

European Technical Approval ETA-10/0260

Handelsbezeichnung		SIKLA Injektionssystem VMZ
Trade name		SIKLA Injection System VMZ
Zulassungsinhaber		Sikla Holding Ges.m.b.H.
Holder of approval		Kornstraße 14 4614 MARCHTRENK
		ÖSTERREICH
Zulassungsgegenstand und Verwendungszweck		Kraftkontrolliert spreizender Verbunddübel mit Ankerstange VMZ-A und Innengewindehülse VMZ-IG zur Verankerung im Beton
	ECK	Innengewindendise viviz-16 zur verankerung im Delon
Generic type and use of construction produc	ct	Torque controlled bonded anchor with anchor rod VMZ-A and internal threaded rod VMZ-IG for use in concrete
Geltungsdauer: Validity:	vom from	21 June 2013
	bis to	7 June 2018
Herstellwerk		Sikla Herstellwerk 1
Manufacturing plant		

English translation prepared by DIBt - Original version in German language

Diese Zulassung umfasst
This Approval contains40 Seiten einschließlich 32 Anhänge
40 pages including 32 annexesDiese Zulassung ersetzt
This Approval replacesETA-10/0260 mit Geltungsdauer vom 16.12.2010 bis 31.07.2014
ETA-10/0260 with validity from 16.12.2010 to 31.07.2014

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 40 | 21 June 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12
 - Official Journal of the European Communities L 220, 30 August 1993, p. 1
- ³ Official Journal of the European Union L 284, 31 October 2003, p. 25
- ⁴ Bundesgesetzblatt Teil I 1998, p. 812
- ⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 40 | 21 June 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product/ products and intended use

1.1 Definition of the construction product

The SIKLA Injection System VMZ is a torque controlled bonded anchor consisting of a mortar cartridge with SIKLA Injection Mortar VMZ or VMZ Express and an anchor rod with expansion cones and an external connection thread (type VMZ-A) or internal connection thread (VMZ-IG). The load transfer is realised by mechanical interlock of several cones in the bonding mortar and then via a combination of bonding and friction forces in the anchorage ground (concrete). An illustration of the product and intended use is given in Annex 1.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval.

The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be anchored in cracked and non-cracked concrete.

The anchor may be installed in dry or wet concrete; it must not be installed in flooded holes.

The anchor installed in hammer drilled holes may also be used under seismic action according to Annex 23 (performance category C2 only for sizes given in Annex 2).

The anchor with required bore hole diameters $d_0 \ge 14$ mm may be installed in dry or wet concrete or in water filled holes. The anchor with bore hole diameters $d_0 < 14$ mm may only be installed in dry or wet concrete.

The anchor may be used within the following temperature ranges:

Temperature range:	-40 °C to +80 °C	(max short term temperature +80 °C and max long term temperature +50 °C)
Temperature range:	-40 °C to +120 °C	(max short term temperature +120 °C and max long term temperature +72 °C)

Anchor rods made of zinc plated or hot-dip galvanised steel:

The element made of zinc plated or hot-dip galvanised steel may only be used in structures subject to dry internal conditions.

Anchor rods made of stainless steel (A4):

The element made of stainless steel with additional marking A4 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure to permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Page 4 of 40 | 21 June 2013

Anchor rods made of high corrosion resistant steel (HCR):

The element made of high corrosion resistant steel with additional marking HCR may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used).

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The anchor corresponds to the drawings and provisions given in the Annexes. The characteristic material values, dimensions and tolerances of the anchor not indicated in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic values for the design of anchorages are given in the Annexes.

Each anchor rod is marked in accordance with the Annexes.

Each mortar cartridge shall be marked with the identifying mark of the producer and with the trade name, processing notes, shelf life, hazard code, curing time and processing time (depending on temperature) in accordance with Annex 1.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors" as well as the Technical Report TR 018 "Torque-controlled bonded anchors", on the basis of Option 1 and ETAG 001 Annex E "Assessment of Metal Anchors under Seismic Action".

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

7

Page 5 of 40 | 21 June 2013

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the decision 96/582/EG of the European Commission⁸ the system 2(i) (referred to as System 1) of attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial / raw / constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks of manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the product is in conformity with the provisions of this European technical approval.

⁹ The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

⁸ Official Journal of the European Communities L 254 of 08.10.1996.

Page 6 of 40 | 21 June 2013

3.2.2 Tasks of approved bodies

The approved body shall perform the following tasks in accordance with the provisions laid down in the control plan:

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of anchors. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the holder of the approval (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1 Option 1, in addition: seismic performance category C2 where applicable),
- size.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The anchor is manufactured in accordance with the provisions of the European technical approval using the automated manufacturing process as identified in the inspection of the plant by the Deutsches Institut für Bautechnik and the approved body and laid down in the technical documentation.

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in th is deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the European technical approval and consequently the validity of the CE marking on the basis of the European technical approval and if so whether further assessment or alterations to the European technical approval shall be necessary.

Page 7 of 40 | 21 June 2013

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed either in accordance with

- ETAG 001 "Guideline for European technical approval of Metal Anchors for use in concrete", Annex C, method A

or in accordance with

CEN/TS 1992-4:2009, design method A

and Technical Report TR 045 "Design of metal Anchors under Seismic Action" under the responsibility of an engineer experienced in anchorages and concrete work.

Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

For the anchor rod VMZ-IG fastening screws or threaded rods made of appropriate steel and strength class acc. to Annex 24 shall be specified. The minimum screw-in depth L_{sdmin} and maximum thread length L_{th} of the fastening screw or the threaded rod for installation of the fixture shall be met the requirements according to Annex 25. The length of the fastening screw or the threaded rod shall be determined depending on thickness of fixture, admissible tolerances, available thread length and minimum and maximum thread engagement length.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor,
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- in case of aborted drill hole: the drill hole shall be filled with mortar,
- cleaning the drill hole following the manufacturers installation instructions given in the Annexes,
- Installation conditions in dry or wet concrete or in water filled bore holes only as given in the Annexes, water filled bore holes (where admissible) must not be polluted otherwise the cleaning of the drill hole must be repeated,
- Anchor installation according to the installation instructions given in the Annexes,

Page 8 of 40 | 21 June 2013

- the anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -5 °C; observing the curing time given in the Annexes until the anchor may be loaded,
- the fastening screw or threaded rods with washer and nut for the anchor rod VMZ-IG shall comply with specifications given in Annex 24.

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer

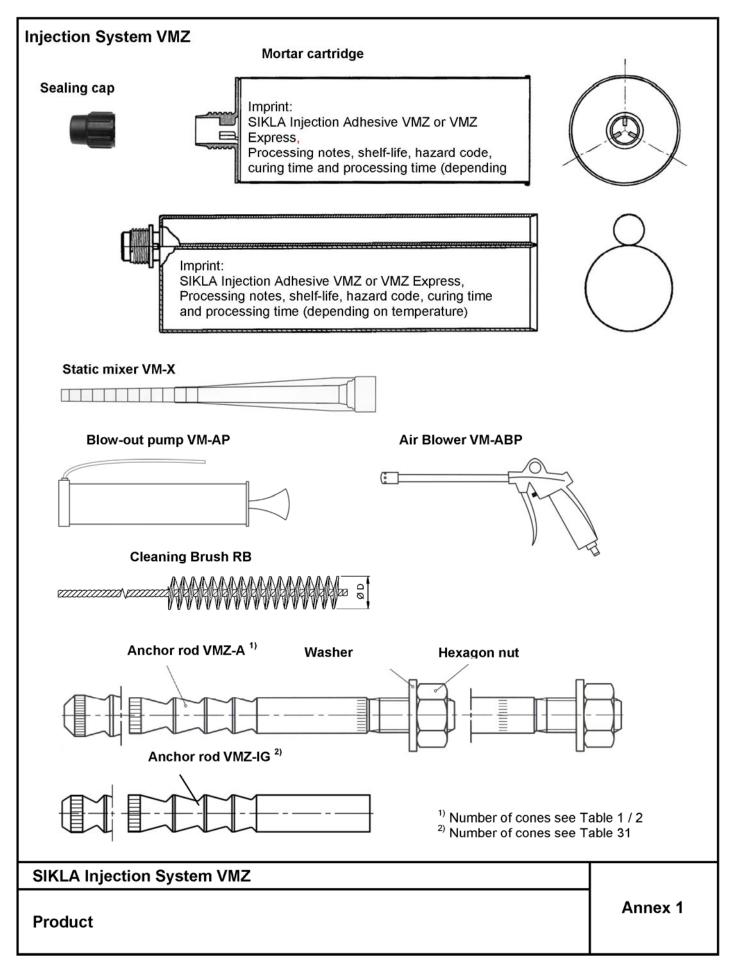
It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to and 4.2 and 4.3 as well as 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:

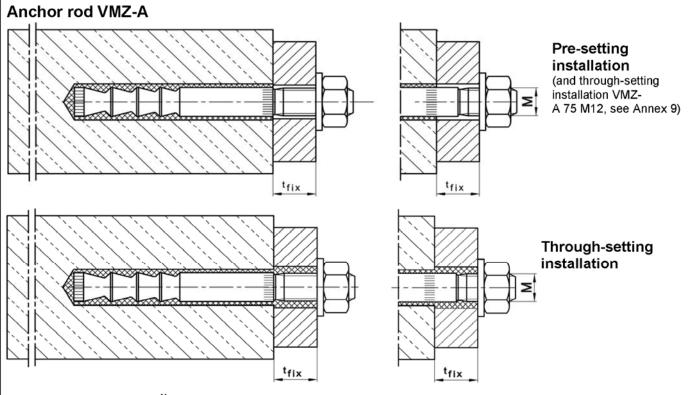
- installation parameters acc. to Annex 5 for VMZ-A or Annex 25 for VMZ-IG,
- for VMZ-IG requirements for fastening screw or threaded rod, washer and nut acc. to Annex 24,
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- exact volume of injection mortar related to element size,
- Storage temperature of anchor components,
- Admissible temperature range of the concrete at installation,
- Processing time and minimum curing time depending on temperature given in the Annexes,
- identification of the manufacturing batch.
- All data shall be presented in a clear and explicit form.

5.2 Packaging, transport and storage

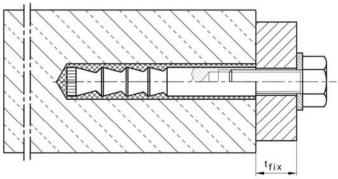
The injection cartridges shall be protected against sun radiation and shall be stored according to the manufacturer's installation instructions in dry condition at temperatures of at least +5 °C to not more than +25 °C.


Mortar cartridges with expired shelf life must no longer be used.

The anchor shall only be packaged and supplied as a complete unit. Mortar cartridges may be packed separately from anchor rods (including nut and washer).


The manufacturer's installation instruction shall indicate that the SIKLA Injection Mortar VMZ or VMZ Express shall be used with the corresponding anchor rods of the manufacturer according to Annex 2.

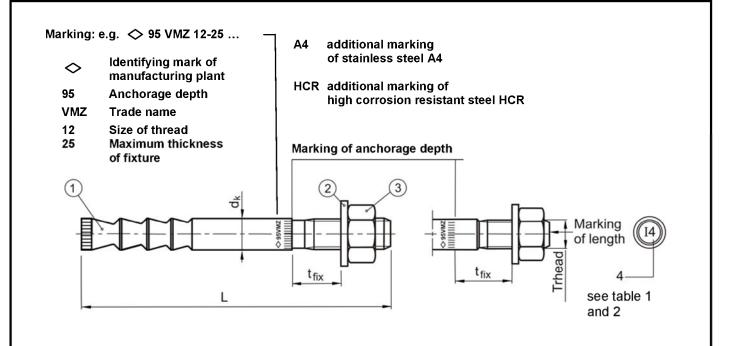
Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider



Anchor rod VMZ-IG¹⁾ (technical data from Annex 24)

¹⁾ Illustration with hexagon head screw exemplified; other screws or threaded rods also permitted (see Annex 24, requirements of the fastening screw or threaded rod)

SIKLA Injection System VMZ		M8	M10	M12	M16	M20	M24
Static or quasi-static action				٢	/		
Seismic action		-		C2		-	-
SIKLA Injection System VMZ-IG	M6	M8	M10	M12	M16	M20	
Static or quasi-static action			١	/			
Seismic action				-			


SIKLA Injection System VMZ

Intended use

Page 11 of European technical approval ETA-10/0260 of 21 June 2013

English translation prepared by DIBt

Marking of length	В	С	D	Е	F	G	н	I	J	K	L	М		
Length of anchor min \geq	50,8	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	5	
Length of anchor max <	63,5	76,2	88,9	101,6	114,3	127,0	139,7	152,4	165,1	177,8	190,5	203,2	<u>:</u>	
Marking of length	N	0	Р	0	R	S	т	11	v	W	x	V	7	>7
Marking of length	N	0		Q	R	S	T	U	V	W	X	T	Z	>Z
Marking of length Length of anchor min ≥	N 203,2			Q 241,3		-	T 304,8	U 330,2	V 355,6			T	Z 457,2	> Z 482,6

Table 1:	Dimensions of anchor rod, VMZ-A M8 – M12
----------	--

	Anchor size	VMZ-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
	Additional m	Additional marking			2	1	2	1	2	3	4	5	6	7
1	Anchor rod	Thread		M8	M8	M10	M10	M12	M12	M12	M12	M12	M12	M12
		Number of cones		2	3	3	3	3	3	4	4	6	6	6
		d _k	=	8,0	8,0	9,7	9,7	10,7	12,5	12,5	12,5	12,5	12,5	12,5
		t _{fix} min	\geq	1	1	1	1	1	1	1	1	1	1	1
		t _{fix} max	\leq	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
		L min		53	64	76	91	96	91	101	116	121	131	146
	-	L max		3052	3063	3075	3090	3095	3090	3100	3115	3120	3130	3145
3	Hexagon nut	SW		13	13	17	17	19	19	19	19	19	19	19
												Dim	ensions	s in mm

Dimensions in mm

SIKLA Injection System VMZ

Dimensions of anchor rod, Anchor rod VMZ-A M8 – M12

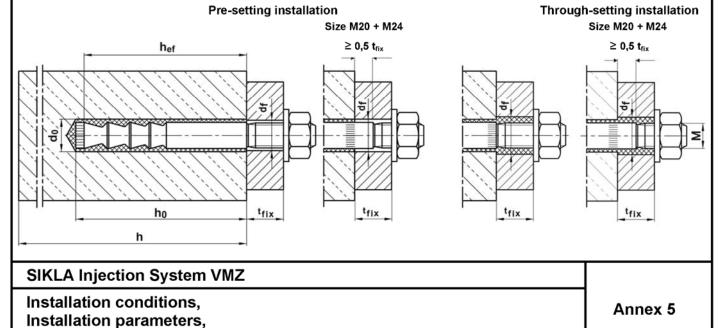
Tabl	e 2: Din	nensions	6 O	f anch	or ro	d, VMZ	-A M10	6 – M24	4				
	Anchor size	VMZ-A		90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
	Additional ma	rking		1	2	3	4	1	2	3	1	2	3
1	Anchor rod	Thread		M16	M16	M16	M16	M20	M20	M20	M24	M24	M24
		Number of cones		3	4	6	6	3	6	6	6	6	6
		d _k	=	16,5	16,5	16,5	16,5	19,7	22,0	22,0	24,0	24,0	24,0
		t _{fix} min	\geq	1	1	1	1	1	20 (1)	20 (1)	20 (1)	20 (1)	20 (1)
		t _{fix} max	\leq	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000
		L min		115	130	151	171	144	204	224	211	241	266
		L max		3114	3129	3150	3170	3143	3203	3223	3240	3240	3265
3	Hexagon nut	SW		24	24	24	24	30	30	30	36	36	36

Table 3: Materials VMZ-A

Part	Designation	Steel, zinc plated	Steel, hot-dip galvanised ≥ 40µm	Stainless steel A4	High corrosion resistant steel (HCR)
1	Anchor rod	Steel acc. to EN 10087, galvanised and coated	Steel acc. to EN 10087, hot-dip galvanised and coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088, coated
2	Washer	Steel, galvanised	Steel, galvanised	Stainless steel, 1.4401, 1.4571, EN 10088	High corrosion resistant steel 1.4529 or 1.4565, acc. to EN 10088
3	Hexagon nut DIN 934	Property class 8 acc. to EN ISO 898-2, galvanised	Property class 8 acc. to EN ISO 898-2, hot-dip galvanised	ISO 3506, A4-70, 1.4401, 1.4571, EN 10088	ISO 3506, Property class 70, high corrosion resistant steel 1.4529 or 1.4565, EN 10088
4	Mortar cartridge	Vinylester resin, styre	ene free, mixing ratio 1	10	

SIKLA Injection System VMZ

Dimensions of anchor rod VMZ-A M16 – M24, Materials, Anchor rod VMZ-A



Anchor size VMZ-A						M8 -	M10 and	75 M1	2 7	'0 M12 a	nd 80 I	/12 - M	24
Nominal diameter of drill hole		do			[mm]		< 14				≥ 14		
	dry cc	ncrete			-		yes				yes		
Installation allowable in	wet co	oncrete			-		yes				yes		
	water	filled he	ole ¹⁾		-		no				yes		
) Special requirements see Sec	tion 4.3.												
Table 5: Installatio	n nara	moto	re V	M7_0	M8 _	. M12	,						
					_				• • •	05	100	440	10
Anchor size VMZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	12 M1
Effective anchorage depth	h _{ef} ≥	[mm]	40	50	60	75	75	70	80	95	100	110	12
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	12	14	14	14	14	14	14
Depth of drill hole	$h_0 \ge$	[mm]	42	55	65	80	80	75	85	100	105	115	13
	D≥	[mm]	10,8	10,8	13,0	13,0	13,0	15,0	15,0	15,0	15,0	15,0	15,
Diameter of cleaning brush		FA 1 3	10	10	45	15	25	25	25	25	30	30	30
Diameter of cleaning brush Installation torque	T _{inst} ≤	[Nm]	10	10	15	15	23						
_			10	10	15	15	23						
Installation torque			9	9	15	12	14	14	14	14	14	14	14

Table 6: Installation parameters, VMZ-A M16 – M24

Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	115	170	190	170	200	225
Nominal diameter of drill hole	d ₀ =	[mm]	18	18	18	18	22	24	24	26	26	26
Depth of drill hole	$h_0 \geq$	[mm]	98	113	133	153	120	180	200	185	215	240
Diameter of cleaning brush	D≥	[mm]	19,0	19,0	19,0	19,0	23,0	25,0	25,0	27,0	27,0	27,0
Installation torque	T _{inst} ≤	[Nm]	50	50	50	50	80	80	80	100	120	120
Diameter of clearance hole in the	ne fixture	:										
Pre-setting installation	$d_{f} \leq$	[mm]	18	18	18	18	22	24 (22)	24 (22)	26	26	26
Through-setting installation 4)	$d_{\rm f} \leq$	[mm]	20	20	20	20	24	26	26	28	28	28

⁴⁾ After the installation the annular gap in the clearance hole in the fixture has to be filled completely by excess mortar.

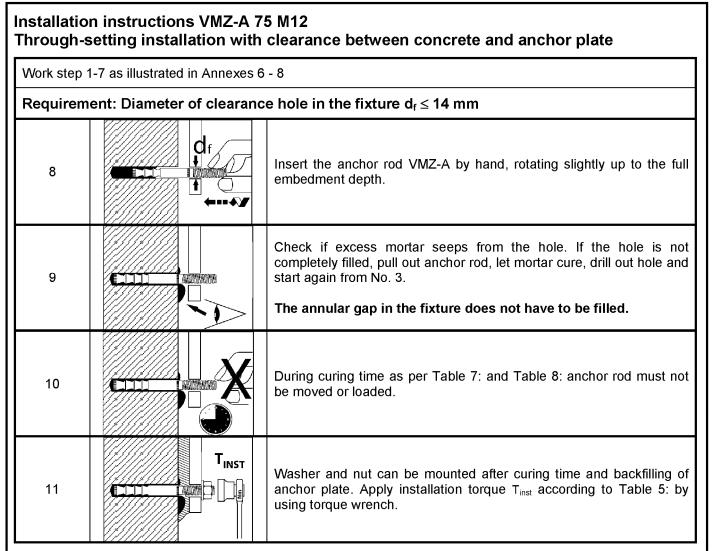
Z55489.13

Anchor rod VMZ-A

		nstructions V eaning of hamme				
1	Pre-setting installation V	90°	Use Hammer drill or air drill with drill bit and depth gauge. Dr concrete surface.	ill perpendicular to		
	Through- setting installation D	90°	Drill hole must be cleaned directly prior to installation of the	anchor		
		MB-M16	VMZ-A M8 - M16: Blow out drill hole from the bottom with SIKLA Blow-out pump times. The Extension Tube with reduced diameter must be add pump for the diameter M8.	/M-AP at least two		
2	>	min. 6 bar 2×++ 	VMZ-A M20 - M24: Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 air valve and blow out drill hole along the entire depth with back least two times.			
			VMZ-A M10 - M16: Blow out drill hole from the bottom with SIKLA Blow-out pump v times.	/M-AP at least two		
		M8M15	VMZ-A M20 - M24: Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 air valve and blow out drill hole along the entire depth with back least two times.			
3	>		Check diameter of Cleaning Brush RB. If Brush can be pushe without any resistance, it must be replaced. Chuck Brush into	drill machine. Turn		
	۵		on drill machine. Brush drill hole back and forth along the entire least two times while rotated by drill machine	e drill noie depth at		
		M8-M16	VMZ-A M8 - M16: Blow out drill hole from the bottom with SIKLA Blow-out pump times. The Extension Tube with reduced diameter must be add pump for the diameter M8.			
4	>	min. 6 bar 2x++++++++++++++++++++++++++++++++++++	VMZ-A M20 - M24: Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 air valve and blow out drill hole along the entire depth with back least two times.			
-		M8 - M16	VMZ-A M10 - M16: Blow out drill hole from the bottom with SIKLA Blow-out pump times.	VM-AP at least two		
		min. 6 bar 2x +++ 	VMZ-A M20 - M24: Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 air valve and blow out drill hole along the entire depth with back least two times.			
SI	KLA Injec	ction System \	/MZ			
- N	Installation instructions - Making and cleaning of hammer drilled holes - Anchor rod VMZ-A					

Maki	ing and clea	aning of diamond	l core drilled holes
1	Pre-setting installation V		Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface.
	Through- setting installation D	-	Drill hale must be also and diversity prior to installation of the analysis
	≞. ⊣		Drill hole must be cleaned directly prior to installation of the anchor.
2	>	\rightarrow	Remove drill core at least up to the nominal hole depth and check drill hole
L	٩		depth.
	>		Flushing of drill hole: Flush drill hole with water, starting from the bottom, until
3	٩		clear water gets out of the drill hole.
	>	min.6 bar 2x++ 	Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 bar, oil-free).
4	٩	min.6 bar 2x ←→	Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

Installation instructions - Making and cleaning of diamond core drilled holes -Anchor rod VMZ-A


Page 16 of European technical approval ETA-10/0260 of 21 June 2013

English translation prepared by DIBt

Injec	tion									
5	N + Q	B LEEDER	Check expiration date on SIKLA VMZ cartridge. Never use when ex- from VMZ cartridge. Screw Mixer Nozzle VM-X on cartridge. When us always use a new Mixer Nozzle. Never use cartridge without Mixer No Mixer Nozzle without helix inside.	sing a new cartridge						
6	D + V	min.2x min.10 cm	Insert cartridge in Dispenser. Before injecting discard mortar (at leas line of 10 cm) until it shows a consistent grey colour. Never use this n							
7	~		Prior to injection check if Mixer Nozzle VM-X reaches the bottom of does not reach the bottom, plug Mixer Extension VM-XE onto Mixe properly fill the drill hole. Fill hole with a sufficient quantity of injectio the bottom of the drill hole and work out to avoid trapping air pockets.	r Nozzle in order to n mortar. Start from						
	۵ tion									
Inser	tion	of anchor rod								
8	>		Insert the anchor rod VMZ-A by hand, rotating slightly up to the full en marked on the anchor rod. The anchor rod is properly set when ex from the hole. If the hole is not completely filled, pull out anchor rod, out hole and start again from No. 3.	cess mortar seeps						
	٥		nsert the anchor rod VMZ-A by hand, rotating slightly up to the full embedment dep After the installation the annular gap in the clearance hole in the fixture has to be fil completely by excess mortar. If the hole is not completely filled, pull out anchor rod, mortar cure, drill out hole and start again from No. 3.							
9	>	₩ S	Follow minimum curing time shown in Table 7: and Table 8:. During	curing time anchor						
	D		rod must not be moved or loaded.							
10	^		Remove excess mortar.							
	D									
11	N + Q		The fixture can be mounted after curing time. Apply installation torque Table 5: or Table 6: by using torque wrench.	ue T _{inst} according to						
SIK		Injection Syste	em VMZ							
- ar	ncho	tion instructio or installation - r rod VMZ-A		Annex 8						

Table 7:Maximum processing time and minimum curing time VMZ

Temperature [°C]	Maximum processing	Minimum d	curing time
in the drill hole	time	dry concrete	wet concrete
+ 40 °C	1,4 min	15 min	30 min
+ 35 °C to +39 °C	1,4 min	20 min	40 min
+ 30 °C to +34 °C	2 min	25 min	50 min
+ 20 °C to +29 °C	4 min	45 min	1:30 h
+ 10 °C to + 19 °C	6 min	1:20 h	2:40 h
+ 5 °C to + 9 °C	12 min	2:00 h	4:00 h
0 °C to + 4 °C	20 min	3:00 h	6:00 h
- 4 °C to - 1 °C	45 min	6:00 h	12:00 h ¹⁾
- 5 °C	1:30 h	6:00 h	12:00 h ¹⁾

¹⁾ It must be ensured that icing does not occur in the drill hole. The hole must be drilled and cleaned directly prior to the installation of the anchor.

SIKLA Injection System VMZ

Installation instructions through-setting installation with clearance between concrete and anchor plate, Processing time, curing time VMZ, Anchor rod VMZ-A 75 M12

ıble 8: Maximur	n processing time and	minimum curing time \	/MZ Express						
Temperature [°C]	Maximum processing	Minimum curing time							
in the drill hole	time	dry concrete	wet concrete						
+ 30 °C	1 min	10 min	20 min						
+ 20 °C to + 29 °C	1 min	20 min	40 min						
+ 10 °C to + 19 °C	3 min	40 min	80 min						
+ 5 °C to + 9 °C	6 min	1:00 h	2:00 h						
+ 0 °C to + 4 °C	10 min	2:00 h	4:00 h						
- 4 °C to -1 °C	20 min	4:00 h	8:00 h ¹⁾						
-5 °C	40 min	4:00 h	8:00 h ¹⁾						

¹⁾ It must be ensured that icing does not occur in the drill hole. The hole must be drilled and cleaned directly prior to the installation the anchor.

Table 9:Minimum thickness of concrete, minimum spacing and edge distance,VMZ-A M8 – M12

Anchor size VMZ-A				50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110 100 ²⁾	110	110	110	130 125 ²⁾	130	140	160
Cracked concrete													
Minimum spacing	S min	[mm]	40	40	40	40	50	55	40	40	50	50	50
Minimum edge distance	C _{min}	[mm]	40	40	40	40	50	55	50	50	50	50	50
Non-cracked concrete													
Minimum spacing	Smin	[mm]	40	40	50	50	50	55	55	55	80 ³⁾	80 ³⁾	80 ³⁾
Minimum edge distance	Cmin	[mm]	40	40	50	50	50	55	55	55	55 ³⁾	55 ³⁾	55 ³⁾

Table 10:Minimum thickness of concrete, minimum spacing and edge distance,
VMZ-A M16 – M24

Anchor size VMZ-A	90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)		
Minimum thickness of concrete	h _{min}	[mm]	130	150	170 160 ²⁾	190 180 ²⁾	160	230 220 ²⁾	250 240 ²⁾	230 220 ²⁾	270 260 ²⁾	300 290 ²⁾
Cracked concrete												
Minimum spacing	Smin	[mm]	50	50	60	60	80	80	80	80	80	80
Minimum edge distance	C _{min}	[mm]	50	50	60	60	80	80	80	80	80	80
Non-cracked concrete												
Minimum spacing	Smin	[mm]	50	60	60	60	80	80	80	80	105	105
Minimum edge distance	C _{min}	[mm]	50	60	60	60	80	80	80	80	105	105

²⁾ The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through the ground of the drill hole shall be closed with high strength mortar. The full bonded length h_{ef} shall be achieved and any potential loss of injection mortar shall be compensated.

³⁾ For an edge distance $c \ge 80$ mm a minimum spacing $s_{min} = 55$ mm is applicable.

SIKLA Injection System VMZ

Processing time, curing time VMZ Express,

Minimum thickness of concrete, Minimum spacing and edge distance Anchor rod VMZ-A

Table 11: Characteristic values for tension load under static or quasi-static action, ETAG 001, Annex C, design method A, VMZ-A M8 – M12 100 40 60 75 75 70 80 95 110 125 50 Anchor size VMZ-A M8 M8 M10 M10 M12 M12 M12 M12 M12 M12 M12 Steel failure [kN] Characteristic tension Steel, zinc plated 25 25 35 49 54 57 57 15 18 54 57 resistance N_{Rk,s} Stainless steel A4, HCR [kN] 15 18 25 25 35 49 54 54 57 57 57 Partial safety factor [-] 1,5 γMs Pullout 50°C²⁾/80°C³⁾ 1) Characteristic resistance NRk,p in [kN] 72°C²⁾/120°C³⁾ cracked concrete C20/25 [kN] 5 7,5 12 12 12 16 20 20 30 30 30 Characteristic resistance N_{Rk.p} in 50°C²⁾/80°C³⁾ 9 [kN] 40 50 50 non-cracked concrete C20/25 72°C²⁾/120°C³⁾ [kN] 6 9 16 16 16 16 25 25 30 30 30 Splitting for standard thickness of concrete (The higher resistance of Case 1 and Case 2 may be applied). Standard thickness of concrete 100 120 $h_{std} \geq 2 \ h_{ef}$ [mm] 100 150 150 140 160 190 200 220 250 Case 1 Characteristic resistance on 1) N⁰_{Rk,sp}⁴⁾ [kN] 7.5 9 16 20 20 20 30 40 40 40 concrete C20/25 Respective spacing [mm] 3 h_{ef} Scr.sp Respective edge distance [mm] $1,5 h_{ef}$ C_{cr,sp} Case 2 6 h_{ef} | 6 h_{ef} | 5 h_{ef} | 7 h_{ef} | 7 h_{ef} | 5 h_{ef} | 3 h_{ef} | 5 h_{ef} | 4 h_{ef} | 6 h_{ef} 5 h_{ef} Spacing S_{cr,sp} [mm] Edge distance [mm] 3 h_{ef} 3 h_{ef} 2,5h_{ef} 3,5h_{ef} 3,5h_{ef} 2,5h_{ef} 1,5h_{ef} 2,5h_{ef} 2 h_{ef} 3 h_{ef} $2.5h_{ef}$ C_{cr,sp} Splitting for minimum thickness of concrete (The higher resistance of Case 1 and Case 2 may be applied.) Minimum thickness of concrete $h_{\text{min}} \geq$ [mm] 80 80 100 | 100 | 110 | 110 | 110 | 125 | 130 | 140 160 Case 1 Characteristic resistance in N⁰_{Rk,sp}⁴⁾ 7.5 16 16 16 20 25 25 30 30 30 [kN] concrete C20/25 Respective spacing [mm] 3 h_{ef} -3 h_{ef} S_{cr,sp} Respective edge distance [mm] 1,5 h_{ef} _ 1,5h_{ef} C_{cr,sp} Case 2 Spacing [mm] 6 h_{ef} | 7 h_{ef} | 6 h_{ef} | 7 h_{ef} | 7 h_{ef} | 7 h_{ef} | 7 h_{ef} | 6 h_{ef} | 7 h_{ef} | 6 h_{ef} | 6 h_{ef} | 6 h_{ef} S_{cr,sp} Edge distance 3 h_{ef} 3,5h_{ef} 3 h_{ef} 3,5h_{ef} 3,5h_{ef} 3,5h_{ef} 3 h_{ef} 3,5h_{ef} 3 h_{ef} 3 h_{ef} 3 h_{ef} [mm] 3 h_{ef} C_{cr,sp} C25/30 [-] 1,10 Increasing factors for C30/37 1,22 [-] N_{Rk,p} and N⁰_{Rk,sp} C40/50 [-] 1,41 Ψc C45/55 1,48 [-] C50/60 1,55 [-] Concrete cone failure 70 80 40 75 75 95 100 110 125 Effective anchorage depth h_{ef}≥ [mm] 50 | 60 | Spacing [mm] 3 h_{ef} Scr N Edge distance 1,5 h_{ef} C_{CLN} [mm] 1,5 Partial safety factor [-] $\gamma_{Mp} = \gamma_{Msp} = \gamma_{Mc}$

¹⁾ Pullout failure is not decisive

²⁾ Maximum long term temperature

³⁾ Maximum short term temperature

⁴⁾ For the proof against splitting failure according to ETAG 001 Annex C, $N_{Rk,c}^{0}$ in equation (5.3) has to be replaced by $N_{Rk,sp}^{0}$ with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

SIKLA Injection System VMZ

Characteristic values for tension load under static or quasi-static action, ETAG 001, Annex C, design method A, Anchor rod VMZ-A M8 – M12

Table 12:Characteristic values for tension load under static or quasi-static action,ETAG 001, Annex C, design method A, VMZ-A M16 – M24

Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Steel failure											,	
Characteristic tension Steel, zin	c plated	[kN]	88	95	111	111	96	188	188	222	222	222
	steel A4, HCR	[kN]	88	95	111	111	114	165	165	194	194	194
Partial safety factor	γMs	[-]		1	,5		1,68			1,5		
Pullout												
Characteristic resistance N _{Rk,p} in	50°C ²⁾ /80°C ³⁾	[kN]					1)				
cracked concrete C20/25	72°C ²⁾ /120°C ³⁾	[kN]	25	30	50	50	30	60	60	75	75	75
Characteristic resistance N _{Rk,p} in	50°C ²⁾ /80°C ³⁾	[kN]		1)		75			1)	1	
non-cracked concrete C20/25	72°C ²⁾ /120°C ³⁾	[kN]	25	35	50	50	40	75	75	95	95	95
Splitting for standard thick	ness of conc	rete (T	he hig	her re	sistanc	e of C	ase 1	and Ca	ise 2 m	ay be a	applied	.)
Standard thickness of concrete	$h_{std} \ge 2 h_{ef}$	[mm]	180	200	250	290	230	340	380	340	400	, 450
Case 1		[]								0.0		
Characteristic resistance in	A (0 4)		40	50			1)		1)	
cracked concrete C20/25	N ⁰ _{Rk,sp} ⁴⁾	[kN]	40	50	50	60		/	115		/	140
Respective spacing	S _{cr,sp}	[mm]					3	h _{ef}				
Respective edge distance	C _{cr,sp}	[mm]					1,5	h _{ef}				
Case 2												
Spacing	S _{cr,sp}	[mm]	4 h _{ef}	4 h _{ef}	4 h _{ef}	4 h _{ef}	3 h _{ef}	3 h _{ef}	4 h _{ef}	3 h _{ef}	3 h _{ef}	3,6 h
Edge distance	C _{cr,sp}	[mm]	2 h _{ef}	2 h _{ef}	2 h _{ef}	2 h _{ef}	1,5 h _{ef}	1,5 h _{ef}	2 h _{ef}	1,5 h _{ef}	1,5 h _{ef}	1,8 h
Splitting for minimum thick	ness of conc	rete (The hig	gher re	sistan	ce out	of Cas	e 1 an	d Case	2 may	be app	olied.)
Minimum thickness of concrete	$h_{min} \geq$	[mm]	130	150	160	180	160	220	240	220	260	290
Case 1												
Characteristic resistance in	N ⁰ _{Rk,sp} ⁴⁾	[LAU	35	50	40	50		75	75	1)	115	445
concrete C20/25	IN Rk,sp	[kN]	35	50	40	50	-	15	15	,	115	115
Respective spacing	S _{cr,sp}	[mm]			h _{ef}		-			3 h _{ef}		
Respective edge distance	C _{cr,sp}	[mm]		1,5	h _{ef}		-			1,5 h _{ef}		
Case 2										-		
Spacing	S _{cr,sp}	[mm]	$5 h_{ef}$	5 h _{ef}	6 h _{ef}	5 h _{ef}	5 h _{ef}	$5,2 \ h_{ef}$	4,4 h_{ef}	5,2 h _{ef}	4,4 h _{ef}	4,4 h
Edge distance	C _{cr.sp}	[mm]	2,5 h _{ef}	$2,5 h_{ef}$	3 h _{ef}	2,5 h _{ef}	$2,5 h_{ef}$	2,6 h _{ef}	$2,2 h_{ef}$	2,6 h _{ef}	2,2 h _{ef}	2,2 h
	C25/30	[-]						10				
Increasing factors for	C30/37	[-]					1,	22				
$N_{Rk,p}$ and $N_{Rk,sp}^0$ ψ_C	C40/50	[-]					,	41				
	C45/55	[-]						48				
	C50/60	[-]					1,	55				
Concrete cone failure												
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	115	170	190	170	200	225
Spacing	S _{cr,N}	[mm]						h _{ef}				
Edge distance	C _{cr,N}	[mm]					1,5	h _{ef}				

¹⁾ Pullout failure is not decisive

²⁾ Maximum long term temperature

³⁾ Maximum short term temperature

⁴⁾ For the proof against splitting failure according to ETAG 001 Annex C, $N_{Rk,c}^{0}$ in equation (5.3) has to be replaced by $N_{Rk,sp}^{0}$ with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

SIKLA Injection System VMZ

Characteristic values for tension load under static or quasi-static action, ETAG 001, Annex C, design method A, Anchor rod VMZ-A M16 – M24

Table 13:	Displacements under tension loads, VMZ-A M8 – M12
-----------	---

Anchor size VMZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension load in cracked concrete	Ν	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0
Displacement	δ_{N0}	[mm]	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,7
Displacement	$\delta_{N\infty}$	[mm]						1,3					
Tension load in non-cracked concrete	Ν	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8
Displacement	δ _{N0}	[mm]	0,2	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6
Displacement	δ _{N∞}	[mm]						1,3					

Table 14: Displacements under tension loads, VMZ-A M16 – M24

Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension load in cracked concrete	Ν	[kN]	14,6	18,4	24,0	30,0	21,1	38,0	44,9	38,0	48,5	57,9
Displacement	δ_{NO}	[mm]	0,7	0,7	0,7	0,8	0,7	0,8	0,8	0,8	0,9	0,9
Displacement	δ _{N∞}	[mm]		1	,3		1,1	1,3				
Tension load in non-cracked concrete	Ν	[kN]	20,5	25,9	33,0	35,7	29,6	53,3	63,0	53,3	67,9	81,1
Displacement	δ_{NO}	[mm]	0,6	0,6	0,6	0,6	0,5	0,6	0,6	0,6	0,6	0,6
Displacement	δ _{N∞}	[mm]		1	,3		1,1	1,3				

SIKLA Injection System VMZ

Displacements under tension load Anchor rod VMZ-A

Table 15:Characteristic values for shear load under static or quasi-static action,
ETAG 001, Annex C, design method A, VMZ-A M8 – M12

Anchor size VMZ	Z-A		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Steel failure with	out lever arm												
Characteristic shear resistance	Steel, zinc plated	[kN]	14	14	21	21	34	34	34	34	34	34	34
V _{Rk,s}	Stainless steel A4, HCR	[kN]	15	15	23	23	34	34	34	34	34	34	34
Partial safety factor	[-]	[-] 1,25											
Steel failure with	lever arm												
Characteristic bending moments	Steel, zinc plated	[Nm]	30	30	60	60	105	105	105	105	105	105	105
	Stainless steel A4, HCR	[Nm]	30	30	60	60	105	105	105	105	105	105	105
Partial safety fact	or γ _{Ms}	[-]						1,25					
Concrete pryout	failure												
Factor in equation ETAG 001, Annex 5.2.3.3		[-]						2					
Partial safety factor	or γ _{Mcp}	[-]						1,5					
Concrete edge fa	ailure												
Effective length of in shear load	f anchor I _f	[mm]	40	50	60	75	75	70	80	95	100	110	112
Diameter of ancho	or d _{nom}	[mm]	10	10	12	12	12	14	14	14	14	14	14
Partial safety facto		[-]						1,5					

Table 16: Displacements under shear loads, VMZ-A M8 – M12

Anchor size VMZ-A	40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12		
Shear load in non-cracked concrete	V	[kN]	8,3	8,3	13,3	13,3	19,3	19,3	19,3	19,3	19,3	19,3	19,3
Displacements	δ_{V0}	[mm]	2,4	2,5	2,9	2,9	3,3	3,3	3,3	3,3	3,3	3,3	3,3
Displacements	$\delta_{V\infty}$	[mm]	3,6	3,8	4,4	4,4	5,0	5,0	5,0	5,0	5,0	5,0	5,0

SIKLA Injection System VMZ

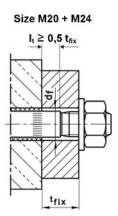

Characteristic values for shear load under static or quasi-static action, ETAG 001, Annex C, design method A, Displacements under shear loads, Anchor rod VMZ-A M8 – M12

Table 17:Characteristic values for shear load under static or quasi-static action,ETAG 001, Annex C, design method A, VMZ-A M16 – M24

		40013	,	, and a	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	··· ·· ·······························						
Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Steel failure without	lever arm											
Characteristic shear	Steel, zinc plated	[kN]	63	63	63	63	70	149 ¹⁾ (98)	149 ¹⁾ (98)	178 ¹⁾ (141)	178 ¹⁾ (141)	178 ¹⁾ (141)
resistance $V_{Rk,s}$	Stainless steel A4, HCR	[kN]	63	63	63	63	86	131 ¹⁾ (86)	131 ¹⁾ (86)	156 ¹⁾ (123)	156 ¹⁾ (123)	156 ¹⁾ (123)
Partial safety factor	γMs	[-]		1,	25		1,4			1,25		
Steel failure with leve	er arm											
Characteristic	Steel, zinc plated	[Nm]	266	266	266	266	392	519	519	896	896	896
bending moments M ^o _{Rk,s}	Stainless steel A4, HCR	[Nm]	266	266	266	266	454	454	454	784	784	784
Partial safety factor	γMs	[-]		1,	25		1,4			1,25		
Concrete pryout failu	Ire											
Factor in equation (5.6 ETAG Annex C, 5.2.3.		[-]						2				
Partial safety factor	γМср	[-]					,	5, ا				
Concrete edge failure	e											
Effective length of anc shear load	hor in I _f	[mm]	90	105	125	144	115	170	190	170	200	208
Diameter of anchor	d _{nom}	[mm]	18	18	18	18	22	24	24	26	26	26
Partial safety factor	γмс	[-]					1	1,5				

 $^{1)}$ This values may only be applied if $l_t \geq$ 0,5 $t_{\rm fix}$

Table 18: Displacements under shear loads, VMZ-A M16 – M24

Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Shear load in non-cracked concrete	V	[kN]	36	36	36	36	44	75 (49)	75 (49)	89 (71)	89 (71)	89 (71)
Displacements	δvo	[mm]	3,8	3,8	3,8	3,8	3,0	4,3 (3,0)	4,3 (3,0)	4,6 (3,5)	4,6 (3,5)	4,6 (3,5)
Displacements	δ_{V^∞}	[mm]	5,7	5,7	5,7	5,7	4,5	6,5 (4,5)	6,5 (4,5)	6,9 (5,3)	6,9 (5,3)	6,9 (5,3)

SIKLA Injection System VMZ

Characteristic values for shear load under static or quasi-static action, ETAG 001, Annex C, design method A, Displacements under shear loads, Anchor rod VMZ-A M16 – M20

Table 19: Characteristic values for tension load under static or quasi-static action, CEN/TS 1992-4, design method A, VMZ-A M8 – M12 40 50 60 75 75 70 80 95 100 110 125 Anchor size VMZ-A M12 M12 M12 M8 M8 M10 M10 M12 M12 M12 M12 Steel failure Characteristic tension Steel, zinc plated 25 25 35 49 [kN] 15 18 54 54 57 57 57 resistance N_{Rk,s} Stainless steel A4, HCR [kN] 15 18 25 25 35 49 54 54 57 57 57 Partial safety factor [-] 1.5 γMs Pullout 1) 50°C²⁾/80°C³⁾ [kN] Characteristic resistance N_{Rk,p} in 72°C²⁾/120°C³⁾ [kN] 5 7,5 12 12 12 16 20 20 30 30 30 cracked concrete C20/25 7,2 k₈ [-] 50°C²⁾/80°C³⁾ 9 40 50 [kN] 50 Characteristic resistance N_{Rk p} in 72°C²⁾/120°C [kN] 6 9 16 16 16 16 25 25 30 30 30 non-cracked concrete C20/25 10,1 ka [-] Splitting for standard thickness of concrete (The higher resistance of Case 1 and Case 2 may be applied). Standard thickness of concrete 100 100 160 $h_{std} \ge 2 h_{ef}$ [mm] 120 150 150 140 190 200 220 250 Case 1 Characteristic resistance on N⁰_{Rk,sp}⁴⁾ 1) [kN] 7,5 9 16 20 20 20 30 40 40 40 concrete C20/25 3 h_{ef} Respective spacing [mm] S_{cr,sp} Respective edge distance [mm] 1,5 h_{ef} C_{cr,sp} Case 2 Spacing $6 h_{ef}$ $6 h_{ef}$ $5 h_{ef}$ $7 h_{ef}$ $7 h_{ef}$ $5 h_{ef}$ $3 h_{ef}$ $5 h_{ef}$ $4 h_{ef}$ $6 h_{ef}$ $5 h_{ef}$ [mm] S_{cr,sp} Edge distance [mm] 3 h_{ef} 3 h_{ef} 2,5h_{ef} 3,5h_{ef} 3,5h_{ef} 2,5h_{ef} 1,5h_{ef} 2,5h_{ef} 2 h_{ef} 3 h_{ef} 2,5h_{ef} C_{cr,sp} Splitting for minimum thickness of concrete (The higher resistance of Case 1 and Case 2 may be applied.) Minimum thickness of concrete 80 100 100 110 110 110 125 130 140 160 [mm] 80 $h_{\text{min}} \geq$ Case 1 Characteristic resistance in N⁰_{Rk,sp}⁴⁾ 25 [kN] 7,5 _ 16 16 16 20 25 30 30 30 concrete C20/25 Respective spacing 3 h_{ef} 3 h_{ef} S_{cr,sp} [mm] -1,5 h_e Respective edge distance [mm] 1,5 h_{ef} C_{cr,sp} -Case 2 Spacing [mm] S_{cr,sp} [mm] Edge distance C_{cr,sp} C25/30 [-] 1.10 Increasing factors for C30/37 [-] 1,22 N_{Rk.p} and N⁰_{Rk,sp} C40/50 [-] 1,41 Ψc C45/55 [-] 1,48 C50/60 1.55 [-] Concrete cone failure Effective anchorage depth 40 50 60 75 75 70 80 95 | 100 | 110 | 125 h_{ef}≥ [mm] k_{cr} Factor for cracked concrete 7.2 [-] Factor for non-cracked concrete [-] 10,1 kucr Spacing [mm] 3 h_{ef} Scr N Edge distance [mm] 1,5 h_{ef} C_{cr,N} 1,5 Partial safety factor [-] $\gamma_{Mp} = \gamma_{Msp} = \gamma_{Mc}$

¹⁾ Pullout failure is not decisive

²⁾ Maximum long term temperature

Maximum short term temperature

⁴⁾ For the proof against splitting failure according to CEN/TS 1992-4-5, $N_{Rk,c}^{0}$ in equation (23) has to be replaced by $N_{Rk,sp}^{0}$ with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

SIKLA Injection System VMZ

Characteristic values for tension load under static or quasi-static action, CEN/TS 1992-4, design method A, Anchor rod VMZ-A M8 – M12

Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Steel failure												
Characteristic tension Steel, zind	c plated	[kN]	88	95	111	111	96	188	188	222	222	222
resistance N _{Rk,s} Stainless	steel A4,	[kN]	88	95	111	111	114	165	165	194	194	194
Partial safety factor	γMs	[-]		1	,5		1,68			1,5		
Pullout												
	50°C ²⁾ /80°C ³⁾	[kN]					1)				
Characteristic resistance N _{Rk,p} -	72°C ²⁾ /120°C ³⁾	[kN]	25	30	50	50	30	60	60	75	75	75
in cracked concrete C20/25 -	k ₈	[-]					7,					
Observatoriation and interest N	50°C ²⁾ /80°C ³⁾	[kN]		1)		75	,		1)		
Characteristic resistance N _{Rk,p} - in non-cracked concrete C20/25 -	72°C ²⁾ /120°C ³⁾	[kN]	25	35	50	50	40	75	75	95	95	95
In horeacked concrete C20/25 -	k ₈	[-]					10	,2				
Splitting for standard thickr	ness of conc	rete (The high	gher re	sistan	ce of C	Case 1	and Ca	ase 2 r	nay be	applied	1.)
Standard thickness of concrete	$h_{std} \ge 2 h_{ef}$	[mm]	180	200	250	290	230	340	380	340	400	450
Case 1								I				
Charakteristic resistance in	NI ⁰ 4)	EL-N II	40	50	50	60	1))	115	1)	140
cracked concrete C20/25	N ⁰ Rk,sp ⁴⁾	[kN]	40	50	50	60		,	115		, 	140
Respective spacing	S _{cr,sp}	[mm]						h _{ef}				
Respective edge distance	C _{cr,sp}	[mm]					1,5	h _{ef}				
Case 2												
Spacing	S _{cr,sp}	[mm]	4 h _{ef}	4 h _{ef}	4 h _{ef}	4 h _{ef}	3 h _{ef}	3 h _{ef}	4 h _{ef}	3 h _{ef}		3,6 h _{ef}
Edge distance	C _{cr,sp}	[mm]		2 h _{ef}	2 h _{ef}		1,5 h _{ef}		2 h _{ef}		$1,5 h_{ef}$	
Splitting for minimum thick	ness of cong	crete (The hi	gher r	esistan	ce out	t of Cas	<u>se 1 an</u>	d Cas	<u>e 2 may</u>	/ be ap	<u>plied.)</u>
Minimum thickness of concrete	$h_{min} \ge$	[mm]	130	150	160	180	160	220	240	220	260	290
Case 1												
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp} ⁴⁾	[kN]	35	50	40	50	-	75	75	1)	115	115
Respective spacing	S _{cr,sp}	[mm]		3	h _{ef}		-			3 h _{ef}		
Respective edge distance	C _{cr,sp}	[mm]		1,5			-			1,5 h _{ef}		
Case 2	Ocr,sp	[]		1,0	rier					r,e ner		
Spacing	S _{cr,sp}	[mm]	5 h _{ef}	5 h _{ef}	6 h _{ef}	5 h _{ef}	5 h _{ef}	5.2 h _{ef}	4.4 h _{ef}	5,2 h _{ef}	4.4 h _{ef}	4.4 h _{ef}
Edge distance	C _{cr,sp}			2,5 h _{ef}						2,6 h _{ef}		
	C25/30	[-]	, .	/ 01		,		10	/	,	,	, .
Increasing factors for	C30/37	[-]						22				
$N_{Rk,p}$ and $N_{Rk,sp}^{0}$ ψ_{C}	C40/50	[-]					1,					
	C45/55	[-]						48				
-	C50/60	[-]						55				
Concrete cone failure							,					
Effective anchorage depth	h _{ef} ≥	[mm]	90	105	125	145	115	170	190	170	200	225
Factor for cracked concrete	k _{cr}	[-]					7,3					
Factor for non-cracked concrete	k _{ucr}	[-]					10,					
Spacing	S _{cr,N}	[mm]						h _{ef}				
Edge distance	C _{cr,N}	[mm]					1,5					
	_o = γ _{Msp} =γ _{Mc} ⁵⁾	[-]						1,5				

³⁾ Maximum short term temperature

⁴⁾ For the proof against splitting failure according to CEN/TS 1992-4-5, $N^{0}_{Rk,c}$ in equation (23) has to be replaced by $N^{0}_{Rk,sp}$ with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

SIKLA Injection System VMZ

Characteristic values for tension load under static or quasi-static action, CEN/TS 1992-4, design method A, Anchor rod VMZ-A M16 – M20

Table 21:	Displacements under tension loads, VMZ-A M8 – M12
-----------	---

Anchor size VMZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Tension load in cracked concrete	Ν	[kN]	4,3	6,1	8,0	11,1	11,1	10,0	12,3	15,9	17,1	19,8	24,0
Displacement	δ _{N0}	[mm]	0,5	0,5	0,5	0,6	0,6	0,6	0,6	0,6	0,6	0,7	0,7
isplacement	δ _{N∞}	[mm]						1,3					
Tension load in non-cracked concrete	N	[kN]	4,3	8,5	11,1	15,6	15,6	14,1	17,2	19,0	24,0	23,8	23,8
lisplacement	δ_{N0}	[mm]	0,2	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,6	0,6
	$\delta_{N\infty}$	[mm]						1,3					

Table 22: Displacements under tension loads, VMZ-A M16 – M24

Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Tension load in cracked concrete	Ν	[kN]	14,6	18,4	24,0	30,0	21,1	38,0	44,9	38,0	48,5	57,9
Displacement	δ _{N0}	[mm]	0,7	0,7	0,7	0,8	0,7	0,8	0,8	0,8	0,9	0,9
Displacement	$\delta_{N\infty}$	[mm]		1	,3		1,1			1,3		
Tension load in non-cracked concrete	Ν	[kN]	20,5	25,9	33,0	35,7	29,6	53,3	63,0	53,3	67,9	81,1
Displacement	δ_{NO}	[mm]	0,6	0,6	0,6	0,6	0,5	0,6 0,6 0,6 0,6 0,6				0,6
Displacement	$\delta_{N\infty}$	[mm]		1	,3		1,1			1,3		

SIKLA Injection System VMZ

Displacements under tension load Anchor rod VMZ-A

Table 23:Characteristic values for shear load under static or quasi-static action,
CEN/TS 1992-4, design method A, VMZ-A M8 – M12

	•				·								
Anchor size VMZ-A	4		40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Steel failure witho	ut lever arm												
Characteristic shear resistance	Steel, zinc plated	[kN]	14	14	21	21	34	34	34	34	34	34	34
V _{Rk,s}	Stainless steel A4, HCR	[kN]	15	15	23	23	34	34	34	34	34	34	34
Factor of ductility	k ₂	[-]						1,0					
Partial safety factor	γ́Ms	[-]						1,25					
Steel failure with le	ever arm												
Characteristic	Steel, zinc plated	[Nm]	30	30	60	60	105	105	105	105	105	105	105
bending moments M ^o _{Rk,s}	Stainless steel A4, HCR	[Nm]	30	30	60	60	105	105	105	105	105	105	105
Partial safety factor	γ́Ms	[-]						1,25					
Concrete pryout fa	ilure												
Factor in equation (CEN/TS 1992-4-5, 6		[-]						2					
Partial safety factor	γΜαρ	[-]						1,5					
Concrete edge fail	ure												
Effective length of a shear load	nchor in I _f	[mm]	40	50	60	75	75	70	80	95	100	110	112
Diameter of anchor	d _{nom}	[mm]	10	10	12	12	12	14	14	14	14	14	14
Partial safety factor	γмс	[-]						1,5					

Table 24: Displacements under shear loads VMZ-A M8 – M12

Anchor size VMZ-A			40 M8	50 M8	60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12
Shear load in non-cracked concrete	V	[kN]	8,3	8,3	13,3	13,3	19,3	19,3	19,3	19,3	19,3	19,3	19,3
Displacements	δ_{V0}	[mm]	2,4	2,5	2,9	2,9	3,3	3,3	3,3	3,3	3,3	3,3	3,3
Displacements	δ _{V∞}	[mm]	3,6	3,8	4,4	4,4	5,0	5,0	5,0	5,0	5,0	5,0	5,0

Characteristic values for tension load under static or quasi-static
action, CEN/TS 1992-4, design method A, Displacements under shear
loads, Anchor rod VMZ-A M8 – M12

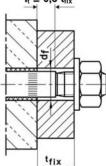


Table 25:Characteristic values for tension load under static or quasi-static action,
CEN/TS 1992-4, design method A, VMZ-A M16 – M24

	10 1302- 4 , uca	'gn n		α д,								
Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Steel failure without	lever arm											
Characteristic shear	Steel, zinc plated	[kN]	63	63	63	63	70	149 ¹⁾ (98)	149 ¹⁾ (98)	178 ¹⁾ (141)	178 ¹⁾ (141)	178 ¹⁾ (141)
resistance $V_{Rk,s}$	Stainless steel A4, HCR	[kN]	63	63	63	63	86	131 ¹⁾ (86)	(86)	156 ¹⁾ (123)	156 ¹⁾ (123)	156 ¹⁾ (123)
Factor of ductility	k 2	[-]					. 1,	0				
Partial safety factor	γMs	[-]		1,	25		1,4			1,25		
Steel failure with lev	ver arm											
Characteristic bending	Steel, zinc plated	[Nm]	266	266	266	266	392	519	519	896	896	896
moments $M^0_{Rk,s}$	Stainless steel A4, HCR	[Nm]	266	266	266	266	454	454	454	784	784	784
Partial safety factor	γMs	[-]		1,	25		1,4			1,25		
Concrete pryout fail	ure											
Factor in equation (27) CEN/TS 1992-4-5, 6.3		[-]						2				
Partial safety factor	γМср	[-]					1	,5				
Concrete edge failu	re											
Effective length of ancl shear load	hor in I _f	[mm]	90	105	125	144	115	170	190	170	200	208
Diameter of anchor	d _{nom}	[mm]	18	18	18	18	22	24	24	26	26	26
Partial safety factor	γмс	[-]				eu	1	,5		215		

¹⁾ This values may only be applied if $I_t \ge 0.5 t_{fix}$

Size M20 + M24 $I_t \ge 0.5 t_{fix}$

Table 26: Displacements under shear loads VMZ-A M16 – M24

Anchor size VMZ-A			90 M16	105 M16	125 M16	145 M16	115 M20	170 M20 (LG)	190 M20 (LG)	170 M24 (LG)	200 M24 (LG)	225 M24 (LG)
Shear load in non-cracked concrete	V	[kN]	36	36	36	36	44	75 (49)	75 (49)	89 (71)	89 (71)	89 (71)
Displacements	δ _{V0}	[mm]	3,8	3,8	3,8	3,8	3,0	4,3 (3,0)	4,3 (3,0)	4,6 (3,5)	4,6 (3,5)	4,6 (3,5)
Displacements	$\delta_{V\infty}$	[mm]	5,7	5,7	5,7	5,7	4,5	6,5 (4,5)	6,5 (4,5)	6,9 (5,3)	6,9 (5,3)	6,9 (5,3)

SIKLA Injection System VMZ

Characteristic values for tension load under static or quasi-static action, CEN/TS 1992-4, design method A, Displacements under shear loads, Anchor rod VMZ-A M16 – M24

I

٦

Table 27:		cteristic A M10 –	: values for se M12	ismic	actio	n, Ca	itego	ry C2	, des	ign n	netho	od A,					
Anchor size	VMZ-A				60 M10	75 M10	75 M12	70 M12	80 M12	95 M12	100 M12	110 M12	125 M12				
Tension load	ł							•									
Steel failure																	
Characteristic te	ension	Steel, zind	plated	[kN]	2	5	35	49	5	4		57					
resistance N _{Rk,s}	,seis	Stainless s	steel A4, HCR	[kN]	2	5	35	49	5	4		57					
Partial safety fa	ctor		γMs,seis	[-]					1,5								
Pullout failu	re																
Characteristic re			50°C ²⁾ /80°C ³⁾	[kN]		6,	-				10,9						
cracked concre Partial safety fa		N _{Rk,p,seis}	72°C ²⁾ /120°C ³	- · ·		5,	,1		1,5		8,4						
	ty factor γ _{Mp,seis} [-] 1,5 ements under seismic tension loads																
Displacements																	
Displacements												1,33 3,93					
Shear load			N,SEIS(ULS)	[]		_,	,00										
Steel failure	without I	ever arm															
Characteristic s		Steel, zind	plated	[kN]	12	.6				27,2							
resistance V _{Rk,s}			steel A4, HCR	[kN]	13					27,2							
Partial safety fa	ctor		, γMs,V,seis			,			1,25	,							
Displacemer	nts under	seismic							-								
Displacements			$\delta_{ m V,seis(DLS)}$ 1)	[mm]	2,	06				2,47							
Displacements	for ULS		$\delta_{V,seis(ULS)}$ 1)	[mm]	3,	74				5,12							
Steel failure	with leve	er arm					•										
Characteristic re	esistance		M ⁰ _{Rk,s.sei}	s [Nm]			no	perforn	nance c	letermi	ned						
The character	ristic seism	nic resistan	ce F _{k,seis} of a fastenir	ng shall l	oe dete	rmined	as										
$F_{k,seis} = \alpha_{gi}$	$_{\sf ap} \cdot \alpha_{\sf seis} \cdot {\sf F}'$	0 Rk,seis		-													
where	α_{gap}		factor to take into a case of shear loadin		nertia et	fects d	ue to a	n annu	lar gap	betwee	en faste	ner an	d				
		= 1,0 no	o hole clearance bet	ween fas	stener a	nd fixtu	ure										
		= 0,5 cc E	onnections with hole TAG 001, Annex C	clearand	ce acco	rding to	o Table	1, CEN	N/TS 19	92-4-1	or to T	able 4.	.1,				
	α_{seis}		factor to take into a ee Table 30.	ccount th	ne influe	ence of	large o	racks a	and sca	tter of	load-dis	placer	nent				
	F ⁰ _{Rk,seis}		racteristic seismic re ne values for static o						in Table	e 27, fo	r all oth	er failu	ire				
γ̃Ms,seis, γ̃Mp,seis			für seismic action fo Jasi-static action ma			des giv	en in T	able 27	′, for all	other f	ailure r	nodes,	the				
DLS – Damage ULS – Ultimate																	
¹⁾ The listed disp ²⁾ Maximum long ³⁾ Maximum sho	lacements	s represent	mean values.														
SIKLA Inje	ection S	ystem \	/MZ														
Characteri Anchor ro			seismic actior M12	n, Cate	egory	C2, (desig	ın me	ethod	А,	An	nex 2	21				

	racteristic va Z-A M16	llues for seisi	nic a	ction, Cate	egory C2, d	esign metl	nod A,
Anchor size VMZ-A	N Contraction of the second se			90 M16	105 M16	125 M16	145 M16
Tension load			I		1		
Steel failure							
Characteristic tension	Steel, zinc p	lated	[kN]	88	95	1	11
resistance N _{Rk,s,seis}	Stainless ste	el A4, HCR	[kN]	88	95	1 [.]	11
Partial safety factor		γMs,seis	[-]		1,	5	
Pullout failure							
Characteristic resistance	ce in	50°C ²⁾ /80°C ³⁾	[kN]	12,9	16,2	2	1,1
cracked concrete C20/2	25 N _{Rk,p,seis}	72°C ²⁾ /120°C ³⁾	[kN]	10,5	14,7	20	0,9
Partial safety factor		γMp,seis	[-]		1,	5	
Displacements un	der seismic ten	sion loads					
Displacements for DLS	1	$\delta_{\rm N,seis(DLS)}^{1)}$	[mm]		1,	48	
Displacements for ULS	1	$\delta_{ m N,seis(ULS)}^{ m 1)}$	[mm]		4,	43	
Shear load							
Steel failure withou	ut lever arm						
Characteristic shear	Steel, zinc p		[kN]		50		
resistance V _{Rk,s,seis}	Stainless ste	el A4, HCR	[kN]		50		
Partial safety factor		γ̃Ms,V,seis	[-]		1,	25	
Displacements un	der seismic she						
Displacements for DLS		$\delta_{V,seis(DLS)}^{1)}$	[mm]		2,	91	
Displacements for ULS	1	$\delta_{ m V,seis(ULS)}^{ m 1)}$	[mm]		6,	80	
Steel failure with le	ever arm						
Characteristic resistance	ce	$M^{o}_{Rk,s,seis}$	[Nm]		no performan	ce determined	
The characteristic se	ismic resistance F	_{k,seis} of a fastening	shall be	determined as	S		
$F_{k,seis} = \alpha_{gap} \cdot \alpha_{seis}$	· F ⁰ _{Rk,seis}						
where α_{gap}		or to take into acco of shear loading.	ount iner	rtia effects due	e to an annular g	ap between fa	stener and
	= 1,0 no ho	e clearance betwe	en faste	ener and fixture	e		
		ctions with hole cle 001, Annex C	earance	according to T	Table 1, CEN/TS	5 1992-4-1 or t	o Table 4.1,
a _{seis}	reduction fact curves, see T	or to take into acco able 30.	ount the	influence of la	rge cracks and	scatter of load	displacement
F ⁰ _{Rk,se}		eristic seismic resis alues for static or q				able 28, for all	other failure
		seismic action for t atic or quasi-static :				r all other failu	re
DLS – Damage Limit S ULS – Ultimate Limit S	State				·		
¹⁾ The listed displaceme		n values					
 ²⁾ Maximum long term to ³⁾ Maximum short term to 	emperature						
SIKLA Injection		2					
Characteristic v Anchor rod VM		smic action, (Categ	jory C2, de	esign metho	od A, A	nnex 22

The seismic performance of anchors subjected to seismic loading is categorized by performance categories C1 and C2. The assignment of the seismic performance categories C1 and C2 to the seismicity level and building importance classes is in the responsibility of each individual Member State.

The values of a_g or that of the product $a_g \cdot S$ used in a Member State to define thresholds for the seismicity classes may be found in its National Annex of EN 1998-1:2004 (EC8) and may be different to the values given in Table 29.

The recommended categories C1 and C2 given in Table 29 are given in the case that no national requirements are defined.

Table 29: Recommended seismic performance categories for anchors

Seis	micity level ^{a)}	Importance Class acc. to EN 1998-1:2004, 4.2.5						
Class	a _g ⋅S ^{c)}	Ι	II	III	IV			
Very low ^{b)}	a _g · S ≤ 0,05 g		No additional re	equirement				
low ^{b)}	0,05 g < a _g · S ≤ 0,1 g	C1	C1 ^{d)} o	r C2 ^{e)}	C2			
> low	a _g · S > 0,1 g	C1		C2				

a) The values defining the seismicity level may be found in the National Annex of EN 1998-1.

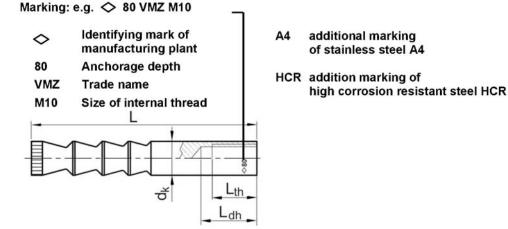
b) Definition according to EN 1998-1:2004, 3.2.1 C)

a_g =

 $\gamma_1 \cdot \mathbf{a}_{gR}$ Design ground acceleration on type A ground (Ground types as defined in EN 1998-1:2004, Table 3.1);

- importance factor (see EN 1998-1:2004, 4.2.5); $\gamma_1 =$
- reference peak ground acceleration on type A ground a_{aR} = (see EN 1998-1:2004, 3.2.1);
- Soil factor (see e.g. EN 1998-1:2004, 3.2.2). S =
- d) C1 for fixing non-structural elements to structures

e) C2 for fixing structural elements to structures


Reduction factor α_{seis} Table 30:

Loading	Failure mode	Single fastener	Fastener group
	Steel failure	1,0	1,0
Tonsion	TensionPull-out failure1,0Concrete cone failure0,85	0,85	
Tension		0,75	
	Splitting failure	1,0	0,85
	Steel failure	1,0	0,85
Shear	Concrete edge failure	1,0	0,85
	Concrete pry-out failure	0,85	0,75

SIKLA Injection System VMZ

Recommended seismic performance categories for anchors, Reduction factor α_{eq}

Table 31: Dimensions on anchor rod VMZ-IG

Anchor size VMZ-IG		40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Internal thread	-	M6	M6	M8	M8	M10	M10	M12	M12	M12	M16	M16	M20
Number of cones	-	2	3	3	3	3	4	3	4	6	3	6	6
Outer diameter c	k [mm]	8,0	8,0	9,7	10,7	12,5	12,5	16,5	16,5	16,5	19,7	22,0	24,0
Thread length L	th [mm]	12	15	16	19	20	23	24	27	30	32	32	40
Total length I	. [mm]	41	52	63	78	74	84	94	109	130	120	180	182
Length identifier	[mm]	L _{dh} < 18	L _{dh} > 19	L _{dh} < 22,5	L _{dh} > 23,5	L _{dh} < 27	L _{dh} > 28	L _{dh} < 31,5	32,5 < L _{dh} < 34,5	L _{dh} > 35,5	d _k < 21	d _k > 21	-

Table 32: Materials VMZ-IG

Part	Designation	Steel, zinc plated	Stainless steel A4	High corrosion resistant steel (HCR)
1	Anchor rod	Steel acc. to EN 10087, galvanised and coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088, coated	High corrosion resistant steel 1.4529, 1.4565 acc. to EN 10088, coated
4	Mortar cartridge	Vinylester resin, styrene free,	mineral aggregate 1:10	

Requirements of the fastening screw or the threaded rod and nut

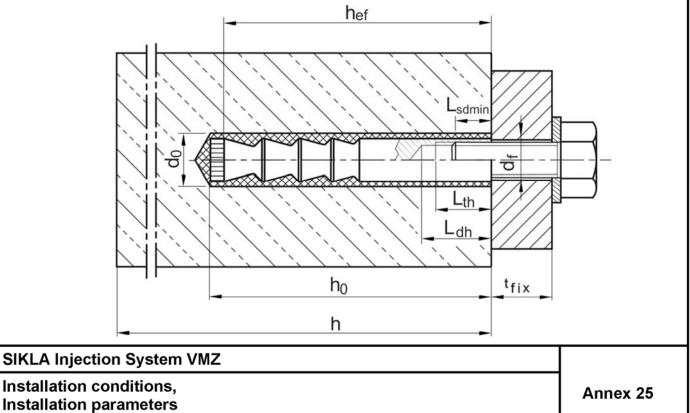
- Minimum screw-in depth L_{sdmin} see Table 34
- The length of screw or the threaded rod must depending on the thickness of fixture t_{fix}, available thread length L_{th} (= maximum available thread length, see Table 34) and the minimum screw-in depth L_{sdmin} be established.
- $A_5 > 8 \%$ Ductility

Steel, zinc plated

- Minimum property class 8.8 according to EN ISO 898-1 or EN ISO 898-2
- Stainless steel A4
- Material 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088
- Minimum property class 70 according to EN ISO 3506
- High corrosion resistant steel (HCR)
- Material 1.4529; 1.4565 acc. to EN 10088
- Minimum property class 70 according to EN ISO 3506

SIKLA Injection System VMZ

Dimensions, Materials Anchor rod VMZ-IG


Table 33: Installation conditions VMZ-IG

Anchor size VMZ-IG			M6 – M8	M10 – M20
Nominal diameter of drill hole	d _o	[mm]	< 14	≥ 14
	dry concrete	-	yes	yes
Installation allowable in	wet concrete	-	yes	yes
	water-filled hole 1)	-	no	yes

¹⁾ Special requirements see Section 4.3.

Installation parameters VMZ-IG Table 34:

Anchor size VMZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Effective anchorage depth	h _{ef} =	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Nominal diameter of drill hole	d ₀ =	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Depth of drill hole	$h_0 \geq$	[mm]	42	55	65	80	80	85	98	113	133	120	180	185
Diameter of cleaning brush	D≥	[mm]	10,8	10,8	13,0	13,0	15,0	15,0	19,0	19,0	19,0	23,0	25,0	27,0
Installation torque	T _{inst} ≤	[Nm]	8	8	10	10	15	15	25	25	25	50	50	80
Diameter of clearance hole in the fixture	$d_{f}\!\leq\!$	[mm]	7	7	9	9	12	12	14	14	14	18	18	22
Available thread length	L _{th}	[mm]	12	15	16	19	20	23	24	27	30	32	32	40
Minimum screw-in depth	L_{sdmin}	[mm]	7	7	9	9	12	12	14	14	14	18	18	22

Anchor rod VMZ-IG

Insta	allation instruc	tions VMZ-IG
Makir	ng and cleaning o	f hammer drilled holes
1	90	Use Hammer drill or air drill with drill bit and depth gauge. Drill perpendicular to concrete surface.
	↓	Drill hole must be cleaned directly prior to installation of the anchor.
2		VMZ-IG M6 - M12: Blow out drill hole from the bottom with SIKLA Blow-out pump VM-AP at least two times. The Extension Tube with reduced diameter must be added to the Blow-out pump for the diameter M8.
2	min. 6 bar 2x +	VMZ-IG M16 - M20: Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.
3		Check diameter of SIKLA Cleaning Brush RB. If Brush can be pushed into the drill hole without any resistance, it must be replaced. Chuck Brush into drill machine. Turn on drill machine. Brush drill hole back and forth along the entire drill hole depth at least two times while rotated by drill machine.
4	MB-M16	VMZ-IG M6 - M12: Blow out drill hole from the bottom with SIKLA Blow-out pump VM-AP at least two times. The Extension Tube with reduced diameter must be added to the Blow-out pump for the diameter M8.
4	min. 6 bar 2x	VMZ-IG M16 - M20: Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.
Makir	ng and cleaning o	f diamond drilled holes
1		Use diamond drill with diamond drill bit and depth gauge. Drill perpendicular to concrete surface.
		Drill hole must be cleaned directly prior to installation of the anchor.
2	\rightarrow	Remove drill core at least up to the nominal hole depth and check drill hole depth.
3		Flushing of drill hole: Flush drill hole with water, starting from the bottom, until clear water gets out of the drill hole.
4	min. 6 bar 2x ++++++++++++++++++++++++++++++++++++	Connect SIKLA Air Blower VM-ABP to compressed air (min. 6 bar, oil-free). Open air valve and blow out drill hole along the entire depth with back and forth motion at least two times.

SIKLA Injection	System	VMZ
-----------------	--------	-----

`)∖

Installation instructions - Drilling and cleaning -Anchor rod VMZ-IG

Page 35 of European technical approval ETA-10/0260 of 21 June 2013

English translation prepared by DIBt

Inject	tion	
5	- B LEESTER	Check expiration date on SIKLA VMZ cartridge. Never use when expired. Remove cap from VMZ cartridge. Screw Mixer Nozzle VM-X on cartridge. When using a new cartridge always use a new Mixer Nozzle. Never use cartridge without Mixer Nozzle and never use Mixer Nozzle without helix inside.
6	min. 2x min. 10 cm	Insert cartridge in Dispenser. Before injecting discard mortar (at least 2 full strokes or a line of 10 cm) until it shows a consistent grey colour. Never use this mortar.
7	****	Prior to injection check if Mixer Nozzle VM-X reaches the bottom of the drill hole. If is does not reach the bottom, plug Mixer Extension VM-XE onto Mixer Nozzle in order to properly fill the drill hole. Fill cleaned drill hole with a sufficient quantity of injection mortar. Start from the bottom of the drill hole and work out to avoid trapping air pockets.

Setting of anchor

8		Insert the anchor VMZ-IG rod by hand, rotating slightly up to about 1mm below the concrete surface in the drill hole. The anchor rod is property set when excess mortar seeps from the hole. If the hole is not completely filled, up out anchor rod, let mortar cure, drill out hole and start again from No. 2.
9	×	Follow minimum curing time shown in Table 35: and Table 36:. During curing time anchor rod must not be moved or loaded.
10		Remove excess mortar.
11		The fixture can be mounted after curing time. Apply installation torque T_{inst} according to Table 34: by using torque wrench

SIKLA Injection System VMZ

Installation instructions - Anchor installation -Anchor rod VMZ-IG

Temperature [°C]	Maximum processing	Minimum o	curing time
in the drill hole	time	dry concrete	wet concrete
+ 40 °C	1,4 min	15 min	30 min
+ 35 °C to +39 °C	1,4 min	20 min	40 min
+ 30 °C to +34 °C	2 min	25 min	50 min
+ 20 °C to +29 °C	4 min	45 min	1:30 h
+ 10 °C to + 19 °C	6 min	1:20 h	2:40 h
+ 5 °C to + 9°C	12 min	2:00 h	4:00 h
0 °C to + 4°C	20 min	3:00 h	6:00 h
- 4 °C to -1 °C	45 min	6:00 h	12:00 h ¹⁾
- 5 °C	1:30 h	6:00 h	12:00 h ¹⁾

Table 36: Maximum processing time and minimum curing time VMZ Express

Temperature [°C]	Maximum processing	Minimum curing time								
in the drill hole	time	dry concrete	wet concrete							
+ 30 °C	1 min	10 min	20 min							
+ 20 °C to + 29 °C	1 min	20 min	40 min							
+ 10 °C to + 19 °C	3 min	40 min	80 min							
+ 5 °C to + 9 °C	6 min	1:00 h	2:00 h							
0 °C to + 4 °C	10 min	2:00 h	4:00 h							
- 4 °C to -1 °C	20 min	4:00 h	8:00 h ¹⁾							
-5 °C	40 min	4:00 h	8:00 h ¹⁾							

¹⁾ It must be ensured that icing does not occur in the drill hole. The hole must be drilled and cleaned directly prior to the installation the anchor.

Table 37: Minimum thickness of concrete, minimum spacing and edge distance, VMZ-IG

Anchor size VMZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Minimum thickness of concrete	h _{min}	[mm]	80	80	100	110	110	110	130	150	170 160 ²⁾	160	230 220 ²⁾	230 220 ²⁾
Cracked concrete														
Minimum spacing	S min	[mm]	40	40	40	40	55	40	50	50	60	80	80	80
Minimum edge distance	C _{min}	[mm]	40	40	40	40	55	50	50	50	60	80	80	80
Non-cracked concrete														
Minimum spacing	S min	[mm]	40	40	50	50	55	55	50	60	60	80	80	80
Minimum edge distance	Cmin	[mm]	40	40	50	50	55	55	50	60	60	80	80	80

²⁾ The remote face of the concrete member shall be inspected to ensure there has been no break-through by drilling. In case of break-through the ground of the drill hole shall be closed with high strength mortar. The full bonded length her shall be achieved and any potential loss of injection mortar shall be compensated.

SIKLA Injection System VMZ

Processing time, curing time,

Minimum thickness of concrete, Minimum spacing and edge distance, Anchor rod VMZ-IG

	istic values , Annex C,							atic c	or qu	asi-s	statio	c acti	on,	
Anchor size VMZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Steel failure														
Characteristic Steel, zinc	plated	[kN]	15	16	19	29	35	35	67	67	67	52	125	108
tension resistance	teel A4, HCR	[kN]	11	11	19	21	33	33	47	47	47	65	88	94
Partial safety factor	γMs	[-]		l			l	1,	5	I	l			
Pullout	100													
Characteristic resistance N _{Rk.p}	50°C ²⁾ /80°C ³⁾	[kN]						1)					
in cracked concrete C20/25	72°C ²⁾ /120°C ³⁾		5	7,5	12	12	16	20	20	30	50	30	60	75
Characteristic resistance N _{Rk.p}	50°C ²⁾ /80°C ³⁾	[kN]	9	7,5	12	12	10	20)	00	50	50	00	15
in cracked concrete C20/25	72°C ²⁾ /120°C ³⁾		6	9	16	16	16	25	25	35	50	40	75	95
Splitting for standard thick				-									10	
Standard thickness of concrete			100		120	150	140	160	180	2 11129	250	230	340	340
Case 1	$h_{std} \ge 2h_{ef}$	[mm]	100	100	120	150	140	160	100	200	250	230	340	340
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp} ⁴⁾	[kN]	7,5	9	16	20	20	1)	40	50	50		1)	
Respective spacing	S _{cr,sp}	[mm]						3	h _{ef}					
Respective edge distance	C _{cr,sp}	[mm]						1,5	h _{ef}					
Case 2														
Spacing	S _{cr,sp}	[mm]	6h _{ef}	6h _{ef}	5h _{ef}	7h _{ef}	5h _{ef}	3h _{ef}	4h _{ef}	4h _{ef}	4h _{ef}	3h _{ef}	3 _{ef}	3h _{ef}
Edge distance	C _{cr,sp}	[mm]	3h _{ef}	3h _{ef}	2,5h _{ef}	3,5h _{ef}	2,5h _{ef}	1,5h _{ef}	2h _{ef}	2h _{ef}	2h _{ef}	1,5h _{ef}	1,5 _{ef}	$1,5h_{ef}$
Splitting for minimum thic	kness of cond	crete	(The h	nigher	resista	ince of	Case	1 and	Case	2 may	be ap	plied.)		
Minimum thickness of concrete	h _{min} ≥	[mm]	80	80	100	110	110	110	130	150	160	160	220	220
Case 1								1						
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp} ⁴⁾	[kN]	7,5	-	16	16	20	25	35	50	40	-	75	1)
Respective spacing	S _{cr,sp}	[mm]							h _{ef}					
Respective edge distance	C _{cr,sp}	[mm]						1,5	h _{ef}					
Case 2									1					
Spacing	S _{cr,sp}	[mm]										5 h _{ef}		
Edge distance	C _{cr,sp}	[mm]	3 h _{ef}	3,5h _{ef}	3 h _{ef}	3,5h _{ef}	3,5h _{ef}			2,5h _{ef}	3 h _{ef}	2,5h _{ef}	2,6h _{ef}	2,6h _{ef}
	C25/30	[-]							10					
Increasing factors for	C30/37	[-]							22					
$N_{Rk,p}$ and $N_{Rk,sp}^{0}$ ψ_{c}	C40/50	[-]							41					
	C45/55	[-]							48					
	C50/60	[-]						1,	55					
Concrete cone failure														
Effective anchorage depth	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Spacing	S _{cr,N}	[mm]							h _{ef}					
Edge distance	C _{cr,N}	[mm]						1,5						
Partial safety factor	γ _{Mp} = γ _{Msp} =γ _{Mc}	[-]						1,	5					
 Pullout failure is not decisive Maximum long term temperatu Maximum short term temperat For the proof against splitting f consideration of the member t 	ure failure according)1 Ann	iex C,	N ⁰ Rk,c i	in equ	ation (5.3) ha	is to be	e repla	iced by	∕ N ⁰ _{Rk,€}	_p with
SIKLA Injection Syste				ade r	otot				otic		-	Anno	ay 20	<u> </u>

action, ETAG 001, Annex C, design method A, Anchor rod VMZ-IG

Anchor size VMZ-IG				40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Tension load in cracked concr	ete	N	[kN]	4,3	6,1	8,0	11,1	10,0	12,3			24,0	21,1	38,0	38,0
	δια [m		[mm]	0,5	0.5	0,5	0.6	0.6	0.6	0.7	0.7	0.7	0.7	0,8	0,8
Displacement	isplacement		[mm]				1 '	1,3	<u> </u>	,	<u> </u>	<u> </u>	1,1	1,	
Tension load in non-cracked c	on load in non-cracked concrete N [kN]		4,3	8,5	11,1	15,6	14,1	17,2	20,5	25,9	33,0	29,6	53,3	53,	
διο		[mm]	0,2	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,5	0,6	0,6	
Displacement $\frac{\delta_{No}}{\delta_{N\infty}}$ [mm]							1,3					1,1	1,	3	
Anchor size VMZ-IG				40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	17 M2
Steel failure without lever	arm														
Characteristic	Steel, zinc	plated	[kN]	8	8	9,5	15	18	18	34	34	34	26	63	54
shear resistance V _{Rks}	Stainless s \4, HCR	teel	[kN]	5,5	5,5	9,5	10	16	16	24	24	24	32	44	47
Partial safety factor	γν	ls	[-]	1,25											
Steel failure with lever arr	n														
L'haracteristic hendind	Steel, zinc	-	[kN]	12	12	30	30	60	60	105	105	105	212	266	519
moments M ⁰ _{Rks}	Stainless s \4, HCR	teel	[kN]	8,5	8,5	21	21	42	42	74	74	74	187	187	365
Partial safety factor	γν	ls	[-]						1,2	25					
Concrete pryout failure															
Factor in equation (5.6) ETAG Annex C, 5.2.3.3	k	ζ.	[-]						2						
Annex C, 5.2.3.3		ср	[-]						1,	5					
	γM														
Partial safety factor Concrete edge failure	γM														
Partial safety factor Concrete edge failure Effective length of anchor in	γM Ιι	F	[mm]	40	50	60	75	70	80	90	105	125	115	170	17
Partial safety factor Concrete edge failure Effective length of anchor in shear load Diameter of anchor			[mm] [mm]	40 10	50 10	60 12	75 12	70 14	80 14	90 18	105 18	125 18	115 22	170 24	17(26

Table 41: Displacements under shear loads, VMZ-IG

		40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
V	[kN]	4,6	4,6	5,4	8,4	10,1	10,1	19,3	19,3	19,3	14,8	35,8	30,7
δ_{V0}	[mm]	0,4	0,4	0,5	0,4	0,5	0,5	1,2	1,2	1,2	0,8	1,9	1,2
$\delta_{V\infty}$	[mm]	0,7	0,7	0,8	0,7	0,8	0,8	1,9	1,9	1,9	1,2	2,8	1,9
V	[kN]	3,2	3,2	5,4	5,9	9,3	9,3	13,5	13,5	13,5	18,5	25,2	26,9
δ_{V0}	[mm]	0,3	0,3	0,5	0,3	0,5	0,5	0,9	0,9	0,9	1,0	1,4	1,1
δ _{V∞}	[mm]	0,4	0,4	0,7	0,5	0,7	0,7	1,4	1,4	1,4	1,5	2,1	1,6
	δ _{ν0} δ _{ν∞} V δ _{ν0}	$\begin{array}{c} \delta_{V0} & [mm] \\ \delta_{V\infty} & [mm] \\ \hline V & [kN] \\ \delta_{V0} & [mm] \end{array}$	M6 V [kN] 4,6 δ_{V0} [mm] 0,4 $\delta_{V\infty}$ [mm] 0,7 V [kN] 3,2 δ_{V0} [mm] 0,3	M6 M6 V [kN] 4,6 4,6 δ_{V0} [mm] 0,4 0,4 $\delta_{V\infty}$ [mm] 0,7 0,7 V [kN] 3,2 3,2 δ_{V0} [mm] 0,3 0,3	M6 M6 M8 V [kN] 4,6 4,6 5,4 δ_{V0} [mm] 0,4 0,4 0,5 $\delta_{V\infty}$ [mm] 0,7 0,7 0,8 V [kN] 3,2 3,2 5,4 δ_{V0} [mm] 0,3 0,3 0,5	M6 M6 M8 M8 V [kN] 4,6 4,6 5,4 8,4 δ_{V0} [mm] 0,4 0,4 0,5 0,4 δ_{V0} [mm] 0,7 0,7 0,8 0,7 V_{V0} [kN] 3,2 3,2 5,4 5,9 δ_{V0} [mm] 0,3 0,3 0,5 0,3	M6 M6 M8 M8 M10 V [kN] 4,6 4,6 5,4 8,4 10,1 δ_{V0} [mm] 0,4 0,4 0,5 0,4 0,5 $\delta_{V\infty}$ [mm] 0,7 0,7 0,8 0,7 0,8 V [kN] 3,2 3,2 5,4 5,9 9,3 δ_{V0} [mm] 0,3 0,3 0,5 0,3 0,5	M6 M6 M8 M8 M10 M10 V [kN] 4,6 4,6 5,4 8,4 10,1 10,1 δ_{V0} [mm] 0,4 0,4 0,5 0,4 0,5 0,5 δ_{Vo} [mm] 0,7 0,7 0,8 0,7 0,8 0,8 V_{∞} [kN] 3,2 3,2 5,4 5,9 9,3 9,3 δ_{V0} [mm] 0,3 0,3 0,5 0,3 0,5 0,5	M6 M6 M8 M8 M10 M10 M12 V [kN] 4,6 4,6 5,4 8,4 10,1 10,1 19,3 δ_{V0} [mm] 0,4 0,4 0,5 0,4 0,5 0,5 1,2 δ_{Vo} [mm] 0,7 0,7 0,8 0,7 0,8 0,8 1,9 V_{Vo} [kN] 3,2 3,2 5,4 5,9 9,3 9,3 13,5 δ_{V0} [mm] 0,3 0,3 0,5 0,3 0,5 0,5 0,9	M6 M6 M8 M8 M10 M10 M12 M12 V [kN] 4,6 4,6 5,4 8,4 10,1 10,1 19,3 19,3 δ_{V0} [mm] 0,4 0,4 0,5 0,4 0,5 1,2 1,2 δ_{Vo} [mm] 0,7 0,7 0,8 0,7 0,8 0,8 1,9 1,9 V_{∞} [kN] 3,2 3,2 5,4 5,9 9,3 9,3 13,5 13,5 δ_{V0} [mm] 0,3 0,3 0,5 0,3 0,5 0,5 0,9 0,9 0,9	M6 M6 M8 M8 M10 M10 M12 M12 M12 V [kN] 4,6 4,6 5,4 8,4 10,1 10,1 19,3 19,3 19,3 δ_{V0} [mm] 0,4 0,4 0,5 0,4 0,5 1,2 1,2 1,2 δ_{V0} [mm] 0,7 0,7 0,8 0,7 0,8 0,8 1,9 1,9 1,9 V_{V0} [kN] 3,2 3,2 5,4 5,9 9,3 9,3 13,5 13,5 13,5 δ_{V0} [mm] 0,3 0,3 0,5 0,5 0,5 0,9 0,9 0,9	M6M6M8M8M10M10M12M12M12M12M13 V [kN]4,64,65,48,410,110,119,319,319,314,8 δ_{V0} [mm]0,40,40,50,40,50,51,21,21,20,8 $\delta_{V\infty}$ [mm]0,70,70,80,70,80,81,91,91,91,2 V [kN]3,23,25,45,99,39,313,513,513,518,5 δ_{V0} [mm]0,30,30,50,30,50,50,90,90,91,0	M6 M6 M8 M8 M10 M10 M12 M12 M12 M12 M16 M16 V [kN] 4,6 4,6 5,4 8,4 10,1 10,1 19,3 19,3 19,3 14,8 35,8 δ_{V0} [mm] 0,4 0,4 0,5 0,4 0,5 1,2 1,2 1,2 0,8 1,9 δ_{V0} [mm] 0,7 0,7 0,8 0,7 0,8 1,9 1,9 1,2 1,2 2,8 δ_{V0} [mm] 0,7 0,7 0,8 0,7 0,8 1,9 1,9 1,9 1,2 2,8 V [kN] 3,2 3,2 5,4 5,9 9,3 9,3 13,5 13,5 18,5 25,2 δ_{V0} [mm] 0,3 0,3 0,5 0,5 0,9 0,9 0,9 1,0 1,4

SIKLA Injection System VMZ

Characteristic values for shear loads under static or quasi-static action, ETAG 001, Annex C, design method A, displacements, Anchor rod VMZ-IG

Anchor size VMZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Steel failure														
Characteristic Steel, zinc p	plated	[kN]	15	16	19	29	35	35	67	67	67	52	125	108
	eel A4, HCR	[kN]	11	11	19	21	33	33	47	47	47	65	88	94
Partial safety factor	γMs	[-]						1,	5					
Pullout														
Characteristic resistance N _{Rk,p}	50°C ²⁾ /80°C ³⁾	[kN]						1						
in cracked concrete C20/25	72°C ²⁾ /120°C ³⁾		5	7,5	12	12	16	20_	20	30	50	30	60	75
	k ₈ 50°C ²⁾ /80°C ³⁾							7,	2					
Characteristic resistance NRk,p -	72°C ²⁾ /120°C ³⁾	[kN] [kN]	9 6	9	16	16	16	25	25	35	50	40	75	95
in non-cracked concrete C20/25 -	<u>72 C /120 C</u> k ₈	[-]	0	9		10	10	<u>2</u> 3 10		- 35	_ 30	40	15	- 95
Splitting for standard thick			L Tha hi	aher r	ocietar	ice of	Case 1		1	may		lied)		
Standard thickness of concrete	h _{std} ≥ 2h _{ef}	[mm]	100	100	120	150	140	160	180	200	250	230	340	340
Case 1	listd 2 211et	Ifrinid	100	100	120	130	140	100	100	200	230	230	340	
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp} ⁴⁾	[kN]	7,5	9	16	20	20	1)	40	50	50		1)	
Respective spacing	S _{cr.sp}	[mm]		1	1	1		3	h _{ef}		1			
Respective edge distance	C _{cr,sp}	[mm]						1,5	h _{ef}					
Case 2		1			. <u> </u>									
Spacing	S _{cr,sp}	[[mm]		6h _{ef}	5h _{ef}	7h _{ef}	5h _{ef}	3h _{ef}		4h _{ef}	4h _{ef}	3h _{ef}	3 _{ef}	3h _{ef}
Edge distance	C _{cr,sp}	[[mm]	3h _{ef}		2,5h _{ef}					2h _{ef}		1,5h _{ef}	1,5 _{ef}	1,5∩€
Splitting for minimum thick		1	r			-		-			-			
Minimum thickness of concrete Case 1	h _{min} ≥	[[mm]	80	80	100	110	110	110	130	150	160	160	220	220
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp} ⁴⁾	[kN]	7,5	-	16	16	20	25	35	50	40	-	75	1)
Respective spacing	S _{cr,sp}	[mm]							h _{ef}					
Respective edge distance Case 2	C _{cr,sp}	[[mm]						1,5	llef					
Spacing	S _{cr,sp}	[mm]	6 h _{ef}	7 h _{ef}	6 h _{ef}	7 h _{ef}	7 h _{ef}	6 h _{ef}	5 h _{ef}	5 h _{ef}	6 h _{ef}	5 h _{ef}	5.2h _{ef}	5.2h,
Edge distance	C _{cr,sp}				3 h _{ef}									
	C25/30	[-]						1,	10					
Increasing factors for	C30/37	[-]							22					
N _{Rk,p} and N ⁰ _{Rk,sp} Ψ _c	C40/50	[-]							41					
	C45/55 C50/60	[-]							48 55					
	050/60	[-]						Ι,	55					
Concrete cone failure		I	40				70	00	00	405	4.05	445	470	476
Effective anchorage depth Factor for cracked concrete	h _{ef}	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
	k _{cr}	[-]						7,						
Factor for non-cracked concrete	k _{ucr}	[-]						10,						
Spacing Edge distance	S _{cr,N}	[mm] [mm]						<u> </u>	h _{ef}					
	$C_{cr,N}$	[-]						<u>,,5</u> 1,						
 ^γ Pullout failure is not decisive ^λ Maximum long term temperatur ^λ Maximum short term temperatu ^λ For the proof against splitting fa consideration of the member th 	re iilure according	to CE		1992-4	4-5, N ⁰	Rk,c in	equatio			o be re	eplace	d by N	0 Rk,sp W	vith
SIKLA Injection Syster	. ,	- 1,0).												
Characteristic values f action, CEN/TS 1992-4 Anchor rod VMZ-IG				nder	stati	c or	quas	si-sta	atic] ,	Anne	ex 31	

Anchor size VMZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Tension load in cracked cond	rete N	[kN]	4,3	6,1	8,0	11,1	10,0	12,3	14,6	18,4	24,0	21,1	38,0	38,0
Displacement	δ _{N0}	[mm]	0,5	0,5	0,5	0,6	0,6	0,6	0,7	0,7	0,7	0,7	0,8	0,8
-	δ _{N∞}	[mm]					1,3					1,1	1,	
Tension load in non-cracked		[kN] [mm]	4,3	8,5	11,1	15,6	14,1	17,2			33,0	29,6	53,3	
Displacement	δ _{N0} δ _{N∞}		0,2	0,4	0,4	0,4	0,4	0,4	0,6	0,6	0,6	0,5	0,6	0,6
	eristic values 1992-4, desig						70	80 M10	90 912	105 M12	125 M12	115	170 M16	170 M20
Steel failure without leve	r arm													
Characteristic	Steel, zinc plated	[kN]	8	8	9,5	15	18	18	34	34	34	26	63	54
shear resistance V _{Rks}	Stainless steel A4, HCR	[kN]	5,5	5,5	9,5	10	16	16	24	24	24	32	44	47
Factor of ductility	k ₂	[-]						1,	0					
Partial safety factor	γMs	[-]						1,:	25					
Steel failure with lever ar	m													I
Characteristic bending	Steel, zinc plated	[kN]	12	12	30	30	60	60	105	105	105	212	266	519
moments M ⁰ _{Rk,s}	Stainless steel A4, HCR	[kN]	8,5	8,5	21	21	42	42	74	74	74	187	187	365
Partial safety factor	γMs	[-]						1,:	25					
Concrete pryout failure														
Factor in equation (27) CEN/TS 1992-4-5, 6.3.3	k ₃	[-]						2						
Partial safety factor	γ́Мср	[-]						1,:	5 ²⁾					
Concrete edge failure														
Effective length of anchor in shear load	ſ	[mm]	40	50	60	75	70	80	90	105	125	115	170	170
Diameter of anchor	d _{nom}	[mm]	10	10	12	12	14	14	18	18	18	22	24	26
Partial safety factor	γмс	[-]						1,	5 ²⁾					

Anchor size VMZ-IG			40 M6	50 M6	60 M8	75 M8	70 M10	80 M10	90 M12	105 M12	125 M12	115 M16	170 M16	170 M20
Shear load Steel, zinc plated	V	[kN]	4,6	4,6	5,4	8,4	10,1	10,1	19,3	19,3	19,3	14,8	35,8	30,7
Displacements -	δ_{V0}	[mm]	0,4	0,4	0,5	0,4	0,5	0,5	1,2	1,2	1,2	0,8	1,9	1,2
Displacements	$\delta_{V\infty}$	[mm]	0,7	0,7	0,8	0,7	0,8	0,8	1,9	1,9	1,9	1,2	2,8	1,9
Shear load Stainless steel A4 / HCR	V	[kN]	3,2	3,2	5,4	5,9	9,3	9,3	13,5	13,5	13,5	18,5	25,2	26,9
Displacements -	δ_{V0}	[mm]	0,3	0,3	0,5	0,3	0,5	0,5	0,9	0,9	0,9	1,0	1,4	1,1
Displacements	$\delta_{V\infty}$	[mm]	0,4	0,4	0,7	0,5	0,7	0,7	1,4	1,4	1,4	1,5	2,1	1,6

SIKLA Injection System VMZ

Characteristic values for shear loads under static or quasi-static action, CEN/TS 1992-4, design method A, displacements, Anchor rod VMZ-IG

Annex 32

Electronic copy of the ETA by DIBt: ETA-10/0260