20	_	1,50	_	1,60	_	1,80	ac	2,00	ac	2,20	ac	2,60	ac	2,90	ac
<u>E</u>	0,75	1,20	_	1,50	_	1,60	_	1,90	_	2,10	ac	2,30	ac	2,80	ac	3,20	ac
ž	88,0	1,20	_	1,50	_	1,70	_	2,00	_	2,20	ac	2,50	ac	3,10	ac	3,50	ac
for	1,00	1,20	_	1,50	_	1,70	_	2,00	_	2,30	_	2,60	_	3,70	_	3,90	ac
ΙΞ	1,13	1,20	_	1,50	_	1,80	_	2,00	_	2,30	_	3,00	_	3,80	_	4,20	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,20	_	1,50	_	1,80	_	2,10	_	2,50	_	2,80	_	3,90		4,60	_
>	1,50	1,20	_	1,50		1,80	_	2,30	_	2,70		3,20		4,20		5,00	_
	1,75	1,20	_	1,50	_	1,80	_	2,30		2,70		3,20	_	4,20	_	5,00	_
	2,00	1,20	—	1,50	_	1,80	_	2,30	_	2,70	_	3,20	_	4,20	_	5,00	_
	0,50	0,32	_	0,43	_	0,49	_	0,59	ac	0,70	ac	0,81	ac	1,03	ac	1,46	ac
	0,55	0,41	_	0,55	_	0,61	_	0,75	ac	0,89	ac	1,02	ac	1,30	ac	1,84	ac
=	0,63	0,60	_	0,80	_	0,90	_	1,10	ac	1,30	ac	1,50	ac	1,90	ac	2,70	ac
<u>Ē</u>	0,75	0,60	_	0,80	_	0,90	_	1,10	_	1,30	ac	1,50	ac	1,90	ac	2,70	ac
ž	88,0	0,60	_	0,80	_	0,90	_	1,10	_	1,30	ac	1,50	ac	1,90	ac	2,70	ac
for	1,00	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,50	_	1,90	_	2,70	ac
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,50	_	1,90	_	2,70	_
×	1,25	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,50	_	1,90	_	2,70	_
ĮΖ̈́	1,50	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,50	_	1,90	_	2,70	_
	1,75	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,50	_	1,90	_	2,70	_
	2,00	0,60	_	0,80		0,90		1,10	_	1,30	_	1,50	_	1,90	_	2,70	_

Self drilling screw	
	Annex 22
ZEBRA Pias Ø 6,3 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener: carbon steel; case hardened and galvanized

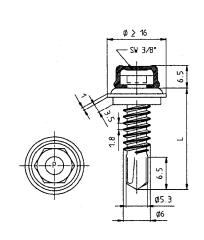
similiar to carbon steel (1.1147) - EN 10263

Washer: carbon steel, galvanized

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$


Timber substructures

no performance determined

	, _{II} =	2,5	0	3,0	0	4,0	0	5,0	00	6,0	00	7,0	00	8,0	00	10	,0
M _t	, _{nom} =	5 N	lm	6 N	lm		1 8	N m					_	_			
	0,50	_	_	_	_	_		_	_	_	_	_		_	_	_	_
	0,55	l —	_	—	_	—	_	l —	_	_	_	_	_	_	_	—	_
1=	0,63	2,90	ac	2,90	ac	2,90	ac	2,90	а	_	_	_	_	_	_	—	_
<u> </u>	0,75	3,25	ac	3,30	ac	3,40	ac	3,40	а	_	_	_	_	_	_	—	_
<u>z</u>	0,88	3,65	ac	3,80	ac	4,00	ac	4,00	а	_	_	_	_	_	_	—	_
for	1,00	4,05	ac	4,20	ac	4,50	а	4,50	а	_	_	_	_	_	_	—	_
Z	1,13	4,40	_	4,60	_	5,00	_	—	_	_	_	_	_	_	_	—	_
V _{R,k} [kN] for t _{N,1} [mm]	1,25	4,90	_	5,20	_	5,60	_	—	_	_	_	_	_	_	_	_	_
> =	1,50	5,40	_	5,80	_	6,60	_	l —	_	_	_	_	_	_	_	_	_
	1,75	5,40	_	5,80	_	6,60	_	_	_	_	_	_	_	_	_	_	_
	2,00	5,40	_	5,80	_	6,60	_	_	_	_	_	_	_	_	_	_	_
	0,50	1,51	ac	1,57	ac	1,57	ac	1,57	а	_	_	_	_	_	_	_	_
	0,55	1,91	ac	1,98	ac	1,98	ac	1,98	а	_	_	_	_	_	_	—	_
1=	0,63	2,80	ac	2,90	ac	2,90	ac	2,90	а	_	_	_	_	_	_	—	_
1 <u>E</u>	0,75	3,15	ac	3,60	ac	3,60	ac	3,60	а	_	_	_	_	_	_	—	_
Ţ.	0,88	3,55	ac	4,40	ac	4,40	ac	4,40	а	_	_	_	_	_	_	_	_
٠	1,00	3,65	ac	4,60	ac	5,10	а	5,10	а	_	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	3,65	_	4,60	_	5,80	_	_	_	_	_	_	_	_	_	_	_
	1,25	3,65	_	4,60	_	6,60	_	_	_	_	_	_	_	_	_	_	_
z	1,50	3,65	_	4,60	_	6,60	_	_	_	_	_	_	_	_	_	_	_
	1,75	3,65	_	4,60	_	6,60	_	_	_	_	_	_	_	_	_	_	_
	2,00	3,65	_	4,60	_	6,60	_	—	_	_	_	_	_	_	_	—	_

Self drilling screw	
	Annex 23
ZEBRA Pias Ø 6,3 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener:

carbon steel; case hardened and galvanized similiar to carbon steel (1.1147) - EN 10263

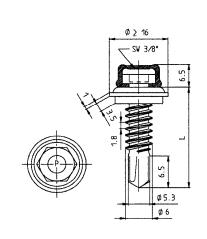
Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity

 $\Sigma t_i \le 5,00 \text{ mm}$


Timber substructures

no performance determined

t _r	, _{II} =	0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	:5	1,5	50	2,0	0
M _t	, _{nom} =						2 N	l m							1 8	Nm	
	0,50	I —	_			_	_				_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	-
1=	0,63	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,60	ac	2,10	ac	2,60	ac
٤	0,75	0,70	ac	1,00	ac	1,30	ac	1,50	ac	1,80	ac	1,90	ac	2,40	ac	2,80	ac
Ţ.	0,88	0,90	ac	1,20	ac	1,50	ac	1,80	ac	2,20	ac	2,30	ac	2,70	ac	3,10	ac
Į.	1,00	1,00	ac	1,30	ac	1,70	_	2,00	_	2,40	_	2,60	_	3,00	ac	3,40	ac
Z	1,13	1,20	ac	1,50	_	1,90	_	2,30	_	2,60	_	2,90	_	3,20	_	3,60	_
V _{R.k} [kN] for t _{N,1} [mm]	1,25	1,30	_	1,60	_	2,00	_	2,40	_	2,70	_	2,90	_	3,40	_	3,80	_
> =	1,50	1,60		1,90	_	2,20	_	2,50		2,80	_	3,00	_	3,60		4,30	_
	1,75	1,60	_	1,90	_	2,20	_	2,50	_	2,80	_	3,00	_	3,60	_	4,30	_
	2,00	1,60	_	1,90	_	2,20	_	2,50	_	2,80	_	3,00	_	3,60	_	4,30	_
	0,50	0,27	ac	0,32	ac	0,43	ac	0,49	ac	0,59	ac	0,70	ac	0,86	ac	1,03	ac
	0,55	0,34	ac	0,41	ac	0,55	ac	0,61	ac	0,75	ac	0,89	ac	1,09	ac	1,30	ac
=	0,63	0,50	ac	0,60	ac	0,80	ac	0,90	ac	1,10	ac	1,30	ac	1,60	ac	1,90	ac
<u> </u>	0,75	0,50	ac	0,60	ac	0,80	ac	0,90	ac	1,10	ac	1,30	ac	1,60	ac	2,40	ac
Ϊż	88,0	0,50	ac	0,60	ac	0,80	ac	0,90	ac	1,10	ac	1,30	ac	1,60	ac	2,40	ac
for	1,00	0,50	ac	0,60	ac	0,80	_	0,90	_	1,10	_	1,30	_	1,60	ac	2,40	ac
Z	1,13	0,50	ac	0,60	_	0,80	_	0,90		1,10	_	1,30	_	1,60		2,40	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	0,50		0,60		0,80		0,90		1,10		1,30	_	1,60		2,40	_
=	1,50	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,60	_	2,40	_
	1,75	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,60	_	2,40	_
	2,00	0,50	_	0,60	_	0,80	_	0,90	_	1,10	_	1,30	_	1,60	_	2,40	_

Self drilling screw	
	Annex 24
ZEBRA Pias Ø 6,0 x L	of European technical approval
with stainless steel protection cap and sealing washer ≥ Ø16 mm	ETA-10/0184

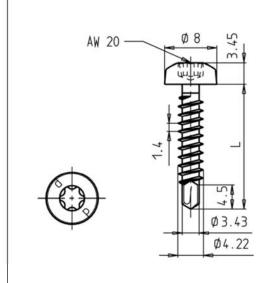
Fastener: carbon steel; case hardened and galvanized

similiar to carbon steel (1.1147) - EN 10263

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346


Timber substructures

no performance determined

,75 ,88 ,00 ,13	2,5 - 2,65 2,95 3,35 3,70 4,00	acacacacacacacac_	3 N — 2,70 3,10 3,60	00 Vm — abcd ac ac	4,0 — 2,80 3,40		5,0 — — —		6,0 — —		7,0 	- - -	8,0 — —		10 — —	
1,50 1,55 1,63 1,75 1,88 1,00	2,95 3,35 3,70	ac ac		— abcd ac	3,40			_	_ _	_	<u>_</u> 	- - -		_	_ _	_
1,55 1,63 1,75 1,88 1,00 1,13	2,95 3,35 3,70	ac ac	3,10 3,60	ac	3,40		_ _ _	_	_		_	_	_	_	_ _	_
,63 ,75 ,88 ,00 ,13	2,95 3,35 3,70	ac ac	3,10 3,60	ac	3,40		_ _	_	_	_	_	_	_	-	_	_
,75 ,88 ,00 ,13	2,95 3,35 3,70	ac ac	3,10 3,60	ac	3,40		—									
,88, ,00,	3,35 3,70	ac	3,60			а		_	_	_	_	_	_	-	_	_
,00 ,13	3,70			ac		u	—	—	_	_	_	_	—	- 1	<u> </u>	_
,13		ac	4 00		4,10	а	—	_	_	_	_	_	_	_	_	_
	4 nn		4,00	ac	4,60	а	_	_	_	_	_	_	_	_	_	_
25	- ,∪∪	_	4,40	а	5,30	а	_	_	_	_	_	_	_	_	_	_
,20	4,30	_	4,80	_	_	_	l —	_	_	_	_	_	_	_	_	_
,50	5,00	_	5,70			_	_	_	_	_	_	_	_	_	_	_
	5,00	_	5,70	_	_	_	_	_	_	_	_	_	_	_	_	_
	5,00	_	5,70	_	_	_	_	_	_	_	_	_	_	_	_	_
	1,03	ac	1,03	abcd	1,03	ac	_	_		_	_	_	_	_	_	_
	1,30	ac	1,30	abcd	1,30	ac	_	_	_	_	_	_	_	_	_	_
,63	1,90	ac	1,90	abcd	1,90	ac	_	_	_	_	_	_	_	_	_	_
,75	2,50	ac	2,60	ac	2,60	а	_	_	_	_	_	_	_	_	_	_
		ac		ac	3,60	а	_	_	_	_	_	_	_	_	_	_
		ac		ac		а	l —	_	_	_	_	_	_	_	_	_
		_		а		а	l	_	_	_	_	_	_	_	_	_
- 1		_		_	_	_	l	_	_	_	_	_	_	_	_	_
		_		_	_	_	_	_	_	_	_	_	_	_	_	_
		_		_	_	_	l	_	_	_	_	_	_	_	_	_
		_		_	_	_	_	_	_	_	_	_	_	_	_	_
, , , , , ,	25 50 75 00 55 63 75 88 00 13 25 50 75	25 4,30 50 5,00 75 5,00 00 5,00 50 1,03 55 1,30 63 1,90 75 2,50 88 3,00 00 3,40 13 3,40 25 3,40 50 3,40 75 3,40	25 4,30 — 50 5,00 — 75 5,00 — 00 5,00 — 50 1,03 ac 55 1,30 ac 63 1,90 ac 75 2,50 ac 88 3,00 ac 00 3,40 ac 13 3,40 — 25 3,40 — 75 3,40 —	25 4,30 — 4,80 50 5,00 — 5,70 75 5,00 — 5,70 00 5,00 — 5,70 50 1,03 ac 1,03 55 1,30 ac 1,90 63 1,90 ac 2,60 88 3,00 ac 3,60 00 3,40 ac 4,40 13 3,40 — 4,40 50 3,40 — 4,40 50 3,40 — 4,40 75 3,40 — 4,40	25 4,30 — 4,80 — 50 5,00 — 5,70 — 75 5,00 — 5,70 — 00 5,00 — 5,70 — 50 1,03 ac 1,03 abcd 55 1,30 ac 1,90 abcd 63 1,90 ac 1,90 abcd 75 2,50 ac 2,60 ac 88 3,00 ac 3,60 ac 00 3,40 ac 4,40 ac 13 3,40 — 4,40 — 25 3,40 — 4,40 — 50 3,40 — 4,40 — 75 3,40 — 4,40 —	25 4,30 — 4,80 — — 50 5,00 — 5,70 — — 75 5,00 — 5,70 — — 50 1,03 ac 1,03 abcd 1,03 55 1,30 ac 1,30 abcd 1,30 63 1,90 ac 1,90 abcd 1,90 75 2,50 ac 2,60 ac 2,60 88 3,00 ac 3,60 ac 3,60 00 3,40 ac 4,40 ac 4,60 13 3,40 — 4,40 — — 50 3,40 — 4,40 — — 75 3,40 — 4,40 — — 75 3,40 — 4,40 — —	25 4,30 — 4,80 — — — 50 5,00 — 5,70 — — — 75 5,00 — 5,70 — — — 00 5,00 — 5,70 — — — 50 1,03 ac 1,03 abcd 1,03 ac 55 1,30 ac 1,90 abcd 1,90 ac 63 1,90 ac 1,90 abcd 1,90 ac 75 2,50 ac 2,60 ac 2,60 a 88 3,00 ac 3,60 ac 3,60 a 00 3,40 ac 4,40 ac 4,60 a 13 3,40 — 4,40 — — — 50 3,40 — 4,40 — — — 75 3,40 — 4,40 — — — 75 3,40 — 4,40 — — —	25 4,30 — 4,80 — — — — — 50 5,00 — 5,70 — — — — 75 5,00 — 5,70 — — — — 50 1,03 ac 1,03 abcd 1,03 ac — 55 1,30 ac 1,30 abcd 1,30 ac — 63 1,90 ac 1,90 abcd 1,90 ac — 75 2,50 ac 2,60 ac 2,60 a — 88 3,00 ac 3,60 ac 3,60 a — 90 3,40 ac 4,40 ac 4,60 a — 13 3,40 — 4,40 — — — — 50 3,40 — 4,40 — — — — 50 3,40 — 4,40 — — — — 75 <	25 4,30 — 4,80 —<	25 4,30 — 4,80 —<	25 4,30 — 4,80 —<	25 4,30 — 4,80 —<	25 4,30 — 4,80 —<	25 4,30 — 4,80 —<	25 4,30 — 4,80 —<	25 4,30 — 4,80 —<

Self drilling screw	
	Annex 25
ZEBRA Pias Ø 6,0 x L	of European technical approval
with stainless steel protection cap and sealing washer ≥ Ø16 mm	ETA-10/0184

Materials

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

stainless steel (1.4578) - EN 10088

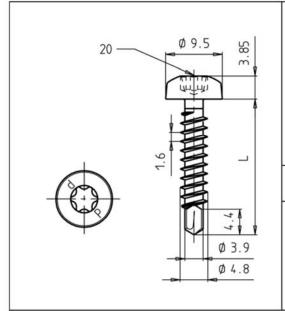
Washer: none

Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,00 \text{ mm}$


Timber substructures

no performance determined

	t _{N,II} =	0,50	0,55	0,63	0,75	0,88	1,0	00	1,1	3	1,2	25	1,5	0	2,0	00	
N	1 _{t,nom} =		1 Nm				2 Nm							3 Nm			
	0,50	0,78	0,78	0,78	0,78	0,98	1,17	ac	1,17	ac	1,17	ac	1,17	ac	1,17	ac	
	0,55	0,78	0,90	0,90	0,90	1,04	1,17	ac	1,17	ac	1,17	ac	1,17	ac	1,17	ac	
-	0,63	0,78	0,90	1,08	1,08	1,13	1,17	ac	1,17	ac	1,17	ac	1,17	ac	1,17	а	
] =	0,75	0,78	0,90	1,08	1,37	1,37	1,37	ac	1,37	ac	1,37	ac	1,37	ac	1,37	а	
<u>-</u>	0,88	0,78	0,90	1,08	1,37	1,88	1,88	ac	1,88	ac	1,88	ac	2,09	а	2,50	а	
ق ا	1,00	0,78	0,90	1,08	1,37	1,88	2,38	ac	2,38	ac	2,38	а	2,80	а	3,63	а	
V _{R k} [KN] for t _{N I} [mm]	1,13	0,78	0,90	1,08	1,37	1,88	2,38	_	2,38	_	2,38	_	2,80	_	—	_	
=	1,25	0,78	0,90	1,08	1,37	1,88	2,38	_	2,38	_	2,38	_	2,80	_	—	_	
5	1,50	0,78	0,90	1,08	1,37	1,88	2,38	_	2,38	_	2,38	_	2,80	_	l —	_	
	1,75	0,78	0,90	1,08	1,37	1,88	2,38	_	2,38	_	2,38	_	 	_	l —	_	
	2,00	0,78	0,90	1,08	1,37	1,88	2,38	_	—	_	—	_	_	_	_	_	
	0,50	0,29	0,33	0,40	0,68	0,96	1,02	ac	1,02	ac	1,02	ac	1,02	ac	1,02	ac	
	0,55	0,29	0,33	0,40	0,68	0,96	1,08	ac	1,12	ac	1,12	ac	1,12	ac	1,12	ac	
=	0,63	0,29	0,33	0,40	0,68	0,96	1,08	ac	1,28	ac	1,29	ac	1,29	ac	1,29	а	
<u> </u>	0,75	0,29	0,33	0,40	0,68	0,96	1,08	ac	1,28	ac	1,49	ac	1,85	ac	1,85	а	
7	0,88	0,29	0,33	0,40	0,68	0,96	1,08	ac	1,28	ac	1,49	ac	1,89	а	2,40	а	
ρ	1,00	0,29	0,33	0,40	0,68	0,96	1,08	ac	1,28	ac	1,49	а	1,89	а	2,77	а	
\	1,13	0,29	0,33	0,40	0,68	0,96	1,08	_	1,28	_	1,49	_	1,89	_	l —	_	
N _{R k} [kN] for t _N , [mm]	1,25	0,29	0,33	0,40	0,68	0,96	1,08	_	1,28	_	1,49	_	1,89	_	—	_	
=	1,50	0,29	0,33	0,40	0,68	0,96	1,08	_	1,28	_	1,49	_	1,89	_	—	_	
	1,75	0,29	0,33	0,40	0,68	0,96	1,08	_	1,28	_	1,49	_	_	_	—	_	
	2,00	0,29	0,33	0,40	0,68	0,96	1,08	_	—	_	—	_	—	_	—	_	

Self drilling screw					
	Annex 26				
ZEBRA Piasta Ø 4,2 - AW	of European technical approval				
	ETA-10/0184				

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

stainless steel (1.4578) - EN 10088

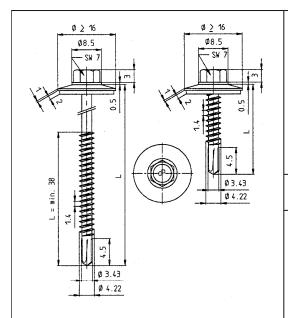
Washer: none

Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 4,40 \text{ mm}$

Timber substructures


no performance determined

t _N	, _{II} =	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,2	5	1,5	0	2,0	0	3,0	0
M _{t,}			1 N	lm	11 150	. 12		2 Nm				3 1	Vm.		5 N	m
	0,50	0,71	0,71	0,71	0,71	0,71	0,71	1,00	1,29	ac	1,29	ac	1,29	ac	1,29	ac
	0,55	0,71	0,82	0,82	0,82	0,82	0,82	1,60	1,29	ac	1,29	ac	1,29	ac	1,29	ac
=	0,63	0,71	0,82	0,99	0,99	0,99	0,99	1,14	1,29	ac	1,29	ac	1,29	ac	1,29	ac
٤	0,75	0,71	0,82	0,99	1,40	1,40	1,40	1,40	1,40	ac	1,40	ac	1,40	ac	1,40	ac
Ţ.	0,88	0,71	0,82	0,99	1,40	1,40	1,40	1,71	2,02	ac	2,02	ac	2,25	ac	2,71	а
for	1,00	0,71	0,82	0,99	1,40	1,40	1,40	2,02	2,63	ac	2,63	ac	3,09	ac	4,01	а
ΙZ	1,13	0,71	0,82	0,99	1,40	1,40	1,40	2,02	2,63	_	2,63	_	3,21	_	4,37	_
V _{R,k} [kN] for t _{N,1} [mm]	1,25	0,71	0,82	0,99	1,40	1,40	1,40	2,02	2,63	_	2,63	_	3,33	_	4,73	_
>	1,50	0,71	0,82	0,99	1,40	1,40	1,40	2,02	2,63	_	2,63	_	3,57	_	5,44	_
	1,75	0,71	0,82	0,99	1,40	1,40	1,40	2,02	2,63	_	2,63	_	3,57	_	l —	_
	2,00	0,71	0,82	0,99	1,40	1,40	1,40	2,02	2,63	_	2,63	_	3,57	_	 —	_
	0,50	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,19 ^a	ac	1,19 ^b	ac	1,19 ^b	ac	1,19 ^b	ac
	0,55	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,28ª	ac	1,28 ^b	ac	1,28 ^b	ac	1,28 ^b	ac
=	0,63	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	ac	1,43 ^b	ac	1,43 ^b	ac	1,43 ^b	ac
<u> </u>	0,75	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	ac	1,89	ac	1,92	ac	1,92	ac
ž	0,88	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	ac	1,89	ac	2,40	ac	2,40	а
ξ	1,00	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	ac	1,89	ac	2,70	ac	2,70	а
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	_	1,89	_	2,96	_	3,37	_
×	1,25	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	_	1,89	_	2,96	_	4,03	_
=	1,50	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	_	1,89	_	2,96	_	4,03	_
	1,75	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	_	1,89	_	2,96	_	—	_
	2,00	0,32	0,34	0,36	0,55	0,76	0,95	1,15	1,35	_	1,89	_	2,96	_	_	_

Index a: If seal washers $\geq \varnothing 12$ mm are used $N_{R,k}$ [kN] = 1,35 kN. Index b: If seal washers $\geq \varnothing 12$ mm are used $N_{R,k}$ [kN] = 1,52 kN.

Self drilling screw	
	Annex 27
ZEBRA Piasta Ø 4,8 - AW	of European technical approval
	ETA-10/0184

<u>Materials</u>

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

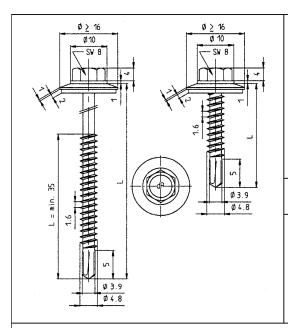
Stalliess steel (1.4576) - EN 10000

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Timber substructures


no performance determined

t _N		0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	25	1,5	50	2,0	00
$M_{t,}$	nom =	1,8 1	٧m							2 N	lm						
	0,50	_	_	_	_	_	_	_	_	-	_	—	_	-	_	-	
	0,55	—	_	—	_	—	_	l —	_	—	_	—	_	_	_	—	_
=	0,63	0,90	ac	1,10	ac	1,20	ac	1,30	ac	1,40	ac	1,50	ac	1,70	ac	1,90	ac
<u> </u>	0,75	0,90	ac	1,10	ac	1,30	ac	1,40	ac	1,50	ac	1,70	ac	2,00	ac	2,40	а
Ţ.	88,0	1,00	_	1,20	_	1,40	ac	1,50	ac	1,70	ac	1,90	ac	2,20	а	2,90	а
for	1,00	1,00	_	1,20	_	1,50	ac	1,70	ac	2,00	а	2,30	а	2,60	а	3,30	_
ΙZ	1,13	1,00	_	1,30	_	1,60	_	1,90	а	2,30	а	2,60	а	3,00	а	3,60	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,00	_	1,30	_	1,70	_	2,10	_	2,60	_	2,90	_	3,30	_	3,60	_
>	1,50	1,10	_	1,50	_	1,70	_	2,10	_	2,60	_	3,10	_	3,60	_	—	_
	1,75	1,10	_	1,50	_	1,70	_	2,10	_	2,60	_	3,10	_	l —	_	—	_
	2,00	1,10	_	1,50	_	1,70	_	2,10	_	—	_	—	_	—	_	—	_
	0,50	0,27	ac	0,32	ac	0,43	ac	0,54	ac	0,65	ac	0,76	ac	0,92	ac	1,30	ac
	0,55	0,34	ac	0,41	ac	0,55	ac	0,68	ac	0,82	ac	0,95	ac	1,16	ac	1,64	ac
=	0,63	0,50	ac	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,70	ac	2,40	ac
<u>E</u>	0,75	0,50	ac	0,60	ac	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,70	ac	2,40	а
ż	88,0	0,50	_	0,60	_	0,80	ac	1,00	ac	1,20	ac	1,40	ac	1,70	а	2,40	а
fo	1,00	0,50	_	0,60	_	0,80	ac	1,00	ac	1,20	а	1,40	а	1,70	а	2,40	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,50	_	0,60	_	0,80	_	1,00	а	1,20	а	1,40	а	1,70	а	2,40	_
*	1,25	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	2,40	_
ĮΖ̈́	1,50	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	1,70	_	—	_
	1,75	0,50	_	0,60	_	0,80	_	1,00	_	1,20	_	1,40	_	—	_	_	_
	2,00	0,50	_	0,60	_	0,80	_	1,00	_		_	_	_		_		_

Self drilling screw	
	Annex 28
ZEBRA Piasta Ø 4,2 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Z54048.13

Materials

Washer:

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

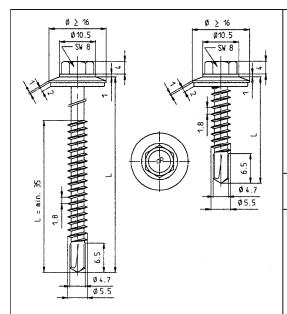
stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 4,40 \text{ mm}$

Timber substructures


no performance determined

t _N		0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	:5	1,5	0	2,0	0	3,0	00
$M_{t,r}$	nom =									1,5	Nm								
	0,50	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	-
	0,55	—	_	_	_	—	_	—	_	—	_	—	_	_	_	—	_	—	-
=	0,63	1,00	_	1,20	ac	1,40	ac	1,60	ac	1,80	ac	2,00	ac	2,40	ac	2,40	ac	2,40	ac
٤	0,75	1,00	_	1,30	ac	1,60	ac	1,80	ac	2,10	ac	2,20	ac	2,50	ac	2,60	ac	2,70	ac
ż	88,0	1,10	_	1,40	_	1,70	_	2,00	_	2,40	ac	2,50	ac	2,70	ac	2,90	ac	3,10	ac
for	1,00	1,10	_	1,50	_	1,80	_	2,20	_	2,60	_	2,70	_	2,90	ac	3,00	ac	3,40	ac
ΙZ	1,13	1,10	_	1,50	_	1,90	_	2,30	_	2,70	_	2,80	_	3,00	ac	3,20	ac	3,80	a
V _{R,k} [kN] for t _{N,1} [mm]	1,25	1,20	_	1,50	_	1,90	_	2,30	_	2,80	_	2,90	_	3,10	а	3,50	а	4,20	a
>	1,50	1,20	_	1,60	_	2,00	_	2,30	_	3,00	_	3,20	_	3,40	_	4,00	_	—	-
	1,75	1,20	_	1,60	_	2,00	_	2,30	_	3,00	_	3,20	_	3,40	_	4,00	_	l —	_
	2,00	1,20	_	1,60	_	2,00	_	2,30	_	3,00	_	3,20	_	3,40	_	4,00	_	 	_
	0,50	0,22	_	0,27	ac	0,38	ac	0,43	ac	0,54	ac	0,65	ac	0,86	ac	1,35	ac	1,57	ac
	0,55	0,27	_	0,34	ac	0,48	ac	0,55	ac	0,68	ac	0,82	ac	1,09	ac	1,71	ac	1,98	ac
=	0,63	0,40	_	0,50	ac	0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,60	ac	2,50	ac	2,90	ac
<u> </u>	0,75	0,40	_	0,50	ac	0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,60	ac	2,50	ac	3,40	ac
ţ.	88,0	0,40	_	0,50	_	0,70	_	0,80	_	1,00	ac	1,20	ac	1,60	ac	2,50	ac	4,00	ac
for	1,00	0,40	_	0,50	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	ac	2,50	ac	4,60	ac
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,40	_	0,50	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	ac	2,50	ac	4,60	a
×	1,25	0,40	_	0,50	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	а	2,50	а	4,60	a
2	1,50	0,40	_	0,50	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	_	2,50	_	_	-
	1,75	0,40	_	0,50	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	_	2,50	_	_	_
	2,00	0,40	_	0,50	_	0,70	_	0,80	_	1,00	_	1,20	_	1,60	_	2,50	_	_	-

Self drilling screw	
	Annex 29
ZEBRA Piasta Ø 4,8 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

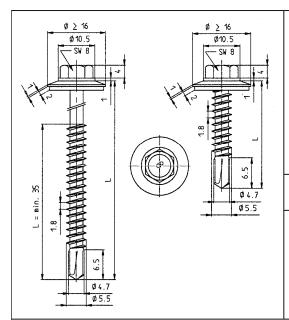
8.06.02-349/11 Z54048.13

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235, S275, S355 - EN 10025-1 S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \leq 5,25 \text{ mm}$


Timber substructures

no performance determined

t _N		0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	25	1,5	50	2,0	0
$M_{t,}$	nom =								2 N	l m							
	0,50	_	_	—	_	_	_	_	_	_	_	—	_	-	_	-	-
	0,55	—	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	_
=	0,63	1,20	_	1,40	ac	1,60	ac	1,80	ac	2,00	ac	2,10	ac	2,10	ac	2,30	ac
<u>E</u>	0,75	1,20	_	1,40	ac	1,70	ac	1,90	ac	2,30	ac	2,30	ac	2,40	ac	2,60	ac
Ţ.	88,0	1,20	_	1,50	ac	1,80	ac	2,10	ac	2,50	ac	2,60	ac	2,70	ac	2,90	ac
for	1,00	1,20	_	1,60	_	2,00	_	2,30	ac	2,70	ac	2,80	ac	2,90	ac	3,10	ac
<u>Z</u>	1,13	1,30	_	1,70	_	2,10	_	2,50	_	2,90	_	3,00	_	3,10	_	3,40	ac
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,30	_	1,70	_	2,20	_	2,70	_	3,10	_	3,20	_	3,30	_	3,60	_
>	1,50	1,40	_	1,90	_	2,40	_	2,90	_	3,40	_	3,50	_	3,70	_	4,10	_
	1,75	1,40	_	1,90	_	2,40	_	2,90	_	3,40	_	3,50	_	3,70	_	4,10	_
	2,00	1,40	_	1,90	_	2,40	_	2,90	_	3,40	_	3,50	_	3,70	_	4,10	_
	0,50	0,22	_	0,32	ac	0,38	ac	0,49	ac	0,54	ac	0,65	ac	0,86	ac	1,30	ac
	0,55	0,27	_	0,41	ac	0,48	ac	0,61	ac	0,68	ac	0,82	ac	1,09	ac	1,64	ac
=	0,63	0,40	_	0,60	ac	0,70	ac	0,90	ac	1,00	ac	1,20	ac	1,60	ac	2,40	ac
<u> </u>	0,75	0,40	_	0,60	ac	0,70	ac	0,90	ac	1,00	ac	1,20	ac	1,60	ac	2,40	ac
Ţ.	88,0	0,40	_	0,60	ac	0,70	ac	0,90	ac	1,00	ac	1,20	ac	1,60	ac	2,40	ac
for	1,00	0,40	_	0,60	_	0,70	_	0,90	ac	1,00	ac	1,20	ac	1,60	ac	2,40	ac
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,40	_	0,60	_	0,70	_	0,90	_	1,00	_	1,20	_	1,60	_	2,40	ac
*	1,25	0,40	_	0,60	_	0,70	_	0,90	_	1,00	_	1,20	_	1,60	_	2,40	_
=	1,50	0,40	_	0,60	_	0,70	_	0,90	_	1,00	_	1,20	_	1,60	_	2,40	_
	1,75	0,40	_	0,60	_	0,70	_	0,90	_	1,00	_	1,20	_	1,60	_	2,40	_
	2,00	0,40	_	0,60	_	0,70	_	0,90	_	1,00	_	1,20	_	1,60	_	2,40	_

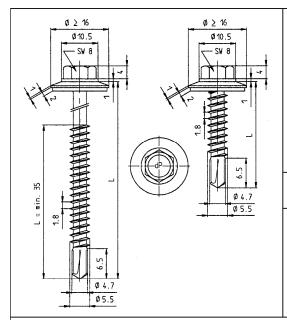
Self drilling screw	
ZEDDA Diacto (K.E.C.)	Annex 30 of European technical approval
ZEBRA Piasta Ø 5,5 x L with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 5,25 \text{ mm}$


Timber substructures

no performance determined

	_{I,II} =	2,5	0	3,0	0	4,0	0	5,	00	6,0	00	7,0	00	8,0	00	10	,0
$M_{t,}$	nom =			2 N	m							_	_				
	0,50	-	_	—	_	-	_	_			_	_		_	_	_	_
	0,55	l —	_	—	_	<u> </u>	_	—	_	_	_	_	_	_	_	_	_
-	0,63	2,45	ac	2,60	ac	3,00	ac	—	_	_	_	_	_	_	_	_	_
] =	0,75	2,80	ac	3,00	ac	3,40	ac	 	_	_	_	_	_	_	_	_	_
ż	88,0	3,15	ac	3,40	ac	3,80	а	—	_	_	_	_	_	_	_	_	_
وَ	1,00	3,40	ac	3,70	ac	4,30	а	—	_	_	_	_	_	_	_	_	_
V _{R,k} [kN] for t _{N,1} [mm]	1,13	3,70	ac	4,00	ac	4,70	а	 	_	_	_	_	_	_	_	_	_
🕺	1,25	4,00	_	4,40	_	5,10	_	_	_	_	_	_	_	_	_	_	_
> =	1,50	4,55	_	5,00	_	_	_	_	_	_	_	_	_	_	_	_	_
	1,75	4,55	_	5,00	_	l —	_	 	_	_	_	_	_	_	_	_	_
	2,00	4,55	_	5,00	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,50	1,54	ac	1,78	ac	1,78	ac	_	_	_	_	_	_	_	_	_	_
	0,55	1,95	ac	2,25	ac	2,25	ac	—	_	_	_	_	_	_	_	_	_
-	0,63	2,85	ac	3,30	ac	3,30	ac	_	_	_	_	_	_	_	_	_	_
<u>E</u>	0,75	2,95	ac	3,50	ac	3,50	ac	_	_	_	_	_	_	_	_	_	_
Ţ.	88,0	3,05	ac	3,70	ac	3,70	а	_	_	_	_	_	_	_	_	_	_
وَ	1,00	3,15	ac	3,90	ac	3,90	а	_	_	_	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	3,20	ac	4,00	ac	4,00	а	_	_	_	_	_	_	_	_	_	_
=	1,25	3,25	_	4,10	_	4,10	_	_	_	_	_	_	_	_	_	_	_
z	1,50	3,35	_	4,30	_	_	_	_	_	_	_	_	_	_	_	_	_
	1,75	3,35	_	4,30	_	—	_	—	_	_	_	_	_	_	_	_	_
	2,00	3,35	_	4,30	_	_	_	_	_	_	_	_	_	_	_	_	_

Self drilling screw	
	Annex 31
ZEBRA Piasta Ø 5,5 x L with hexagon head and sealing washer ≥ Ø16 mm	of European technical approval ETA-10/0184

Materials

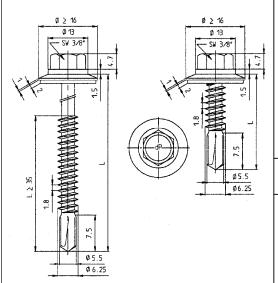
Washer:

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235, S275, S355 - EN 10025-1 S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 5,25 \text{ mm}$


Timber substructures

no performance determined

t _N	_{I,II} =	2 x 0	,63	2 x 0	,75	2 x 0	,88	2 x 1	,00	2 x 1	,13	2 x 1	,25	2 x 1	,50	2 x 1	,75
$M_{t,}$	nom =	_	_							2 N	m						
	0,50	_	_	_		_				_		_	_		_	-	
	0,55	_	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	_
=	0,63	_	_	1,80	_	1,80	_	1,80	_	1,80	_	1,80	_	1,80	_	1,80	_
<u> </u>	0,75	_	_	2,30	_	2,30	_	2,30	_	2,30	_	2,30	_	2,30	_	2,30	_
Ţ.	0,88	_	_	2,30	_	2,70	_	2,90		2,90	_	2,90	_	2,90	_	2,90	_
for	1,00	_	_	2,30	_	2,70	_	3,10		3,40		3,40	_	3,40	_	3,40	_
<u>Z</u>	1,13	_	_	2,30	_	2,70	_	3,10	_	3,50	_	3,80	_	4,00	_	4,00	_
V _{R,k} [kN] for t _{N,1} [mm]	1,25	_	_	2,30	_	2,70	_	3,10	_	3,50	_	3,80	_	4,60	_	4,60	_
>	1,50	_	_	2,30	_	2,70	_	3,10		3,50	_	3,80	_	4,60		4,60	_
	1,75	_	_	2,30	_	2,70	_	3,10	_	3,50	_	3,80	_	4,60	_	—	_
	2,00	_	_	2,30	_	2,70	_	3,10	_	3,50	_	3,80	_	4,60	_	—	_
	0,50	_	_	0,49	_	0,59	_	0,76	_	0,97	_	1,13	_	1,57	_	1,57	_
	0,55	_	_	0,61	_	0,75	_	0,95	_	1,23	_	1,43	_	1,98	_	1,98	_
=	0,63	_	_	0,90	_	1,10	_	1,40	_	1,80	_	2,10	_	2,90	_	2,90	_
<u> </u>	0,75	_	_	0,90	_	1,10	_	1,40	_	1,80	_	2,10	_	2,90	_	2,90	_
Ţ.	0,88	_	_	0,90	_	1,10	_	1,40	_	1,80	_	2,10	_	2,90	_	2,90	_
for	1,00	_	_	0,90	_	1,10	_	1,40	_	1,80	_	2,10	_	2,90	_	2,90	_
ΙZ	1,13	_	_	0,90	_	1,10	_	1,40		1,80	_	2,10	_	2,90		2,90	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	0,90		1,10	_	1,40		1,80		2,10		2,90		2,90	_
z	1,50	_	_	0,90	_	1,10	_	1,40	_	1,80	_	2,10	_	2,90	_	2,90	_
	1,75	_	_	0,90	_	1,10	_	1,40	_	1,80	_	2,10	_	2,90	_	—	_
	2,00	_		0,90	_	1,10	_	1,40	_	1,80	_	2,10	_	2,90	_		_

Self drilling screw	
	Annex 32
ZEBRA Piasta Ø 5,5 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

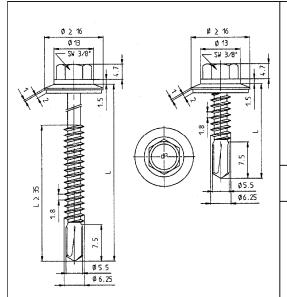
Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

stainless steel (1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$


Timber substructures

no performance determined

	ı, _{II} =	0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	:5	1,5	50	2,	00
$M_{t,}$	nom =							2 N	lm							3 1	١m
	0,50	_	_	_	_	—	_	_	_	-	_	_	_	—	_	-	-
	0,55	—	_	—	_	—	_	—	_	-	_	_	_	—	_	—	-
=	0,63	1,20	_	1,30	ac	1,50	ac	1,60	ac	1,80	ac	1,90	ac	2,20	ac	2,80	abcd
<u> </u>	0,75	1,20	_	1,40	ac	1,70	ac	1,90	ac	2,00	ac	2,10	ac	2,40	ac	3,20	ac
Ţ.	88,0	1,20	_	1,50	_	1,80	_	2,10	ac	2,20	ac	2,40	ac	2,60	ac	3,50	ac
for	1,00	1,20	_	1,60	_	2,00	_	2,30	_	2,60	ac	2,70	ac	3,10	ac	3,80	ac
ΙZ	1,13	1,30	_	1,60	_	2,00	_	2,40	_	3,00	_	3,10	_	3,40	ac	4,10	ac
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,30	_	1,70	_	2,10	_	2,60	_	3,10	_	3,30	_	3,60	ac	4,40	ac
>	1,50	1,40	_	1,80	_	2,10	_	2,60	_	3,20	_	3,70	_	4,00	_	5,00	-
	1,75	1,40	_	1,80	_	2,10	_	2,60	_	3,20	_	3,70	_	4,00	_	5,00	_
	2,00	1,40	_	1,80	_	2,10	_	2,60	_	3,20	_	3,70	_	4,00	_	5,00	-
	0,50	0,32	_	0,38	ac	0,43	ac	0,54	ac	0,65	ac	0,70	ac	0,92	ac	1,13	abcd
	0,55	0,41	_	0,48	ac	0,55	ac	0,68	ac	0,82	ac	0,89	ac	1,16	ac	1,43	abcd
=	0,63	0,60	_	0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,30	ac	1,70	ac	2,10	abcd
<u> </u>	0,75	0,60	_	0,70	ac	0,80	ac	1,00	ac	1,20	ac	1,30	ac	1,70	ac	2,10	ac
ż	88,0	0,60	_	0,70	_	0,80	_	1,00	ac	1,20	ac	1,30	ac	1,70	ac	2,10	ac
for	1,00	0,60	_	0,70	_	0,80	_	1,00	_	1,20	ac	1,30	ac	1,70	ac	2,10	ac
ΙΞ	1,13	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,30	_	1,70	ac	2,10	ac
N _{R,k} [kN] for t _{N,I} [mm]	1,25	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,30	_	1,70	ac	2,10	ac
=	1,50	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,30	_	1,70	_	2,10	_
	1,75	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,30	_	1,70	_	2,10	-
	2,00	0,60	_	0,70	_	0,80	_	1,00	_	1,20	_	1,30	_	1,70	_	2,10	_

Self drilling screw	
	Annex 33
ZEBRA Piasta Ø 6,3 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Materials

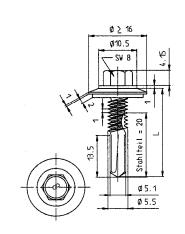
Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$


Timber substructures

no performance determined

t	, _{II} =	2,	50	3,	00	4,	00	5,0	00	6,0	00	7,0	00	8,0	00	10	,0
M	, _{nom} =				3 N	lm							_	-			
	0,50	_	_	_	_	_	_	_	-	_	_	_		_	_	_	_
	0,55	—	_	_	_	_		_	_	_	_	_	_	_	_	_	_
1=	0,63	2,95	abcd	3,10	abcd	3,50	abcd	3,50	abc	_	_	_	_	_	_	_	_
٤	0,75	3,40	ac	3,60	ac	3,90	ac	3,90	а	_	_	_	_	_	_	_	_
Ţ.	88,0	3,75	ac	4,00	ac	4,60	ac	4,60	а	_	_	_	_	_	_	_	_
for	1,00	4,15	ac	4,50	ac	5,20	ac	5,20	а	_	_	_	_	_	_	_	_
V _{R,k} [kN] for t _{N,1} [mm]	1,13	4,50	ac	4,90	ac	5,80	а	_	_	_	_	_	_	_	_	_	_
*	1,25	4,90	ac	5,40	_	6,40	_	_	_	_	_	_	_	_	_	_	_
> "	1,50	5,65	_	6,30	_	7,00	_	_	_	_	_	_	_	_	_	_	_
	1,75	5,65	_	6,30	_	7,00	_	_	_	_	_	_	_	_	_	_	_
	2,00	5,65	_	6,30	_	7,00	_	_	_	_	_	_	_	_	_	_	_
	0,50	1,46	abcd	1,78	abcd	1,78	abcd	1,78	abc	_	_	_	_	_	_	_	_
	0,55	1,84	abcd	2,25	abcd	2,25	abcd	2,25	abc	_	_	_	_	_	_	_	_
=	0,63	2,70	abcd	3,30	abcd	3,30	abcd	3,30	abc	_	_	_	_	_	_	_	_
<u> </u>	0,75	2,95	ac	3,80	ac	3,80	ac	3,80	а	_	_	_	_	_	_	_	_
Į,	88,0	3,25	ac	4,40	ac	4,40	ac	4,40	а	_	_	_	_	_	_	_	_
for	1,00	3,35	ac	4,60	ac	4,90	ac	4,90	а	_	_	_	_	_	_	_	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	3,35	ac	4,60	ac	5,40	а	_	_	_	_	_	_	_	_	_	_
×	1,25	3,35	ac	4,60	_	5,90	_	_	_	_	_	_	_	_	_	_	_
=	1,50	3,35	_	4,60	_	6,60	_	_	_	_	_	_	_	_	_	_	_
	1,75	3,35	_	4,60	_	6,60	_	_	_	_	_	_	_	_	_	_	_
	2,00	3,35	_	4,60	_	6,60	_	_	_	_	_	_	_	_	_	_	_

Self drilling screw	
	Annex 34
ZEBRA Piasta Ø 6,3 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

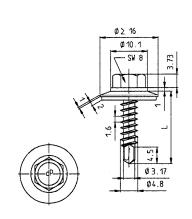
stainless steel (1.4578) - EN 10088 stainless steel (1.4301) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346 Component II: S235, S275, S355 - EN 10025-1

S280GD, S320GD, S350GD - EN 10346

Drilling capacity 2

 $\Sigma t_i \le 13,50 \text{ mm}$


Timber substructures

no performance determined

t _N	, _{II} =	4,	00	5,	00	6,	00	8,	00	10	0,0	12	2,0	13	,0	14	,0
$M_{t,}$	nom =						5 N	lm							_	_	
	0,50	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
=	0,63	2,60	abcd	_	_	_	-										
<u> </u>	0,75	3,10	abcd	—	_	_	-										
Ţ.	88,0	3,60	ac	3,60	а	_	_	_	-								
for	1,00	4,10	ac	4,10	а	_	_	_	_								
ΙŜ	1,13	4,60	ac	4,60	а	_	_	_	_								
V _{R,k} [kN] for t _{N,I} [mm]	1,25	5,10	ac	5,10	а	_	_	_	-								
>	1,50	6,00	ac	6,00	а	_	_	_	-								
	1,75	6,00	_	6,00		6,00		6,00		6,00	_	_	_	_	_	_	_
	2,00	6,00	_	6,00	_	6,00	_	6,00	_	6,00	_	_	_	_	_	_	_
	0,50	1,67	abcd	_	_	_	_										
	0,55	2,11	abcd	_	_	_	_										
=	0,63	3,10	abcd	_	_	_	-										
<u> </u>	0,75	3,60	abcd	_	_	_	-										
ż	88,0	4,10	ac	4,10	а	_	_	_	-								
ρ	1,00	4,50	ac	4,50	а	_	_	_	_								
N _{R,k} [kN] for t _{N,I} [mm]	1,13	5,00	ac	5,00	а	_	_	_	_								
*	1,25	5,40	ac	5,40	а	_	_	_	_								
=	1,50	6,20	ac	6,30	а	_	_	_	_								
	1,75	6,20	_	6,30	_	6,30	_	6,30	_	6,30	_	_	_	_	_	_	_
	2,00	6,20	_	6,30	_	6,30	_	6,30	_	6,30	_	_	_	_	_	_	_

Self drilling screw	
	Annex 35
ZEBRA Piasta Ø 5,5 x L	of European technical approval
with hexagon head, sealing washer ≥ Ø16 mm and extra-long drill bit	ETA-10/0184

<u>Materials</u>

Fastener: stainless steel (1.4301) - EN 10088,

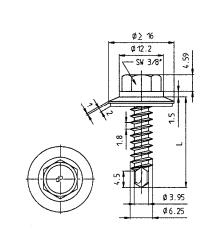
stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,00 \text{ mm}$


Timber substructures

no performance determined

t _N	I,II =	0,6	3	0,7	' 5	0,8	8	1,0	0	1,1	3	1,2	25	1,5	50	2,0	00
$M_{t,}$	nom =							5 N	lm							_	-
	0,50	_	_	_	_	_			_	_	_	_	_		_	_	_
	0,55	—	_	l —	_	—	_	l —	_	—	_	—	_	l —	_	—	_
=	0,63	1,40	—	1,60	_	1,70	ac	1,80	ac	1,90	ac	2,00	ac	2,20	ac	—	_
٤	0,75	1,40	_	1,70	_	1,90	_	2,10	ac	2,30	ac	2,40	ac	2,60	ac	—	_
Ţ.	88,0	1,50	_	1,80	_	2,10	_	2,40	_	2,70	_	2,90	_	2,90	_	—	_
Į.	1,00	1,50	_	2,00	_	2,30	_	2,70	_	3,00	_	3,30	_	3,30	_	_	_
V _{R,k} [kN] for t _{N,I} [mm]	1,13	1,50	_	2,00	_	2,40	_	2,80	_	3,20	_	3,60	_	3,60	_	—	_
*	1,25	1,60	_	2,10	_	2,50	_	3,10	_	3,40	_	3,80	_	3,90	_	—	_
>	1,50	1,60	_	2,20	_	2,50	_	3,20	_	3,80	_	4,30	_	4,30	_	_	_
	1,75	1,60	_	2,20	_	2,50	_	3,20	_	3,80	_	4,30	_	l —	_	_	_
	2,00	1,60	_	2,20	_	2,50	_	3,20	_	l —	_	—	_	—	_	—	_
	0,50	0,32	_	0,43	_	0,54	ac	0,65	ac	0,81	ac	0,97	ac	1,35	ac	_	_
	0,55	0,41	_	0,55	_	0,68	ac	0,82	ac	1,02	ac	1,23	ac	1,71	ac	—	_
=	0,63	0,60	_	0,80	_	1,00	ac	1,20	ac	1,50	ac	1,80	ac	2,50	ac	—	_
<u> </u>	0,75	0,60	_	0,80	_	1,00	_	1,20	ac	1,50	ac	1,80	ac	2,50	ac	—	_
ż	88,0	0,60	_	0,80	_	1,00	_	1,20	_	1,50	_	1,80	_	2,50	_	—	_
for	1,00	0,60	_	0,80	_	1,00	_	1,20	_	1,50	_	1,80	_	2,50	_	—	_
ΙZ	1,13	0,60	_	0,80	_	1,00	_	1,20	_	1,50	_	1,80	_	2,50	_	—	_
N _{R,k} [kN] for t _{N,I} [mm]	1,25	0,60	_	0,80	_	1,00	_	1,20	_	1,50	_	1,80	_	2,50	_	—	_
=	1,50	0,60	_	0,80	_	1,00	_	1,20	_	1,50	_	1,80	_	2,50	_	—	_
	1,75	0,60	_	0,80	_	1,00	_	1,20	_	1,50	_	1,80	_	—	_	_	_
	2,00	0,60	_	0,80	_	1,00	_	1,20	_	_	_	_	_		_	_	_

Self drilling screw	
	Annex 36
ZEBRA Piasta Ø 4,8 r x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

<u>Materials</u>

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4401) - EN 10088,

stainless steel (1.4578) - EN 10088

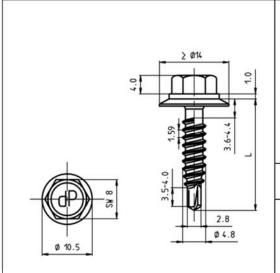
Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity

 $\Sigma t_i \le 3,00 \text{ mm}$


Timber substructures

no performance determined

	, _{II} =	0,6	3	0,7	' 5	0,8	88	1,0	0	1,1	3	1,2	:5	1,5	0	2,0	0
M	,nom =								5 1	l m							
	0,50	—	_	—	_	-	_	—	_	_	_	—	_	—	_	-	_
	0,55	—	_	—	_	<u> </u>	_	—	_	—	_	—	_	—	_	—	_
1=	0,63	1,60	_	1,70	_	1,80	ac	1,90	ac	1,90	ac	2,00	ac	2,10	ac	2,10	ac
٤	0,75	1,70	_	1,90	_	2,10	_	2,30	ac	2,40	ac	2,60	ac	3,00	ac	3,00	ac
Ť,	88,0	1,80	_	2,10	_	2,40	_	2,70	_	3,00	_	3,30	_	3,80	_	3,80	_
for	1,00	1,90	_	2,30	_	2,70	_	3,30	_	3,50	_	3,90	_	4,70	_	4,70	_
ΙZ	1,13	2,00	_	2,40	_	2,90	_	3,50	_	3,80	_	4,30	_	5,00	_	l —	_
V _{R,k} [kN] for t _{N,1} [mm]	1,25	2,10	_	2,50	_	3,10	_	3,80	_	4,10	_	4,70	_	5,00	_	l —	_
>	1,50	2,20	_	2,70	_	3,40	_	4,00	_	4,70	_	5,00	_	5,00		—	_
	1,75	2,20	_	2,70	_	3,40	_	4,00	_	4,70	_	5,00	_	l —	_	l —	_
	2,00	2,20	_	2,70	_	3,40	_	4,00	_	_	_	—	_	—	_	_	_
	0,50	0,49	_	0,59	_	0,81	ac	0,92	ac	1,13	ac	1,35	ac	1,40	ac	1,40	ac
	0,55	0,61	_	0,75	_	1,02	ac	1,16	ac	1,43	ac	1,71	ac	1,77	ac	1,77	ac
1=	0,63	0,90	_	1,10	_	1,50	ac	1,70	ac	2,10	ac	2,50	ac	2,60	ac	2,60	ac
Ξ	0,75	0,90	_	1,10	_	1,50	_	1,70	ac	2,10	ac	2,50	ac	3,20	ac	3,20	ac
Ţ.	88,0	0,90	_	1,10	_	1,50	_	1,70	_	2,10	_	2,50	_	3,30	_	3,30	_
ρ	1,00	0,90	_	1,10	_	1,50	_	1,70	_	2,10	_	2,50	_	3,30	_	3,30	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,90	_	1,10	_	1,50	_	1,70	_	2,10	_	2,50	_	3,30	_	—	_
×	1,25	0,90	_	1,10	_	1,50	_	1,70	_	2,10	_	2,50	_	3,30	_	—	_
=	1,50	0,90	_	1,10	_	1,50	_	1,70	_	2,10	_	2,50	_	3,30	_	—	_
	1,75	0,90	_	1,10	_	1,50	_	1,70	_	2,10	_	2,50	_	—	_	—	_
	2,00	0,90	_	1,10	_	1,50	_	1,70	_	—	_	—	_	—	_	—	_

Self drilling screw	
	Annex 37
ZEBRA Piasta Ø 6,3 r x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

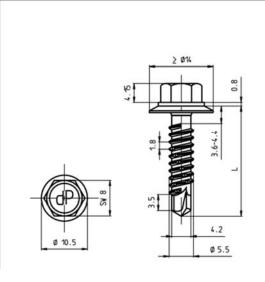
stainless steel (1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,75 \text{ mm}$


Timber substructures

no performance determined

	, _{II} =	0,6	3	0,7	'5	0,8	8	1,0	0	1,1	3	1,2	:5	1,5	0	2,0	0
M _t	, _{nom} =								2 N	l m							
	0,50	_	_	_	_	_	_	-	_	—	_	-	_	—	_	-	_
	0,55	—	_	—	_	—	_	—	_	—	_	l —	_	—	_	—	-
=	0,63	1,20	_	1,50	_	1,60	_	1,60	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac
<u> </u>	0,75	1,20	_	1,80	_	1,90	_	2,00	_	2,00	_	2,10	_	2,30	ac	2,30	ac
Ţ.	88,0	1,40	_	1,80	_	2,20	_	2,50	_	2,50	_	2,60	_	2,70	_	_	-
for	1,00	1,60	_	1,80	_	2,40	_	2,90		2,90	_	3,00	_	3,10	_	l —	-
ΙΞ	1,13	1,70	_	1,80	_	2,40	_	2,90	_	2,90	_	3,30	_	3,40	_	—	-
V _{R,k} [kN] for t _{N,1} [mm]	1,25	1,80	_	1,80	_	2,40	_	3,10	_	3,10	_	3,60	_	3,60	_	l —	_
>	1,50	1,80	_	1,80	_	2,70	_	3,50	_	3,50	_	3,60	_	l —	_	l —	_
	1,75	1,80	_	1,80	_	2,70	_	3,50	_	l —	_	l —	_	l —	_	l —	_
	2,00	1,80	_	1,80	_	_	_	—	_	—	_	_	_	—	_	—	_
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_
=	0,63	0,70	_	1,00	_	1,10	_	1,40	ac	1,60	ac	1,70	ac	2,20	ac	2,20	ac
<u> </u>	0,75	0,70	_	1,00	_	1,10	_	1,40		1,60	_	1,70	_	2,70	ac	2,70	ac
Ţ,	88,0	0,70	_	1,00	_	1,10	_	1,40		1,60	_	1,70	_	2,70		—	-
ρ	1,00	0,70	_	1,00	_	1,10	_	1,40		1,60	_	1,70	_	2,70		—	-
N _{R,k} [kN] for t _{N,I} [mm]	1,13	0,70	_	1,00	_	1,10	_	1,40	_	1,60		1,70	_	2,70	_	_	-
×	1,25	0,70	_	1,00	_	1,10	_	1,40	_	1,60		1,70	_	2,70	_	_	-
🛎	1,50	0,70	_	1,00	_	1,10	_	1,40	_	1,60	_	1,70	_	—	_	—	-
	1,75	0,70	_	1,00	_	1,10	_	1,40	_	—	_	—	_	—	_	—	-
	2,00	0,70	_	1,00	_	_	_	_	_	_	_	_	_	_	_	_	_

Self drilling screw Annex 38 ZEBRA Piasta Ø 4,8 x L with undercut, hexagon head and sealing washer ≥ Ø14 mm ETA-10/0184

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

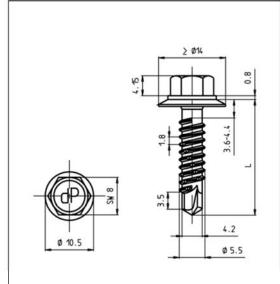
stainless steel (1.4578) - EN 10088 stainless steel (1.4301) - EN 10088

Washer: stainless steel (1.4301) - EN 1008 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 5,00 \text{ mm}$


Timber substructures

no performance determined

t _N	, _{II} =	0,6	3	0,7	'5	0,8	38	1,0	0	1,1	3	1,2	:5	1,5	0	2,0	0
$M_{t,}$	nom =								2 N	İ m							
	0,50	_	_	_	_	_	_					_	_	_	_	I —	_
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	-
=	0,63	1,00	_	1,20	_	1,30	_	1,40	ac	1,70	ac	1,90	ac	1,90	ac	1,90	ac
<u>E</u>	0,75	1,00	_	1,80	_	1,80	_	1,80	_	1,80	_	2,00	_	2,10	_	2,40	ac
Ţ,	88,0	1,20	_	1,80	_	2,00	_	2,20	_	2,20	_	2,20	_	2,50	_	3,10	-
for	1,00	1,40	_	1,80	_	2,20	_	2,60	_	2,60	_	2,60	_	3,00	_	3,70	_
ΙΞ	1,13	1,40	_	2,10	_	2,20	_	2,60	_	2,90	_	3,10	_	3,60		4,40	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	1,40	_	2,30	_	2,30	_	2,60	_	3,10	_	3,60	_	4,10		5,10	_
>	1,50	1,40	_	2,30	_	2,30	_	2,60	_	3,10	_	3,60	_	4,10	_	5,10	-
	1,75	1,40	_	2,30	_	2,30	_	2,60	_	3,10	_	3,60	_	4,10	_	5,10	_
	2,00	1,40	_	2,30	_	2,30	_	2,60	_	3,10	_	3,60	_	4,10	_	5,10	_
	0,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,55	—	_	—	_	—	_	—	_	—	_	—	_	l —	_	—	_
=	0,63	0,60	_	0,70	_	0,80	_	0,90	ac	1,10	ac	1,30	ac	2,30	ac	2,40	ac
<u>Ē</u>	0,75	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30		3,10	ac
Ţ,	88,0	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30	_	3,20	-
for	1,00	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30	_	3,30	-
N _{R.k} [kN] for t _{N,I} [mm]	1,13	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30	_	3,30	-
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	1,25	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30	_	3,30	_
=	1,50	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30	_	3,30	_
	1,75	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30	_	3,30	_
	2,00	0,60	_	0,70	_	0,80	_	0,90	_	1,10	_	1,30	_	2,30	_	3,30	

Self drilling screw	
	Annex 39
ZEBRA Piasta Ø 5,5 x L	of European technical approval
with undercut, hexagon head and sealing washer ≥ Ø14 mm	ETA-10/0184

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

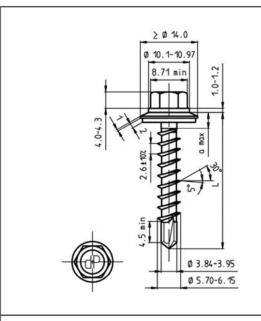
stainless steel (1.4301) - EN 10088

Washer: Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 5,00 \text{ mm}$


Timber substructures

no performance determined

	_{1,II} =	2 x 0	,63	2 x 0	,75	2 x 0	,88,	2 x 1	,00	2 x 1	,13	2 x 1	,25	2 x 1	,50	2 x 2	,00
$M_{t,}$	nom =								2 1	۱m							
	0,50	_	_	_	_	-	_	—	_	-	_	-	_	—	_	—	_
	0,55	_	_	—	_	<u> </u>	_	l —	_	—	_	—	_	—	_	—	_
1=	0,63	_	_	1,40	_	1,40	_	1,40	ac	1,60	ac	1,80	ac	1,80	ac	1,80	ac
٤	0,75	_	_	2,10	_	2,30	_	2,50	ac	2,50	ac	2,50	ac	2,50	ac	2,50	ac
ž	0,88	_	_	2,10	_	2,30	_	2,50	_	2,50	_	2,50	_	2,50	_	2,50	_
for	1,00	_	_	2,10	_	2,30	_	2,50	_	2,50	_	2,50	_	2,50	_	2,50	_
ΙZ	1,13	_	_	2,10	_	2,30	_	2,50	_	2,50	_	2,50	_	2,50	_	2,50	_
V _{R,k} [kN] for t _{N,I} [mm]	1,25	_	_	2,10		2,30	_	2,50	_	2,50	_	2,50	_	2,50	_	2,50	_
> =	1,50	_	_	2,10		2,30	_	2,50	_	2,50	_	2,50	_	2,50		2,50	_
	1,75	_	_	2,10	_	2,30	_	2,50	_	2,50	_	2,50	_	2,50	_	l —	_
	2,00	_	_	2,10	_	2,30	_	2,50	_	2,50	_	2,50	_	2,50	_	—	_
	0,50	_	_	_	_	<u> </u>	_	_	_	_	_	—	_	_	_	<u> </u>	_
	0,55	_	_	—	_	—	_	l —	_	—	_	—	_	l —	_	l —	_
1=	0,63	_	_	1,30	_	1,90	_	2,40	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac
<u> </u>	0,75	_	_	1,30	_	1,90	_	2,60	ac	2,80	ac	3,10	ac	3,10	ac	3,10	ac
Ţ.	0,88	_	_	1,30	_	1,90	_	2,60	_	2,80	_	3,10	_	3,10	_	3,10	_
for	1,00	_	_	1,30	_	1,90	_	2,60	_	2,80	_	3,10	_	3,10	_	3,10	_
N _{R,k} [kN] for t _{N,I} [mm]	1,13	_	_	1,30		1,90	_	2,60	_	2,80	_	3,10	_	3,10	_	3,10	_
*	1,25	_	_	1,30		1,90	_	2,60	_	2,80	_	3,10	_	3,10	_	3,10	_
=	1,50	_	_	1,30	_	1,90	_	2,60	_	2,80	_	3,10	_	3,10	_	3,10	_
1	1,75	_	_	1,30	_	1,90	_	2,60	_	2,80	_	3,10	_	3,10	_	—	_
	2,00	_	_	1,30	_	1,90	_	2,60	_	2,80	_	3,10	_	3,10	_	—	_

Self drilling screw	
	Annex 40
ZEBRA Piasta Ø 5,5 x L	of European technical approval
with undercut, hexagon head and sealing washer ≥ Ø14 mm	ETA-10/0184

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

Washer: none

Component I: S280GD or S320GD - EN 10346

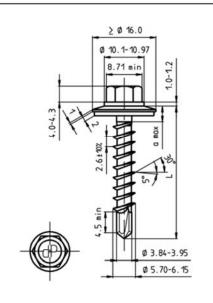
Component II: none

Drilling capacity $\Sigma t_i \le 1,50 \text{ mm}$

Timber substructures

performance determined with

 $M_{y,Rk} = 7,680 \text{ Nm}$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } I_{ef} \ge 30,0 \text{ mm}$

	ef =	30	36	42	48	54	60	66	72	78	
M _{t,}	nom =					_					
	0,40	0,81 ^a	0,81 ^a	0,81ª	0,81 ^a	0,81ª	0,81 ^a				
1	0,50	0,95	0,99ª	0,99 ^a							
=	0,55	0,95	1,19	1,23 ^a	1,23 ^a	1,23 ^a	1,23 ^a	1,23ª	1,23ª	1,23 ^a	1,23 ^a _Φ
Ē	0,63	0,95	1,19	1,42	1,62	1,62ª	1,62ª	1,62ª	1,62ª	1,62ª	1,62° ⊆ ∓
Ţ.	0,75	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,36	2,36° 12' 19'
وً	0,88	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	1,62° a 2,36° L 2,36° a 2,35°
Z	1,00	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	
V _{R.k} [kN] for t _{N,1} [mm]	1,13	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	4,13 ^a 4,94 pearing of con
>	1,25	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	5,74 💆
	1,50	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	5,74
	2,00	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	5,74
	0,40	1,00ª									
	0,50	1,23	1,23ª	1,23 ^a							
1=	0,55	1,27	1,57	1,57ª	1,57ª 🖁						
l <u>E</u>	0,63	1,27	1,59	1,91	2,11	2,11 ^a	2,11ª ts =				
Ţ.	0,75	1,27	1,59	1,91	2,22	2,54	2,86	3,05	3,05ª	3,05ª	2,11 ^a stsian 3,05 ^a 3,666 4,27 4,87 4,87
for	0,88	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,66	3,66 글 율
ΙZ	1,00	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	4,27
N _{R,k} [kN] for t _{N,I} [mm]	1,13	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	1,57° 2,11° 3,05° 3,66° 4,27° 4,87° 4,87° 5,48° 5,48°
z	1,25	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	5,48 🖶
	1,50	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	5,48
	2,00	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	5,48

Index a: If component I is made of S320GD or S350GD the value may be increased by 8,0%. The values listed above in dependence on the screw-in length I_{ef} are valid for k_{mod} = 0,90 and timber strength grade C24 (ρ_a = 350 kg/m³). For other combinations of k_{mod} and timber strength grades see section 4.2.2.

Self drilling screw	Annex 41
ZEBRA Piasta Ø 6,0 x L with wood thread and sealing washer ≥ Ø14 mm	of European technical approval ETA-10/0184

Materials

Fastener: stainless steel (1.4301) - EN 10088,

stainless steel (1.4401) - EN 10088, stainless steel (1.4578) - EN 10088

Washer: none

Component I: S280GD or S320GD - EN 10346

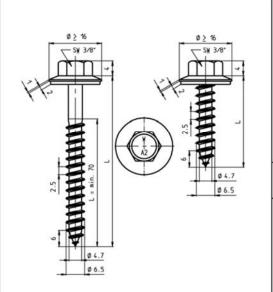
Component II: none

Drilling capacity $\Sigma t_i \le 1,50 \text{ mm}$

Timber substructures

performance determined with

 $M_{y,Rk} = 7,680 \text{ Nm}$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } I_{ef} \ge 30,0 \text{ mm}$

	ef =	30	36	42	48	54	60	66	72	78		
M _{t,i}	nom =					_						
	0,40	0,81 ^a	0,81 ^a	0,81 ^a	0,81ª	0,81ª	0,81 ^a	0,81 ^a	0,81 ^a	0,81ª	0,81 ^a	
	0,50	0,95	0,99ª	0,99 ^a								
Ξ	0,55	0,95	1,19	1,23 ^a _Φ								
빌	0,63	0,95	1,19	1,42	1,62	1,62ª	1,62ª	1,62ª	1,62ª	1,62ª	1,62° E =	ا ₌
Ţ,	0,75	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,36	2,36ª 🛱	2
ğ	0,88	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	1,62° 2,36° 1,00°	3
Ξ	1,00	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37		ξ
V _{R.k} [kN] for t _{N,1} [mm]	1,13	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	4,13 ^a 4,94 pearing	ا ۃ
>	1,25	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	5,74	
	1,50	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	5,74	
	2,00	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,37	5,74	
	0,40	1,24ª	1,24 ^a	1,24ª	1,24ª	1,24ª	1,24ª	1,24ª	1,24 ^a	1,24ª	1,24 ^a	
	0,50	1,27	1,49	1,49ª								
ᆮ	0,55	1,27	1,57	1,85	1,85ª	1,85ª	1,85ª	1,85ª	1,85ª	1,85ª	1,85° 2	
直	0,63	1,27	1,59	1,91	2,22	2,43	2,43ª	2,43ª	2,43 ^a	2,43 ^a	2,43° E	-
Ţ,	0,75	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,50 ^a	2,43° 5,15° 5,32° 4,57° 5,32° 6,32°	ا ق
ģ	0,88	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,66	4,57 = 8	ፈ
Z	1,00	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	5,15	5
N _{R.k} [kN] for t _{N.I} [mm]	1,13	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	2,43 ^a 3,50 ^a 4,57 5,15 5,32 thenough of 5,48	ا ج
ž	1,25	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	5,48 🖶	
	1,50	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	5,48	
	2,00	1,27	1,59	1,91	2,22	2,54	2,86	3,18	3,49	3,81	5,48	

Index a: If component I is made of S320GD or S350GD the value may be increased by 8,0%. The values listed above in dependence on the screw-in length I_{ef} are valid for k_{mod} = 0,90 and timber strength grade C24 (ρ_a = 350 kg/m³). For other combinations of k_{mod} and timber strength grades see section 4.2.2.

Self drilling screw	Annex 42
ZEBRA Piasta Ø 6,0 x L with wood thread and sealing washer ≥ Ø16 mm	of European technical approval ETA-10/0184

Materials

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

stainless steel (1.4578) - EN 10088 stainless steel (1.4301) - EN 10088

Washer: stainless steel (1.4301) - EN 10088 Component I: S280GD or S320GD - EN 10346

Component II: S235 - EN 10025-1

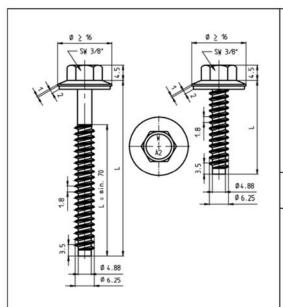
S280GD or S320GD - EN 10346

<u>Predrill diameter</u> see table below

Timber substructures

performance determined with

 $M_{y,Rk} = 9,742 \text{ Nm}$


 $f_{ax,k} = 8,575 \text{ N/mm}^2 \text{ for } I_{ef} \ge 26,0 \text{ mm}$

	I,II =	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	0		
	pd =	ø 3	,5	ø 4	,0			1.00	ø 4	1,5						5,0			
M _t	nom =			676		3 N	m	Ç.		-				5 N	m				
	0,50		-	7-	_	77-	-	-	$\overline{}$	_	_	10-	_	-	-	.—		_	
1	0,55	S 	_	-	-	-	_	· -	_		-	2 	-	-	-	s:—s	-	-	
=	0,63	1,30	_	1,50	-	1,80	_	2,00	ac	2,30	ac	2,50	ac	2,90	ac	2,90	ac	2,90	ه ا
<u> </u>	0,75	1,40	_	1,60	_	1,90	_	2,20	ac	2,50	ac	2,70	ac	3,10	ac	3,10	ac	3,10	anc H
Ţ,	0,88	1,50	_	1,70	_	2,00	_	2,30	_	2,60	_	2,80	ac	3,20	ac	3,20	ac	3,20	sistanc onent I
for	1,00	1,50	_	1,80	_	2,10	_	2,50	_	2,80	_	3,10	_	3,60	_	3,60	_	3,60	e 호
ΙZ	1,13	1,60	_	1,80	_	2,20	_	2,60	_	2,90	_	3,20	_	3,80	_	3,80	_	3,80	aring resistand of component I
V _{R.k} [kN] for t _{N,1} [mm]	1,25	1,60	_	1,90	_	2,30	_	2,70	_	3,00	_	3,30	_	4,00	_	4,00	_	4,00	ar T
>	1,50	1,60	_	1,90		2,40	_	2,80	_	3,20	_	3,50	_	4,00	_	4,00		4,00	pe
	1,75	1,60	_	1,90	_	2,40	_	2,80	_	3,20	_	3,50	_	4,00	_	4,00	_	4,00	
	2,00	1,60	_	1,90	_	2,40	_	2,80	_	3,20	_	3,50	_	4,00	_	4,00		4,00	
	0,50	0,49	_	0,59	_	0,70	_	0,76	ac	0,86	ac	0,97	ac	1,13	ac	1,13	ac	1,13	
	0,55	0,61	_	0,75	_	0,89	_	0,95	ac	1,09	ac	1,23	ac	1,43	ac	1,43	ac	1,43	
1=	0,63	0,90	_	1,10	_	1,30	_	1,40	ac	1,60	ac	1,80	ac	2,10	ac	2,10	ac	2,10	nce
1 <u>E</u>	0,75	0,90	_	1,10	_	1,30	_	1,40	ac	1,60	ac	1,80	ac	2,10	ac	2,10	ac	2,10	star
Ţ,	0,88	0,90	_	1,10	_	1,30	_	1,40	_	1,60	_	1,80	ac	2,10	ac	2,10	ac	2,10	esi
ξĮ	1,00	0,90	_	1,10	_	1,30	_	1,40	_	1,60	_	1,80	_	2,20	_	2,20	_	2,20	교
N _{R,k} [kN] for t _{N,I} [mm]	1,13	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	2,30	pull-through resista of component l
*	1,25	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	2,30	of c
ž	1,50	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	2,30	≒
	1,75	1,00	_	1,20	_	1,40	_	1,50	_	1,70	_	1,90	_	2,30	_	2,30	_	2,30	٥
	2,00	1,00	_	1,20	_	1,40		1,50	_	1,70	_	1,90	_	2,30	_	2,30		2,30	

The values listed above in dependence on the screw-in length l_{ef} are valid for k_{mod} = 0,90 and timber strength grade C24 (ρ_a = 350 kg/m³). For other combinations of k_{mod} and timber strength grades see section 4.2.2.

Self tapping screw	Annex 43
FABA Typ A 6,5 x L with hexagon head and sealing washer ≥ Ø16 mm	of European technical approval ETA-10/0184

Materials

Fastener: stainless steel (1.4301) - EN 10088, stainless steel (1.4401) - EN 10088,

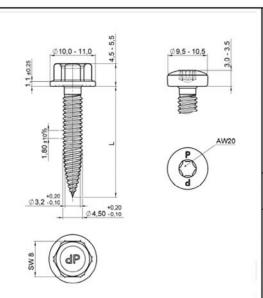
stainless steel (1.4578) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD or S320GD - EN 10346

Component II: S235, S275, S355 - EN 10025-1 S280GD, S320GD, S350GD - EN 10346

<u>Predrill diameter</u> see table below


Timber substructures

no performance determined

	t _{N.}	_{II} =	1,2	:5	1,5	0	2,	00	3,	00	4,	00	6,	00	≥ 7	,00	-	-
	d_p	d =		ø s	5,0				Ø	5,3			Ø.	5,5	Ø	5,7	_	-
N	M _{t,n}	om =					9		5 1	۱m	2		4				_	4
		0,50	-			-	100	-	12-0	-	125-127	700	100-00	-	(1 - 1)		10-0	7.
		0,55	·-	_		-	2 5 - 22	-	· 		-	200	12-12		1,000	-	-	-
=	=	0,63	2,50	ac	2,70	ac	2,90	abcd	3,00	abcd	3,10	abcd	3,10	abcd	3,10	abcd	-	
1		0,75	2,60	ac	3,10	ac	3,30	ac	3,60	ac	3,70	abcd	3,70	abcd	3,70	abcd	_	-
	Ž	88,0	2,80	ac	3,20	ac	3,80	ac	4,10	ac	4,30	ac	4,40	ac	4,40	ac	_	-
f.	2	1,00	3,20	_	3,60	ac	4,10	ac	4,80	ac	4,90	ac	5,10	ac	5,10	ac	_	_
۱Ę	7	1,13	3,40	_	4,00	_	4,60	ac	5,40	ac	5,60	ac	5,80	ac	5,80	ac	_	-
Ve. [kN] for ty. [mm]	χ. Ξ.	1,25	3,60	_	4,20	_	5,00	ac	6,10	ac	6,30	ac	6,50	ac	6,50	ac	_	_
>	>	1,50	3,70	_	4,40	_	5,70	_	6,80	_	7,10	_	7,30	_	7,30	_	_	_
		1,75	3,70	_	4,70	_	6,20	_	7,60	_	7,70	_	8,10	_	8,10	_	_	_
		2,00	3,80	_	4,90	_	6,90	_	7,80	_	7,90	_	8,10	_	8,10	_	_	_
		0,50	0,97	ac	1,35	ac	1,51	abcd	1,51	abcd	1,51	abcd	1,51	abcd	1,51	abcd	_	_
		0,55	1,23	ac	1,71	ac	1,91	abcd	1,91	abcd	1,91	abcd	1,91	abcd	1,91	abcd	_	_
=	=	0,63	1,80	ac	2,50	ac	2,80	abcd	2,80	abcd	2,80	abcd	2,80	abcd	2,80	abcd	_	_
3		0,75	2,00	ac	2,60	ac	3,10	ac	3,60	ac	3,60	abcd	3,60	abcd	3,60	abcd	_	_
	Ž	88,0	2,00	ac	2,70	ac	3,30	ac	3,80	ac	3,80	ac	3,80	ac	3,80	ac	_	_
j	2	1,00	2,00	_	2,70	ac	3,40	ac	4,00	ac	4,00	ac	4,00	ac	4,00	ac	_	_
Na . [kN] for t [mm]	7	1,13	2,00	_	2,70	_	3,60	ac	4,40	ac	4,40	ac	4,40	ac	4,40	ac	_	_
=	χ. -	1,25	2,00	_	2,70	_	3,60	ac	4,80	ac	4,90	ac	4,90	ac	4,90	ac	_	_
Ź	<u>^</u>	1,50	2,00	_	2,70	_	3,60	_	5,60	_	5,90	_	5,90	_	5,90	_	_	_
		1,75	2,00	_	2,70	_	3,60	_	5,80	_	6,90	_	7,10	_	7,10	_	_	_
		2,00	2,00	_	2,70	_	3,60	_	6,00	_	7,30	_	7,60	_	7,60	_	_	_

Self tapping screw	
	Annex 44
FABA Typ BZ 6,3 x L	of European technical approval
with hexagon head and sealing washer ≥ Ø16 mm	ETA-10/0184

Fastener: stainless steel, - EN 10088

steel grades 1.4301, 1.4401, 1.4567 or 1.4578

Washer: none

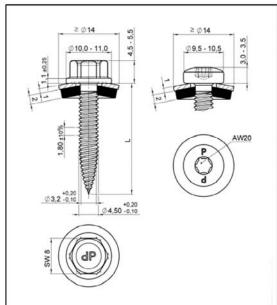
Component I: S280GD to S350 GD – EN 10346 Component II: S280GD to S350 GD – EN 10346

S235 - EN 10025-1

Drilling capacity $t_1 \le 1,75 \text{ mm}; t_{11} \le 1,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


-		1 0.50			0,63 0,75			1	250		225		155	to 70 s	SUS.	4.50			
	[mm]	0,5	50	0,6	3	0,7	75	0,8	88	1,0	00	1,1	3	1,2	25	1,5	0	2,0	00
	∕t ,nom										Š.								
	0,50	1,11	a)	1,11	a)	1,11	a)	1,11	a)	1,11	a)	1,11	a)	1,11	a)	1,11	a)	_	_
	0,55	1,11	a)	1,33	a)	1,33	a)	1,33	a)	1,33	a)	1,33	a)	1,33	a)	1,33	a)	_	_
E	0,63	1,11	a)	1,67	a)	1,67	a)	1,67	a)	1,67	a)	1,67	a)	1,67	a)	1,67	a)	_	_
[mm]	0,75	1,11	a)	1,67	a)	2,19	a)	2,19	a)	2,19	a)	2,19	a)	2,19	a)	2,19	a)		-
<u>-</u>	0,88	1,11	a)	1,67	a)	2,19	a)	3,00	a)	3,00	a)	3,00	a)	3,00	a)	3,00	a)	_	_
	1,00	1,11	a)	1,67	a)	2,19	a)	3,00	a)	3,74	a)	3,74	a)	3,74	a)	—	_	_	_
V _{R,k} [kN] for	1,13	1,11	a)	1,67	a)	2,19	a)	3,00	a)	3,74	a)	3,74	_	3,74	_	—	_	_	_
*	1,25	1,11	a)	1,67	a)	2,19	a)	3,00	a)	3,74	a)	3,74	_	—	_	—	_	_	_
> >	1,50	1,11	a)	1,67	a)	2,19	a)	3,00	a)	—	_	—	_	—	_	—	_	_	_
	1,75	1,11	a)	1,67	a)	—	_	_	_	—	_	—	_	—	_	—	_	_	_
	2,00	 	_	—	_	 -	_	—	_	—	_	—	_	—	_	—	_	_	_
	0,50	0,71	a)	1,00	a)	1,01	a)	1,01	a)	1,01	a)	1,01	a)	1,01	a)	1,01	a)	_	_
	0,55	0,71	a)	1,00	a)	1,09	a)	1,09	a)	1,09	a)	1,09	a)	1,09	a)	1,09	a)	_	_
E	0,63	0,71	a)	1,00	a)	1,21	a)	1,21	a)	1,21	a)	1,21	a)	1,21	a)	1,21	a)	_	_
t _{N, I} [mm]	0,75	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	1,83	a)	1,83	a)	1,83	a)	_	_
- -	0,88	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	a)	2,34	a)	2,34	a)	_	_
	1,00	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	a)	2,34	a)	_	_	_	_
N _{R,k} [kN] for	1,13	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	_	2,34	_	—	_	_	_
×	1,25	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05		_	_	—	_	_	_
z	1,50	0,71	a)	1,00	a)	1,26	a)	1,51	a)	—	_	—	_	—	_	—	_	—	_
	1,75	0,71	a)	1,00	a)	_	_	—	_	—	_	—	_	—	_	—	_	_	_
	2,00		_	<u> </u>	_	<u> </u>			_	<u> </u>	_		_		_		_		

screwed-in with electric screw driver with appropriate set depth stop

If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,0%.

self drilling screw	Annex 45
Zebra DBS Bimetall – 4,5 x L	to European technical approval
with hexagon head or pan head with AW20 drive	ETA - 10/0184

Fastener: stainless steel, - EN 10088

steel grades 1.4301, 1.4401, 1.4567 or 1.4578

Washer: stainless steel, – EN 10088

steel grade 1.4301 or 1.4401

with EPDM sealing

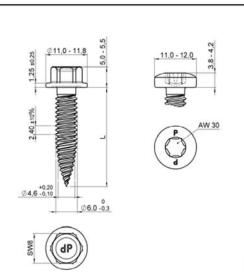
Component I: S280GD, S320GD or S350GD – EN 10346 Component II: S280GD, S320GD or S350GD – EN 10346

S235 - EN 10025-1

<u>Drilling capacity</u> $t_{\parallel} \le 1,75 \text{ mm}; t_{\parallel} \le 1,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


	[mm]	0,5	0	0,6	3	0,7	75	0,8	88	1,0	00	1,1	3	1,2	25	1,5	0	2,0	00
N	∕I t,nom										8								
	0,50	1,14	a)	1,14	a)	_	_												
	0,55	1,14	a)	1,44	a)	_	_												
	0,63	1,14	a)	1,92	a)	_	_												
E	0,75	1,14	a)	1,92	a)	2,64	a)												
t, [kN]	0,88	1,14	a)	1,92	a)	2,64	a)	3,07	a)	_	_								
₹	1,00	1,14	a)	1,92	a)	2,64	a)	3,07	a)	3,46	a)	3,46	a)	3,46	a)	—	_	_	_
V _{R,k} for	1,13	1,14	a)	1,92	a)	2,64	a)	3,07	a)	3,46	a)	3,46	_	3,46	_	—	_	_	_
\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u>	1,25	1,14	a)	1,92	a)	2,64	a)	3,07	a)	3,46	a)	3,46	_	—	_	—	_	_	_
	1,50	1,14	a)	1,92	a)	2,64	a)	3,07	a)	—	_	—	_	—	_	—	_	_	_
	1,75	1,14	a)	1,92	a)	_	_	_	_	l —	_	—	_	l —	_	 	_	_	_
	2,00	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	_	_
	0,50	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,57	a)	1,57	a)	1,57	a)	1,57	a)	_	_
	0,55	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,71	a)	1,71	a)	1,71	a)	1,71	a)	_	_
	0,63	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	1,93	a)	1,93	a)	1,93	a)	_	_
NZ N	0,75	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	a)	2,34	a)	2,34	a)	_	_
	0,88	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	a)	2,34	a)	2,34	a)	_	_
₊₹	1,00	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	a)	2,34	a)	—	_	_	_
N _{R,k} for t _{N, I}	1,13	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	_	2,34	_	—	_	_	_
Z	1,25	0,71	a)	1,00	a)	1,26	a)	1,51	a)	1,74	a)	2,05	_	—	_	—	_	_	_
	1,50	0,71	a)	1,00	a)	1,26	a)	1,51	a)	—	_	—	_	—	_	—	_	_	_
	1,75	0,71	a)	1,00	a)	—	_	—	_	—	_	—	_	—	_	—	_	—	_
	2,00		_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_

screwed-in with electric screw driver with appropriate set depth stop

If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,0%.

self drilling screw	Annex 46
Zebra DBS Bimetall – 4,5 x L	to European technical approval
with hexagon head or pan head with AW20 drive and sealing washer ≥ ø14 mm	ETA - 10/0184

Fastener: stainless steel, - EN 10088I

steel grades 1.4301, 1.4401, 1.4567 or 1.4578

Washer: none

Component I: S280GD to S350 GD – EN 10346 Component II: S280GD to S350 GD – EN 10346

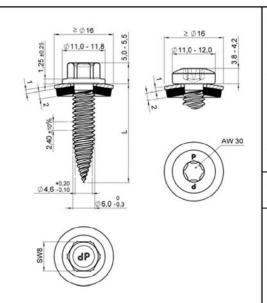
S235 - EN 10025-1

Drilling capacity Σt_i ≤ 2,50 mm

Timber substructures

for timber substructures no performance determined

	[mm]	0,5	0	0,6	3	0,7	75	0,8	88	1,0	00	1,1	3	1,2	25	1,5	0	2,0	00
N	∕I t,nom									-									
	0,50	1,51	a)	1,51	a)	1,51	a)	1,51	a)	1,51	a)	1,51	a)	1,51	a)	1,51	a)	_	_
	0,55	1,51	a)	1,62	a)	1,62	a)	1,62	a)	1,62	a)	1,62	a)	1,62	a)	1,62	a)	_	_
	0,63	1,51	a)	1,81	a)	1,81	a)	1,81	a)	1,81	a)	1,81	a)	1,81	a)	1,81	a)	 	_
[KN]	0,75	1,51	a)	1,81	a)	2,08	a)	_	_										
=	0,88	1,51	a)	1,81	a)	2,08	a)	3,20	a)	—	_								
- ₹	1,00	1,51	a)	1,81	a)	2,08	a)	3,20	a)	4,23	a)	4,23	a)	4,23	a)	4,23	a)	_	_
V _{R,k} for	1,13	1,51	a)	1,81	a)	2,08	a)	3,20	a)	4,23	a)	5,04	_	5,04	_	—	_	_	_
×	1,25	1,51	a)	1,81	a)	2,08	a)	3,20	a)	4,23	a)	5,04	_	5,79	_	—	_	_	_
	1,50	—	_	 	_	l —	_	l —	_	l —	_	l —	_	l —	_	 	_	_	_
	1,75	l —	_		_		_		_	_	_	l —	_		_	 	_	_	_
	2,00	—	_	—	_	—	_	l —	_	—	_	—	_	—	_	—	_	 	_
	0,50	0,87	a)	1,00	a)	1,00	a)	1,00	a)	1,00	a)	1,00	a)	1,00	a)	1,00	a)	_	
	0,55	0,87	a)	1,16	a)	1,16	a)	1,16	a)	1,16	a)	1,16	a)	1,16	a)	1,16	a)	_	_
	0,63	0,87	a)	1,18	a)	1,42	a)	_	_										
Σ̈	0,75	0,87	a)	1,18	a)	1,47	a)	1,74	a)	 	_								
N _{R,k} for t _{N,1} [kN]	0,88	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	a)	2,55	a)	2,55	a)	_	_
_ Z t	1,00	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	a)	2,55	a)	2,55	a)	_	_
Ē	1,13	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	_	2,55	_	l —	_	_	_
Z,	1,25	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	_	2,55	_	l —	_	_	_
	1,50	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_	_
	1,75	l —	_	_	_	_	_	l —	_	_	_	l —	_	_	_	_	_	_	_
	2,00	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_


screwed-in with electric screw driver with appropriate set depth stop

If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,0%.

self drilling screw	Annex 47
Zebra DBS Bimetall – 6,0 x L	to European technical approval
with hexagon head or pan head with AW30 drive	ETA – 10/0184

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Materials

Fastener: Fastener: stainless steel, – EN 10088

steel grades 1.4301, 1.4401, 1.4567 or 1.4578

Washer: stainless steel, – EN 10088

steel grade 1.4301 or 1.4401

with EPDM sealing

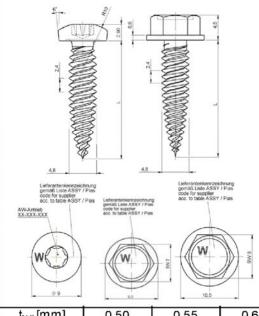
Component I: S280GD to S350 GD – EN 10346 Component II: S280GD to S350 GD – EN 10346

S235 - EN 10025-1

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


												-							
t _{N,I}	[mm]	0,5	0	0,6	3	0,7	75	0,8	8	1,0	00	1,1	3	1,2	25	1,5	0	2,0	00
N	∕I t,nom			313		58		54		-	Č.								
	0,50	1,21	a)	1,21	a)	1,21	a)	1,21	a)	1,21	a)	1,21	a)	1,21	a)	1,21	a)	1000	_
	0,55	1,21	a)	1,53	a)	1,53	a)	1,53	a)	1,53	a)	1,53	a)	1,53	a)	1,53	a)	_	_
	0,63	1,21	a)	2,04	a)	2,04	a)	2,04	a)	2,04	a)	2,04	a)	2,04	a)	2,04	a)	_	_
[KN]	0,75	1,21	a)	2,04	a)	2,80	a)	2,80	a)	2,80	a)	2,80	a)	2,80	a)	2,80	a)	_	_
_	0,88	1,21	a)	2,04	a)	2,80	a)	3,69	a)	3,69	a)	3,69	a)	3,69	a)	3,69	a)	 	_
- - -	1,00	1,21	a)	2,04	a)	2,80	a)	3,69	a)	4,52	a)	4,52	a)	4,52	a)	4,52	a)	—	_
V _{R,k} for	1,13	1,21	a)	2,04	a)	2,80	a)	3,69	a)	4,52	a)	5,41	_	5,41	_	 	_		_
\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	1,25	1,21	a)	2,04	a)	2,80	a)	3,69	a)	4,52	a)	5,41	_	6,24	_	l —	_		_
	1,50		_	 —	_	l —	_	l —	_	_	_	_		l —	_	l —	_	 	_
	1,75		_	—	_		_	 	_		_	_	_	l —	_	l —	_	 	_
	2,00	—	_	_	_	_	_	l —	_	_	_	—	_	_	_	—	_		_
	0,50	0,87	a)	1,18	a)	1,47	a)	1,59	a)	1,59	a)	1,59	a)	1,59	a)	1,59	a)	_	_
	0,55	0,87	a)	1,18	a)	1,47	a)	1,87	a)	1,87	a)	1,87	a)	1,87	a)	1,87	a)	_	_
	0,63	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,31	a)	2,31	a)	2,31	a)	 	_
Ξ	0,75	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	a)	2,55	a)	2,55	a)	 	_
<u> </u>	0,88	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	a)	2,55	a)	2,55	a)	l —	_
, <u>z</u>	1,00	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	a)	2,55	a)	2,55	a)	l —	_
NR,k for th, [kN]	1,13	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	_	2,55	_	_	_		_
S. S.	1,25	0,87	a)	1,18	a)	1,47	a)	1,87	a)	2,23	a)	2,40	_	2,55	_	_	_	_	_
	1,50	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	l —	_	_	_
	1,75	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	l _	_	_	_
	2,00	—	_	 —	_	—	_	_	_	_	_	_	_	_	_	—	_	_	_

screwed-in with electric screw driver with appropriate set depth stop

If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,0%.

self drilling screw	Annex 48
Zebra DBS Bimetall – 6,0 x L	to European technical approval
with hexagon head or pan head with AW30 drive and sealing washer ≥ ø16 mm	ETA – 10/0184

Fastener: carbon steel

case hardened and galvanized

Washer: none

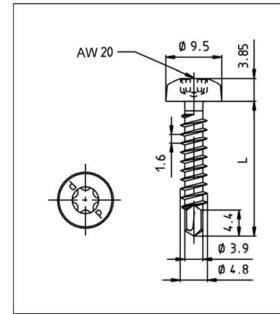
Component I: S280GD to S350 GD – EN 10346 Component II: S280GD to S350 GD – EN 10346

S235 EN 10025-1

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


,			9.0		10,5												
t _{N,II}	[mm]	0,5	0	0,5	55	0,6	3	0,7	'5	0,8	88	1,0	0	1,1	13	1,2	5
	∕I _{t,nom}									-							
	0,50	1,44	a)	1,53	a)	1,67	a)	1,90	a)	1,90	a)	1,90	a)	1,90	a)	1,90	a)
	0,55	1,44	a)	1,62	a)	1,77	a)	1,99	a)	1,99	a)	1,99	a)	1,99	a)	1,99	a)
	0,63	1,44	a)	1,62	a)	1,90	a)	2,13	_	2,13	a)	2,13	_	2,13	_	2,13	_
Z	0,75	1,44	a)	1,62	a)	1,90	a)	2,35	_	2,35	a)	2,35	a)	2,35	a)	2,35	a)
<u> </u>	0,88	1,44	a)	1,62	a)	1,90	a)	2,35	_	2,77	a)	2,77	a)	2,77	a)	2,77	a)
-Z	1,00	1,44	a)	1,62	a)	1,90	a)	2,35	_	2,77	a)	3,19	a)	3,19	a)	3,19	a)
V _{R.k} for t _{N.1} [kN]	1,13	1,44	a)	1,62	a)	1,90	a)	2,35	_	2,77	a)	3,19	a)	3,85	_	3,85	_
₹	1,25	1,44	a)	1,62	a)	1,90	a)	2,35	_	2,77	a)	3,19	a)	3,85	_	4,51	_
	1,50	l —	_	_	-	_	_	_	_	—	_	_	_	_	_	l —	_
	1,75	l —	_	l —	_	l —	_	l —	_	—	_	l —		l —	_	l —	_
	2,00	—	_	—	_	—	_	—	_	—	_	—	_	—	_	l —	_
	0,50	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,46	a)	1,46	a)	1,46	a)	1,46	a)
	0,55	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,53	a)	1,53	a)	1,53	a)	1,53	a)
	0,63	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,56	a)	1,65	a)	1,65	a)	1,65	a)
₹	0,75	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,56	a)	1,83	a)	1,83	a)	1,83	a)
- -	0,88	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,56	a)	1,86	a)	2,16	_	2,16	a)
<u> </u>	1,00	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,56	a)	1,86	a)	2,21	_	2,48	_
N _{R,k} for t _{N,1}	1,13	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,56	a)	1,86	a)	2,21	_	2,48	_
ž	1,25	0,65	a)	0,77	a)	0,96	a)	1,26	a)	1,56	a)	1,86	a)	2,21	_	2,48	_
	1,50	—	_	_	_	—	_	—	_	_	_	—	_	—	_	l —	_
	1,75	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_
	2,00	<u> </u>	_	—	_	<u> </u>	_	—	_	—	_	<u> </u>	_	—	_	<u> </u>	_

screwed-in with electric screw driver with appropriate set depth stop

If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,0%.

self drilling screw	Annex 49
Dünnblechschraube DBS Ø 4,8	to European technical approval
with hexagon head or pan head with AW drive	ETA – 10/0184

Fastener: stainless steel - EN 10088

steel grade 1.4301

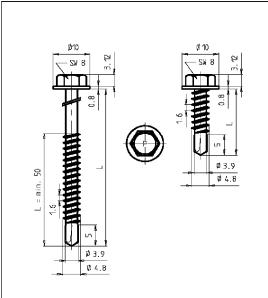
Washer:

Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: Aluminium alloy with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573 \text{ with } R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 4,40 \text{ mm}$


Timber structures

for timber structures no performance determined

					Thickness Component II t _{II} [mm] Aluminium alloy with R _m ≥ 165 N/mm ²											
_				0,70	0,80	0,90	1,00	1,20	1,50	2,00	3,00	4,00				
nium alloy	with R _m ≥ 165 N/mm²	Shear load V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00													
nm] Alumi	wi	Tension load N _{R,k}		0,16	0,25	0,35	0,42	0,56	0,73	1,01	2,16	3,31				
# =					Thicknes	ss Compon	ent II t _{ii} [m	m] Alumin	ium alloy v	vith R _m ≥ 2′	15 N/mm ²					
<u>#</u>				0,70	0,80	0,90	1,00	1,20	1,50	2,00	3,00	4,00				
Thickness Component I tl [mm] Aluminium alloy	with R _m ≥ 215 N/mm²	Shear Ioad V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00	0,71 — 0,71 — 0,71 — 0,71 — — — — —	0,81 — 0,95 — 1,09 — 1,09 — — — — — —	0,92 — 1,19 — 1,46 — 1,46 — 1,46 — — —	1,03 — 1,28 — 1,54 — 1,62 — 1,71 — — —	1,24 — 1,46 — 1,68 — 1,77 — 1,96 — — —	1,29 — 1,60 — 1,90 — 2,02 — 2,26 — — —	1,38 — 1,82 — 2,26 — 2,43 — 2,77 — — —	1,38 — 1,82 — 2,26 — 2,43 — 2,77 — — —	1,38 — 1,82 — 2,26 — 2,43 — 2,77 — — —				
		Tension load N _{R,k}		0,21	0,33	0,45	0,54	0,73	0,93	1,31	2,81	4,31				

self drilling screw	Annex 50
Zebra Piasta Ø 4,8 AW	to European technical approval
	ETA - 10/0184

<u>Material</u>

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer:

Component I: Aluminium alloy

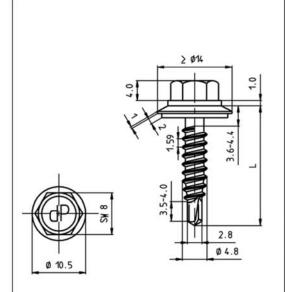
with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: Aluminium alloy with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573 \text{ with } R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 4,40 \text{ mm}$

Timber structures

for timber structures no performance determined


					Thickness Component II t _{II} [mm] Aluminium alloy with R _m ≥ 165 N/mm ²											
				0,70	0,80	0,90	1,00	1,20	1,50	2,00	3,00	4,00				
[mm] Aluminium alloy	with R _m ≥ 165 N/mm²	Shear load V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00													
nm] Alum	 wi	Tension load N _{R,k}		0,16	0,25	0,35	0,42	0,56	0,73	1,01	2,16	3,31				
=						s Compon	ent II t _{II} [mi	m] Alumini	um alloy v	vith R _m ≥ 21	15 N/mm²					
Ĕ				0,70	0,80	0,90	1,00	1,20	1,50	2,00	3,00	4,00				
Thickness Component tl	with $R_m \ge 215 \text{ N/mm}^2$	Shear load V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00	0,71 — 0,71 — 0,71 — 0,71 — 0,71 — — — — —	0,81 — 0,95 — 1,09 — 1,09 — — — — — —	0,92 — 1,19 — 1,46 — 1,46 — 1,46 — — —	1,03 — 1,28 — 1,54 — 1,62 — 1,71 — — —	1,24 — 1,46 — 1,68 — 1,77 — 1,96 — — —	1,29 — 1,60 — 1,90 — 2,02 — 2,26 —	1,38 — 1,82 — 2,26 — 2,43 — 2,77 — — —	1,38 — 1,82 — 2,26 — 2,43 — 2,77 — — —	1,38 — 1,82 — 2,26 — 2,43 — 2,77 — — —				
		Tension load N _{R,k}		0,21	0,33	0,45	0,54	0,73	0,93	1,31	2,81	4,31				

self drilling screw	Annex 51
Zebra Piasta Ø 4,8 K	to European technical approval
	ETA - 10/0184

Electronic copy of the ETA by DIBt: ETA-10/0184

English translation prepared by DIBt

Material

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

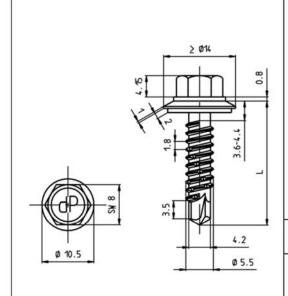
Component II: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity

 $\Sigma t_i \leq 3,20 \text{ mm}$

Timber structures


for timber structures no performance determined

					Thickness Component II t _{II} [mm] Aluminium alloy with R _m ≥ 165 N/mm ² 0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00																
				0,5	0	0,6	0	0,7	70	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0	2,0	0
			0,50	0,34	-	0,37	_	0,41	(a 	0,44	5-0	0,48	-	0,52	ac	0,51	ac	0,51	ac	0,51	ac
		Shear Ioad V _{R.k} [kN]	0,60	0,35	_	0,50	_	0,54	_	0,56	_	0,60	_	0,63	ac	0,63	ac	0,63	ac	0,63	ac
	-2		0,70	100000000000000000000000000000000000000	_	0,52	7—	0,66	_	0,69	_	0,73	_	0,76	ac	0,80	ac	0,80	ac	0,80	а
	165 N/mm ²	>	0,80	0,38	_	0,52	1-	0,67	·	0,81	-	0,85	-	0,88	ac	0,96	ac	0,96	ac	0,96	а
	ž	ad	0,90	0,40	_	0,54	_	0,67	_	0,83	_	0,97	_	1,01	ac	1,06	ac	1,06	а	1,06	а
>	65	<u> </u>	1,00	0,41	_	0,55	_	0,70	_	0,84	_	0,99	_	1,13	ac	1,15	ac	1,17	а	1,33	а
alloy	٧١	ğ	1,20	0,41	_	0,55	_	0,70	_	0,84	_	0,99	_	1,13	а	1,15	а	1,17	а	1,60	а
Ë		Sh	1,50	0,41	_	0,55	_	0,70	_	0,84	_	0,99	_	1,13	а	1,15	а	1,17	а	_	-
≣ِ	with R _m		2,00	0,41	_	0,55	_	0,70	_	0,84	_	0,99	_	1,13	а	1,15	а	_	_	_	_
[mm] Aluminium		Tension load N _{R,k}		0,1	7	0,2		0,3		0,4		0,4		0,5		0,8		0,9		1,3	60
						Thic	knes	s Con	npon	ent II t	ıı [mı	m] Alu	mini	um all	loy w	∕ith Rո	_n ≥ 2 1	15 N/m	m ²		
Component tl				0,5	0	0,6	0	0,7	70	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0	2,0	0
l e		_	0,50	0,44	_	0,48	_	0,53	_	0,57	_	0,63	_	0,67	ac	0,66	ac	0,66	ac	0,66	ac
ĕ	n^2	톤	0,60	0,46	_	0,65	_	0,70	_	0,73	_	0,78	_	0,82	ac	0,82	ac	0,82	ac	0,82	ac
Ö	215 N/mm ²	Shear Ioad V _{R.k} [kN]	0,70	0,48	_	0,68	_	0,86	_	0,90	_	0,95	_	0,99	ac	1,04	ac	1,04	ac	1,04	а
	Z	>	0,80	0,50	_	0,68	_	0,87	_	1,06	_	1,11	_	1,15	ac	1,25	ac	1,25	ac	1,25	а
Thickness	7	ad	0,90	0,52	_	0,70	_	0,87	_	1,08	_	1,26	_	1,32	ac	1,38	ac	1,38	а	1,38	а
불	ΔI	6	1,00	0,54	_	0,72	_	0,91	_	1,09	_	1,29	_	1,47	ac	1,50		1,53	а	1,73	а
ۼ	with R _m	<u>ea</u>	1,20	0,54	_	0,72	_	0,91	_	1,09	_	1,29	_	1,47	а	1,50	а	1,53	а	2,08	а
-	듩	유	1,50	0,54	_	0,72	_	0,91	_	1,09	_	1,29	_	1,47	а	1,50	а	1,53	а	_	-
	≥		2,00	0,54		0,72	_	0,91	_	1,09	_	1,29	_	1,47	а	1,50	a		_		
		Tension load N _{R,k}		0,2	21	0,2	0,29 0,38		0,4	6	0,5	5	0,6	4	1,0	3	1,1	2	1,6	3	

If component I and component II are made of Aluminium alloy with tensile strength R_m ≥ 245 N/mm², the specified values for $R_m \ge 215 \text{ N/mm}^2$ for shear load $V_{R,k}$ may be increased by 14%. If component II is made of Aluminium alloy with tensile strength R_m ≥ 245 N/mm², the specified values for R_m ≥ 215 N/mm^2 for tension load $N_{R,k}$ may be increased by 14%.

self drilling screw	Annex 52
Zebra Piasta 4,8 x L mit Hinterschnitt	to European technical approval
, ,	ETA - 10/0184

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

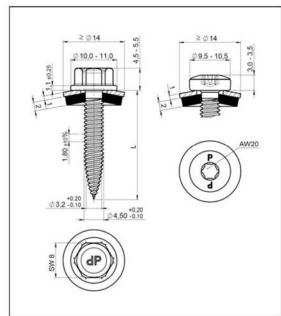
Component II: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity

 $\Sigma t_i \le 5,0 \text{ mm}$

Timber structures


for timber structures no performance determined

					Thickness Component II t _{II} [mm] Aluminium alloy with R _m ≥ 165 N/mm ² 0,50 0,70 0,80 1,00 1,20 1,50 2,00 3,00 4,00																
				0,5	0	0,7	0	0,8	30	1,0	0	1,2	0	1,5	0	2,0	0	3,0	0	4,0	0
			0,50	0,26	-	0,34	_	0,38	(-)	0,45		0,49	ac	0,49	ac	0,49	ac	0,49	ac	0,49	ac
		못	0,60	0,28	_	0,46	_	0,50	_	0,57	_	0,61	ac	0,61	ac	0,61	ac	0,61	ac	0,61	а
	-2		0,70	0,29	_	0,58	-	0,61	_	0,69	_	0,73	ac	0,73	ac	0,73	ac	0,73	ac	0,73	а
	165 N/mm ²	>	0,80	0,31	_	0,59	-	0,73	· —	0,81	-	0,85	ac	0,85	ac	0,85	ac	0,85	ac	0,85	а
	ž	귷	0,90	0,32	_	0,61	_	0,75	_	0,93	_	0,97	ac	1,06	ac	1,06	ac	1,06	ac	1,06	а
>	65	Ö	1,00	0,34	_	0,62	_	0,77	_	1,05	ac	1,09	ac	1,26	ac	1,26	ac	1,26	ac	1,26	а
alloy	۱۷ ۲	ğ	1,20	0,34	_	0,63	_	0,78	_	1,07	ac	1,21	ac	1,26	ac	1,41	ac	1,70	а	_	_
Ë		Shear Ioad V _{R.k} [kN]	1,50	0,34	_	0,63	_	0,78	_	1,07	ac	1,21	ac	1,26	ac	1,63	ac	2,36	а	_	_
.≣	with R _m		2,00	0,34	_	0,63	_	0,78	_	1,07	ac	1,21	а	1,26	а	1,63	а	2,36	а	_	_
Component I tl [mm] Aluminium	wi	Tension load N _{R,k}		0, 1	3	0,2		0,3		0,3		0,4		0,8		1,0		2,1		3,3	57
+						Thic	hickness Compone				ıı [mı	m] Alu	mini	um al	loy w	tith R _n	_n ≥ 2 1	5 N/m	m²		
Έ				0,5	0	0,7	0	0,8	30	1,0	0	1,2	0	1,5	0	2,0	0	3,0	0	4,0	0
e e		_	0,50	0,34	_	0,44	_	0,50	_	0,59	_	0,64	ac	0,64	ac	0,64	ac	0,64	ac	0,64	ac
<u>g</u>	2 L	Σ	0,60		_	0,60	_	0,65	_	0,74	_	0,79	ac	0,79	ac	0,79	ac	0,79	ac	0,79	а
6	Ē	쯗	0,70	0,38	_	0,76	_	0,79	_	0,90	_	0,95	ac	0,95	ac	0,95	ac	0,95	ac	0,95	а
	215 N/mm ²		0,80	0,40	_	0,77	_	0,95	_	1,06	_	1,11	ac	1,11	ac	1,11	ac	1,11	ac	1,11	а
es	3,5	ad	0,90	0,42	_	0,79	_	0,98	_	1,21	_	1,26	ac	1,38	ac	1,38	ac	1,38	ac	1,38	а
卜	ΛΙ	5	1,00	0,44	_	0,81	_	1,00	_	1,37	ac	1,42	ac	1,64	ac	1,64	ac	1,64	ac	1,64	а
Thickness	₽.	Shear Ioad V	1,20	0,44	_	0,82	_	1,02	_	1,39	ac	1,58	ac	1,64	ac	1,84	ac	2,22	а	_	-
-	with R _m	유	1,50	0,44	_	0,82	_	1,02	_	1,39	ac	1,58	ac	1,64	ac	2,12	ac	3,07	а	_	-
	≥		2,00	0,44		0,82		1,02		1,39	ac	1,58	а	1,64	а	2,12	а	3,07	а		
		Tension Ioad N _{R,k}		0, 1	6	0,2	28	0,3	34	0,5	0	0,6	2	0,9	5	1,3	0	2,5	6	4,0	00

If component I and component II are made of Aluminium alloy with tensile strength R_m ≥ 245 N/mm², the specified values for $R_m \ge 215 \text{ N/mm}^2$ for shear load $V_{R,k}$ may be increased by 14%. If component II is made of Aluminium alloy with tensile strength R_m ≥ 245 N/mm², the specified values for R_m ≥ 215 N/mm^2 for tension load $N_{R,k}$ may be increased by 14%.

self drilling screw	Annex 53
Zebra Piasta 5,5 x L mit Hinterschnitt	to European technical approval ETA – 10/0184

<u>Material</u>

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

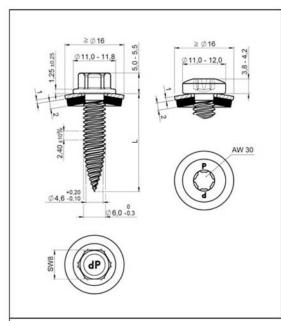
Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 3,20 \text{ mm}$


Timber structures

for timber structures no performance determined

						Thic	knes	s Com	pon	ent II t	ıı [mı	n] Alu	ımini	um al	loy v	ith R	_n ≥ 16	65 N/m	m²		
				0,50	0	0,6	0	0,7	0	0,8	0	0,9	0	1,0	0	1,2	0.	1,5	0	2,0	0
nium alloy	h R _m ≥ 165 N/mm²	Shear load V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00	0,39 0,39 0,39 0,39 0,39 0,39 0,39 0,39		0,39 0,55 0,55 0,55 0,55 0,55 0,55 0,55		0,39 0,55 0,72 0,72 0,72 0,72 0,72 0,72		0,39 0,55 0,72 0,88 0,88 0,88 0,88 0,88		0,39 0,55 0,72 0,88 1,28 1,28 1,28 1,28		0,39 0,55 0,72 0,88 1,28 1,67 1,67 1,67		0,39 0,55 0,72 0,88 1,28 1,67 2,23 2,23		0,39 0,55 0,72 0,88 1,28 1,67 2,23 2,23		0,39 0,55 0,72 0,88 1,28 1,67 2,23 —	
Component I tl [mm] Aluminium alloy	with	Tension load N _{R,k}		0,32	2	0,4	11	0,5	1	0,6	0	0,6	88	0,7	'6	0,8	9	0,8	19	0,8	39
= 二						Thic	knes	s Com	pone	ent II t	ıı [mı	n] Alu	ımini	um al	loy v	∕ith R _r	n ≥ 2 1	15 N/m	m ²		
 				0,50	0	0,6	0	0.7	0	0.8	^		٥.	مدا	n	1,2	n l		n l	2,0	10
								,		,	U	0,9		1,0		,		1,5			
Thickness Compon	with R _m ≥ 215 N/mm²	sion N _{R,k} Shear Ioad V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00	0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,50		0,50 0,71 0,71 0,71 0,71 0,71 0,71 0,71 0,7		0,50 0,71 0,90 0,90 0,90 0,90 0,90 0,90		0,50 0,71 0,90 1,14 1,14 1,14 1,14 1,14		0,50 0,71 0,90 1,14 1,66 1,66 1,66 1,66		0,50 0,71 0,90 1,14 1,66 2,17 2,17 2,17	- - - - - - - -	0,50 0,71 0,90 1,14 1,66 2,17 2,91 2,91 2,91		0,50 0,71 0,90 1,14 1,66 2,17 2,91 2,91		0,50 0,71 0,90 1,14 1,66 2,17 2,91 —	

- 1		
	self drilling screw	Annex 54
	Zebra DBS Bimetall 4,5 x L	to European technical approval
	Zobia BBo Billiotali 1,0 X E	ETA - 10/0184

Material

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

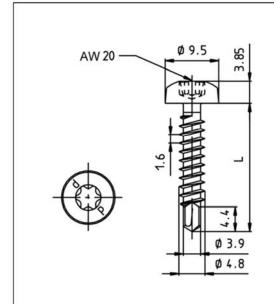
Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 3,50 \text{ mm}$


Timber structures

for timber structures no performance determined

					Thickness Component II t _{II} [mm] Aluminium alloy with R _m ≥ 165 N/mm ² 0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00																
				0,50	0	0,6	0	0,7	70	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0	2,0	0
			0,50	0,63	-	0,63	_	0,63	S=-	0,63	5-0	0,63	7-1	0,63	1-	0,63	-	0,63	7	0,63	
		Shear load V _{R,k} [kN]	0,60	100000000000000000000000000000000000000	-	0,77	_	0,77	-	0,77	_	0,77	_	0,77	_	0,77	-	0,77	-	0,77	-
	2	-X	0,70	A 100 TO 100 TO 100	_	0,77	1	0,90	_	0,90	_	0,90	_	0,90	_	0,90	_	0,90	_	0,90	-
	165 N/mm ²	>	0,80	0,63	_	0,77	_	0,90	· -	1,04	-	1,04	_	1,04	_	1,04	_	1,04		1,04	-
	ž	ad	0,90	0,63	_	0,77	_	0,90	_	1,04	_	1,36	_	1,36	_	1,36	_	1,36	_	1,36	-
>	65	<u>.</u>	1,00	0,63	-	0,77	_	0,90	_	1,04	_	1,36	_	1,68	а	1,68	а	1,68	а	1,68	а
alloy	ΥΙ	ea	1,20	0,63	_	0,77	_	0,90	_	1,04	_	1,36	_	1,68	а	1,94	а	1,94	а	1,94	а
Ε		г	1,50	0,63	_	0,77	_	0,90	_	1,04	_	1,36	_	1,68	а	1,94	а	2,34	а	2,34	а
.ᡓ	with R _m		2,00	0,63	_	0,77	_	0,90	_	1,04	_	1,36	_	1,68	а	1,94	а	2,34	а		
[mm] Aluminium	wi	Tension load N _{R,k}		0,39	9					0,7	6	0,8	5	0,9	94	1,1	3	1,4	9	1,4	19
一						Thic	tickness Component II $t_{ }$ [mm] Aluminium alloy with $R_{m} \ge 215$ N/m								m²						
Component tl				0,50	0	0,6	0	0,7	70	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0	2,0	0
l e		_	0,50	0,82	_	0,82	_	0,82	_	0,82	_	0,82	_	0,82	_	0,82	_	0,82	_	0,82	-
ğ	п	Σ	0,60	0,82	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	_	1,00	-
Ģ	215 N/mm ²	κ, ×	0,70	0,82	-	1,00	_	1,18	_	1,18	_	1,18	_	1,18	_	1,18	_	1,18	_	1,18	-
	Ž	>	0,80	0,82	-	1,00	_	1,18	_	1,36	_	1,36	_	1,36	_	1,36	_	1,36	_	1,36	-
Thickness	7	Shear Ioad V	0,90	0,82	_	1,00	_	1,18	_	1,36	_	1,78	_	1,78	_	1,78	_	1,78	_	1,78	-
농	ΛĪ	든	1,00	0,82	_	1,00	_	1,18	_	1,36	_	1,78	_	2,19	а	2,19	а	2,19	а	2,19	а
€	쬬	īea	1,20	0,82	_	1,00	_	1,18	_	1,36	_	1,78	_	2,19	а	2,53	а	2,53	а	2,53	а
	with R _m	꺙	1,50	0,82 0,82	_	1,00 1,00	_	1,18 1,18	_	1,36 1,36	_	1,78	_	2,19	a	2,53	а	3,05	а	3,05	а
	>		2,00	0,62	_	1,00		1,10		1,36	_	1,78	_	2,19	a	2,53	а	3,05	а		
		Tension load N _{R,k}		0,5	1	0,6	37 	0,8	33	0,9	9	1,1	1	1,2	2	1,4	7	1,9	5	1,9	95

self drilling screw	
	Annex 55
Zebra DBS 6,0 x L	to European technical approval
	ETA - 10/0184

Material

Fastener: stainless steel - EN 10088

steel grade 1.4301

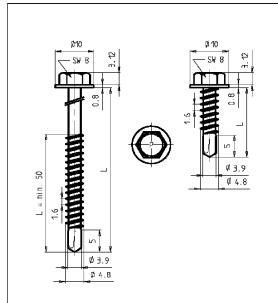
Washer:

Component I: Aluminium alloy with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573 \text{ with } R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,90 \text{ mm}$


Timber structures

for timber structures no performance determined

							Th	icknes	s Co	mpone	ent II	t _{II} [m	m] S	235, S	280G	D or S	320	GD			
				0,5	0	0,6	3	0,7	5	0,8	8	1,0	0	1,2	5	1,5	0	2,0	0	3,0	00
ninium alloy	R _m ≥ 165 N/mm²	Shear load V R,k [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00	 0,58 0,77 0,97 0,97 0,97		 0,58 0,77 0,97 0,97 0,97		 0,58 0,77 0,97 0,97 0,97 		 0,58 0,84 1,10 1,10 1,10		 0,58 0,88 1,18 1,18 1,18		 0,95 1,06 1,18 1,29 1,50		- 1,05 1,21 1,37 1,50 1,75		1,05 1,41 1,76 1,92 2,24		- 1,05 1,41 1,76 2,13 2,87	
ı [mm] Alun	with	Tension load N _{R,k}	2,00	0,3	52	0,3	86	0,5	55	0,7	6	0,9)5	1,3	35	2,8	39	2,9)6	4,5	58
Thickness Component t _i [mm] Aluminium alloy	th R _{m ≥} 215 N/mm²	Shear load V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00	 0,76 0,99 1,23 1,23 1,23 -		 0,76 0,99 1,23 1,23 1,23 -				 0,76 1,09 1,42 1,42 1,42 				1,24 1,37 1,50 1,68 1,96		 1,37 1,57 1,76 1,95 2,27 		 1,37 1,83 2,29 2,50 2,92 		 1,37 1,83 2,29 2,77 3,74 	
	with	Tension Ioad N _{R,k}		0,3	2	0,3	86	0,5	55	0,7	6	0,9	95	1,3	35	2,8	9	2,9	6	4,5	58

self drilling screw	Annex 56
Zebra Piasta Ø 4,8 AW	to European technical approval
25514 1 14514 2 1,6 7 117	ETA - 10/0184

<u>Material</u>

Fastener: stainless steel – EN 10088

steel grade 1.4301

Washer: none

Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

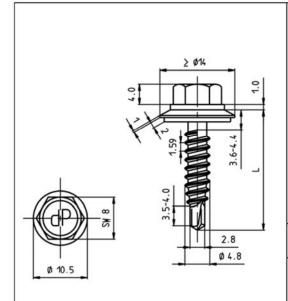
Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

 $\underline{\text{Drilling capacity}} \qquad \quad \Sigma t_i \leq 3{,}90 \text{ mm}$

Timber structures

for timber structures no performance determined


					Thickness Component II t _{II} [mm] S235, S280GD or S320 GD 0,50																
				0,50)	0,6	3	0,7	5	0,8	8	1,0	0	1,2	25	1,5	0	2,0	0	3,0	00
ıminium alloy	h R _m ≥ 165 N/mm²	Shear Ioad V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00			0,58 0,77 0,97 0,97 0,97 —		 0,58 0,77 0,97 0,97 0,97 						 0,95 1,06 1,18 1,29 1,50				 1,05 1,41 1,76 1,92 2,24 			
tı [mm] Alu	with	Tension Ioad N _{R,k}		0,32	2	0,3	6	0,5	5	0,7	6	0,9)5	1,3	35	2,8	39	2,9	16	4,5	58
Thickness Component I t _i [mm] Aluminium	with R _m ≥ 215 N/mm ²	Tension Ioad N _{R,k} Shear Ioad V _{R,k} [kN]	0,50 0,60 0,70 0,80 0,90 1,00 1,20 1,50 2,00	0,76 0,99 1,23 1,23 1,23 — —		0,76 0,99 1,23 1,23 1,23 —		0,76 0,99 1,23 1,23 1,23 —		0,76 1,09 1,42 1,42 1,42 —	66	0,76 1,13 1,50 1,50 1,50 — 0,9		1,24 1,37 1,50 1,68 1,96 —				1,37 1,83 2,29 2,50 2,92 —	 	1,37 1,83 2,29 2,77 3,74 —	

self drilling screw	Annex 57
Zebra Piasta Ø 4,8 K	to European technical approval
	ETA - 10/0184

Electronic copy of the ETA by DIBt: ETA-10/0184

English translation prepared by DIBt

Material

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

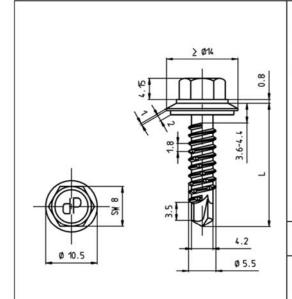
Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

Drilling capacity

 $\Sigma t_i \le 2.8 \text{ mm}$

Timber structures


for timber structures no performance determined

_							Th	iakaa	C-		4 I	4 Fm.	-1 C	225 0	2000	D az 6	220	CD			
					Thickness Component II t _{II} [mm] S235, S280GD or S320 GD 0,50 0,63 0,75 0,88 1,00 1,13 1,25 1,50																
				0,5	0	0,6	3	0,7	75	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	0
			0,50	0,45	-	0,46	1-	0,48	-	0,50	-	0,51	ac	0,52	ac	0,51	ac	0,51	ac	0,51	а
		[ĸN]	0,60	0,52	_	0,59	-	0,61	-	0,62	_	0,63	ac	0,63	ac	0,63	ac	0,63	ac	0,63	а
	2	, X	0,70	0,59	_	0,68	1	0,73	-	0,75	_	0,76	ac	0,79	ac	0,80	ac	0,80	а	0,80	а
	165 N/mm ²	>	0,80	0,67	_	0,75	_	0,83	-	0,87	-	0,88	ac	0,93	ac	0,96	а	0,96	а	0,96	а
8	ž	덩	0,90	0,74	_	0,82	_	0,90	_	0,98	_	1,01	ac	1,04	а	1,06	а	1,06	а	_	-
alloy	55	<u>ö</u>	1,00	0,81	_	0,89	_	0,97	_	1,06	_	1,13	а	1,14	а	1,16	а	1,17	а	_	-
ੂ	7	hear load	1,20	0,81	_	0,89	_	0,97	_	1,06	_	1,13	а	1,14	а	1,16	а	1,17	а	_	-
]	E E	She	1,50	0,81	_	0,89	_	0,97	_	1,06	_	1,13	а	1,14	а	1,16	а	—	_	_	-
Ξ	8		2,00	0,81	_	0,89	_	0,97	_	1,06	_	1,13	а	1,14	а	_	_	_	_	_	_
A P	with	۳, ۲																			
=		. <u>.</u> Z		0.5	0	0,7	'0	1,0	00	1,1	0	1,4	0	1,6	0	1,7	0	2,7	0	2,7	70
tı [mm] Aluminium		Tension load N _{R,k}		,				,		·		<u> </u>		,				,		,	
<u>-</u>			0,50	0,58	_	0,60	_	0,63		0,65		0.66	ac	0,67	ac	0.66	ac	0.66	ac	0.66	a
Component		R,k [KN]	0,60	0,63	_	0,77	_	0,79		0,81	_	0.82	ac	0,82	ac	0,82	ac	0,82	ac	0.82	a
٦		<u>~</u>	0,70	0,67	_	0,88	_	0,95	_	0,98	_	0,99	ac	1,03	ac	1,04	ac	1,04	а	1,04	a
효	215 N/mm ²	ď	0,80	0,72	_	0,91	_	1,00	_	1,13	_	1,15	ac	1,21	ac	1,25	а	1,25	а	1,25	a
્રિ	'n	>	0.90	0,76	_	0,95	_	1,10	_	1,27	_	1,32	ac	1,36	а	1,38	а	1,38	а	_	_
l	Z	hear load	1,00	0,76	_	0,95	_	1,10	_	1,31	_	1,47	а	1,49		1,51	а	1,53	а	_	_
Thickness		<u>_</u>	1,20	0,81	_	0,98	_	1,14	_	1,31	_	1,47	а	1,49		1,51	а	1,53	а	_	_
훙	۸I	je	1,50	0,81	_	0,98	_	1,14	_	1,31	_	1,47	а	1,49		1,51	а	_	_	_	_
Ē	تے	Ø	2,00	0,81	_	0,98	_	1,14	_	1,31	_	1,47	а	1,49		_	_	_	_	_	_
	with R _m	Z ¾																			
	>	Tension load N _{R,1}		0,5	60	0,7	0	1,0	00	1,1	0	1,4	0	1,6	0	1,7	0	2,7	0	2,7	70

If component I is made of Aluminium alloy with tensile strength $R_m \ge 245 \text{ N/mm}^2$, the specified values for $R_m \ge 215$ N/mm^2 for shear load $V_{R,k}$ may be increased by 14%.

self drilling screw	Annex 58
Zebra Piasta 4,8 x L mit Hinterschnitt	to European technical approval
Zebra i lasta 4,0 x E mit i mitersomiti	ETA – 10/0184

<u>Material</u>

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

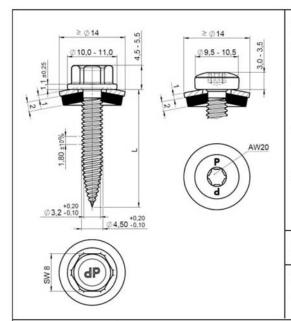
with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1 S280GD - EN 10346

S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 4.8 \text{ mm}$

Timber structures


for timber structures no performance determined

					Thickness Component II t _{II} [mm] S235, S280GD or S320 GD 0,50 0,63 0,75 0,88 1,00 1,13 1,25 1,50 2,00																
				0,5	0	0,6	3	0,7	75	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	0
			0,50	0,42	_	0,43	1	0,45	_	0,46	_	0,47	-	0,48	_	0,49	ac	0,49	ac	0,49	ac
		KN]	0,60	0,48	_	0,55	_	0,57	_	0,58	_	0,59	_	0,60	_	0,61	ac	0,61	ac	0,61	ac
	7	, T	0,70	0,53	_	0,62	_	0,68	1	0,69	_	0,70	_	0,72	\sim	0,73	ac	0,73	ac	0,73	ac
	٤	>	0,80	0,59	_	0,68	_	0,77	_	0,81	_	0,82	_	0,84	_	0,85	ac	0,85	ac	0,85	ac
>	ž		0,90	0,64	_	0,73	_	0,82	_	0,91	_	0,93	_	0,96	_	0,99	ac	1,06	ac	1,06	ac
alloy	165 N/mm	hear load	1,00	0,70	_	0,79	_	0,88	_	0,97	_	1,05	ac	1,08	ac	1,13	ac	1,26	ac	1,26	ac
	7	ä	1,20	0,70	_	0,81	_	0,92	_	1,02	_	1,13	ac	1,18	ac	1,22	ac	1,26	ac	1,41	ac
∣∄	E E	She	1,50	0,70		0,81	_	0,92	_	1,02	_	1,13	ac	1,18	ac	1,22	ac	1,26	ac	1,63	ac
Ē	8	0,	2,00	0,70	_	0,81	_	0,92	_	1,02	_	1,13	ac	1,18	ac	1,22	ac	1,26	ac	1,63	ac
[mm] Aluminium	with	Tension load N _{R,k}		0,3	1	0,6	60	0,7	70	0,8	0	0,9	0	1,1	0	1,3	0	2,3	60	3,3	o
=			0,50	0,55		0,56	_	0,59	_	0,60	_	0,61	_	0,63		0,64	ac	0,64	ac	0,64	ac
eu.		Σ̈	0,60	0,58		0,69	_	0,72	_	0,75	_	0,77	_	0,78	_	0,79	ac	0,79	ac	0,79	ac
Component	٥.	R,k [KN]	0,70	0,61		0,75	_	0,86	_	0,91	_	0,91	_	0,94	_	0,95	ac	0,95	ac	0,95	ac
E	215 N/mm ²	>	0,80	0,64	_	0,81	_	0,98	_	1,06	_	1,07	_	1,09	_	1,11	ac	1,11	ac	1,11	ac
ပိ	Ε Ξ		0,90	0,67	_	0,85	_	1,01	_	1,18	_	1,21	_	1,25	_	1,29	ac	1,38	ac	1,38	ac
SS	5	hear load	1,00	0,70	_	0,81	_	1,04	_	1,21	_	1,37	ac	1,41	ac	1,47	ac	1,64	ac	1,64	ac
Thickness		ar	1,20	0,70		0,89	_	1,07	_	1,26	_	1,47	ac	1,54	ac	1,59	ac	1,64	ac	1,84	ac
<u>;</u>	Ε	She	1,50	0,70		0,89	_	1,07	_	1,26	_	1,47	ac	1,54	ac	1,59	ac	1,64	ac	2,12	ac
두	S.		2,00	0,70	_	0,89	_	1,07	_	1,26	_	1,47	ac	1,54	ac	1,59	ac	1,64	ac	2,12	ac
	with	Tension load N _{R,k}		0,3	1	0,6	00	0,7	70	0,8	0	0,9	0	1,1	0	1,3	0	2,3	00	3,3	0

If component I is made of Aluminium alloy with tensile strength $R_m \ge 245 \text{ N/mm}^2$, the specified values for $R_m \ge 215$ N/mm^2 for shear load $V_{R,k}$ may be increased by 14%.

self drilling screw	Annex 59
Zebra Piasta 5,5 x L mit Hinterschnitt	to European technical approval
Zobia i lasta 6,5 X E ilint i lintorosi ilitta	ETA - 10/0184

Material

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

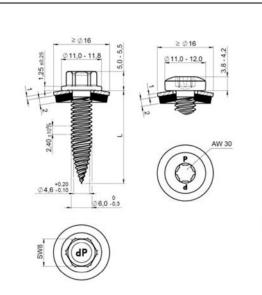
with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,00 \text{ mm}$

Timber structures


for timber structures no performance determined

								Thi	ckne	ss Con	npor	ent II	t _{II} [m	m] S2	35, S	280GI	or or	S320 (GD				
				0,5	50	0,5	5	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	00
		-	0,50	0,39	_	0,39	-	0,39	_	0,39	_	0,39	_	0,39	_	0,39	_	0,39	_	0,39	_	_	_
		Š	0,60	0,39	_	0,47	_	0,55	_	0,55	_	0,55	_	0,55	_	0,55	_	0,55	_	0,55	_	_	_
	8	×	0,70	0,39	_	0,47	-	0,60	_	0,72	_	0,72	_	0,72	_	0,72	_	0,72	_	0,72	_	_	-
1	Ε	V R,k [KN]	0,80	0,39	_	0,47	_	0,60	_	0,80	_	0,88	_	0,88	_	0,88	_	0,88	_	0,88	_ !	_	_
ج ا	N/mm ²		0,90	0,39	_	0,47	_	0,60	_	0,80	_	1,20	_	1,28	_	1,28	_	1,28	_	—	_	_	_
alloy	165	≗	1,00	0,39	_	0,47	_	0,60	_	0,80	_	1,20	_	1,67	_	1,67	_	1,67	_	—	_	_	_
	1	hear	1,20	0,39	_	0,47	_	0,60	_	0,80	_	1,20	_	1,67	_	2,03	_	_	_	—	_	_	_
∣ઃ≣	ج E VI	She	1,50	0,39	_	0,47	_	0,60	_	0,80	_	1,20	_	1,67	_	2,03	_	_	_	—	_	_	_
.≣	8	0,	2,00	0,39	_	0,47	_	0,60	_	0,80	_	1,20	_	_	_	_	_	_	_	_	_	_	_
tı [mm] Aluminium	with	Tension load N _{R,k}		0,7	71	0,8	32	1,0	0	1,2	6	1,5	1	1,7	' 4	2,0	5	2,3	34	2,3	4	-	
1			0,50	0,50	_	0,50	_	0,50	_	0,50	_	0,50	_	0,50	_	0,50	_	0,50	_	0,50	_	_	_
le l		R,k [KN]	0,60	0,50	_	0,61	_	0,71	_	0,71	_	0,71	_	0,71	_	0,71	_	0,71	_	0,71	_	_	_
6	2		0,70	0,50	_	0,61	_	0,78	_	0,90	_	0,90	_	0,90	_	0,90	_	0,90	_	0,90	_	_	_
Component I	E	>	0,80		_	0,61	_	0,78	_	1,02	_	1,14	_	1,14	_	1,14	_	1,14	_	1,14	_	_	_
		load	0,90		_	0,61	_	0,78	_	1,02	_	1,56	_	1,66	_	1,66	_	1,66	_	—	_	_	_
Thickness	215	0	1,00		_	0,61	_	0,78	_	1,02	_	1,56	_	2,17	_	2,17	_	2,17	_	-	_	_	_
l ê	7	hear	1,20	l '	_	0,61	_	0,78	_	1,02	_	1,56	_	2,17	_	2,65	_	_	_	—	_	_	_
흘		Sh	1,50	l .	_	0,61	_	0,78	_	1,02	_	1,56	_	2,17	_	2,65	_	_	_	—	_	_	_
⊨	with R _m		2,00	0,50		0,61	_	0,78	_	1,02	_	1,56	_		_	_	_	_			_	_	_
	wit	Tension load N _{R,k}		0,7	71	0,8	32	1,0	0	1,2	6	1,5	1	1,7	' 4	2,0	5	2,3	34	2,3	4	-	

self drilling screw	Annex 60
Zebra DBS Bimetall 4.5 x I	to European technical approval
Zoora BBo Birriotaii 1,0 X Z	ETA - 10/0184
	self drilling screw Zebra DBS Bimetall 4,5 x L

8.06.02-349/11 Z54049.13

<u>Material</u>

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel – EN 10088

steel grade 1.4301 with EPDM sealing

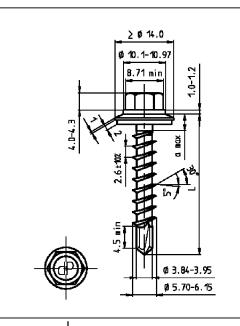
Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,90 \text{ mm}$


Timber structures

for timber structures no performance determined

					Thickness Component II t _{II} [mm] S235, S280GD or S320 GD 0,50 0,55 0,63 0,75 0,88 1,00 1,13 1,25 1,50 2,00														
				0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	2,00						
			0,50	0,63 —	0,63 —	0,63 —	0,63 —	0,63 —	0,63 —	0,63 —	0,63 —	0,63 —							
l		X	0,60	0,63 —	0,70 —	0,77 —	0,77 —	0,77 —	0,77 —	0,77 —	0,77 —	0,77 —							
	2	R,k [KN]	0,70	0,63 —	0,70 —	0,81 —	0,90 —	0,90 —	0,90 —	0,90 —	0,90 —	0,90 —							
l	Ξ	>	0,80	0,63 —	0,70 —	0,81 —	0,97 —	1,04 —	1,04 —	1,04 —	1,04 —	1,04 —							
چ ا	Ş		0,90	0,63 —	0,70 —	0,81 —	0,97 —	1,30 —	1,36 —	1,36 —	1,36 —	1,36 —							
alloy	- 59	<u>ö</u>	1,00	0,63 —	0,70 —	0,81 —	0,97 —	1,30 —	1,68 a	1,68 a	1,68 a	1,68 a							
	≥ 165 N/mm ²	Shear Ioad	1,20	0,63 —	0,70 —	0,81 —	0,97 —	1,30 —	1,68 a	1,85 a	1,94 a	1,94 a							
:≣		, he	1,50	0,63 —	0,70 —	0,81 —	0,97 —	1,30 —	1,68 a	1,85 a	2,00 a								
<u>=</u>	5	0,	2,00	0,63 —	0,70 —	0,81 —	0,97 —	1,30 —	1,68 a										
tı [mm] Aluminium	with	Tension Ioad N _{R,k}		0,87	0,99	1,18	1,47	1,87	2,23	2,40	2,55	2,55	-						
_			0,50	0,82 —	0,82 —	0,82 —	0,82 —	0,82 —	0,82 —	0,82 —	0,82 —	0,82 —							
Component		[KN]	0,60	0,82 —	0,91 —	1,00 —	1,00 —	1,00 —	1,00 —	1,00 —	1,00 —	1,00 —							
5	7	, , ,	0,70	0,82 —	0,91 —	1,05 —	1,18 —	1,18 —	1,18 —	1,18 —	1,18 —	1,18 —							
ΙĒ	N/mm²	>	0,80	0,82 —	0,91 —	1,05 —	1,27 —	1,36 —	1,36 —	1,36 —	1,36 —	1,36 —							
	Ž	ad	0,90	· '	0,91 —	1,05 —	1,27 —	1,70 —	1,78 —	1,78 —	1,78 —	1,78 —							
SS	215	Shear Ioad	1,00		0,91 —	1,05 —	1,27 —	1,70 —	2,19 a	2,19 a	2,19 a	2,19 a							
ķ	۷۱ 2	ear	1,20		0,91 —	1,05 —	1,27 —	1,70 —	2,19 a	2,41 a	2,53 a	2,53 a							
Thickness	Ę	Sh	1,50		0,91 —	1,05 —	1,27 —	1,70 —	2,19 a	2,41 a	2,62 a								
F	<u>ب</u>		2,00	0,82 —	0,91 —	1,05 —	1,27 —	1,70 —	2,19 a										
	with	Tension Ioad N _{R,k}		0,87	0,99	1,18	1,47	1,87	2,23	2,40	2,55	2,55	-						

self drilling screw	Annex 61
Zebra DBS 6,0 x L	to European technical approval
2001a 000 0,0 x L	ETA – 10/0184

<u>Material</u>

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

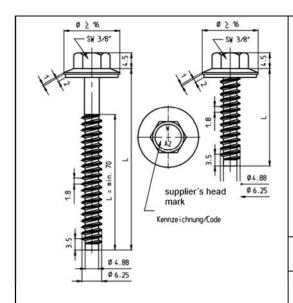
Component I: Aluminium alloy with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573 \text{ with } R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: Structural timber - EN 14081

Timber structures

For timber structures performance determined with

7,676 Nm $f_{ax,k} =$ 9,8 N/mm²


			Compone		-	nent I or II, : class C24,	-		mponent II	drill bit inclu	udet [mm],	timber structure with strength
			31	36	42	48	54	60	66	72	78	class C24 and
\vdash		0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	
	n alloy Nmm²	0,60	0.75	0,75	0,75	0,75	0,75	0,75	0,75	0.75	0,75	0,75
	E E	0,70		1,01	1,01	1,01	1,01	1,01	1,01	1,01	1,01	1,01 =
	E 2	0,80	0,95	1,19	1,26	1,26	1,26	1,26	1,26	1,26	1,26	1,26 5 0
	nium 165	0,90	0,95	1,19	1,42	1,48	1,48	1,48	1,48	1,48	1,48	1,48 E B
	Έ ′፟፟	1,00	0,95	1,19	1,42	1,66	1,69	1,69	1,69	1,69	1,69	1,26 1,48 1,69 1,69 1,69
图	독본	1,20	0,95	1,19	1,42	1,66	1,78	1,78	1,78	1,78	1,78	1,78
Α,	m] Alumir with R _m ≥	1,50	0,95	1,19	1,42	1,66	1,78	1,78	1,78	1,78	1,78	0,50 0,75 1,01 1,26 1,48 1,69 1,78 1,78 eloudation)
Shear Ioad V R,k [kN]	t₁ [mm] Aluminium alloy with R _m ≥ 165 N/mm	2,00	0,95	1,19	1,42	1,66	1,78	1,78	1,78	1,78	1,78	1,78 🗓
မြွ	<u>-</u> -	0,50	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65 <u>o</u>
7	Ĭ,Ē	0,60	0,95	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98	0,98 은
ğ	Component I	0,70	0,95	1,19	1,32	1,32	1,32	1,32	1,32	1,32	1,32	0,65 ego 0,98
S	д 1 15	0,80	0,95	1,19	1,42	1,65	1,65	1,65	1,65	1,65	1,65	1,65 1,93 2,21 elongation)
	S ∨ 2		0,95	1,19	1,42	1,66	1,90	1,93	1,93	1,93	1,93	1,93
		1,00	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,21	2,21	2,21 - 원 흥
	ickness vith R _m	1,20	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,31	2,31
	Thickness with Rm	1,50	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,31	2,31 Joan Land
_	Ĕ	2,00	0,95	1,19	1,42	1,66	1,90	2,13	2,21	2,29	2,31	
			Compone			nent I or II, class C24,			mponent II	drill bit inclu	udet [mm],	Component II timber structure with strength
			31	36	42	48	54	60	66	72	78	class C24 and k _{mod} < 0,90
	Tension load N _{R,k}	[KN]	1,27	1,59	1,91	2,22	2,54	2,86	3, 18	3,49	3,81	Failure of component II see also clause 4.2.2

For $k_{\text{mod}} < 0.90$: failure of component I see right column and failure of component II see clause 4.2.2

If component I is made of Aluminium alloy with tensile strength $R_m \ge 245 \text{ N/mm}^2$, the specified values for $R_m \ge 215$ N/mm^2 for shear load $V_{R,k}$ may be increased by 14%.

self drilling screw	Annex 62
Piasta 6,0 x L Holzgewinde	to European technical approval
T lasta 0,0 X E Holzgewinde	ETA – 10/0184

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

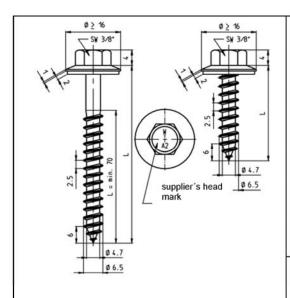
with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Timber structures

for timber structures no performance determined


						Thic	knes	s Com	pon	ent II t	ıı [mı	m] Alu	mini	um all	loy v	vith R _n	n ≥ 16	5 N/m	m²		
				1,0	0	1,2	0	1,5	0	2,0	0	3,0	0	4,0	0	5,0	0	6,0	0	≥ 7,	00
		pre-dr	ill with			ø 4	, 5				Ø	5,0			Ø	5,3		Ø	5,5	Ø 5	5,7
			0,50	0,85	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac
		室	0,60	0,94	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac
	⊒ ₂	R,k	0,70	1,03	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac
	Ē	>	0,80	1,12	ac	1,16	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac
	2	ਕੂ	0,90	1,21	ac	1,25	ac	1,34	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac
>	<u> </u>	<u>8</u>	1,00	1,30	ac	1,34	ac	1,62	ac	1,94	ac	1,94	ac	1,94	ac	1,94	ac	1,94	ac	1,94	ac
≗	λI	<u> </u>	1,20	1,30	ac	1,43	ac	1,62	ac	1,94	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac
"	Æ	Shear load V	1,50	1,30	ac	1,43	ac	1,62	ac	1,94	ac	2,40	ac	2,92	ac	2,92	ac	2,92	ac	2,92	ac
₫	with R _m ≥ 165 Wmm²		2,00	1,30	ac	1,43	ac	1,62	ac	1,94	ac	2,40	ac	2,92	ac	2,92	ac	2,92	ac	2,92	ac
=	`₹	E %																			
🗦		w Tension Ioad N _{R,k}		0.4	9	0,64		1,02		1.0	1,08		2,09		2,99		9	2,9	9	2,9	9
Thickness Component I tl [mm] Aluminium alloy		Te o		,		,		,		,		,		,		,		,		,	
<u>=</u>						Thic	knes	s Com	pon	ent II t	ıı [mı	m] Alu	mini	um all	loy v	vith R _n	n ≥ 2 1	5 N/m	m²		
Ė				1,0	0	1,2	0	1,5	0	2,0	0	3,0	0	4,0	0	5,0	0	6,0	0	≥ 7,	00
<u> </u>		pre-dr	ill with			ø 4	,5				Ø	5,0			Ø	5,3		Ø 5	5,5	Ø 5	5,7
&	61		0,50	1,10	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac
ह	215 Wmm²	图	0,60	1,22	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac
Ö	Ę	А,К	0,70	1,34	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac
‰	2	, <u> </u>	0,80	1,46	ac	1,51	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac
Ì	7	Shear load V	0,90	1,58	ac	1,63	ac	1,75	ac	2,08	ac	2,08	ac	2,08	ac	2,08	ac	2,08	ac	2,08	ac
≗	۸I	<u>8</u>	1,00	1,70	ac	1,75	ac	2,08	ac	2,53	ac	2,53	ac	2,53	ac	2,53	ac	2,53	ac	2,53	ac
F	ď	_ ₹	1,20	1,70	ac	1,86	ac	2,08	ac	2,53	ac	3,13	ac	3,13	ac	3,13	ac	3,13	ac	3,13	ac
	with R _{m ≥}	<u>~</u>	1,50	1,70	ac	1,86	ac	2,08	ac	2,53	ac	3,13	ac	3,81	ac	3,81	ac	3,81	ac	3,81	ac
	>		2,00	1,70	ac	1,86	ac	2,08	ac	2,53	ac	3,13	ac	3,81	ac	3,81	ac	3,81	ac	3,81	ac
		Tension Ioad N _{R,k}		0,6	3	0,8	0	1,1	7	1,3	6	2,4	8	3,5	4	3,5	4	3,5	4	3,5	4

If component I and component II are made of Aluminium alloy with tensile strength R_m ≥ 245 N/mm², the specified values for $R_m \ge 215 \text{ N/mm}^2$ for shear load $V_{R,k}$ may be increased by 14%. If component II is made of Aluminium alloy with tensile strength $R_m \ge 245 \text{ N/mm}^2$, the specified values for $R_m \ge 215 \text{ N/mm}^2$.

N/mm² for tension load N_{R,k} may be increased by 14%.

self-tapping screw	Annex 63						
FABA Typ BZ 6,3 x L	to European technical approval						
••	ETA – 10/0184						

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

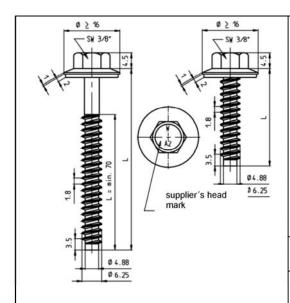
with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$ Structural timber - EN 14081

Timber structures

For timber structures performance determined with


9,74 Nm $M_{y,Rk} =$ $f_{ax,k} =$ 9,8 N/mm²

							·ax,r								
				Thickness Component II t _{II} [mm] Aluminium alloy with R _m ≥ 165 N/mm ²											
				0,50	0.60	0,70	0.80	0,90	1,00	1,20	1,50	2,00	timber structure with strength		
		pre-dr	rill with	-,	ø 4.0	-,	,	-,	Ø 4.5	-,	.,,,,	Ø 5.0	class C 24		
			0,50	0,35 —	0,41 —	0,47 —	0,53 —	0,59 —	0,65 —	0,89 —	0,89 —	0,89 —	0,89		
		Z Z	0,60	0,36 —	0,47 —	0,53 —	0,59 —	0,66 —	0,73 —	0,95 —	0,95 —	0,95 —	0,95 분 _		
	٦2	R, K	0,70	0,37 —	0,48 —	0,58 —	0,64 —	0,73 —	0,81 —	1,01 —	1,01 —	1,01 —	1,01 = 6		
1	퉅	>	0,80	0,37 —	0,48 —	0,59 —	0,70 —	0,80 —	0,88 —	1,07 —	1,07 —	1,07 —	1,07 G ag 1		
	Ž		0,90	0,38 —	0,50 —	0,63 —	0,75 —	0,87 —	0,96 —	1,12 —	1,12 —	1,12 —	0,95 1,01 1,07 1,12 1,12 1,69		
ج ا	≥ 165 N/mm ²	<u> </u>	1,00	0,39 —	0,52 —	0,65 —	0,78 —	0,91 —	1,04 —	1,18 —	1,39 —	1,69 —	1,69 5 0		
alloy	λī	ĕ	1,20	0,39 —	0,53 —	0,67 —	0,82 —	0,96 —	1,10 —	1,24 —	1,65 —	2,25 ac	1,01 1,07 1,12 1,69 (hole elongation)		
٦	ďΕ	Shear Ioad	1,50	0,39 —	0,53 —	0,67 —	0,82 —	0,96 —	1,10 —	1,24 —	1,65 —	2,25 ac	2,25 Ly (hole		
₫	with R _m		2,00	0,39 —	0,53 —	0,67 —	0,82 —	0,96 —	1,10 —	1,24 —	1,65 —	2,25 ac	2,25		
Component I tl [mm] Aluminium	```	Tension Ioad N _{R,k}		0,17	0,25	0,32	0,40	0,45	0,49	0,62	0,96	0,96	Failure of component II see also clause 4.2.2		
트					Thicknes	s Compon	ent II t _{II} [m	m] Alumini	ium alloy v	vith R _m ≥ 21	I5 N/mm²		Component II		
ΙΞ.				0.50	0.60	0.70	0.80	0.90	1.00	1,20	1,50	2,00	timber structure with strength		
l e		pre-dr	rill with	0,00	Ø 4,0	0,10	0,00	0,50	Ø 4.5	1,20	1,00	Ø 5.0	class C 24		
8			0.50	0,46 —	0,53 —	0,61 —	0,69 —	0,77 —	0,85 —	1,17 —	1,17 —	1,17 —	1,17		
ΙĒ	215 N/mm ²	R,k [KN]	0,60	0,47 —	0,61 —	0,69 —	0,77 —	0,86 —	0,95 —	1,24 —	1,24 —	1,24 —	1,24 =		
ပ	Ē	- - -	0,70	0,48 —	0,63 —	0,76 —	0,83 —	0,95 —	1,06 —	1,32 —	1,32 —	1,32 —	1,24 1,32 1,39 1,46 2,20 1,46 2,20 1,46 2,20 1,46 2,20 2,93		
Thickness	2	>	0,80	0,48 —	0,63 —	0,77 —	0,91 —	1,04 —	1,15 —	1,39 —	1,39 —	1,39 —	1,39 D at 1		
\$	7		0,90	0,50 —	0,65 —	0,82 —	0,98 —	1,13 —	1,25 —	1,46 —	1,46 —	1,46 —	1,46 $5 \frac{1}{5}$		
]; <u></u>	٨١	_ ĕ	1,00	0,50 —	0,68 —	0,85 —	1,02 —	1,19 —	1,36 —	1,54 —	1,81 —	2,20 —	2,20 5 0		
F	حَد	ä	1,20	0,50 —	0,69 —	0,87 —	1,07 —	1,25 —	1,43 —	1,62 —	2,15 —	2,93 ac	2,93 Eailure (hole		
	with R _m	Shear Ioad	1,50	0,50 —	0,69 —	0,87 —	1,07 —	1,25 —	1,43 —	1,62 —	2,15 —	2,93 ac	2,93 🚡 📗		
	>		2,00	0,50 —	0,69 —	0,87 —	1,07 —	1,25 —	1,43 —	1,62 —	2,15 —	2,93 ac	2,93		
		Tension Ioad N _{R,k}		0,20	0,29	0,37	0,46	0,55	0,63	0,77	1,10	1,10	Failure of component II see also clause 4.2.2		

If component I and component II are made of Aluminium alloy with tensile strength R_m ≥ 245 N/mm², the specified values for $R_m \ge 215 \text{ N/mm}^2$ for shear load $V_{R,k}$ may be increased by 14%. If component II is made of Aluminium alloy with tensile strength $R_m \ge 245 \text{ N/mm}^2$, the specified values for $R_m \ge 215 \text{ N/mm}^2$. N/mm² for tension load N_{R,k} may be increased by 14%.

self-tapping screw	Annex 64
FABA Typ A 6,5 x L	to European technical approval
TABA TYPA O,O A E	ETA – 10/0184

Material

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

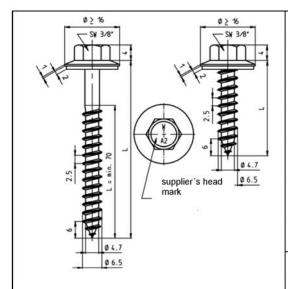
Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

Timber structures


for timber structures no performance determined

					Thickness Component II t _{II} [mm] S235, S280GD or S320GD																
				1,25 1,50		2,0	2,00		0	3,0	0	4,0	0	5,0	0	6,0	0	≥ 7,00			
		pre-d	rill with		ø	4,5							Ø 5,3					Ø 5,5		Ø 5,7	
			0,50	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac	0,89	ac
		볼	0,60	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac	0,98	ac
	165 N/mm2	R,k [kN]	0,70	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac	1,07	ac
>	Ē	>	0,80	1,18	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac	1,25	ac
≗	Z	ad	0,90	1,27	ac	1,34	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac	1,60	ac
a l	168	<u>o</u>	1,00	1,39	ac	1,62	ac	1,94	ac	1,94	ac	1,94	ac	1,94	ac	1,94	ac	1,94	ac	1,94	ac
.⊒	ΛΙ	Shear Ioad V	1,20	1,46	ac	1,62	ac	1,94	ac	2,17	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac	2,40	ac
를.	몵	SP	1,50	1,46	ac	1,62	ac	1,94	ac	2,17	ac	2,40	ac	2,92	ac	2,92	ac	2,92	ac	2,92	ac
<u> </u>	with Rm ≥		2,00	1,46	ac	1,62	ac	1,94	ac	2,17	ac	2,40	ac	2,92	ac	2,92	ac	2,92	ac	2,92	ac
Component I t ₁ [mm] Aluminium alloy	W	Tension Ioad N _{R,k}		2,00		2,70		3,60		4,80		6,00		7,30		7,45		7,60		7,60	
Ĕ]	0,50	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac	1,16	ac
e		볼	0,60	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac	1,28	ac
ď	~_	R,k [kN]	0,70	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac	1,39	ac
ਨੂ	≥ 215 N/mm ²	>	0,80	1,54	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac	1,63	ac
	ž	Shear Ioad V	0,90	1,65	ac	1,75	ac	2,08	ac	2,08	ac	2,08	ac	2,08	ac	2,08	ac	2,08	ac	2,08	ac
Thickness	5	은	1,00	1,81	ac	2,08	ac	2,53	ac	2,53	ac	2,53	ac	2,53	ac	2,53	ac	2,53	ac	2,53	ac
충	۷	ea	1,20	1,90	ac	2,08	ac	2,53	ac	2,83	ac	3,13	ac	3,13	ac	3,13	ac	3,13	ac	3,13	ac
Ē	Ę	S	1,50	1,90	ac	2,08	ac	2,53	ac	2,83	ac	3,13	ac	3,81	ac	3,81	ac	3,81	ac	3,81	ac
	묘		2,00	1,90	ac	2,08	ac	2,53	ac	2,83	ac	3,13	ac	3,81	ac	3,81	ac	3,81	ac	3,81	ac
	with	Tension Ioad N _{R,k}		2,0	0	2,7	0	3,6	0	4,8	0	6,0	0	7,3	0	7,4	5	7,6	0	7,6	0

If component I is made of Aluminium alloy with tensile strength $R_m \ge 245 \text{ N/mm}^2$, the specified values for $R_m \ge 215$ N/mm^2 for shear load $V_{R,k}$ may be increased by 14%.

self-tapping screw	Annex 65						
FABA Typ BZ 6,3 x L	to European technical approval						
, , , , , , , , , , , , , , , , , , ,	ETA - 10/0184						

Material

Fastener: stainless steel - EN 10088

steel grade 1.4301

Washer: stainless steel - EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

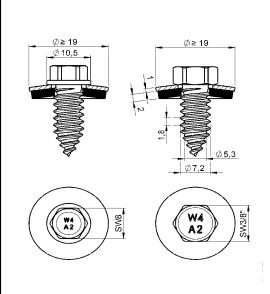
Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

Structural timber - EN 14081

Timber structures

For timber structures performance determined with


9,74 Nm $M_{y,Rk} =$ 9,8 N/mm² $f_{ax,k} =$

					Th	ickness Co	mponent l	Component II					
				0.50	0.00	l 0.75	1 000	4 00	1 440	1,25	4.50	0.00	timber structure
\vdash		nro dr	ill with	0,50	0,63	0,75	0,88	1,00	1,13 4,5	1,50	2,00 5,0	with strength	
		pre-ar	ill with	0.48 —	ø 4,0	0.57 —	0.61 —		<u> </u>	1 0 00			class C 24 0,89
		ᅱ	0,50	,	1 '	1 ′	1 '	0,65 — 0,73 —	1 '	0,89 —	l '	· 1	
	N	[KN]	0,60		0,56 — 0.62 —	0,61 —	0,67 —	l '	0,87 —	0,95 —	0,95 —	0,95 —	0,95 t (c)
	Ē	Α, Α,	0,70	0,58 —	0,62 —	0,65 — 0,69 —	0,72 — 0,78 —	0,81 — 0,88 —	1	1,01 — 1,07 —	1,01 — 1,07 —	1,01 — 1,07 —	1,01 0 10,1
ج ا	165 N/mm2	2	0,80	0,64 — 0,69 —	0,87 —	l			1,00 — 1,06 —	1,07 —	1,12 —		0,95 1,01 1,07 1,12 1,12 1,69
alloy	2	ad	0,90	· '	1 '	1 ′	1 '	l *	1 '	1 '	,	1 1	1,12 8 6
		Shear load	1,00		0,82 —	0,89 —	0,97 —	1,04 —	1,13 —	1,22 —	1,39 —	1,69 —	1,69 for 1,69 (hole e
⋷	٧ı	ea	1,20	0,74 —	0,85 —	0,95 —	1,05 —	1,16 —	1,21 —	1,31 —	1,65 —	2,25 —	2,25 La liure (hole
<u>=</u>	R	ည	1,50	0,74 —	0,85 —	0,95 —	1,05 —	1,16 —	1,21 —	1,31 —	1,65 —	2,25 —	2,25 [8]
3	with		2,00	0,74 —	0,85 —	0,95 —	1,05 —	1,16 —	1,21 —	1,31 —	1,65 —	2,25 —	2,25
I tı [mm] Aluminium	``	Tension load N _{R,k}		0,56	1,00	1,20	1,40	1,50	1,70	1,90	2,30	2,30	Failure of component II see also clause 4.2.2
ᆂ			0,50	0,59 —	0,66 —	0,72 —	0,79 —	0,85 —	1,06 —	1,17 —	1,17 —	1,17 —	1,17
Component		R,k [KN]	0,60	0,62 —	0,72 —	0,78 —	0,86 —	0,95 —	1,14 —	1,24 —	1,24 —	1,24 —	1,24 1,32 1,39 1,46 2,20 2,20 1,46 2,20 2,
<u>e</u>	~	_ <u>_</u>	0,70	0,65 —	0,75 —	0,83 —	0,95 —	1,06 —	1,23 —	1,32 —	1,32 —	1,32 —	1,32 1,39 1,46 1,46 1,46 1,46
6	215 N/mm ²	>	0,80	0,68 —	0,78 —	0,87 —	1,02 —	1,15 —	1,31 —	1,39 —	1,39 —	1,39 —	1,39 g tg
	<u> </u>		0,90	0,71 —	0,85 —	0,98 —	1,11 —	1,25 —	1,39 —	1,46 —	1,46 —	1,46 —	1,46
Thickness	2	hear load	1,00	0,74 —	0,90 —	1,05 —	1,21 —	1,36 —	1,48 —	1,59 —	1,81 —	2,20 —	
출		ar	1,20	0,74 —	0,93 —	1,11 —	1,30 —	1,47 —	1,57 —	1,71 —	2,15 —	2,93 —	2,93 Pailure 2,93 (hole 2,93 Pailure 2,93 Pa
≝	₽ E	She	1,50	0,74 —	0,93 —	1,11 —	1,30 —	1,47 —	1,57 —	1,71 —	2,15 —	2,93 —	2,93 🔚 🗀
-		0,	2,00	0,74 —	0,93 —	1,11 —	1,30 —	1,47 —	1,57 —	1,71 —	2,15 —	2,93 —	2,93
	with	Tension Ioad N _{R,k}		0,56	1,00	1,20	1,40	1,50	1,70	1,90	2,30	2,30	Failure of component II see also clause 4.2.2

If component I is made of Aluminium alloy with tensile strength $R_m \ge 245 \text{ N/mm}^2$, the specified values for $R_m \ge 215$ N/mm^2 for shear load $V_{R,k}$ may be increased by 14%.

self-tapping screw	Annex 66
FABA Typ A 6,5 x L	to European technical approval
PABA TYP A 0,3 X L	ETA – 10/0184

<u>Material</u>

Fastener: stainless steel – EN 10088

steel grade 1.4301

Washer: stainless steel – EN 10088

steel grade 1.4301 with EPDM sealing

Component I: Aluminium alloy

with $R_m \ge 165 \text{ N/mm}^2 - \text{EN } 573$ with $R_m \ge 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

S280GD - EN 10346 S320GD - EN 10346

Timber structures

for timber structures no performance determined

							Thickness Component II t _{II} [mm] S235, S280GD or S320GD																
				0,50		0,5	5	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,00	
		pre-di	rill with	•		-		-		-		-		-		-		-		-		-	
			0,50	0,39 -	_	0,42	_	0,48	_	0,56	_	0,64	_	0,72	_	0,81	_	0,89	_	0,89		0,89	_
		Σ	0,60	0,39 -	-	0,45	_	0,53	_	0,61	_	0,69	_	0,76	_	0,84	_	0,92	_	1,07	_	1,07	-
	n 2	R,k [KN]	0,70	0,39 -	-	0,45	_	0,55	_	0,68	_	0,75	_	0,82	_	0,89	_	0,96	_	1,10	_	1,25	-
_	Ē	>	0,80	0,39 -	-	0,45	_	0,55	_	0,72	_	0,83	_	0,90	_	0,97	_	1,03	_	1,16	_	1,43	-
alloy	165 N/mm2		0,90	0,39 -	-	0,45	_	0,55	_	0,72	_	0,91	_	0,99	_	1,06	_	1,12	_	1,24	_	1,48	-
	165	<u>ö</u>	1,00	0,39 -	-	0,45	_	0,55	_	0,72	_	0,91	_	1,11	_	1,17	_	1,22	_	1,33	_	1,56	-
<u> </u>	ΛI	ar	1,20	0,39 -	-	0,45	_	0,55	_	0,72	_	0,91	_	1,11	_	1,33	_	1,47	_	1,57	_	1,76	-
Ξ.	Æ	Shear Ioad	1,50	0,39 -	-	0,45	_	0,55	_	0,72	_	0,91	_	1,11	_	1,33	_	1,55	_	2,03	_	2,18	-
=		0,	2,00	0,39 -	-	0,45	_	0,55	_	0,72	_	0,91	_	1,11	_	1,33	_	1,55	_	2,03	_	3,13	-
l tı [mm] Aluminium	with	Tension Ioad N _{R,k}		0,66		0,76		0,9	3	1,18		1,52		1,83		2,18		2,51		2,51		2,51	
Ę]	0,50	0,51 -		0,55	_	0,62	_	0,73	_	0,84	_	0,94	_	1,06	_	1,16	_	1,16		1,16	_
) ne		N N	0,60	0,51 -	-	0,59	_	0,69	_	0,79	_	0,90	_	0,99	_	1,10	_	1,19	_	1,39	_	1,39	-
Component	73	R,k [KN]	0,70	0,51 -	-	0,59	_	0,72	_	0,88	_	0,98	_	1,07	_	1,16	_	1,25	_	1,44	_	1,63	-
5	215 N/mm ²	>	0,80	0,51 -	-	0,59	_	0,72	_	0,94	_	1,09	_	1,17	_	1,26	_	1,34	_	1,51	_	1,86	-
	Ž	load	0,90	0,51 -	-	0,59	_	0,72	_	0,94	_	1,19	_	1,30	_	1,38	_	1,45	_	1,61	_	1,93	-
Thickness	5	0	1,00		-	0,59	_	0,72	_	0,94	_	1,19	_	1,44	_	1,52	_	1,59	_	1,74	_	2,03	-
봉	7	hear	1,20		-	0,59	_	0,72	_	0,94	_	1,19	_	1,44	_	1,73	_	1,92	_	2,04	_	2,29	-
ع ا	ε	Sh	1,50	· ·	-	0,59	_	0,72	_	0,94	_	1,19	_	1,44	_	1,73	_	2,02	_	2,65	_	2,83	-
'	E .		2,00	0,51 -		0,59	_	0,72	_	0,94	_	1,19	_	1,44		1,73	_	2,02		2,65	_	4,08	
	with	Tension Ioad N _{R,k}		0,66		0,70	6	0,9	3	1,1	8	1,5	2	1,8	33	2,1	8	2,5	1	2,5	51	2,5	51

The repair screw may be used to replace screws with $d \le 6.5$ mm and a drill bit $d \le 4.7$ mm or for pre-drilling diameter of $d \le 4.7$ mm.

self-tapping screw	Annex 67
FABA Typ A 7,2 x L – A2	to European technical approval
TABA TYPA 7,2 X L = A2	ETA – 10/0184