

# **European Technical Approval ETA-11/0076**

| Handelsbezeichnung<br>Trade name             | BERNER Verbundanker BCA<br>BERNER Chemical anchor BCA                           |
|----------------------------------------------|---------------------------------------------------------------------------------|
| Zulassungsinhaber<br>Holder of approval      | Berner Trading Holding GmbH<br>Bernerstraße 6<br>74653 Künzelsau<br>DEUTSCHLAND |
| Zulassungsgegenstand<br>und Verwendungszweck | Verbunddübel in den Größen M8 bis M30 zur Verankerung im ungerissenen Beton     |
| Generic type and use of construction product | Bonded anchor in the size of M8 to M30 for use in non-cracked concrete          |
| Geltungsdauer: vom<br>Validity: from         | 8 March 2011                                                                    |
| bis<br>to                                    | 26 March 2013                                                                   |
| verlängert vom<br>extended from              | 27 March 2013                                                                   |
| bis<br>to                                    | 27 March 2018                                                                   |
| Herstellwerke<br>Manufacturing plants        | Berner Herstellwerk 6                                                           |
|                                              | Berner manufacturing plant 6                                                    |

English translation prepared by DIBt - Original version in German language

Diese Zulassung umfasst This Approval contains



27 pages including 18 annexes

27 Seiten einschließlich 18 Anhänge

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Z34339.13



Extension of validity of the European technical approval ETA-11/0076 English translation prepared by DIBt

Page 2 of 27 | 27 March 2013

### I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
  - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products<sup>1</sup>, modified by Council Directive 93/68/EEC<sup>2</sup> and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council<sup>3</sup>;
  - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998<sup>4</sup>, as amended by Article 2 of the law of 8 November 2011<sup>5</sup>;
  - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC<sup>6</sup>;
  - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plants. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- <sup>1</sup> Official Journal of the European Communities L 40, 11 February 1989, p. 12
- Official Journal of the European Communities L 220, 30 August 1993, p. 1
- <sup>3</sup> Official Journal of the European Union L 284, 31 October 2003, p. 25
- Bundesgesetzblatt Teil I 1998, p. 812
- Bundesgesetzblatt Teil I 2011, p. 2178

6

Official Journal of the European Communities L 17, 20 January 1994, p. 34



# II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

#### 1 Definition of the product and intended use

#### 1.1 Definition of the construction product

The BERNER chemical anchor BCA is a bonded anchor (injection type) consisting of a mortar capsule BCA and a steel element. The steel elements are either

- anchor rods BCA M in the range of M8 to M30 or
- internal threaded anchor MCS Plus I in the range of M8 to M20 or

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and concrete.

An illustration of the product and intended use is given in Annexes 1

#### 1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval. The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be used in non-cracked concrete only.

The anchor may be used in dry or wet concrete and flooded holes excepting sea water. The anchor size M30 with standard cleaning may be used in dry or wet concrete; it must not to be installed in flooded holes.

The anchor may be used in the following service temperature ranges:

| Temperature range I:  | -40 °C to +80 °C  | (max long term temperature +50 °C and |
|-----------------------|-------------------|---------------------------------------|
|                       |                   | max short term temperature +80 °C)    |
| Temperature range II: | -40 °C to +120 °C | (max long term temperature +72 °C and |
|                       |                   | max short term temperature +120 °C)   |

#### Elements made of zinc coated steel:

The element made of electroplated or hot-dipped galvanised steel may only be used in structures subject to dry internal conditions.

#### Elements made of stainless steel A4:

The element made of stainless steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).



#### Extension of validity of the European technical approval ETA-11/0076 English translation prepared by DIBt

#### Page 4 of 27 | 27 March 2013

#### Elements made of high corrosion resistant steel C:

The element made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 2 Characteristics of the product and methods of verification

#### 2.1 Characteristics of product

The anchor corresponds to the drawings and provisions given in Annexes 1 to 3. The characteristic material values, dimensions and tolerances of the anchor not indicated in Annexes 1 to 3 shall correspond to the respective values laid down in the technical documentation<sup>7</sup> of this European technical approval.

The characteristic anchor values for the design of anchorages are given in Annexes 6 to 18.

Each mortar capsule BCA shall be marked with the identifying mark of the manufacturer and with the trade name in accordance with Annex 1.

Each anchor rod BCA M is marked with the property class in accordance with Annex 2.

Each internal threaded anchor MCS Plus I is marked with the marking of steel grade and length in accordance with Annex 2. Each internal threaded anchor MCS Plus I made of stainless steel is marked with the additional letter "A4". Each internal threaded anchor MCS Plus I made of high corrosion resistant steel is marked with the additional letter "C".

The marking of embedment depth may be done on jobsite.

#### 2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for use in concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors" on the basis of Option 7.

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

7

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.



#### Extension of validity of the European technical approval ETA-11/0076 English translation prepared by DIBt

#### Page 5 of 27 | 27 March 2013

### 3 Evaluation and attestation of conformity and CE marking

#### 3.1 System of attestation of conformity

According to the Decision 96/582/EG of the European Commission<sup>8</sup> system 2(i) (referred to as System 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
  - (1) factory production control;
  - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
  - (3) initial type-testing of the product;
  - (4) initial inspection of factory and of factory production control;
  - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

#### 3.2 Responsibilities

#### 3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.<sup>9</sup>

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2 For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

<sup>&</sup>lt;sup>8</sup> Official Journal of the European Communities L 254 of 08.10.1996

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.



Page 6 of 27 | 27 March 2013

#### Extension of validity of the European technical approval ETA-11/0076 English translation prepared by DIBt

#### 3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control,

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

#### 3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the holder of the apporval (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1, Option 7),
- size.

# 4 Assumptions under which the fitness of the product for the intended use was favourably assessed

#### 4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.



Page 7 of 27 | 27 March 2013

#### 4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed either in accordance with the

The anchorages are designed in accordance with

- EOTA Technical Report TR 029 "Design of bonded anchors"<sup>10</sup>

or in accordance with

CEN/TS 1992-4:2009,

under the responsibility of an engineer experienced in anchorages and concrete work.

For the internal threaded anchor MCS Plus I fastening screws or threaded rods made of appropriate steel and strength class acc. to Annex 3 shall be specified. The minimum and maximum thread engagement length  $I_E$  of the fastening screw or the threaded rod for installation of the fixture shall meet the requirements according to Annex 2, Table 1b. The length of the fastening screw or the threaded rod shall be determined depending on thickness of fixture, admissible tolerances, available thread length and minimum and maximum thread engagement length  $I_E$ .

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

#### 4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:
  - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 3, Table 2,
  - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
  - marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or the person on jobsite.
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- marking and keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drilling by hammer drilling only,
- in case of aborted drill hole: the drill hole shall be filled with mortar,
- The Technical Report TR 029 "Design of Bonded Anchors" is published in English on EOTA website www.eota.eu.

10



#### Extension of validity of the European technical approval ETA-11/0076 English translation prepared by DIBt

#### Page 8 of 27 | 27 March 2013

 cleaning the drill hole and anchor installation in accordance with manufacturers installation instructions given in Annex 5

#### standard cleaning:

At least four times blowing operations with manual blow-out tool.

premium cleaning:

At least four times blowing operations, four times brushing operations and again four times blowing operations. Blowing with manual blow-out tool; brushing operations by using the steel brush supplied by the manufacturer. Before brushing cleaning the brush and checking whether the brush diameter according to Annex 4, Table 4 is still sufficient,

- the mortar capsule is placed into the drilled hole; connecting the anchor rod with the percussion drill by using a corresponding adapter; driving the anchor rod or the internal threaded anchor into the mortar capsule by simultaneous hammering and turning of the drill; if the anchorage depth is achieved the drill must stopped immediately by using some pressure; if the anchor is proper installed mortar must be visible at the member surface.
- The anchor component installation temperature shall be at least +5 °C; during curing of the injection mortar the temperature of the concrete must not fall below -5 °C; observing the curing time according to Annex 3, Table 3 until the anchor may be loaded,
- fastening screws or threaded rods (including nut and washer) for the internal threaded anchor must be made of appropriate steel grade and property class,
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in Annex 4 must not be exceeded.

#### 5 Indications to the manufacture

#### 5.1 Responsibility of the manufacturer

It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2, 4.3 and 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:

- drill bit,
- hole depth,
- diameter of anchor rod,
- minimum effective anchorage depth,
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- anchor component installation temperature,
- material and property class of metal parts acc. to Annex 3, Table 2,
- ambient temperature of the concrete during installation of the anchor,
- admissible processing time (open time) of a cartridge,
- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- maximum torque moment,
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.



#### Extension of validity of the European technical approval ETA-11/0076 English translation prepared by DIBt

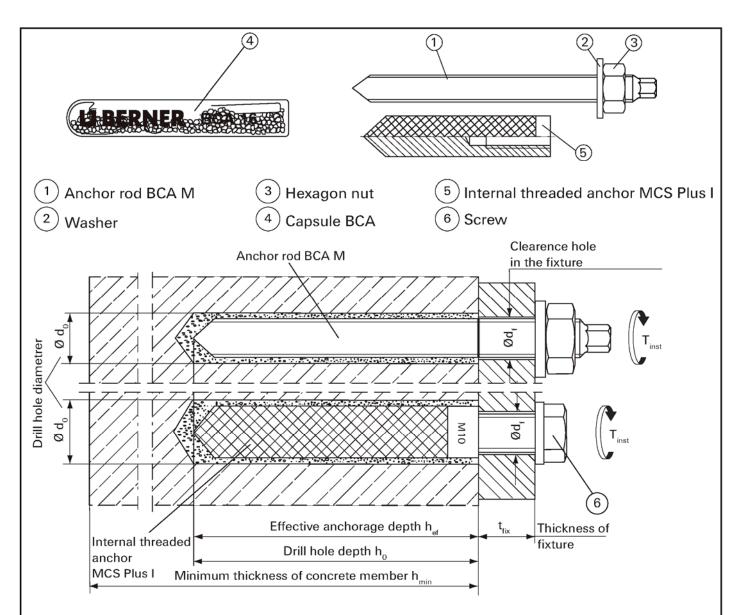
#### Page 9 of 27 | 27 March 2013

#### 5.2 Packaging, transport and storage

The mortar cartridges and the capsules shall be protected against sun radiation and shall be stored according to the manufacturer instructions in dry condition at temperatures of at least +5 °C to not more than +25 °C.

Glass capsules with expired shelf life must no longer be used.

The anchor shall only be packaged and supplied as a complete unit. Glass capsules may be packed separately from metal parts.


The manufacturer's installation instruction shall indicate that the Glass capsules can be used only with the corresponding steel elements.

Georg Feistel Head of Department *beglaubigt:* Baderschneider

# Page 10 of European technical approval ETA-11/0076 of 27 March 2013

English translation prepared by DIBt





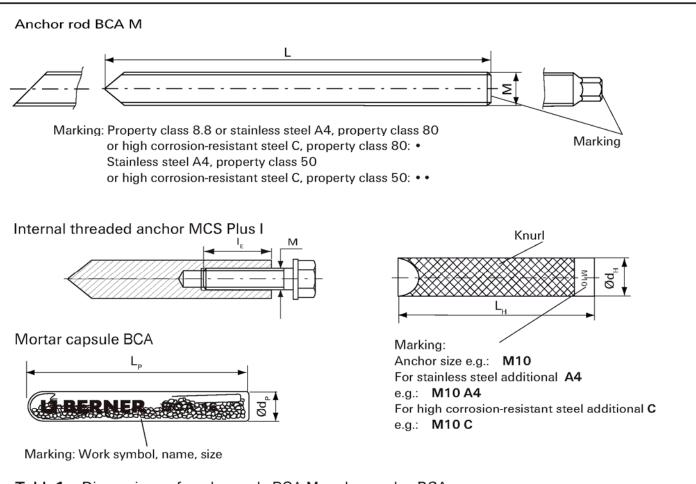
## Table 1: Application range and intended use

|                           |                                             |          | ma                     | x. long term tempe | rature       | max. short term temperature                 |  |  |
|---------------------------|---------------------------------------------|----------|------------------------|--------------------|--------------|---------------------------------------------|--|--|
| Temperature range I:      | <b>Comperature range I</b> : -40°C to +80°C |          |                        |                    | +50°C        |                                             |  |  |
| Temperature range II:     | 40°C t                                      | o +120°C |                        | +72°C              | +120°C       |                                             |  |  |
| Intended use              | Intended use                                |          |                        | wet concrete       | flooded hole |                                             |  |  |
| Anchor rods               |                                             |          |                        | M30                |              | M8 – M27 <sup>1)</sup><br>M30 <sup>2)</sup> |  |  |
| Internal threaded anchors |                                             |          | M8 – M20 <sup>2)</sup> |                    |              |                                             |  |  |

<sup>1)</sup>Standard and premium cleaning process

<sup>2)</sup>Only premium cleaning process

### **BERNER** chemical anchor BCA


#### Product

Application range and intended use

# Page 11 of European technical approval ETA-11/0076 of 27 March 2013

English translation prepared by DIBt





## Table1a: Dimensions of anchor rods BCA M and capsules BCA

| Size                                                 |      | M8 | M10  | M12 M12E |     | M16 | M16E | M20 | M20E | M24 | M24E | M27 | M30 |
|------------------------------------------------------|------|----|------|----------|-----|-----|------|-----|------|-----|------|-----|-----|
| М                                                    | [mm] | 8  | 10   | 12       |     | 1   | 16   |     | 20   |     | 4    | 27  | 30  |
| L <sup>1)</sup>                                      | [mm] | 90 | 100  | 130      | 170 | 150 | 215  | 195 | 270  | 240 | 320  | 280 | 315 |
| h <sub>ef</sub>                                      | [mm] | 80 | 90   | 110      | 150 | 125 | 190  | 170 | 240  | 210 | 290  | 250 | 280 |
| Capsule BC                                           | Α    | 8  | 10   | 12       | 12E | 16  | 16E  | 20  | 20E  | 24  | 24E  | 27  | 30  |
| Ø d <sub>p</sub>                                     | [mm] | 8  | 10,5 | 12       | 2,5 | 16  | 6,5  |     | 2    | 3   |      | 27  | 7,5 |
| L <sub>p</sub>                                       | [mm] | 85 | 90   | 97       | 120 | 95  | 123  | 160 | 215  | 190 | 250  | 210 | 260 |
| [-p] = [11111] 85 90 97 120 95 123 160 215 190 250 2 |      |    |      |          |     |     |      |     |      |     | 210  | 20  |     |

<sup>1)</sup> Minimum length of anchor rods. Different lengths are possible.

### Table 1 b: Dimensions of internal threaded anchors MCS Plus I and capsules BCA

| Size (M)         | )                       | M8 | M10  | M12 | M16 | M20 |
|------------------|-------------------------|----|------|-----|-----|-----|
| Ød <sub>H</sub>  | [mm]                    | 12 | 16   | 18  | 22  | 28  |
| $L_{H} = h_{ef}$ | [mm]                    | 9  | 0    | 125 | 160 | 200 |
|                  | l <sub>E,min</sub> [mm] | 8  | 10   | 12  | 16  | 20  |
| E                | I <sub>E,max</sub> [mm] | 18 | 23   | 26  | 35  | 45  |
| Capsule          | BCA                     | 12 | 14   | 1   | 6E  | 20  |
| Ø d <sub>p</sub> | ۵d <sub>p</sub> [mm]    |    | 14,5 | 10  | 23  |     |
| L <sub>p</sub>   | [mm]                    | 9  | 7    | 1   | 160 |     |

BERNER chemical anchor BCA

Dimensions

# Page 12 of European technical approval ETA-11/0076 of 27 March 2013

English translation prepared by DIBt

Table 2: Materials



|                                                                               |                                                                                                                                                                          | Materials                                                                                                                                                                            |                                                                                                                                                                                          |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Designation                                                                   | Steel, zinc plated                                                                                                                                                       | Stainless steel A4                                                                                                                                                                   | High corrosion-resistant<br>steel C                                                                                                                                                      |
| Anchor rod<br>BCA M                                                           | Property class 5.8 or<br>8.8; EN ISO 898-1<br>zinc plated ≥ 5µm,<br>EN ISO 4042 A2K or<br>hot-dip galvanised<br>EN ISO 10684<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup> | Property class 50, 70 or 80<br>EN ISO 3506<br>1.4401; 1.4404; 1.4578<br>1.4571; 1.4439; 1.4362<br>EN 10088 or<br>1.4062 pr EN 10088:2011<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup> | Property class 50 or 80<br>EN ISO 3506 or property<br>class 70 with<br>f <sub>yk</sub> = 560 N/mm <sup>2</sup><br>1.4565; 1.4529<br>EN 10088<br>f <sub>uk</sub> ≤ 1000 N/mm <sup>2</sup> |
|                                                                               | <sup>uκ</sup> A <sub>5</sub> > 8%                                                                                                                                        | <sup>ик</sup> А <sub>5</sub> > 8%                                                                                                                                                    | <sup>uκ</sup> A <sub>5</sub> > 8%                                                                                                                                                        |
| Washer<br>EN ISO 7089                                                         | zinc plated ≥ 5µm,<br>EN ISO 4042 A2K or<br>hot-dip galvanised<br>EN ISO 10684                                                                                           | 1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362<br>EN 10088                                                                                                                        | 1.4565; 1.4529<br>EN 10088                                                                                                                                                               |
| Hexagon<br>nut<br>EN ISO 4032                                                 | Property class 5 or 8<br>EN ISO 898-2<br>zinc plated ≥ 5µm,<br>EN ISO 4042 A2K or<br>hot-dip galvanised<br>EN ISO 10684                                                  | Property class 50; 70 or 80<br>EN ISO 3506<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362<br>EN 10088                                                                          | Property class 50; 70 or 80<br>EN ISO 3506<br>1.4565; 1.4529<br>EN 10088                                                                                                                 |
| Srews and<br>anchor rods<br>for internal<br>threaded<br>anchors<br>MCS Plus I | Property class 5.8 or<br>8.8; EN ISO 898-1<br>zinc plated ≥ 5μm,<br>EN ISO 4042 A2K or<br>hot-dip galvanised<br>EN ISO 10684                                             | Property class 70<br>EN ISO 3506<br>1.4401; 1.4404; 1.4578;<br>1.4571; 1.4439; 1.4362<br>EN 10088                                                                                    | Property class 70<br>EN ISO 3506-1<br>1.4565; 1.4529<br>EN 10088                                                                                                                         |

# Table 3: Curing times

| Concrete temperature | minimum curing time <sup>1 )</sup><br>t <sub>cure</sub> |
|----------------------|---------------------------------------------------------|
| - 5°C to - ± 0°C     | 4 h                                                     |
| > 0°C to +10°C       | 45 min                                                  |
| >+10°C to +20°C      | 20 min                                                  |
| > +20°C              | 10 min                                                  |

<sup>1)</sup> For wet concrete and flooded holes the curing times must be doubled.

**BERNER** chemical anchor BCA

Materials Curing times Annex 3

Electronic copy of the ETA by DIBt: ETA-11/0076

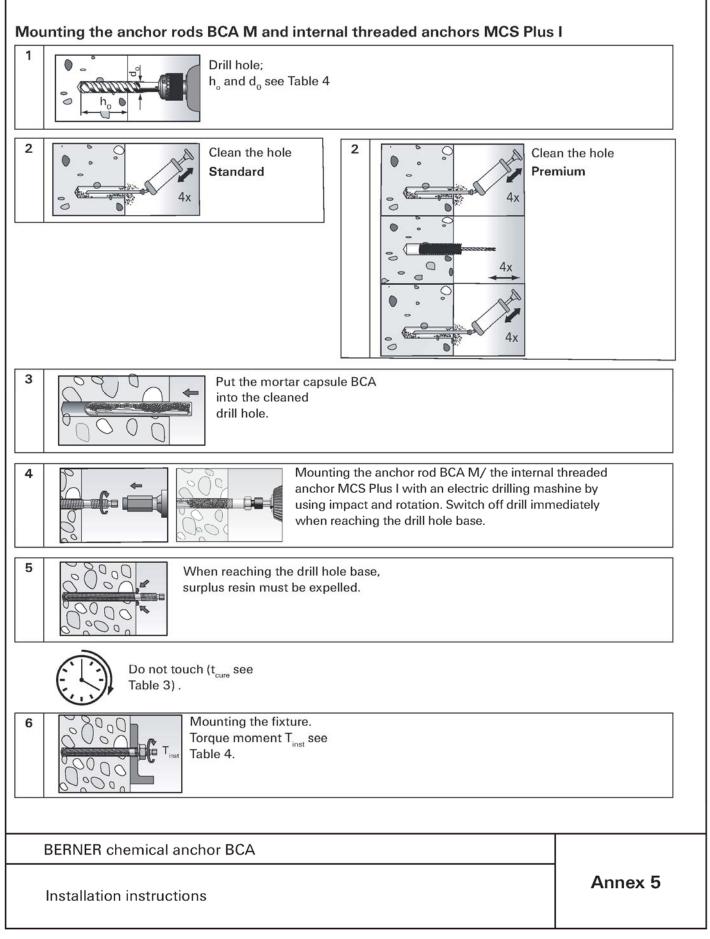
# Page 13 of European technical approval ETA-11/0076 of 27 March 2013

English translation prepared by DIBt



### Table 4: Installation parameters

| Anchor rods BCA                                 | м                          |        |            |     |          |     |          |     |          |       |          |      |      |
|-------------------------------------------------|----------------------------|--------|------------|-----|----------|-----|----------|-----|----------|-------|----------|------|------|
| Size                                            |                            | M8     | M10        | M12 | M12<br>E | M16 | M16<br>E | M20 | M20<br>E | M24   | M24<br>E | M27  | M30  |
| Nominal drill<br>hole diameter                  | d <sub>o</sub> [mm]        | 10     | 12         | 14  |          | 18  |          | 25  |          | 2     |          | 32   | 35   |
| Cutting diameter<br>of drill bit                | d <sub>cut</sub> [mm]      | 10,5   | 12,5       | 14  | 14,5     |     | 8,5      | 25  | ,55      | 28    | ,55      | 32,7 | 35,7 |
| Depth of drill hole                             | h <sub>o</sub> [mm]        | 80     | 90         | 110 | 150      | 125 | 190      | 170 | 240      | 210   | 290      | 250  | 280  |
| Diameter of<br>clearence hole<br>in the fixture | d <sub>r</sub> ≤ [mm]      | 9      | 12         | 1   | 4        | 1   | 8        | 2   | 2        | 2     | 6        | 30   | 33   |
| Diameter of<br>steel brush                      | d <sub>ь</sub> [mm]        | 11     | 14         | 1   | 6        | 2   | 0        | 2   | 27       | 3     | 0        | 40   | 40   |
| Max. torque<br>moment                           | T <sub>inst,max</sub> [Nm] | 10     | 20         | 40  |          | 6   | 60 1     |     | 20       | 1     | 150      |      | 300  |
| Thickness                                       | min [mm]                   |        | 0          |     |          |     |          |     |          |       |          |      |      |
| of fixture t <sub>fix</sub>                     | max [mm]                   |        |            |     |          |     | 15       | 00  |          |       |          |      |      |
| Internal threaded a                             | anchors MCS                | S Plus |            |     |          |     |          |     |          |       |          |      |      |
| Size                                            |                            | 1      | <b>N</b> 8 |     | M10      |     | M        | 12  |          | M16   |          | M2   | 0    |
| Nominal drill<br>hole diameter                  | d <sub>o</sub> [mm]        |        | 14         |     | 18       |     | 2        | 0   |          | 24    |          | 32   | 2    |
| Cutting diameter<br>of drill bit                | d <sub>cut</sub> [mm]      | 1      | 4,5        |     | 18,5     |     | 20       | ,55 |          | 24,55 |          | 32,  | 7    |
| Depth of drill hole                             | h <sub>o</sub> [mm]        | 1      | 90         |     | 90       |     | 12       | 25  |          | 160   |          | 20   | 0    |
| Diameter of<br>clearence hole<br>in the fixture | d <sub>r</sub> ≤ [mm]      |        | 9          | 12  |          |     | 1        | 4   |          | 18    |          | 22   | 2    |
| Diameter of<br>steel brush                      | d <sub>b</sub> [mm]        | 16 2   |            | 20  | 2!       |     | 5        |     | 26       |       | 40       | )    |      |
| Max. torque<br>moment                           | T <sub>inst,max</sub> [Nm] |        | 10         |     | 20       | 40  |          | 60  |          | 120   |          |      |      |


Steel brush



BERNER chemical anchor BCA

Installation parameters





#### Deutsches Institut für Bautechnik

| Anchor rod BCA M<br>Size                                                                                                       | M8     | M10  | M   | 12  | M121        | E M1 | 6 | M16 E |
|--------------------------------------------------------------------------------------------------------------------------------|--------|------|-----|-----|-------------|------|---|-------|
| Effektive h <sub>ef</sub> [mn                                                                                                  |        | 90   | 11  |     | 150         | 12!  |   | 190   |
| Minimum thickness<br>of concrete member h <sub>min</sub> [mn                                                                   | n] 110 | 120  | 15  | 0   | 200         | 160  | ) | 250   |
| Minimum edge<br>distance and s <sub>min</sub> = c <sub>min</sub> [mn<br>spacing                                                | n] 40  | 45   | 5   | 5   | 75          | 65   |   | 95    |
| Size                                                                                                                           | M20    | M20E | M   | 24  | M24E        | . M2 | 7 | M30   |
| Effektive h <sub>ef</sub> [mn<br>anchorage depth                                                                               | 170    | 240  | 210 |     | 290         | 250  |   | 280   |
| Minimum thickness h <sub>min</sub> [mn<br>of concrete member                                                                   | 220    | 300  | 28  | 80  | 380         | 330  |   | 370   |
| $\begin{array}{ll} \mbox{Minimum edge} \\ \mbox{distance and} \\ \mbox{spacing} \end{array} = c_{\min} \mbox{[mn} \end{array}$ | n] 85  | 120  | 10  | )5  | 145         | 12   | 5 | 140   |
| Internal threaded anchor MCS P                                                                                                 | us I   |      |     |     |             |      |   |       |
| Size                                                                                                                           | M8     | M1   | 0   | I   | <b>M</b> 12 | M16  |   | M20   |
| Effektive h <sub>ef</sub> [mn<br>anchorage depth h <sub>ef</sub> [mn                                                           | n] 90  | 90   | C   | 125 |             | 160  |   | 200   |
| Minimum thickness<br>of concrete member h <sub>min</sub> [mn                                                                   | n] 120 | 12   | 0   | 170 |             | 220  |   | 270   |
| Minimum edge<br>distance and s <sub>min</sub> = c <sub>min</sub> [mn<br>spacing                                                | n] 45  | 4!   | 5   | 60  |             | 80   |   | 100   |

### Table 5: Minimum distance and minimum member thickness

**BERNER** chemical anchor BCA

Minimum distance and minimum member thickness



# Table 6:Characteristic values of resistance to tension load for anchor rods BCA M.Design of Bonded Anchors acc. to TR 029 (Standard cleaning process)

| Steel failu                                                                                                                    | ure                                          |                            |                             |             |     |          |       |                    |                   |          |     |          |     |                   |  |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|-----------------------------|-------------|-----|----------|-------|--------------------|-------------------|----------|-----|----------|-----|-------------------|--|
| Size                                                                                                                           |                                              |                            | M8                          | M10         | M12 | M12<br>E | M16   | M16<br>E           | M20               | M20<br>E | M24 | M24<br>E | M27 | M30               |  |
| Characteris-<br>tic resistance<br>N <sub>Rks</sub> <u>9 9 1</u>                                                                | Property                                     | 5.8 [kN]                   | 19                          | 30          | 4   | -        | 8     | 2                  | 12                | 27       | 18  | 83       | 239 | 292               |  |
| Characteris-<br>tic resistano<br>N <sub>Rks</sub>                                                                              | class                                        | 8.8 [kN]                   | 29                          | 46          |     | 67       |       | 126                |                   | 96       | 28  | 82       | 368 |                   |  |
| esis<br>sis                                                                                                                    | tainless Pro                                 | ⊦ <u>50 [kN]</u>           |                             | 30          | 4   |          |       | 82                 |                   | 27       | 183 |          | 239 |                   |  |
|                                                                                                                                | teel A4 and pert                             | y <u>70 [kN]</u>           |                             | 41          |     | 9        |       | 10                 | 172               |          |     | 47       | 322 |                   |  |
|                                                                                                                                |                                              | 8 80 [kN]                  | 29                          | 46          | 6   | 7        | 12    | 26                 |                   | 96       | 2   | 82       | 368 | 449               |  |
| Partial safety<br>factor γ <sub>Ms</sub> <sup>1)</sup><br><u>α α α η</u>                                                       | Property                                     |                            |                             |             |     |          |       | <u>1,</u> !<br>1,! |                   |          |     |          |     |                   |  |
| Partial safet<br>factor $\gamma_{_{M_s}}{}^{1)}$<br><u>e e e -</u>                                                             | class<br>tainless Pro                        | []                         |                             |             |     |          |       | 2,8                |                   |          |     |          |     |                   |  |
| tor tor                                                                                                                        | tainless Pro<br>teel A4 and pert             |                            |                             | 1,504)/1,87 |     |          |       |                    |                   |          |     |          |     |                   |  |
| tac fac                                                                                                                        | teel C clas                                  |                            |                             |             |     |          |       | 1,00               |                   |          |     |          |     |                   |  |
| Combined                                                                                                                       | d pull-out and con                           |                            | failu                       | re          |     |          |       |                    |                   |          |     |          |     |                   |  |
| Diameter for calculation         d [mm]         8         10         12         16         20         24         27         30 |                                              |                            |                             |             |     |          |       |                    |                   |          |     | 30       |     |                   |  |
| Effective a                                                                                                                    | anchorage depth                              | h <sub>ef</sub> [mm]       | 80                          | 90          | 110 | 150      | 125   | 190                | 170               | 240      | 210 | 290      | 250 | 280               |  |
|                                                                                                                                | ristic bond resista<br>ory: dry and wet      |                            |                             |             |     | te C20   | 0/25; |                    |                   |          |     |          |     |                   |  |
| Temperatu                                                                                                                      | are range I <sup>5)</sup> $	au_{ m Rk,ucr}$  | [N/mm <sup>2</sup> ]       | 8                           |             |     | 7,5      |       |                    |                   |          | 6,5 |          |     | 6,5 <sup>3)</sup> |  |
| Temperatu                                                                                                                      | re range II <sup>5)</sup> $\tau_{_{Rk,ucr}}$ | [N/mm <sup>2</sup> ]       | 6                           |             |     | 7        |       |                    |                   |          | 6   |          |     | 6 <sup>3)</sup>   |  |
|                                                                                                                                | C2                                           | 5/30 [-]                   |                             |             |     |          |       | 1,                 | 06                |          |     |          |     |                   |  |
|                                                                                                                                |                                              | 0/37 [-]                   |                             |             |     |          |       | 1,                 | 14                |          |     |          |     |                   |  |
| Increasing                                                                                                                     | ·                                            | 5/45 [-]                   |                             |             |     |          |       | 1,                 | 22                |          |     |          |     |                   |  |
| factors for                                                                                                                    | r <sup>r</sup> ° C4                          | 0/50 [-]                   |                             |             |     |          |       | 1,                 | 27                |          |     |          |     |                   |  |
| $\tau_{_{Rk,ucr}}$                                                                                                             | C4                                           | 5/55 [-]                   |                             |             |     |          |       | 1,                 | 31                |          |     |          |     |                   |  |
|                                                                                                                                | C5                                           | 0/60 [-]                   |                             |             |     |          |       | 1,                 | 35                |          |     |          |     |                   |  |
| Splitting f                                                                                                                    | failure                                      |                            |                             |             |     |          |       |                    |                   |          |     |          |     |                   |  |
| <b>E</b> 1                                                                                                                     | h                                            | / h <sub>ef</sub> ≥ 2,0    |                             |             |     |          |       | 1,0                | ) h <sub>ef</sub> |          |     |          |     |                   |  |
| Edge dist                                                                                                                      | ance 2016                                    | / h <sub>ef</sub> > 1,3    | 4,6 h <sub>ef</sub> - 1,8 h |             |     |          |       |                    |                   |          |     |          |     |                   |  |
| c <sub>cr.sp</sub> [mm                                                                                                         | יי <u>ה</u>                                  | / h <sub>ef</sub> ≤ 1,3    |                             |             |     |          |       | 2,2                | 6 h_f             |          |     |          |     |                   |  |
| Spacing                                                                                                                        |                                              | s <sub>cr,sp</sub> [mm]    |                             |             |     |          |       | 20                 | cr,sp             |          |     |          |     |                   |  |
| Partial safe                                                                                                                   | ety factor $\gamma_{Mp} = \gamma_{Mc}$       | $= \gamma_{Msp}^{(1)}$ [-] |                             |             |     |          |       |                    | 80 <sup>2)</sup>  |          |     |          |     |                   |  |

<sup>1)</sup>In absence of other national regulations.

 $^{2)}\mbox{The partial safety factor }\gamma_2\mbox{=}1,2$  is included.

<sup>3)</sup>Only use category: dry and wet concrete.

<sup>4)</sup>For steel C with:  $f_{uk}$  = 700 N/mm<sup>2</sup>;  $f_{vk}$  = 560 N/mm<sup>2</sup>

<sup>5)</sup>See Annex 1.

### **BERNER** chemical anchor BCA

Design of Bonded Anchor acc. to TR 029 Characteristic values to tension load for anchor rods BCA M Standard cleaning process / Spacing and edge distance



# Table 7:Charactersitic values of resistance to tension load for anchor rods BCA M.Design of Bonded Anchor acc. to TR 029 (Premium cleaning process)

| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | M8                   | M10                 | M12    | M12<br>E | M16   | M16<br>E | M20                                      | M20<br>E          | M24 | M24<br>E | M27 | M30 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|---------------------|--------|----------|-------|----------|------------------------------------------|-------------------|-----|----------|-----|-----|--|
| , e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Property 5.8 [kN]                                                  | 19                   | 30                  | 4      | _        | 8     |          | 12                                       |                   | 18  | 33       | 239 | 292 |  |
| and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | class 8.8 [kN]                                                     |                      | 46                  | 6      |          | 12    |          | 196                                      |                   | 28  |          | 368 |     |  |
| stainless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pro- 50 [kN]                                                       | -                    | 30                  |        | 44       |       | 82       |                                          | 127               |     | 33       | 239 |     |  |
| ັຍ 🚆 💈 steel A4 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                      | 41                  | 5      | 9        | 1     | 110      |                                          | 72                | 247 |          | 322 |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | class 80 [kN]                                                      |                      | 46                  | 6      | 7        | 12    | 26       |                                          | 96                | 28  | 32       | 368 | 449 |  |
| ety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Property 5.8 [-]                                                   |                      | <u>1,50</u><br>1,50 |        |          |       |          |                                          |                   |     |          |     |     |  |
| Partial safety<br>factor $\gamma_{Ms}^{(1)}$ steel or a steel of a steel o | class 8.8 [-]<br>Pro- 50 [-]                                       |                      | 2,86                |        |          |       |          |                                          |                   |     |          |     |     |  |
| tig stainless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pro- <u>50 [-]</u><br>and perty 70 [-]                             |                      |                     |        |          |       |          |                                          |                   |     |          |     |     |  |
| La stainless<br>steel A4 a<br>steel C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | class 80 [-]                                                       | 1,60                 |                     |        |          |       |          |                                          |                   |     |          |     |     |  |
| Combined pull-out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                      | ire                 |        |          |       | .,.      |                                          |                   |     |          |     |     |  |
| Diameter for calcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ation d [mm]                                                       | 8                    | 10                  | 1      | 2        | 1     | 6        | 2                                        | 0                 | 2   | 4        | 27  | 30  |  |
| Effective anchorage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e depth h <sub>ef</sub> [mm]                                       | 80                   | 90                  | 110    | 150      | 125   | 190      | 170                                      | 240               | 210 | 290      | 250 | 280 |  |
| Characteristic bon<br>use category: dry a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | id resistance in noi<br>and wet concrete                           | n-crac               | ked o               | concre | te C2(   | 0/25; |          |                                          |                   |     |          |     |     |  |
| Temperature range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                      | 1                   | 1      | 0        | 9,    | 5        |                                          | ,0                |     | 8,5      | 8   |     |  |
| Temperature range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                      | 10 9,5 8 7,5 7 6,5  |        |          |       |          |                                          |                   |     | ,5       |     |     |  |
| use category: floo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |                      |                     | concre |          |       |          |                                          |                   |     |          |     |     |  |
| Temperature range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |                      | 0,0                 |        | 10       |       |          | 9,                                       |                   |     | 9,0      |     | 8,5 |  |
| Temperature range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    | 8                    | ,0                  |        | 9        | ,0    |          | 8                                        | ,5                |     | 8,0      |     | 7,5 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C25/30 [-]                                                         |                      |                     |        |          |       |          | 06                                       |                   |     |          |     |     |  |
| Increasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>C30/37 [-]</u>                                                  |                      |                     |        |          |       |          | 14                                       |                   |     |          |     |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Psi_{c} = \frac{C35/45}{C40}$                                    |                      |                     |        |          |       |          | 22                                       |                   |     |          |     |     |  |
| $\tau_{_{Rk,ucr}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C40/50 [-]                                                         |                      |                     |        |          |       |          | 27                                       |                   |     |          |     |     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C45/55 [-]                                                         |                      |                     |        |          |       |          | 31                                       |                   |     |          |     |     |  |
| Splitting failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C50/60 [-]                                                         |                      |                     |        |          |       | 1,       | 35                                       |                   |     |          |     |     |  |
| Splitting failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h / h <sub>ef</sub> ≥ 2,0                                          |                      |                     |        |          |       | 1 (      | ) h <sub>ef</sub>                        |                   |     |          |     |     |  |
| Edge distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{11 + 11_{ef}}{2,0 > h / h_{ef} > 1,3}$                      |                      |                     |        |          |       |          | , n <sub>ef</sub><br><sub>ef</sub> - 1,8 | h                 |     |          |     |     |  |
| c <sub>cr,sp</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |                      |                     |        |          |       |          |                                          |                   |     |          |     |     |  |
| Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h / h <sub>ef</sub> ≤ 1,3<br>s <sub>cr,sp</sub> [mm]               | <u> </u>             |                     |        |          |       | 2,2      | 6 h <sub>ef</sub><br>Ç <sub>cr,sp</sub>  |                   |     |          |     |     |  |
| Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cr,sp [11111]                                                      | 1                    |                     |        |          |       | 20       | cr,sp                                    |                   |     |          |     |     |  |
| safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dry and wet [-]                                                    | 1                    | .8 <sup>2)</sup>    |        |          |       |          |                                          | 1.5 <sup>3)</sup> |     |          |     |     |  |
| $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | flooded hole [-]                                                   |                      |                     |        |          |       | 2,       | 1 <sup>4)</sup>                          |                   |     |          |     |     |  |
| <sup>9</sup> In absence of other<br><sup>27</sup> The partial safety fa<br><sup>28</sup> The partial safety fa<br><sup>29</sup> The partial safety fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | actor $\gamma_2 = 1,2$ is inclu<br>actor $\gamma_2 = 1,0$ is inclu | ded.<br>ded.<br>ded. | NL (mag             | 2      |          |       |          |                                          |                   |     |          |     |     |  |

<sup>5)</sup>For steel C with:  $f_{uk} = 700$  N/mm<sup>2</sup>;  $f_{yk} = 560$  N/mm<sup>2</sup> <sup>6)</sup>See Annex 1.

# BERNER chemical anchor BCA

Design of Bonded Anchor acc. to TR 029 Characteristic values to tension load for anchor rods BCA M Premium cleaning process / Spacing and edge distance



|                                                                    | Design of                     | DOIL     | ieu /             |                   | 1015, | acc. | 10 11 | 1023     | ,      |                     |                 |          |        |          |      |      |
|--------------------------------------------------------------------|-------------------------------|----------|-------------------|-------------------|-------|------|-------|----------|--------|---------------------|-----------------|----------|--------|----------|------|------|
| Size                                                               |                               |          |                   |                   | M8    | M10  | M12   | M12<br>E | M16    | M16<br>E            | M20             | M20<br>E | M24    | M24<br>E | M27  | M30  |
| Effective a                                                        | anchorage de                  | epth     | h <sub>ef</sub> [ | [mm]              | 80    | 90   | 110   | 150      | 125    | 190                 | 170             | 240      | 210    | 290      | 250  | 280  |
| Steel fail                                                         | ure without                   | lever a  | rm                |                   |       |      |       |          |        |                     |                 |          |        |          |      |      |
| - ee                                                               | ຜູ້ບິ Property <u>5.8 [kN</u> |          |                   |                   |       | 15   |       | !1       | 3      | 9                   | 6               | 51       | 8      | 9        | 115  | 141  |
| ane                                                                |                               | class    |                   | [kN]              |       | 23   |       | 34       |        | 3                   | 9               | 8        | 14     | 41       | 184  | 225  |
| Charac-teris-<br>tic resistance<br>V <sub>Rk.s</sub>               | stainless                     | Pro-     |                   | [kN]              | 9     | 15   |       | !1       |        | 9                   | 6               | 51       | 8      | 9        | 115  | 141  |
| are:                                                               | steel A4                      | perty    | 70                | [kN]              | 13    | 20   | 3     | 80       | 5      | 5                   | 8               | 6        | 12     | 24       | 161  | 197  |
| Char<br>tic re<br>V <sub>Rk.s</sub>                                | and steel C                   | class    |                   | [kN]              | 15    | 23   | 3     | 34       | 6      | 3                   | 9               | 8        | 14     | 41       | 184  | 225  |
| Steel fail                                                         | ure with leve                 | er arm   |                   |                   |       |      |       |          |        |                     |                 |          |        |          |      |      |
| tic<br><sup>Bk,s</sup>                                             | Pro                           | operty   | 5.8 [             | [Nm]              | 19    | 37   | 6     | 5        | 1      | 66                  | 32              | 24       | 5      | 61       | 833  | 1124 |
| Z sris                                                             |                               | class    |                   |                   |       | 60   | 1(    | 05       | 20     | 66                  | 5               | 19       | 8      | 96       | 1333 | 1797 |
| Characteristic<br>bending<br>moment M <sup>0</sup> <sub>Rk.s</sub> | stainless                     | Pro-     | 50[               | [Nm]              | 19    | 37   | 6     | 5        | 10     | 66                  | 32              | 24       | 5      | 61       | 833  | 1124 |
| ara                                                                | steel A4                      | perty    | 70[               | [Nm]              | 26    | 52   | 9     | 2        | 23     | 32                  | 4               | 54       | 7      | 84       | 1167 | 1573 |
| Characte<br>bending<br>moment                                      | and steel C                   | class    |                   |                   |       | 60   | 1(    | 05       | 20     | 66                  | 5               | 19       | 8      | 98       | 1333 | 1797 |
| Partial sat                                                        | fety factor fo                | or steel | failu             | ire               |       |      |       |          |        |                     |                 |          |        |          |      |      |
| ≥                                                                  | Pro                           | operty   | 5.8               | [-]               |       | 1,25 |       |          |        |                     |                 |          |        |          |      |      |
| safe<br>γ <sub>Ms</sub> <sup>1)</sup>                              |                               | class    | 8.8               |                   |       |      |       |          |        | 1,2                 | 25              |          |        |          |      |      |
| r 2                                                                | stainless                     | Pro-     | 50                | ) [-]             |       |      |       |          |        | 2,3                 | 38              |          |        |          |      |      |
| Partial safety factor $\gamma_{Ms}^{1}$                            | steel A4                      | perty    |                   | [-]               |       |      |       |          | 1      | ,25 <sup>3)</sup> , | / 1,56          | 6        |        |          |      |      |
| Fa                                                                 | and steel C                   | class    | 80                | [-]               |       |      |       |          |        | 1,3                 | 33              |          |        |          |      |      |
| Concrete                                                           |                               |          |                   |                   |       |      |       |          |        |                     |                 |          |        |          |      |      |
| Factor in I<br>TR 029, s                                           | : [-]                         | 2,0      |                   |                   |       |      |       |          |        |                     |                 |          |        |          |      |      |
| Partial saf                                                        | fety factor                   |          | $\gamma_{Mcp}$    | <sup>1)</sup> [-] |       |      |       |          |        |                     |                 |          |        |          |      |      |
| Concrete                                                           | edge failure                  |          |                   |                   |       |      | see T | echni    | cal Re | port T              | R 029           | ), sec   | tion 5 | .2.3.4   |      |      |
| Partial saf                                                        | fety factor                   |          | $\gamma_{Mc}$     | <sup>1)</sup> [-] |       |      |       |          |        | 1,                  | 5 <sup>2)</sup> |          |        |          |      |      |

# Table 8:Characteristic values of resistance to shear load for anchor rods BCA M.Design of Bonded Anchors, acc. to TR 029

<sup>1)</sup> In absence of other national regulations

 $^{2)}\mbox{The partial safety factor }\gamma_2$  = 1,0 is included

<sup>3)</sup>For steel C with:  $f_{uk}$  = 700 N/mm<sup>2</sup>;  $f_{vk}$  = 560 N/mm<sup>2</sup>

Design of Bonded Anchors, acc. to TR 029 Characteristic values to shear load for anchor rods BCA M



| Table 9: | Displacements of fischer anchor rods BCA M to tension load |
|----------|------------------------------------------------------------|
|----------|------------------------------------------------------------|

| Size                                       |                                                       | M8   | M10  | M12  | M12<br>E | M16  | M16<br>E | M20  | M20<br>E | M24  | M24<br>E | M27  | M30   |  |
|--------------------------------------------|-------------------------------------------------------|------|------|------|----------|------|----------|------|----------|------|----------|------|-------|--|
| Tension load<br>in non-cracked<br>concrete | N [kN]                                                | 10,5 | 14,8 | 19,7 | 26,9     | 29,9 | 45,5     | 48,3 | 68,2     | 67,9 | 93,7     | 90,9 | 106,8 |  |
| Displacement                               | $\delta_{_{NO}}$ [mm/N/mm <sup>2</sup> ]              |      |      | 0,02 | 2        |      |          |      |          | 0,03 |          |      | 0,06  |  |
| Displacement                               | placement $\delta_{N_{\infty}}$ [mm/N/mm <sup>2</sup> |      |      | 0,05 |          |      |          |      | 0,08     |      |          |      |       |  |

Calculation of characteristic displacement with  $\delta_{_{N}}$  = (  $\delta_{_{N0}} \bullet \, \tau_{_{Sd}}$  ) / 1,4

|                       |                                                  | 140  | 844.0 | 844.0 | 1440 | 844.0 | 844.0 | 1400 | 1400     | 8404   | 140.4 | 1407    | 1400 |
|-----------------------|--------------------------------------------------|------|-------|-------|------|-------|-------|------|----------|--------|-------|---------|------|
| Size                  |                                                  | M8   | M10   | M12   | E    | 111.0 | E E   | M20  | M20<br>E | 11/124 | E     | IVI 2 7 | M30  |
| Property class 5.8    |                                                  |      |       |       |      |       |       |      |          |        |       |         |      |
| Displacement          | $\delta_{v0}$ [mm/kN]                            | 0,45 | 0,25  | 0     | ,2   | 0,1   |       | 0,06 |          | 0,05   |       | 0,04    | 0,03 |
| Displacement          | $δ_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_$      | 0,7  | 0,4   | 0     | ,3   | 0,    | 15    | 0,   | 09       | 0,     | 08    | 0,06    | 0,05 |
| Property class 8.8    |                                                  |      |       |       |      |       |       |      |          |        |       |         |      |
| Displacement          | $\delta_{v0}$ [mm/kN]                            | 0,4  | 0,2   | 0,    | 15   | 0,    | 08    | 0,   | 05       | 0,     | 04    | 0,04    | 0,03 |
| Displacement          | $δ_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_$      | 0,6  | 0,3   | 0,    | 22   | 0,    | 12    | 0,   | 07       | 0,     | 06    | 0,06    | 0,04 |
| A4 / C; property clas | ss 50                                            |      |       |       |      |       |       |      |          |        |       |         |      |
| Displacement          | $\delta_{v0}$ [mm/kN]                            | 0,3  | 0,26  | 0,    | 12   | 0,    | 06    | 0,   | 03       | 0,     | 03    | 0,02    | 0,02 |
| Displacement          | $δ_{v\infty}$ [mm/kN]                            | 0,45 | 0,4   | 0,    | 18   | 0,09  |       | 0,04 |          | 0,04   |       | 0,03    | 0,03 |
| A4 / C; property clas | ss 70 <sup>1)</sup>                              |      |       |       |      |       |       |      |          | -      |       |         |      |
| Displacement          | $\delta_{v0}$ [mm/kN]                            | 0,4  | 0,25  | 0     | ,2   | 0,    | 09    | 0,   | 06       | 0,     | 05    | 0,04    | 0,03 |
| Displacement          | $\delta_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_{v_$ | 0,6  | 0,4   | 0     | ,3   | 0,    | 14    | 0,09 |          | 0,07   |       | 0,06    | 0,05 |
| A4 / C; property clas | ss 80                                            |      |       |       |      |       |       |      |          |        |       |         |      |
| Displacement          | $\delta_{v0}$ [mm/kN]                            | 0,4  | 0,2   | 0,15  |      | 0,08  |       | 0,05 |          | 0,04   |       | 0,04    | 0,03 |
| Displacement          | δ <sub>v∞</sub> [mm/kN]                          |      | 0,3   | 0,22  |      | 0,12  |       | 0,07 |          | 0,06   |       | 0,06    | 0,04 |

| Table 10: Displacements of fischer anchor rods BCA M to shear load |
|--------------------------------------------------------------------|
|--------------------------------------------------------------------|

<sup>1)</sup> Steel C with  $f_{uk}$  = 700 N/mm<sup>2</sup> ;  $f_{yk}$  = 560 N/mm<sup>2</sup>

Calculation of characteristic displacement with  $\delta_v^{}$  = (  $\delta_{vo}^{} \bullet ~V_{_{Sd}}^{})$  / 1,4

**BERNER** chemical anchor BCA

Displacements of anchor rods BCA M



| Size                                                                                                                                                                     |                                                                                                  |                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M 8 | M 10     | M 12                                                                                                                  | M 16            | M 20      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-----------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
| Steel failure                                                                                                                                                            |                                                                                                  |                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          | L                                                                                                                     |                 |           |
| Characteristic                                                                                                                                                           |                                                                                                  | Propert                                                                        | ,                                                                                                                                                 | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19  | 29       | 43                                                                                                                    | 79              | 123       |
| resitance                                                                                                                                                                | N <sub>Rk,s</sub>                                                                                | class                                                                          |                                                                                                                                                   | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29  | 47       | 68                                                                                                                    | 108             | 179       |
| with screw                                                                                                                                                               | KK,S                                                                                             | Propert                                                                        |                                                                                                                                                   | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26  | 41       | 59                                                                                                                    | 110             | 172       |
|                                                                                                                                                                          |                                                                                                  | class 70                                                                       | -                                                                                                                                                 | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26  | 41       | 59                                                                                                                    | 110             | 172       |
| Partial safety                                                                                                                                                           |                                                                                                  | Propert<br>class                                                               | y- <u>5.8</u><br>8.8                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          | 1,50<br>1,50                                                                                                          |                 |           |
| factor                                                                                                                                                                   | $\gamma_{Ms,N}^{1)}$                                                                             | Property                                                                       |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          | 1,87                                                                                                                  |                 |           |
|                                                                                                                                                                          |                                                                                                  | class 70                                                                       |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          | 1,87                                                                                                                  |                 |           |
| Combined pullout a                                                                                                                                                       | and concrete                                                                                     |                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          | 1,07                                                                                                                  |                 |           |
| Diameter for calcula                                                                                                                                                     |                                                                                                  |                                                                                | d <sub>H</sub> [                                                                                                                                  | mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12  | 16       | 18                                                                                                                    | 22              | 28        |
| Effective anchorage                                                                                                                                                      | depth                                                                                            |                                                                                | h <sub>ef</sub> [                                                                                                                                 | mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90  | 90       | 125                                                                                                                   | 160             | 200       |
| Characteristic value<br>Intended use: dry a                                                                                                                              |                                                                                                  |                                                                                | ete C20/                                                                                                                                          | /25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          |                                                                                                                       | -               |           |
| Temperature range                                                                                                                                                        | I (-40°C/+80°                                                                                    | °C) <sup>4)</sup>                                                              | $N^{o}_{_{Rk,p}}$                                                                                                                                 | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30  | 35       | 50                                                                                                                    | 75              | 115       |
|                                                                                                                                                                          |                                                                                                  |                                                                                |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |          |                                                                                                                       |                 |           |
| . –                                                                                                                                                                      |                                                                                                  | -                                                                              | N <sup>0</sup> <sub>Rk,p</sub>                                                                                                                    | [kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20  | 30       | 40                                                                                                                    | 60              | 95        |
| Characteristic value<br>Intended use: flood                                                                                                                              | es in un-crac<br>led hole                                                                        | ked concr                                                                      | ete C20/                                                                                                                                          | /25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20  | 30<br>40 | 40<br>50                                                                                                              | 60<br>75        | 95<br>115 |
| Characteristic value<br>Intended use: flood<br>Temperature range                                                                                                         | es in un-crac<br>led hole<br>I (-40°C/+80°                                                       | ked concr<br>°C) <sup>4)</sup>                                                 | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub>                                                                                                        | / <b>25</b><br>[kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |          |                                                                                                                       |                 |           |
| Characteristic value<br>Intended use: flood<br>Temperature range                                                                                                         | es in un-crac<br>led hole<br>I (-40°C/+80°                                                       | ked concr<br>°C) <sup>4)</sup>                                                 | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>N <sup>0</sup> <sub>Rk,p</sub>                                                                      | / <b>25</b><br>[kN]<br>[kN]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30  | 40       | 50<br>50                                                                                                              | 75              | 115       |
| Intended use: flood                                                                                                                                                      | es in un-crac<br>led hole<br>I (-40°C/+80°                                                       | ked concr<br>°C) <sup>4)</sup>                                                 | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>N <sup>0</sup> <sub>Rk,p</sub><br><u>C25/30</u>                                                     | <b>′25</b><br>[kN]<br>[kN]<br>D [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30  | 40       | 50<br>50<br>1,06                                                                                                      | 75              | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range                                                                                    | es in un-crac<br>led hole<br>I (-40°C/+80'<br>II (-40°C/+12                                      | ked concr<br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup>                          | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>N <sup>0</sup> <sub>Rk,p</sub><br><u>C25/30</u><br><u>C30/3</u>                                     | / <b>25</b><br>[kN]<br>[kN]<br>D [-]<br>7 [-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30  | 40       | 50<br>50                                                                                                              | 75              | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range                                                                                    | es in un-crac<br>led hole<br>I (-40°C/+80'<br>II (-40°C/+12                                      | ked concr<br>°C) <sup>4)</sup>                                                 | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>N <sup>0</sup> <sub>Rk,p</sub><br><u>C25/30</u>                                                     | ( <b>25</b><br>[kN]<br>[kN]<br>[kN]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30  | 40       | 50<br>50<br>1,06<br>1,14                                                                                              | 75              | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range                                                                                    | es in un-crac<br>led hole<br>I (-40°C/+80'<br>II (-40°C/+12                                      | ked concr<br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup>                          | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>N <sup>0</sup> <sub>Rk,p</sub><br><u>C25/30</u><br><u>C30/3</u><br>C35/4                            | ( <b>25</b><br>(kN)<br>(kN)<br>(kN)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22                                                                                      | 75              | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range                                                                                    | es in un-crac<br>led hole<br>I (-40°C/+80'<br>II (-40°C/+12                                      | ked concr<br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup>                          | ete C20/<br>$N_{Rk,p}^{0}$<br>$N_{Rk,p}^{0}$<br>C25/3(<br>C30/3<br>C35/4!<br>C40/5(                                                               | ( <b>25</b><br>(kN)<br>(kN)<br>(kN)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22<br>1,27                                                                              | 75              | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range                                                                                    | es in un-crac<br>led hole<br>I (-40°C/+80'<br>II (-40°C/+12                                      | ked concr<br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup>                          | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>C25/30<br>C30/3<br>C35/41<br>C40/50<br>C45/51                                                       | ( <b>25</b><br>(kN)<br>(kN)<br>(kN)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22<br>1,27<br>1,31                                                                      | 75              | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range                                                                                                         | es in un-crac<br>led hole<br>I (-40°C/+80'<br>II (-40°C/+12                                      | ked concr<br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup>                          | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>C25/30<br>C30/3<br>C35/41<br>C40/50<br>C45/51                                                       | (kN)<br>(kN)<br>(kN)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c)<br>(c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22<br>1,27<br>1,31                                                                      | 75              | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range<br>Increasing factors fo                                                           | es in un-crac<br>led hole<br>I (-40°C/+80°<br>II (-40°C/+12<br>or N <sup>0</sup> <sub>Rk,p</sub> | <b>ked concr</b><br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup><br>Ψ <sub>c</sub> | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>C25/30<br>C30/3<br>C35/4!<br>C40/50<br>C45/5!<br>C50/60                                             | (kN)<br>[kN]<br>[kN]<br>[kN]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]<br>[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22<br>1,27<br>1,31<br>1,35                                                              | 75<br>60        | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range<br>Increasing factors fo                                                           | es in un-crac<br>led hole<br>I (-40°C/+80°<br>II (-40°C/+12<br>or N <sup>0</sup> <sub>Rk,p</sub> | <b>ked concr</b><br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup><br>Ψ <sub>c</sub> | ete C20/<br>N <sup>0</sup> <sub>Rk,p</sub><br>C25/30<br>C30/3<br>C35/41<br>C40/50<br>C45/51<br>C50/60<br>h / h <sub>ef</sub>                      | (25<br>[kN]<br>[kN]<br>0 [-]<br>7 [-]<br>5 [-]<br>0 [-]<br>5 [-]<br>0 [-]<br>0 [-]<br>2 2,0<br>> 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22<br>1,27<br>1,31<br>1,35<br>1,0 h <sub>ef</sub>                                       | 75<br>60<br>8 h | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range<br>Increasing factors for<br>Splitting failure                                     | es in un-crac<br>led hole<br>I (-40°C/+80°<br>II (-40°C/+12<br>or N <sup>0</sup> <sub>Rk,p</sub> | <b>ked concr</b><br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup><br>Ψ <sub>c</sub> | ete C20/<br>$N_{Rk,p}^{0}$<br>$N_{Rk,p}^{0}$<br>C25/30<br>C30/3<br>C35/45<br>C40/50<br>C40/50<br>C45/55<br>C50/60<br>$h / h_{ef}$<br>$h / h_{ef}$ | (25<br>[kN]<br>[kN]<br>0 [-]<br>7 [-]<br>5 [-]<br>0 [-]<br>5 [-]<br>0 [-]<br>0 [-]<br>2 2,0<br>> 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22<br>1,27<br>1,31<br>1,35<br>1,0 h <sub>ef</sub><br>4,6 h <sub>ef</sub> - 1,<br>2,26 h | 75<br>60<br>8 h | 115       |
| Characteristic value<br>Intended use: flood<br>Temperature range<br>Temperature range<br>Increasing factors for<br>Splitting failure<br>Edge distance c <sub>cr.sp</sub> | es in un-crac<br>led hole<br>I (-40°C/+80°<br>II (-40°C/+12<br>or N <sup>0</sup> <sub>Rk,p</sub> | ked concr<br>°C) <sup>4)</sup><br>20°C) <sup>4)</sup><br>Ψ <sub>c</sub><br>2,0 | ete C20/<br>$N_{Rk,p}^{0}$<br>$N_{Rk,p}^{0}$<br>C25/30<br>C30/3<br>C35/41<br>C40/50<br>C40/50<br>C45/51<br>C50/60<br>$h / h_{ef}$<br>$h / h_{ef}$ | (25) $(kN)$ $(kN)$ $(kN)$ $(25)$ $(25)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ $(-1)$ | 30  | 40       | 50<br>50<br>1,06<br>1,14<br>1,22<br>1,27<br>1,31<br>1,35<br>1,0 h <sub>ef</sub><br>4,6 h <sub>ef</sub> - 1,           | 75<br>60<br>8 h | 115       |

<sup>1)</sup>In absence of other national regulations.

<sup>2)</sup>The partial factor  $\gamma_2 = 1.0$  is included. <sup>3)</sup>The partial factor  $\gamma_2 = 1.2$  is included.

<sup>4)</sup>See Annex 1.

## **BERNER** chemical anchor BCA

Design of Bonded Anchor acc. to TR 029 Characteristic value to tension load for internal threaded anchors MCS Plus I



# Table 12: Characteristic values of resistance to shear loads for internal threaded anchors MCS Plus I.

Design of Bonded Anchor acc. to TR 029.

| Size                     |                   |          |                                    | M 8               | M 10        | M 12              | M 16         | M 20    |  |  |
|--------------------------|-------------------|----------|------------------------------------|-------------------|-------------|-------------------|--------------|---------|--|--|
| Steel failure without le | ever arm          |          | I                                  |                   |             |                   |              |         |  |  |
|                          |                   | Property | 5.8 [kN]                           | 9,2               | 14,5        | 21,1              | 39,2         | 62      |  |  |
| Characteristic           | V                 | class    | 8.8 [kN]                           | 14,6              | 23,2        | 33,7              | 62,7         | 90      |  |  |
| resistance               | $V_{_{Rk,s}}$     | Property | A4 [kN]                            | 12,8              | 20,3        | 29,5              | 54,8         | 86      |  |  |
|                          |                   | class 70 | C [kN]                             | 12,8              | 20,3        | 29,5              | 54,8         | 86      |  |  |
|                          |                   | Property | 5.8 [-]                            |                   |             | 1,25              |              |         |  |  |
| Partial safety factor    | $\gamma_{Ms,V}$   | class    | 8.8 [-]                            |                   | 1,:         | 25                |              | 1,5     |  |  |
| Fartial Salety lactor    | ' Ms,V            | Property | A4 [-]                             |                   |             | 1,56              |              |         |  |  |
|                          |                   | class 70 | C [-]                              |                   |             | 1,56              |              |         |  |  |
| Steel failure with leve  | r arm             |          |                                    |                   |             |                   |              |         |  |  |
|                          |                   | Property | 5.8[Nm]                            | 20                | 39          | 68                | 173          | 337     |  |  |
| Characteristic           | <b>0</b>          | class    | 8.8[Nm]                            | 30                | 60          | 105               | 266          | 519     |  |  |
| bending moment           | $M^{O}_{_{Rk,s}}$ | Property | A4[Nm]                             | 26                | 52          | 92                | 232          | 454     |  |  |
|                          |                   | class 70 | C[Nm]                              | 26                | 52          | 92                | 232          | 454     |  |  |
|                          |                   | Property | 5.8 [-]                            |                   |             | 1,25              |              |         |  |  |
| Partial safety factor    | $\gamma_{Ms,V}$   | class    | 8.8 [-]                            |                   |             | 1,25              |              |         |  |  |
| Fallial Salety lactor    | ' Ms,V            | Property | A4 [-]                             |                   |             | 1,56              |              |         |  |  |
|                          |                   | class 70 | C [-]                              |                   |             | 1,56              |              |         |  |  |
| Concrete pryout failur   | е                 |          |                                    |                   |             |                   |              |         |  |  |
| Factor k in Equation (5. | 7) of Techni      | cal      |                                    |                   |             | 2,0               |              |         |  |  |
| Report TR 029, Section   | า 5.2.3.3         |          | k [-]                              | 2,0               |             |                   |              |         |  |  |
| Partial safety factor    |                   |          | γ <sub>Mcp</sub> <sup>1)</sup> [-] |                   |             | 1,5 <sup>2)</sup> |              |         |  |  |
| Concrete edge failure    |                   |          |                                    | See Teo           | chnical Rep | ort TR 029        | ), Section 5 | 5.2.3.4 |  |  |
| Partial safety factor    |                   |          | γ <sub>Mc</sub> <sup>1)</sup> [-]  | 1,5 <sup>2)</sup> |             |                   |              |         |  |  |

<sup>1)</sup> In absence of other national regulations.

 $^{2)}$  The partial safety factor  $\gamma_2$  = 1,0 is included.

Design of Bonded Anchor acc. to TR 029 Characteristic values to shear load for internal threaded anchors MCS Plus I



## Table 13: Displacements of internal threaded anchors MCS Plus I to tension load

| Size                                       |                            | M8   | M10  | M12  | M16  | M20  |
|--------------------------------------------|----------------------------|------|------|------|------|------|
| Tension load<br>in non-cracked<br>concrete | N [kN]                     | 14.0 | 18,5 | 28,3 | 36,4 | 58,0 |
| Displacement                               | δ <sub>vo</sub> [mm]       | 0,2  |      | 0    | .30  | •    |
| Displacement                               | $\delta_{v_{\infty}}$ [mm] | 0,5  |      | 0    | ,75  |      |

Calculation of characteristic displacement with  $\delta_{_{N}}$  = (  $\delta_{_{NO}}$  +  $\tau_{_{Sd}}$  / 1,4

| Size                     |                      | M8  | M10  | M12  | M16  | M20  |  |  |  |
|--------------------------|----------------------|-----|------|------|------|------|--|--|--|
| Property<br>class 5.8    | Shear<br>load V [kN] | 5,3 | 8,5  | 12,3 | 22,8 | 35,7 |  |  |  |
| Displacement             | δ <sub>v0</sub> [mm] | 2.  | ,4   |      | 2,2  |      |  |  |  |
| Displacement             | δ <sub>v∞</sub> [mm] | 3   | ,6   | 3,3  |      |      |  |  |  |
| Property<br>class 8.8    | Shear V [kN]<br>load | 8,2 | 13   | 18,9 | 35,1 | 51   |  |  |  |
| Displacement             | δ <sub>vo</sub> [mm] | 3,1 | 3,7  |      | 2,8  |      |  |  |  |
| Displacement             | δ <sub>v∞</sub> [mm] | 4   | ,7   |      | 4,3  |      |  |  |  |
| A4; Property<br>class 70 | Shear<br>load V [kN] | 5,9 | 9,3  | 13,5 | 25,1 | 39,2 |  |  |  |
| Displacement             | δ <sub>ν0</sub> [mm] | 2   | ,3   |      | 2,4  |      |  |  |  |
| Displacement             | δ <sub>v∞</sub> [mm] | 3   | ,4   |      | 3,6  |      |  |  |  |
| C; Property<br>class 70  | Shear<br>load V [kN] | 7,3 | 11,6 | 16,9 | 31,3 | 49   |  |  |  |
| Displacement             | δ <sub>v0</sub> [mm] | 2   | ,8   |      | 3,0  |      |  |  |  |
| Displacement             | δ <sub>v∞</sub> [mm] | 4   | ,3   |      | 4,5  |      |  |  |  |

| -     |                                |                           |                 |
|-------|--------------------------------|---------------------------|-----------------|
| lable | 14 : Displacements of internal | threaded anchors MCS Plus | l to shear load |

Calculation of characteristic displacement with  $\delta_v$  = (  $\delta_{vo}$  +  $V_{sd}$  / 1,4

**BERNER** chemical anchor BCA

Displacements of internal threaded anchors MCS Plus I



# **Table15:** Characteristic values of resistance to tension load for anchor rods BCA M.Design of Bonded Anchors acc. to CEN/TS 1992-4-5: 2009 (Standard cleaning process)

| Steel fai                                              | lure                             |                        |                                    |                        |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
|--------------------------------------------------------|----------------------------------|------------------------|------------------------------------|------------------------|--------------------------------------|-----|----------|-------|----------|---------------------|----------|-----|----------|-----|-----------------|--|
| Size                                                   |                                  |                        |                                    | M8                     | M10                                  | M12 | M12<br>E | M16   | M16<br>E | M20                 | M20<br>E | M24 | M24<br>E | M27 | M30             |  |
| s-                                                     | Pr                               |                        | 5.8 [kN]                           |                        | 30                                   | 4   | 4        | 8     | 2        | 12                  | 27       | 18  | 239      | 292 |                 |  |
| Characteris-<br>tic resistance<br>N <sub>Rk.s</sub>    |                                  |                        | 8.8 [kN]                           | 29                     | 46                                   | 6   | 7        | 12    | 26       | 19                  | 96       | 2   | 82       | 368 | 449             |  |
| esis                                                   | stainless                        |                        | 50 [kN]                            | 19                     | 30 44                                |     | 8        |       | 127      |                     | 183      |     | 239      |     |                 |  |
| Chara<br>tic re<br>N <sub>Rk.s</sub>                   | steel A4 and<br>steel C          |                        | 70 [kN]                            | 26                     | 41                                   |     | 9        |       | 10       |                     | 72       |     | 47       | 322 |                 |  |
|                                                        |                                  |                        | 80 [kN]                            | 29                     | 29 46 67 126 196 282 368 449<br>1,50 |     |          |       |          |                     |          |     |          |     |                 |  |
| Partial safety<br>factor γ <sub>Ms</sub> <sup>1)</sup> | Pr                               | operty<br>class        | 5.8 [-]<br>8.8 [-]                 |                        |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
| Partial safe<br>factor γ <sub>ms</sub> 1               | stainless                        | Pro                    |                                    | <u> </u>               |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
| rtia                                                   | steel A4 and                     | perty                  |                                    | 1,504)/1,87            |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
|                                                        |                                  |                        |                                    |                        |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
| Combined pull-out and concrete cone failure            |                                  |                        |                                    |                        |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
|                                                        | r for calculatio                 |                        | d [mm]                             |                        | 10                                   | L   | 2        | 1     |          |                     | 0        |     | 4        | 27  | 30              |  |
|                                                        | anchorage de                     | ·                      | h <sub>ef</sub> [mm]               |                        | 90                                   | 110 | 150      | 125   | 190      | 170                 | 240      | 210 | 290      | 250 | 280             |  |
|                                                        | eristic bond re<br>gory: dry and |                        |                                    |                        |                                      |     | te C20   | 0/25; |          |                     |          |     |          |     |                 |  |
| Tempera                                                |                                  |                        | [N/mm <sup>2</sup> ]               | 8                      |                                      |     | 7,5      |       |          |                     |          | 6,5 | 6,5      |     |                 |  |
| Tempera                                                | ture range II <sup>5)</sup>      | $\tau_{\text{Rk,ucr}}$ | [N/mm <sup>2</sup> ]               | 6                      |                                      |     | 7        |       |          |                     |          | 6   |          |     | 6 <sup>3)</sup> |  |
| Factor fo                                              | r non-cracked c                  |                        | 407 = =                            |                        |                                      |     |          |       |          | ),1                 |          |     |          |     |                 |  |
|                                                        |                                  |                        | /30 [-]                            |                        |                                      |     |          |       | -        | 06                  |          |     |          |     |                 |  |
|                                                        |                                  |                        | )/37 [-]                           |                        |                                      |     |          |       |          | 14                  |          |     |          |     |                 |  |
| Increasir<br>factors f                                 |                                  | <u>C35</u>             | /45 [-]                            |                        |                                      |     |          |       |          | 22                  |          |     |          |     |                 |  |
| τ <sub>Rk,ucr</sub>                                    | UI C                             | <u>C40</u>             | /50 [-]                            |                        |                                      |     |          |       | 1,       | 27                  |          |     |          |     |                 |  |
| Rk,ucr                                                 |                                  | C45                    | /55 [-]                            |                        |                                      |     |          |       | 1,       | 31                  |          |     |          |     |                 |  |
|                                                        |                                  | C50                    | /60 [-]                            |                        |                                      |     |          |       | 1,       | 35                  |          |     |          |     |                 |  |
| Splitting                                              | j failure                        |                        |                                    |                        |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
| Edge die                                               | stance —                         | h,                     | ′ h <sub>ef</sub> ≥ 2,0            |                        |                                      |     |          |       |          | ) h <sub>ef</sub>   |          |     |          |     |                 |  |
|                                                        | c [mm] $2,0 > h / h_{ef} > 1;$   |                        |                                    |                        |                                      |     |          |       |          | <sub>ef</sub> - 1,8 | h        |     |          |     |                 |  |
| cr,sp -                                                | -                                | h /                    | ′ h <sub>ef</sub> ≤ 1,3            | 3 2,26 h <sub>ef</sub> |                                      |     |          |       |          |                     |          |     |          |     |                 |  |
| Spacing                                                |                                  | <sub>cr,sp</sub> [mm]  |                                    |                        |                                      |     |          | 20    | cr,sp    |                     |          |     |          |     |                 |  |
| Partial sa                                             | afety factor $\gamma_{_{MF}}$    | ,=γ <sub>Mc</sub> =    | γ <sub>Msp</sub> <sup>1)</sup> [-] |                        |                                      |     |          |       | 1,       | 80 <sup>2)</sup>    |          |     |          |     |                 |  |

<sup>1)</sup>In absence of other national regulations.

<sup>2)</sup>The partial safety factor  $\gamma_2$ =1,2 is included.

<sup>3)</sup>Only use category: dry and wet concrete.

<sup>4)</sup>For steel C with:  $f_{uk} = 700 \text{ N/mm}^2$ ;  $f_{vk} = 560 \text{ N/mm}^2$ 

<sup>5)</sup>See Annex 1.

Displacements see Annex 10.

## **BERNER** chemical anchor BCA

Design of Bonded Anchors acc. to CEN/ TS 1992-4-5:2009 Characteristic values to tension load for anchor rods BCA M Standard cleaning process/ Spacing and edge distance



**Tabelle 16:** Characteristic values of resistance to tension load for anchor rods BCA M. Design of Bonded Anchor acc. to CEN/TS 1992-4-5: 2009 (**Premium cleaning process**)

| Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | M8                       | M10              | M12      |          | M16   |          | M20                 |                   | M24 | M24            | M27  | М30 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|------------------|----------|----------|-------|----------|---------------------|-------------------|-----|----------------|------|-----|
| 0 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proporty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8 [kN]                   | 10                       | 30               | 1        | <u>Е</u> | 8     | <u>E</u> | 12                  | <u>E</u>          | 10  | <u>Е</u><br>33 | 239  | 202 |
| Find the set of the se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.8 [kN]                   |                          | 46               |          | 7        | 12    |          | 12                  |                   |     | 32             | 368  |     |
| stainless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50 [kN]                    |                          | 30               |          | 4        |       | 82 127   |                     |                   | 33  | 239            |      |     |
| steel A4 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                          | 41               |          |          |       | 10       | 172                 |                   |     | 47             | 322  |     |
| ວ່≓ z ຶ steel C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 [kN]                    |                          | 46               |          | 67<br>67 |       | 26       |                     | 96                |     | 82             | 368  |     |
| È, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.8 [-]                    |                          |                  |          |          |       | 1,5      |                     |                   |     |                |      |     |
| A Description Selection A Description Selection A Description Selection A Description A Descripti A Description A Descripti A Descripti A Des  | class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.8 [-]                    |                          |                  |          |          |       | 1,5      |                     |                   |     |                |      |     |
| ज ह stainless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pro-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                          |                  |          |          |       | 2,8      |                     |                   |     |                |      |     |
| La stainless<br>steel A4 and<br>steel C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1,50 <sup>5)</sup> /1,87 |                  |          |          |       |          |                     |                   |     |                |      |     |
| ت ي steel C class 80 [-] 1,60<br>Combined pull-out and concrete cone failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                          |                  |          |          |       |          |                     |                   |     |                |      |     |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1                        |                  |          | -        |       | _        |                     |                   |     |                |      |     |
| Diameter for calculat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d [mm]                     |                          | 10               |          | 2        | 1     |          | 2                   |                   |     | 4              | 27   | 30  |
| Effective anchorage of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h <sub>ef</sub> [mm]       |                          | 90               |          | 150      | 125   | 190      | 170                 | 240               | 210 | 290            | 250  | 280 |
| Characteristic bond<br>use category: dry an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 1-crac                   | ked c            | oncre    | ete C20  | 0/25; |          |                     |                   |     |                |      |     |
| Temperature range I <sup>6)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\tau_{_{\rm Bk,ucr}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [N/mm <sup>2</sup> ]       | 1                        | 1                | 1        | 0        | 9,    | 5        | 9                   | ,0                |     | 8,5            |      | 8,0 |
| Temperature range II <sup>6)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                          | 9,5              | <u> </u> | 3        | 7,    |          |                     | 7                 |     |                | ,5   |     |
| Characteristic bond<br>use category: floode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ice in nor                 | 1-crac                   | ked c            | oncre    | te C20   | 0/25; |          |                     |                   |     |                |      |     |
| Temperature range I <sup>6)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\tau_{_{Bk,ucr}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [N/mm <sup>2</sup> ]       | 9                        | 0,0              |          | 10       | ,0    |          | 9                   | ,5                |     | 9,0            |      | 8,5 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{ll} \begin{array}{ll} & \tau_{\rm Rk,ucr} & [{\rm N/mm} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \end{array} \\ \begin{array}{ll} \end{array} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \\ \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} \\ \end{array} \\ $ |                            |                          |                  |          |          |       |          |                     |                   |     | 8,0            |      | 7,5 |
| Factor for non-cracked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 10,1                     |                  |          |          |       |          |                     | 1                 | 010 |                | 1.75 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6/30 [-]                   | 1,06                     |                  |          |          |       |          |                     |                   |     |                |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )/37 [-]                   | 1,14                     |                  |          |          |       |          |                     |                   |     |                |      |     |
| Increasing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/45 [-]                   |                          |                  |          |          |       |          | 22                  |                   |     |                |      |     |
| factors for $\psi_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /50 [-]                    |                          |                  |          |          |       |          | 27                  |                   |     |                |      |     |
| τ <sub>Rk,ucr</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/55 [-]                   |                          |                  |          |          |       |          | 31                  |                   |     |                |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )/60 [-]                   |                          |                  |          |          |       |          | 35                  |                   |     |                |      |     |
| Splitting failure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,00 []                     |                          |                  |          |          |       | .,       | 00                  |                   |     |                |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ′ h <sub>ef</sub> ≥ 2,0    |                          |                  |          |          |       | 1.0      | ) h <sub>ef</sub>   |                   |     |                |      |     |
| Edge distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0 > h/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ′ h <sub>ef</sub> > 1,3    |                          |                  |          |          |       |          | <sub>af</sub> - 1,8 | h                 |     |                |      |     |
| c <sub>cr,sp</sub> [mm]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                          |                  |          |          |       |          |                     |                   |     |                |      |     |
| Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | h <sub>ef</sub> ≤ 1,3      |                          |                  |          |          |       | 2,20     | 6 h <sub>ef</sub>   |                   |     |                |      |     |
| Spacing<br>Partial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sub>cr,sp</sub> [mm]      |                          |                  |          |          |       | 20       | cr,sp               |                   |     |                |      |     |
| safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dry and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d wet [-]                  | 1                        | ,8 <sup>2)</sup> |          |          |       |          |                     | 1,5 <sup>3)</sup> |     |                |      |     |
| $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | floodec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hole [-]                   |                          |                  |          |          |       | 2,       | 1 <sup>4)</sup>     |                   |     |                |      |     |
| <sup>1)</sup> In absence of other r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | national                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | regulatio                  | ns.                      |                  |          |          |       |          |                     |                   |     |                |      |     |
| <sup>2)</sup> The partial safety fac<br><sup>3)</sup> The partial safety fac<br><sup>4)</sup> The partial safety fac<br><sup>5)</sup> For steel C with: $f_{uk} = {}^{6)}$ See Annex 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tor $\gamma_2 = 1$<br>tor $\gamma_2 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,0 is inclu<br>,4 is inclu | uded.<br>uded.           | ) N/m            | 1m²      |          |       | Disp     | blacer              | nents             | see | Anne           | x 10 |     |
| BERNER chemic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al anc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hor BCA                    | <b>`</b>                 |                  |          |          |       |          |                     |                   |     |                |      |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                          |                  |          |          |       |          |                     |                   |     |                |      |     |

Characteristic values to tension load for anchor rods BCA M Premium cleaning process / Spacing and egde distance



# Table 17: Characteristic values of resistance to shear load for anchor rods BCA M.Design of Bonded Anchors, acc. to CEN/TS 1992-4-5: 2009

| Size                                                                              |                                               |                    |                 |        | <b>M</b> 8 | M10 | M12       | M12<br>E | M16   | M16<br>E          | M20             | M20<br>E | M24    | M24<br>E | M27  | M30  |
|-----------------------------------------------------------------------------------|-----------------------------------------------|--------------------|-----------------|--------|------------|-----|-----------|----------|-------|-------------------|-----------------|----------|--------|----------|------|------|
| Effective                                                                         | anchorage de                                  | epth               | h <sub>ef</sub> | [mm]   | 80         | 90  | 110       | 150      | 125   | 190               | 170             | 240      | 210    | 290      | 250  | 280  |
|                                                                                   | ure without                                   | lever a            | rm              |        |            |     |           |          |       |                   |                 |          |        |          |      |      |
| Charac-teris-<br>tic resistance<br>V <sub>Rk.s</sub>                              | Pro                                           | operty             | 5.8             | [kN]   | 9          | 15  |           | 21       |       | 9                 | 6               | 51       | 8      | 39       | 115  | 141  |
| an                                                                                |                                               | class              | 8.8             | [kN]   | 15         | 23  |           |          | 63    |                   | 98              |          | 141    |          | 184  | 225  |
| Charac-teris-<br>tic resistance<br>V <sub>Rk.s</sub>                              | stainless                                     | Pro-               | 50              | [kN]   | 9          | 15  | 5 21 39 6 |          | 6     | 51                | 8               | 39       | 115    | 141      |      |      |
| re:<br>re:                                                                        | steel A4                                      | perty              | 70              | [kN]   | 13         | 20  |           | 80       |       | 5                 |                 | 36       |        | 24       | 161  | 197  |
| Ltic<br>Ltic                                                                      |                                               |                    |                 |        | 15         | 23  | 3         | 34       | 6     | 3                 | 9               | 8        | 14     | 41       | 184  | 225  |
|                                                                                   | ure with leve                                 | er arm             |                 |        |            |     |           |          |       |                   |                 |          |        |          |      |      |
| eristic<br>M <sup>0</sup> <sub>Rk,s</sub>                                         | Pro                                           | operty             | 5.8             | [Nm]   | 19         | 37  | 6         | 5        | 10    | 66                | 3               | 24       | 5      | 61       | 833  | 1124 |
| Characteristic<br>bending<br>moment M <sup>0</sup> <sub>Rk.s</sub>                | [Nm]                                          | 30                 | 60              | 10     | 05         | 20  | 66        | 5        | 19    | 8                 | 96              | 1333     | 1797   |          |      |      |
| steel A4 perty 70 [Nn<br>70 [Nn<br>70 [Nn<br>70 [Nn<br>70 [Nn<br>70 [Nn<br>70 [Nn |                                               |                    |                 |        | 19         | 37  |           | 5        |       | 66                | 3:              | 24       | 5      | 61       | 833  | 1124 |
| nd                                                                                | steel A4                                      | perty              | 70              | [Nm]   |            | 52  | 9         | 2        |       | 32                | 4               | 54       | -      | 84       | 1167 | 1573 |
| be<br>mu                                                                          | and steel C                                   | class              | 80              | [Nm]   | 30         | 60  | 105       |          | 266   |                   | 519             |          | 898    |          | 1333 | 1797 |
| Ductilityfa                                                                       | actor                                         |                    | $k_2$           | [-]    | 0,8        |     |           |          |       |                   |                 |          |        |          |      |      |
| Partial sa                                                                        | fety factor fo                                | or stee            | l fail          | ure    |            |     |           |          |       |                   |                 |          |        |          |      |      |
| ťy                                                                                | Pro                                           | operty             | 5.8             | 3 [-]  |            |     |           |          |       | 1,2               | 25              |          |        |          |      |      |
| Partial safety<br>factor γ <sub>Ms</sub> <sup>1)</sup>                            |                                               | class              | 8.8             |        |            |     |           |          |       | 1,2               | 25              |          |        |          |      |      |
| al s<br>r Y                                                                       | stainless                                     | Pro-               | 50              | ) [-]  |            |     |           |          |       | 2,3               | 38              |          |        |          |      |      |
| Partial<br>factor                                                                 | steel A4                                      | perty              | 70              |        |            |     |           |          | 1     | ,25 <sup>3)</sup> | / 1,56          | 6        |        |          |      |      |
| Pa                                                                                | and steel C                                   | class              | 80              | ) [-]  |            |     |           |          |       | 1,3               | 33              |          |        |          |      |      |
| Concrete                                                                          | e pryout                                      |                    |                 |        |            |     |           |          |       |                   |                 |          |        |          |      |      |
| Factor in<br>CEN/TS<br>section 6                                                  |                                               | κ <sub>3</sub> [-] |                 |        |            |     |           | 2        | ,0    |                   |                 |          |        |          |      |      |
| Partial sat                                                                       | Partial safety factor $\gamma_{Mcp}^{(1)}$ [- |                    |                 |        |            |     |           |          |       |                   |                 |          |        |          |      |      |
| Concrete                                                                          | Concrete edge failure                         |                    |                 |        |            |     |           | see C    | EN/TS | 5 1992            | 2-4-5,          | secti    | on 6.3 | 3.4      |      |      |
| Partial sat                                                                       | fety factor                                   |                    | $\gamma_{Mc}$   | 1) [-] |            |     |           |          |       | 1,                | 5 <sup>2)</sup> |          |        |          |      |      |

<sup>1)</sup>In absence of other national regulations

 $^{2)}\mbox{The partial safety factor }\gamma_2$  = 1,0 is included

<sup>3)</sup>For steel C with:  $f_{uk}$  = 700 N/mm<sup>2</sup>;  $f_{vk}$  = 560 N/mm<sup>2</sup>

Displacements see Annex 10.

| BERNER | chemical | anchor | BCA |
|--------|----------|--------|-----|
|        | ononnour | anonor |     |

Design of Bonded Anchors, acc. to CEN/TS 1992-4-5: 2009 Characteristic values to shear load for anchor rods BCA M



**Table 18:** Characteristic values of resistance to tension load for Internal threaded anchors MCS Plus I. Design of bonded Anchor acc. CEN/TS 1992-4-5: 2009 (only permium cleaning process).

| Size                                                                      |                      |                         |                                 |                      | M 8                 | M 10                        | M 12                | M 16 | M 20 |  |
|---------------------------------------------------------------------------|----------------------|-------------------------|---------------------------------|----------------------|---------------------|-----------------------------|---------------------|------|------|--|
| Steel failure                                                             |                      |                         |                                 |                      |                     |                             |                     |      |      |  |
| Characteristic<br>resitance<br>with screw                                 |                      | Property                | - 5.8                           | 3 [kN]               | 19                  | 29                          | 43                  | 79   | 123  |  |
|                                                                           | N                    | class                   | 8.8                             | 3 [kN]               | 29                  | 47                          | 68                  | 108  | 179  |  |
|                                                                           | $N_{Rk,s}$           | Property                |                                 | 4 [kN]               | 26                  | 41                          | 59                  | 110  | 172  |  |
|                                                                           |                      | class 70                | (                               | C [kN]               | 26                  | 41                          | 59                  | 110  | 172  |  |
|                                                                           |                      | Property                | Property- 5.8 [-] 1,50          |                      |                     |                             |                     |      |      |  |
| Partial safety                                                            | $\gamma_{Ms,N}^{1)}$ | class                   | 8.8                             | 3 [-]                | 1,50                |                             |                     |      |      |  |
| factor                                                                    | / Mis,N              | Property                |                                 |                      | 1,87                |                             |                     |      |      |  |
|                                                                           |                      | class 70                | (                               | C [-]                |                     |                             | 1,87                |      |      |  |
| Combined pullout and                                                      |                      | failure                 |                                 |                      |                     |                             |                     |      |      |  |
| Diameter for calculatio                                                   |                      |                         |                                 | [mm]                 | 12                  | 16                          | 18                  | 22   | 28   |  |
| Effective anchorage de                                                    |                      |                         |                                 | [mm]                 | 90                  | 90                          | 125                 | 160  | 200  |  |
| Characteristic values i<br>Intended use: dry and                          |                      |                         | rete C2                         | 20/25                |                     |                             |                     |      |      |  |
| Temperature range I (-4                                                   | 40°C/+80°            | °C) <sup>4)</sup>       | $N^0_{Rk,p}$                    | [kN]                 | 30                  | 35                          | 50                  | 75   | 115  |  |
| Temperature range II (-                                                   | 40°C/+12             | 0°C) <sup>4)</sup>      | N <sup>0</sup> <sub>Bk,p</sub>  | [kN]                 | 20                  | 30                          | 40                  | 60   | 95   |  |
| Characteristic values<br>Intended use: flooded<br>Temperature range I (-4 | hole                 |                         | N <sup>0</sup> <sub>Rk,p</sub>  | [kN]                 | 30                  | 40                          | 50                  | 75   | 115  |  |
| Temperature range II (-                                                   |                      |                         | N <sup>0</sup> <sub>Rk,p</sub>  | [kN]                 | 25                  | 35                          | 50                  | 60   | 115  |  |
| Factor for non-cracked                                                    |                      | .0.0,                   | k <sub>ucr</sub>                | [-]                  | 20                  |                             | 10,1                |      | 110  |  |
|                                                                           | Concrete             |                         | C25/3                           |                      | 1,06                |                             |                     |      |      |  |
|                                                                           |                      |                         | $\frac{C25/3}{C30/3}$           |                      | 1,14                |                             |                     |      |      |  |
|                                                                           |                      |                         | C35/4                           |                      | 1,22                |                             |                     |      |      |  |
| Increasing factors for N                                                  | 0<br>Rk,p            | $\Psi_{c}$              | C40/50 [-]                      |                      | 1,22                |                             |                     |      |      |  |
|                                                                           |                      | C45/55 [-]              |                                 |                      | 1,31                |                             |                     |      |      |  |
|                                                                           |                      |                         | 30 [-]                          |                      |                     | 1,35                        |                     |      |      |  |
| Splitting failure                                                         |                      |                         |                                 |                      |                     |                             |                     |      |      |  |
|                                                                           |                      |                         | h / h                           | <sub>f</sub> ≥ 2,0   |                     |                             | 1,0 h <sub>ef</sub> |      |      |  |
| Edge distance c <sub>cr.sp</sub> [mm]                                     | n <b>m]</b>          | 2,0                     | 2,0 > h / h <sub>ef</sub> > 1,3 |                      |                     | 4,6 h <sub>ef</sub> - 1,8 h |                     |      |      |  |
|                                                                           |                      | h / h                   | <sub>f</sub> ≤ 1,3              | 2,26 h <sub>ef</sub> |                     |                             |                     |      |      |  |
| Spacing                                                                   |                      | s <sub>cr.sp</sub> [mm] |                                 |                      | 2c <sub>cr,sp</sub> |                             |                     |      |      |  |
| Dential asfaty fastar                                                     |                      | dry and wet [-]         |                                 |                      |                     |                             |                     |      |      |  |
| Partial safety factor                                                     |                      | dry                     | and w                           | et [-]               |                     |                             | 1,5 <sup>2)</sup>   |      |      |  |

<sup>1)</sup>In absence of other national regulations.

 $^{2)}\text{The partial factor}\,\gamma_{2}$  =1,0 is included.

<sup>3)</sup>The partial factor  $\gamma_2 = 1,2$  is included.

Displacements see Annex 13

<sup>4)</sup>See Annex 1.

## **BERNER** chemical anchor BCA

Design of Bonded Anchor acc. CEN/TS 1992-4-5: 2009 Characteristic value to tension load for internal threaded anchors MCS Plus I

# Page 27 of European technical approval ETA-11/0076 of 27 March 2013

English translation prepared by DIBt



# Table 19: Characteristic values of resistance to shear loads for internal threaded anchors MCS Plus I.Design of Bonded Anchor acc. to CEN/TS 1992-4-5: 2009.

| Steel failure without lev<br>Characteristic<br>resistance<br>Partial safety factor | V <sub>Rk,s</sub>                | class<br>Property<br>class 70 | 5.8 [kN]<br>8.8 [kN]<br><u>A4 [kN]</u> | 9,2<br>14,6<br>12,8 | 14,5<br>23,2 | 21,1              | 39,2        | 62  |
|------------------------------------------------------------------------------------|----------------------------------|-------------------------------|----------------------------------------|---------------------|--------------|-------------------|-------------|-----|
| resistance                                                                         |                                  | class<br>Property<br>class 70 | 8.8 [kN]<br>A4 [kN]                    | 14,6                |              |                   | 39,2        | 62  |
| resistance                                                                         |                                  | class<br>Property<br>class 70 | 8.8 [kN]<br>A4 [kN]                    |                     | 23,2         | 22.7              |             |     |
|                                                                                    |                                  | class 70                      |                                        | 120                 | =            | 33,7              | 62,7        | 90  |
| Partial safety factor                                                              | 24                               |                               |                                        | 12,0                | 20,3         | 29,5              | 54,8        | 86  |
| Partial safety factor                                                              | 24                               |                               | C [kN]                                 | 12,8                | 20,3         | 29,5              | 54,8        | 86  |
| Partial safety factor                                                              | 27                               | Property                      |                                        |                     |              | 1,25              |             |     |
|                                                                                    | γ <sub>Ms.V</sub>                | class                         |                                        |                     | 1,2          | 25                |             | 1,5 |
|                                                                                    | ' Ms,V                           | Property                      | A4 [-]                                 |                     |              | 1,56              |             |     |
|                                                                                    |                                  | class 70                      | C [-]                                  |                     |              | 1,56              |             |     |
| Steel failure with lever a                                                         | arm                              |                               |                                        |                     |              |                   |             |     |
| Characteristic<br>bending moment                                                   | M <sup>0</sup> <sub>Rk,s</sub> - |                               | 5.8[Nm]                                | 20                  | 39           | 68                | 173         | 337 |
|                                                                                    |                                  | class                         |                                        | 30                  | 60           | 105               | 266         | 519 |
|                                                                                    |                                  | Property                      | A4[Nm]                                 | 26                  | 52           | 92                | 232         | 454 |
|                                                                                    |                                  | class 70                      | C[Nm]                                  | 26                  | 52           | 92                | 232         | 454 |
| Ductility factor                                                                   |                                  |                               | k <sub>2</sub> [-]                     |                     |              | 0,8               |             |     |
|                                                                                    | γ <sub>Ms,V</sub> –              | Property                      | 5.8 [-]                                |                     |              | 1,25              |             |     |
| Partial safety factor                                                              |                                  | class                         | 8.8 [-]                                |                     |              | 1,25              |             |     |
|                                                                                    |                                  | Property                      | A4 [-]                                 |                     |              | 1,56              |             |     |
|                                                                                    |                                  | class 70                      | C [-]                                  |                     |              | 1,56              |             |     |
| Concrete pryout failure                                                            |                                  |                               |                                        |                     |              |                   |             |     |
| Factor in Equation (27)                                                            |                                  |                               | ь (1                                   |                     |              | 2,0               |             |     |
| CEN/TS 1992-4-5, Section                                                           | on 6.3.3                         |                               | k <sub>3</sub> [-]                     |                     |              | 2,0               |             |     |
| Partial safety factor                                                              |                                  | 1                             | Mcp <sup>1)</sup> [-]                  |                     |              | 1,5 <sup>2)</sup> |             |     |
| Concrete edge failure                                                              |                                  |                               |                                        | Se                  | e CEN/TS     | 1992-4-5;         | Section 6.3 | 3.4 |
| Partial safety factor                                                              |                                  |                               | γ <sub>Mc</sub> <sup>1)</sup> [-]      |                     |              | 1,5 <sup>2)</sup> |             |     |

<sup>1)</sup> In absence of other national regulations.

 $^{2)}$  The partial safety factor  $\gamma_{2}$  = 1,0 is included.

Displacements see Annex 13.

## **BERNER** chemical anchor BCA

Design of Bonded Anchor acc. to CEN/TS 1992-4-5: 2009 Characteristic values to shear load for internal threaded anchors MCS Plus I