Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

European Technical Approval ETA-11/0182

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity: vom from bis

to

Herstellwerk

Manufacturing plant

G&B Fissaggi Injektionssystem EPO PLUS RE für Beton G&B Fissaggi Injection system EPO PLUS RE for concrete

G&B FISSAGGI Corso Savona, 22 10029 Villatellone (TO) ITALIEN

Verbunddübel mit Ankerstange zur Verankerung im Beton

Bonded anchor with anchor rod for use in concrete

13 June 2013

31 May 2018

G&B Fissaggi S.R.L., Plant4

Diese Zulassung umfasst This Approval contains 33 Seiten einschließlich 24 Anhänge 33 pages including 24 annexes

Diese Zulassung ersetzt This Approval replaces ETA-11/0182 mit Geltungsdauer vom 30.06.2011 bis 03.02.2014 ETA-11/0182 with validity from 30.06.2011 to 03.02.2014

Page 2 of 33 | 13 June 2013

LEGAL BASES AND GENERAL CONDITIONS

- This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 5: Bonded anchors", ETAG 001-05.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of 3 manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Z42773.13 8.06.01-240/13

Electronic copy of the ETA by DIBt: ETA-11/0182

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 33 | 13 June 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The "G&B Fissaggi Injection System EPO PLUS RE for concrete" is a bonded anchor consisting of a cartridge with injection mortar EPO PLUS RE and a steel element. The steel elements are commercial threaded rods according to Annex 3 in the range of M8 to M30 or reinforcing bar according to Annex 4 in the range of Ø 8 to Ø 32.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

An illustration of the product and intended use is given in Annexes 1 and 2.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval.

The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be used in cracked or non-cracked concrete.

The anchor may also be used under seismic action for performance category C1 according to Annex 23.

The anchor may be installed in dry or wet concrete or in flooded holes.

The anchor may be used in the following temperature ranges:

Temperature range I: -40 °C to +40 °C (max long term temperature +24 °C and

max short term temperature +40 °C)

Temperature range II: -40 °C to +60 °C (max long term temperature +43 °C and

max short term temperature +60 °C)

Elements made of zinc coated steel:

The element made of zinc plated or hot dipped galvanised steel may only be used in structures subject to dry internal conditions.

Elements made of stainless steel A4:

The element made of stainless steel 1.4401 or 1.4571 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure to permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Z42773.13 8.06.01-240/13

Page 4 of 33 | 13 June 2013

Elements made of high corrosion resistant steel:

The element made of high corrosion resistant steel 1.4529 or 1.4565 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of reinforcing bars:

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 or CEN/TS 1992-4:2009. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with post-installed reinforcing bars in concrete structures designed in accordance with EN1992-1-1:2004 are not covered by this European technical approval.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and provisions given in the Annexes. The characteristic material values, dimensions and tolerances of the anchor not indicated in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic values for the design of anchorages are given in the Annexes.

The two components of the injection mortar are delivered in unmixed condition in side-by- side cartridges of sizes 385 ml, 585 ml, 100 ml or 1400 ml according to Annex 2. Each cartridge is marked with the imprint "EPO PLUS RE", with processing notes, charge code, storage life, hazard code and curing- and processing time depending on temperature.

Elements made of reinforcing bars shall comply with the specifications given in Annex 4.

The marking of embedment depth may be done on jobsite.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors", on the basis of Option 1 and ETAG 001 Annex E "Assessment of Metal Anchors under Seismic Action".

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Z42773.13 8.06.01-240/13

Page 5 of 33 | 13 June 2013

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 96/582/EG of the European Commission⁸ system 2(i) (referred to as System 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1)factory production control;
 - further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.9

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

Z42773.13 8.06.01-240/13

Official Journal of the European Communities L 254 of 08.10.1996

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 33 | 13 June 2013

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2 For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the holder of the approval (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product.
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1, Option 1, seismic anchor performance category C1)
- size.

Z42773.13 8.06.01-240/13

Page 7 of 33 | 13 June 2013

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited at Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced.

Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed either in accordance with the

The anchorages are designed in accordance with the

EOTA Technical Report TR 029 "Design of bonded anchors"

or in accordance with the

- CEN/TS 1992-4:2009

and EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action" under the responsibility of an engineer experienced in anchorages and concrete work.

Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered by this European technical approval.

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 or CEN/TS 1992-4:2009. The basic assumptions for the design according to anchor theory shall be observed. This includes the consideration of tension and shear loads and the corresponding failure modes as well as the assumption that the base material (concrete structural element) remains essentially in the serviceability limit state (either non-cracked or cracked) when the connection is loaded to failure. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the rebars act as dowels to take up shear forces. Connections with reinforcing bars in concrete structures designed in accordance with EN 1992-1-1:2004 (e.g. connection of a wall loaded with tension forces in one layer of the reinforcement with the foundation) are not covered by this European technical approval.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

Z42773.13

The Technical Report TR 029 "Design of Bonded Anchors" is published in English on EOTA website www.eota.eu.

Page 8 of 33 | 13 June 2013

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- use of the anchor only as supplied by the manufacturer without exchanging the components,
- commercial standard threaded rods, washers and hexagon nuts may be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 3,
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
 - marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or the person on jobsite.
- embedded reinforcing bars shall comply with specifications given in Annex 4,
- checks before placing the anchor to ensure that the strength class of the concrete in which
 the anchor is to be placed is in the range given and is not lower than that of the concrete to
 which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,
- marking and keeping the effective anchorage depth.
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drilling by hammer-drilling only,
- in case of aborted drill hole: the drill hole shall be filled with mortar,
- cleaning the drill hole in accordance with Annexes 6 to 8,
- during installation and curing of the chemical mortar the anchor component installation temperature shall be at least 5 °C; the temperature; observing the curing time according to Annex 7, Table 4 until the anchor may be loaded,
- for injection of the mortar in bore holes of diameter d₀ > 20 mm piston plugs according to Annex 8 shall be used for overhead or horizontal injection,
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in Annex 5 must not be exceeded.

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2, 4.3 and 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval.

In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

Z42773.13 8.06.01-240/13

Page 9 of 33 | 13 June 2013

The minimum data required are:

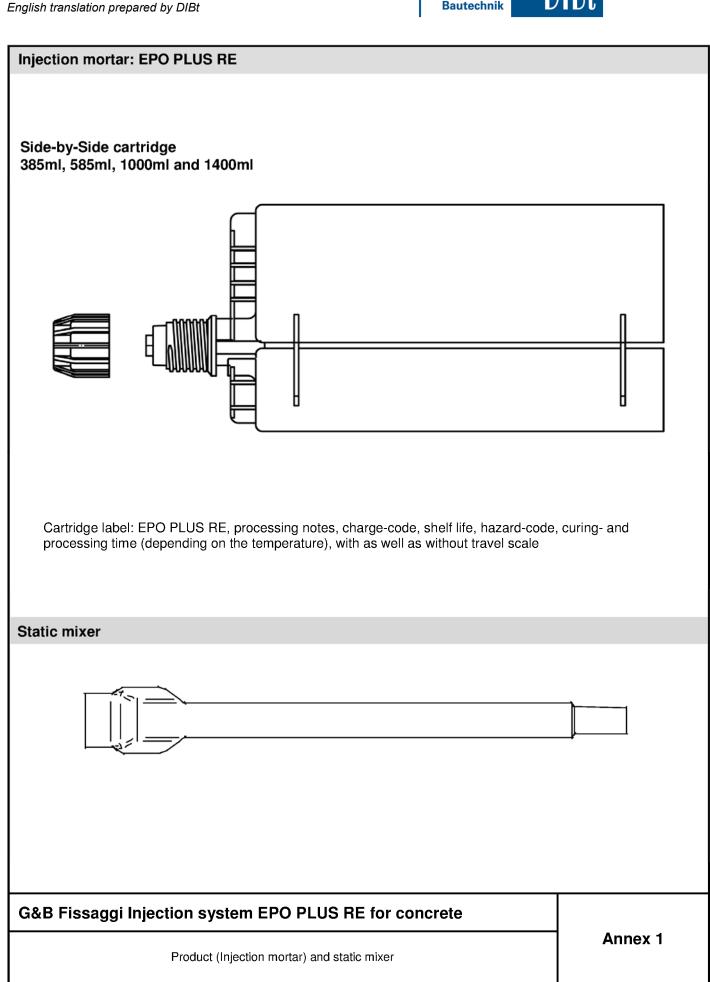
- drill bit diameter,
- hole depth,
- diameter of anchor rod,
- minimum effective anchorage depth,
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- anchor component installation temperature,
- ambient temperature of the concrete during installation of the anchor,
- admissible processing time (open time) of the mortar,
- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- maximum torque moment,
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.

5.2 Packaging, transport and storage

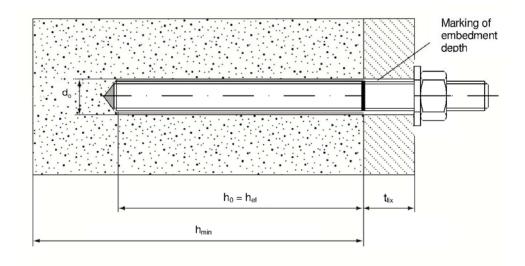
The cartridges shall be protected against sun radiation and shall be stored according to the manufacturer's installation instructions in dry condition at temperatures of at least +5 °C to not more than +25 °C.

Cartridges with expired shelf life must no longer be used.

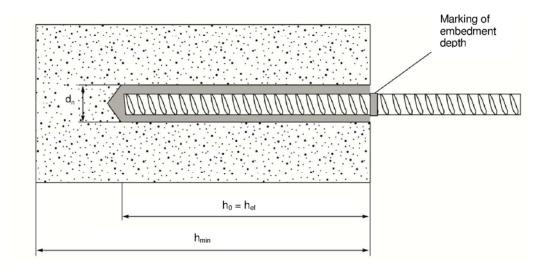

The anchor shall only be packaged and supplied as a complete unit. Cartridges may be packed separately from metal parts.

Andreas Kummerow p.p. Head of Department

beglaubigt: Baderschneider


Z42773.13 8.06.01-240/13

Deutsches Institut für **Bautechnik**



Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut

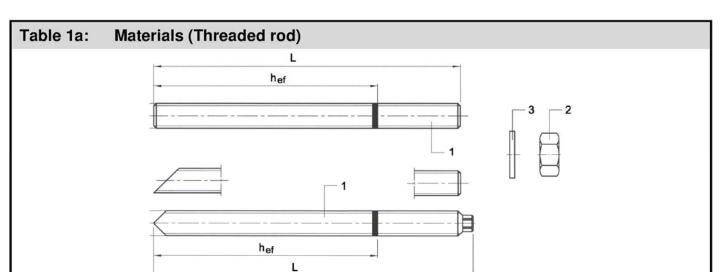
Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32 acc. to Annex 4

Use category

Installation in dry, wet concrete or flooded bore holes; Overhead installation; Hammer-drilled holes Application in non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32 Application in cracked concrete and seismic C1: M12 to M30, Rebar Ø12 to Ø32

Temperature ranges

-40℃ to +40℃


(max. short term temperature $+40^{\circ}$ C and max. long te rm temperature $+24^{\circ}$ C)

-40℃ to +60℃

(max. short term temperature $+60^{\circ}$ C and max. long te rm temperature $+43^{\circ}$ C)

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Product (Steel) and Intended use	Annex 2

Part	Designation	Material					
	, zinc plated ≥ 5 μm acc. to EN ISO 404						
hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461 and EN ISO 10684							
1	Anchor rod	Steel, EN 10087 or EN 10263 Property class 4,6, 5.8, 8.8, EN ISO 898-1:1999					
2	Hexagon nut, EN ISO 4032	Property class 4 (for class 4.6 rod) EN ISO 898-2, Property class 5 (for class 5.8 rod) EN ISO 898-2, Property class 8 (for class 8.8 rod) EN ISO 898-2					
3	Washer, EN ISO 887, EN ISO 7089, EN ISO 7093, or EN ISO 7094	Steel, zinc plated or hot-dip galvanised					
Stain	iless steel						
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506					
2	Hexagon nut, EN ISO 4032	Material 1.4401 / 1.4404 / 1.4571 EN 10088, > M24: Property class 50 (for class 50 rod) EN ISO 3506 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506					
3	Washer, EN ISO 887, EN ISO 7089, EN ISO 7093, or EN ISO 7094	Material 1.4401, 1.4404 or 1.4571, EN 10088					
High	corrosion resistance steel						
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506 ≤ M24: Property class 70 EN ISO 3506					
2	Hexagon nut, EN ISO 4032	Material 1.4529 / 1.4565 EN 10088, > M24: Property class 50 (for class 50 rod) EN ISO 3506 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506					
3	Washer, EN ISO 887, EN ISO 7089, EN ISO 7093, or EN ISO 7094	Material 1.4529 / 1.4565, EN 10088					

Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. Table 1a
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Materials (Threaded rod)	Annex 3

Table 1b: Materials (Rebar) hef

Abstract of EN 1992-1-1 Annex C, Table C.1, Properties of reinforcement:

Product form		Bars and de-coiled rods			
Class		В	С		
Characteristic yield st	rength f _{yk} or f _{0,2k} (N/mm²)	400 to 600			
Minimum value of k =	$(f_t / f_y)_k$	≥ 1,15 < 1,35			
Characteristic strain at maximum force ε _{uk} (%)		≥ 5,0	≥ 7,5		
Bendability		Bend/Rebend test			
Maximum deviation from nominal mass (individual bar) (%)	Nominal bar size (mm) ≤ 8 > 8	± 6,0 ± 4,5			

Abstract of EN 1992-1-1 Annex C, Table C.2N, Properties of reinforcement:

Product form	roduct form		-coiled rods
Class		В	С
Min. value of related rip area f _{R,min}	nominal diameter of the rebar (mm) 8 to 12 > 12	0,0 0,0	

Height of the rebar rib hrib:

The height of the rebar rib h_{rib} shall fulfil the following requirement: $0.05 * d \le h_{rib} \le 0.07 * d$ with: d = nominal diameter of the rebar

Regarding design of post-installed rebar as anchor see chapter 4.2

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Materials (Reinforcing bar)	Annex 4

Table 2: Installation parameters for threaded rod

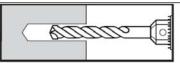
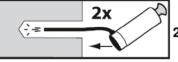

Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm] =	64	80	96	128	160	192	216	240
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table 3: Installation parameters for rebar

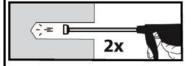

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	Nominal drill hole diameter d ₀ [mm] =		14	16	18	20	24	32	35	40
Effective anchorage depth	$h_{ef,min}$ [mm] =	64	80	96	112	128	160	200	224	256
Enective anchorage depth	h _{ef,max} [mm] =	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm								
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Installation parameters	Annex 5

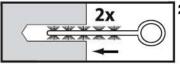
Installation instructions

1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table 2 or Table 3).

Attention! Standing water in the bore hole must be removed before cleaning.

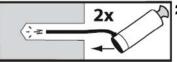

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex 8) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

or

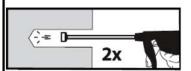

or

Electronic copy of the ETA by DIBt: ETA-11/0182

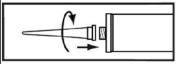
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.



For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.


2b. Check brush diameter (Table 5) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table 5) a minimum of two times.

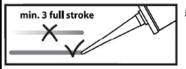
If the bore hole ground is not reached with the brush, a brush extension shall be used (Table 5).


2c. Finally blow the hole clean again with compressed air or a hand pump (Annex 8) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar

In-flowing water must not contaminate the bore hole again.



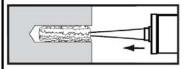
3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table 4) as well as for new cartridges, a new static-mixer shall be used.

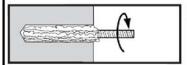
4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

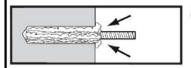
5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent colour.

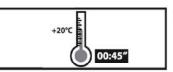
G&B Fissaggi Injection system EPO PLUS RE for concrete

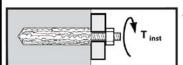

Installation instructions

Annex 6


751209 13


Installation instructions (continuation)


6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes larger than \emptyset 20 mm a piston plug and extension nozzle (Annex 8) shall be used. Observe the gel-/ working times given in Table 4.


7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table 4).

10. After full curing, the add-on part can be installed with the max. torque (Table 2) by using a calibrated torque wrench.

Table 4: Minimum curing time

Base material temperature Gel time (working time)		Minimum curing time in dry concrete	Minimum curing time in wet concrete		
+5℃ to +9℃	120 min	50 h	100 h		
+10℃ to +19℃	90 min	30 h	60 h		
+20℃ to +29℃	30 min	10 h	20 h		
+30℃ to +39℃	20 min	6 h	12 h		
+40 ℃	12 min	4 h	8 h		

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Installation instructions (continuation) Curing time	Annex 7

Table 5: Parameter cleaning and setting tools

Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
		8			
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	
Threaded	M12	14,0	16,0	14,5	
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
-	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
99999999999999999	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

G&B Fissaggi Injection system EPO PLUS RE for concrete	
	Annex 8
Cleaning and setting tools	

Table 6a: Design according to TR 029, Characteristic values for tension loads in

cracked conc	rete und	der stati	ic and	quas	i-stati	ic acti	on					
			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Characteristic tension resistance, Steel, property class 4.6		[kN]	15	23	34	63	98	141	184	224		
Partial safety factor				2,0								
Characteristic tension resistance, Steel, property class 5.8			18	29	42	78	122	176	230	280		
ance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449		
Partial safety factor						1,	50					
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)			26	41	59	110	171	247	230	281		
Partial safety factor					1,	87			2,	2,86		
ncrete cone failure	•											
ce in non-cracked co	ncrete C20/	25										
dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	13	13	12	12	11	10	10	10		
flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	13	12	11	9,0	8,0	7,0	6,5	6,0		
dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,5	6,0	6,0		
flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,0	5,5	5,0		
	C30/37		1,04									
ete	C40/50		1,08									
	C50/60		1,10									
	h /	h _{ef} ⁵⁾ ≥ 2,0	1,	,0 h _{et}								
Edge distance c _{cr,sp} [mm] for		h _{ef} ⁵⁾ > 1,3	4,6 h	_{el} - 1,8 h								
		h / h _{ef} ⁵⁾ ≤ 1,3		2,26 h _{ef}			1.0·h	as 2 1	26·h	C _{cr,sp}		
	S _{cr,sp}	[mm]				2 0						
wet concrete)	$\gamma_{Mp} = \gamma_{Mc} =$	= γ _{Msp} 1)	1,82)					2,13)				
bore hole)				2,1 ³⁾								
	ance, ance, ance, ance, ance, d 70 (≤ M24) ancete cone failure ce in non-cracked co dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole atte	ance, $N_{\text{Fik},s}$ ance, $N_{\text{Fik},s}$ ance, $N_{\text{Fik},s}$ ance, $N_{\text{Fik},s}$ ance, $N_{\text{Fik},s}$ $\gamma_{\text{Ms},N}^{1}$ ance, $N_{\text{Fik},s}$ $\gamma_{\text{Ms},N}^{1}$ ance, $N_{\text{Fik},s}$ $\gamma_{\text{Ms},N}^{1}$ ance to an expected concrete C20/ $\gamma_{\text{Ms},N}^{1}$ ance to an expected concrete C20/ $\gamma_{\text{Ms},N}^{1}$	ance, $N_{RK,s}$ $[kN]$ $\gamma_{Ms,N}^{1)}$ ance, $N_{RK,s}$ $[kN]$ $\gamma_{Ms,N}^{1)}$ ance, $N_{RK,s}$ $[kN]$ $\gamma_{Ms,N}^{1)}$ ance, $N_{RK,s}$ $[kN]$ $\gamma_{Ms,N}^{1)}$ ance in non-cracked concrete C20/25 $\gamma_{Ms,N}^{1}$	ance, $N_{FK,s}$ $[kN]$ 15 $\gamma_{Ms,N}^{1}$ 17 ance, $N_{FK,s}$ $[kN]$ 18 $\gamma_{Ms,s}^{1}$ $[kN]$ 29 $\gamma_{Ms,N}^{1}$ 26 ance, $N_{FK,s}$ $[kN]$ 26 $\gamma_{Ms,s}^{1}$ $[kN]$ 26 $\gamma_{Ms,N}^{1}$ 26 ance in non-cracked concrete C20/25 $\gamma_{Ms,N}^{1}$ 13 $\gamma_{Ms,N}^{1}$ 13 $\gamma_{Ms,N}^{1}$ 13 $\gamma_{Ms,N}^{1}$ 13 $\gamma_{Ms,N}^{1}$ 13 $\gamma_{Ms,N}^{1}$ 13 $\gamma_{Ms,N}^{1}$ 15 $\gamma_{Ms,N}^{1}$ 17 $\gamma_{Ms,N}^{1}$ 17 $\gamma_{Ms,N}^{1}$ 18 $\gamma_{Ms,N}^{1}$ 19 $\gamma_{Ms,N}^$	mance, $N_{FR,s}$ $[kN]$ 15 23 $\gamma_{Ms,N}^{-1}$ ance, $N_{FK,s}$ $[kN]$ 18 29 ance, $N_{FK,s}$ $[kN]$ 29 46 $\gamma_{Ms,N}^{-1}$ ance, $N_{FK,s}$ $[kN]$ 26 41 $\gamma_{Ms,N}^{-1}$ ance, $N_{FK,s}$ $[kN]$ 26 41 $\gamma_{Ms,N}^{-1}$ ance in non-cracked concrete C20/25 $\gamma_{Ms,N}^{-1}$ and wet concrete $\gamma_{TK,ucr}$ γ_{TK	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ance, $N_{RK,8}$ $[kN]$ 15 23 34 63 98 $\gamma_{MN,N}^{(RK,N)}$ 2,0 ance, $N_{RK,8}$ $[kN]$ 18 29 42 78 122 ance, $N_{RK,8}$ $[kN]$ 29 46 67 125 196 $\gamma_{MK,N}^{(RK,N)}$ 1,50 ance, $\gamma_{MK,N}^{(RK,N)}$ 1,50 ance, $\gamma_{MK,N}^{(RK,N)}$ 1,60 ance, $\gamma_{MK,N}^{(RK,N)}$ 1,87 $\gamma_{MK,N}^{(RK,N)}$ 1,87 ancete cone failure are in non-cracked concrete C20/25 and wet concrete $\gamma_{RK,ucr}$ γ_{RK,uc	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

¹⁾ In absence of other national regulations ²⁾ The partial safety factor $\gamma_2 = 1.2$ is included. ³⁾ The partial safety factor $\gamma_2 = 1.4$ is included. ⁴⁾ Explanations see section 1.2

G&B Fissaggi Injection system EPO PLUS RE for concrete

Application with threaded rod Design acc. to TR 029,

Characteristic values for tension loads in non-cracked concrete under static and quasi-static action

Annex 9

⁵⁾ h = concrete member thickness, hef = effective anchorage depth

Table 6b: Design according to TR 029, Characteristic values for tension loads in cracked concrete under static and quasi-static action

concrete unaei	r static	and q	uası-sta	itic act	ion			
			M 12	M 16	M 20	M24	M 27	М 30
Characteristic tension resistance, Steel, property class 4.6		[kN]	34	63	98	141	184	224
Partial safety factor					2,	0		
9,	N _{Rk,s}	[kN]	42	78	122	176	230	280
ο,	N _{Rk,s}	[kN]	67	125	196	282	368	449
	γ _{Ms,N} 1)				1,5	50		
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)			59	110	171	247	230	281
	γ _{Ms,N} 1)			1,	37		2,	86
ete cone failure								
cracked concrete C20/2	5							
dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	6,5	5,5	5,0	4,5	4,5	4,5
flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	6,5	5,0	4,0	3,5	3,5	3,5
dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,0	3,0	2,5	2,5	2,5
flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5
	C30/37		1,04					
	C40/50		1,08					
	C50/60		1,10					
					-			
	h/h	n _{ef} ⁵⁾ ≥ 2,0	1,0 h	el				
Edge distance c _{cr.sp} [mm] for		l _{ef} ⁵⁾ > 1,3	4,6 h _{ef} - 1	1,8 h	1,3 -			
			2,26 h _{et}			1,0·h _{ef}	2,26·h	C _{cr,sp}
	S _{cr,sp} [mm]				2 c			
concrete)	$\gamma_{Mp} = \gamma_{Mo}$	= γ _{Msp} 1)	1,8	3 ²⁾		2,	1 ³⁾	
e hole)					2,1	3)		
	ete cone failure oracked concrete C20/2 dry and wet concrete flooded bore hole dry and wet concrete flooded bore hole	$\begin{array}{c} \rho_{1}, & N_{Rk,s} \\ \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, \\ \rho_{2}, & N_{Rk,s} \\ \rho_{3}, & N_{Rk,s} \\ \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, \\ \rho_{4}, & \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, \\ \rho_{5}, & \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, \\ \rho_{5}, & \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, & \gamma_{Ms,N}^{-1}, \\ \rho_{5}, & \gamma_{Ms,N}^{-1}, & \gamma_{Ms$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M 12 M 16 M 20 M 24 M 27				

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ The partial safety factor γ_2 = 1.2 is included. $^{3)}$ The partial safety factor γ_2 = 1.4 is included. $^{4)}$ Explanations see section 1.2 $^{5)}$ h = concrete member thickness, h_{ef} = effective anchorage depth

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Application with threaded rod Design acc. to TR 029, Characteristic values for tension loads in cracked concrete under static and quasi-static action	Annex 10

Table 7: Design according to TR 029, Characteristic values for shear loads in cracked and non-cracked concrete under static and quasi-static action

cracked and non-	cracke	d cond	rete u	nder s	static a	and qu	ıasi-st	atic a	ction	
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Partial safety factor	γ _{Ms,V} 1)					1,	67			
Characteristic shear resistance, Steel, property class 5.8	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 8.8	$V_{\text{Rk,s}}$	[kN]	15	23	34	63	98	141	184	224
Partial safety factor	γ _{Ms,V} 1)					1,	25			
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Partial safety factor	γ _{Ms,V} 1)		1,56				2,38			
Steel failure with lever arm									•	
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Partial safety factor	γ _{Ms,V} 1)					1,	67			
Characteristic bending moment, Steel, property class 5.8	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Partial safety factor	γ _{Ms,V} 1)					1,	25			
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Partial safety factor	γ _{Ms,V} 1)		1,56						2,38	
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors			2,0							
Partial safety factor	γ _{Mcp} 1)					1,5	i0 ²⁾			
Concrete edge failure										
See section 5.2.3.4 of Technical Report TR 029	for the des	ign of Bon	ded Anch	ors						
Partial safety factor	γ _{Mc} 1)					1,5	60 ²⁾			

¹⁾ In absence of other national regulations

G&B Fissaggi Injection system EPO PLUS RE for concrete

Application with threaded rod

Design acc. to TR 029, Characteristic values for shear loads in cracked and non-cracked concrete under static and quasi-static action

Annex 11

²⁾ The partial safety factor $\gamma_2 = 1.0$ is included.

Table 8a:	Design according to TR 029, Characteristic values for tension loads in
	non-cracked concrete under static and quasi-static action

non-cracked concrete under static and quasi-static action												
Anchor size reinforcing ba	ar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resistance, reinforcing bar according to Annex 4 N _{Rk,s} [kN]				$A_s \times f_{uk}$								
Partial safety factor $\gamma_{\text{Ms,N}}^{(1)}$						TR 0	29 Secti	on 3.2.2	.2, Eq. 3	3.3a ⁶⁾		
Combined pull-out and co	ncrete cone failure											
Characteristic bond resistan	ce in uncracked cond	crete C20/25	5									
Temperature range I ⁴⁾ :	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	12	12	11	11	10	10	9,5	9,0	9,0
40℃/24℃	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	12	11	9,5	9,0	8,0	7,0	6,0	6,0	5,5
Temperature range II ⁴⁾ :	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,5	5,5	5,5
60℃/43℃	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	7,0	7,0	7,0	6,5	6,5	6,0	5,0	4,5	4,5
lacus soiner footous for conserve	-4-	C30/37 1,04										
Increasing factors for concre ψ_c	ete .	C40/50	1,08									
ΨC		C50/60	1,10									
Splitting failure												
	_	h/	h _{ef} ⁵⁾ ≥ 2,0		1,0 h _{et}		h/h _{ef} -					
Edge distance c _{cr.sp} [mm] for		2,0 > h /	h _{ef} ⁵⁾ > 1,3	4,6 h _{el} - 1,8 h		h	1,3 -					
		h /	h _{ef} ⁵⁾ ≤ 1,3	2,26 h _{et}			1,0·h _{ef} 2,26·h _{ef}				C _{cr,sp}	
Axial distance		S _{cr,sp}	[mm]	2 c _{or,sp}								
Partial safety factor (dry and	wet concrete)	$\gamma_{Mp} = \gamma_{Mc} =$				1,8 ²⁾				2,	1 ³⁾	
Partial safety factor (flooded	l bore hole)	$\gamma_{Mp} = \gamma_{Mc} =$	γ _{Msp} 1)	2,13)								

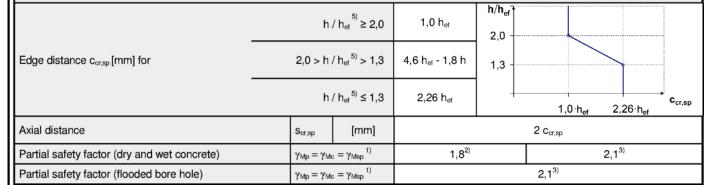
Attend chapter 4.2 for design of post-installed rebar as anchor

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Application with reinforcing bar Design acc. to TR 029, Characteristic values for tension loads in non-cracked concrete under static and quasi-static action	Annex 12

 $^{^{1)}}$ In absence of other national regulations $^{2)}$ The partial safety factor $\gamma_2=1.2$ is included. $^{3)}$ The partial safety factor $\gamma_2=1.4$ is included. $^{4)}$ Explanations see section 1.2 $^{5)}$ h = concrete member thickness, h_{ef} = effective anchorage depth $^{6)}$ f_{uk}, f_{yk} according to relevant Technical Specification for the reinforcing bar

Ø 32

Table 8b:	Table 8b: Design according to TR 029, Characteristic values for tension loads in cracked concrete under static and quasi-static action									
Anchor size rein	nchor size reinforcing bar Ø 12 Ø 14 Ø 16 Ø 20 Ø 25 Ø 28								ļ	
Steel failure										


Characteristic tension resistance, reinforcing bar according to Annex 4	N _{Rk,s}	[kN]	$A_s \times f_{uk}^{6)}$
Partial safety factor	γ _{Ms,N} 1)		TR 029 Section 3.2.2.2, Eq. 3.3a ⁶⁾

Combined pull-out and concrete cone failure

Characteristic bond resistance in cracked concrete C20/25

Characteristic bond resistance in ci	Sharacteristic bond resistance in cracked concrete G20/25										
Temperature range I ⁴⁾ :	dry and wet concrete	$ au_{ m Rk,cr}$	[N/mm²]	6,5	5,5	5,5	5,0	4,5	4,5	4,5	
40°C/24°C	flooded bore hole	$ au_{ m Rk,cr}$	[N/mm²]	6,5	5,5	5,0	4,0	3,5	3,5	3,5	
Temperature range II⁴): 60℃/43℃	dry and wet concrete	$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5	
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5	
				1,04							
Increasing factors for concrete ψ_c		C40/50		1,08							
		C50/60		1,10							

Splitting failure

¹⁾ In absence of other national regulations

Attend chapter 4.2 for design of post-installed rebar as anchor

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Application with reinforcing bar Design acc. to TR 029, Characteristic values for tension loads in cracked concrete under static and quasi-static action	Annex 13

The partial safety factor $\gamma_2 = 1.2$ is included. The partial safety factor $\gamma_2 = 1.4$ is included. Explanations see section 1.2

 $^{^{5)}}$ h = concrete member thickness, h_{ef} = effective anchorage depth $^{6)}$ f_{uk}, f_{yk} according to relevant Technical Specification for the reinforcing bar

Table 9: Design according to TR 029, Characteristic values for shear loads in cracked and non-cracked concrete under static and quasi-static action

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance, reinforcing bar according to Annex 4	$V_{Rk,s}$	[kN]	0,50 x A _s x f _{uk} ³⁾								
Partial safety factor	γ _{Ms,V} 1)	•	TR 029 Section 3.2.2.2, Eq. 3.3 b+c ³								
Steel failure with lever arm											
Characteristic bending moment, reinforcing bar according to Annex 4	M ^o Rk,s	[Nm]	1.2 ·W _{el} · f _{uk} ³⁾								
Partial safety factor	γ _{Ms,V} 1)		TR 029 Section 3.2.2.2, Eq. 3.3 b+c ³⁾								
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Repo TR 029 for the design of bonded anchors	rt						2,0				
Partial safety factor	γ _{Mop} 1)						1,50 2)				
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR	029 for the d	design of I	Bonded A	nchors							
Partial safety factor	γ _{Mc} 1)		1,50 ²⁾								

¹⁾ In absence of other national regulations

Attend chapter 4.2 for design of post-installed rebar as anchor

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Application with reinforcing bar Design acc. to TR 029, Characteristic values for shear loads in cracked and non-cracked concrete under static and quasi-static action	Annex 14

The partial safety factor γ_2 = 1.0 is included. f_{uk} , f_{yk} see relevant Technical Specification for the reinforcing bar

Design according to CEN/TS 1992-4: Characteristic values for tension Table 10a:

loads	in non-cracked	concre	te unde	r stat	ic and	d qua	si-sta	atic ac	ction				
Anchor size threaded rod				М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Steel failure													
Characteristic tension resista Steel, property class 4.6	ince,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224		
Partial safety factor		γ _{Ms,N} 1)	·				2	,0	·				
Characteristic tension resista Steel, property class 5.8	ance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280		
Characteristic tension resista Steel, property class 8.8	ance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449		
Partial safety factor		γ _{Ms,N} 1)					1,	50					
Characteristic tension resista Stainless steel A4 and HCR, property class 50 (>M24) and		N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281		
Partial safety factor	,	γ _{Ms,N} ¹⁾ 1,87 2,86											
Combined pull-out and cor	ncrete failure	•											
Characteristic bond resistance	ce in non-cracked concrete	C20/25											
Temperature range I ⁴⁾ :	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	13	13	12	12	11	10	10	10		
40℃/24℃	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	13	12	11	9,0	8,0	7,0	6,5	6,0		
Temperature range II ⁴⁾ :	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,5	6,0	6,0		
60℃/43℃	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,0	5,5	5,0		
Increasing feeters for concre	to	C30/37					1,	04	•	6,0 5,5			
Increasing factors for concre Ψ _c	ie	C40/50						08					
E I OFNITO	1000 1 5 0 - 1' - 0 0 0 0	C50/60		1,10 10,1									
Factor according to CEN/TS	1992-4-5 Section 6.2.2.3	k ₈	[-]				1(),1					
Concrete cone failure													
Factor according to CEN/TS	1992-4-5 Section 6.2.3.1	k _{ucr}	[-]),1					
Edge distance		C _{cr,N}	[mm]					h _{ef}					
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}					
Splitting failure													
		h/	h _{ef} ⁵⁾ ≥ 2,0	1,	0 h _{el}		1/h _{ef} } 2,0 -						
Edge distance c _{cr.sp} [mm] for		2,0 > h /	h _{ef} ⁵⁾ > 1,3	4,6 h _∈	_{st} - 1,8 h		1,3						
$h / h_{ef}^{5} \le 1.3$ 2.26 h_{ef} 1.0 h_{ef} 2.26 h_{ef}						r,sp							
Axial distance		S _{cr,sp}	[mm]			_	2 0	cr,sp		ų.			
Partial safety factor (dry and	wet concrete)	$\gamma_{Mp} = \gamma_{Mc}$	= γ _{Msp} 1)		1,	8 ²⁾			2,	1 ³⁾			
Partial safety factor (flooded	bore hole)	$\gamma_{Mp} = \gamma_{Mc}$	- 31				2,	1 ³⁾					

¹⁾ In absence of other national regulations

G&B Fissaggi Injection system EPO PLUS RE for concrete

Application with threaded rod Design according to CEN/TS 1992-4

Characteristic values for tension loads in non-cracked concrete under static and quasi-static action

Annex 15

The partial safety factor $\gamma_2 = 1.2$ is included.

The partial safety factor $\gamma_2 = 1.4$ is included.

Explanations see section 1.2

⁵⁾ h = concrete member thickness, h_{ef} = effective anchorage depth

Table 10b: Design according to CEN/TS 1992-4: Characteristic values for tension loads in cracked concrete under static and quasi-static action

in crack	red concrete und	der static	and qua	asi-sta	tic acti	on				
Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30	
Steel failure										
Characteristic tension resistar Steel, property class 4.6	nce,	N _{Rk,s}	[kN]	34	63	98	141	184	224	
Partial safety factor		γ _{Ms,N} 1)	<u> </u>			2	,0			
Characteristic tension resistar	nce,	N _{Rk,s}	[kN]	42	78	122	176	230	280	
Steel, property class 5.8 Characteristic tension resistar	nce,	N _{Rk,s}	[kN]	67	125	196	282	368	449	
Steel, property class 8.8		100	[KIV]		120				110	
Partial safety factor Characteristic tension resistar	nce.	γ _{Ms,N} 1)			Τ	1,	50 T			
Stainless steel A4 and HCR, property class 50 (>M24) and	***	N _{Rk,s}	[kN]	59	110	171	247	230	281	
Partial safety factor		γ _{Ms,N} 1)		1,87 2,86						
Combined pull-out and cond	crete failure									
Characteristic bond resistance	e in cracked concrete C20	/25								
Temperature range I ⁴⁾ :	dry and wet concrete	$ au_{ m Rk,cr}$	[N/mm²]	6,5	5,5	5,0	4,5	4,5	4,5	
40℃/24℃	flooded bore hole	τ _{Rk,cr}	[N/mm ²]	6,5	5,0	4,0	3,5	3,5	3,5	
Temperature range II ⁴⁾ :	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,0	3,0	2,5	2,5	2,5	
60°C/43°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,0	3,0	2,5	2,5	2,5	
Increasing factors for concrete	,	C30/37				1,	04			
Ψ _c	-	C40/50				1,	1,04			
		C50/60				1,	10			
Factor according to CEN/TS 1	992-4-5 Section 6.2.2.3	k ₈	[-]			7	,2			
Concrete cone failure										
Factor according to CEN/TS 1	992-4-5 Section 6.2.3.1	k _{cr}	[-]			7	,2			
Edge distance		C _{cr,N}	[mm]			1,5	i h _{ef}			
Axial distance		S _{cr,N}	[mm]			3,0) h _{et}			
Splitting failure										
		h	/ h _{el} ⁵⁾ ≥ 2,0	1,0 ł	n _{ef}	h/h _{ef}		1 1 1 1 1 1 1 1		
Edge distance c _{cr,sp} [mm] for		2,0 > h / h _{ef} ⁵⁾ > 1,3								
$h / h_{ef}^{5} \le 1,3$					2,26·h _{ef}	C _{cr,sp}				
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp			
Partial safety factor (dry and v	vet concrete)	$\gamma_{Mp} = \gamma_{Mc}$	= γ _{Msp} 1)	1,8 2) 2,13)						
Partial safety factor (flooded b	ore hole)	$\gamma_{Mp} = \gamma_{Mc}$	= γ _{Msp} 1)			2,	1 ³⁾			

¹⁾ In absence of other national regulations

G&B Fissaggi Injection system EPO PLUS RE for concrete

Application with threaded rod Design according to CEN/TS 1992-4

Characteristic values for tension loads in cracked concrete under static and quasi-static action

Annex 16

²⁾ The partial safety factor $\gamma_2 = 1.2$ is included.

³⁾ The partial safety factor $\gamma_2 = 1.4$ is included.

⁴⁾ Explanations see section 1.2

 $^{^{5)}}$ h = concrete member thickness, h_{ef} = effective anchorage depth

Table 11: Design according to CEN/TS 1992-4: Characteristic values for shear loads in cracked and non-cracked concrete under static and quasi-static action

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30			
Steel failure without lever arm													
Characteristic shear resistance, Steel, property class 4.6	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112			
Partial safety factor	γ _{Ms,V} 1)					1,	,67						
Characteristic shear resistance, Steel, property class 5.8	$V_{\text{Rk,s}}$	[kN]	9	15	21	39	61	88	115	140			
Characteristic shear resistance, Steel, property class 8.8	$V_{\text{Rk,s}}$	[kN]	15	23	34	63	98	141	184	224			
Partial safety factor	γ _{Ms,V} 1)					1,	,25						
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V _{Fik.s}	[kN]	13	20	30	55	86	124	115	140			
Partial safety factor	γ _{Ms,V} 1)				1,	,56			2,	,38			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	0,8											
Steel failure with lever arm													
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900			
Partial safety factor	γ _{Ms,V} 1)					1,	,67						
Characteristic bending moment, Steel, property class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112			
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179			
Partial safety factor	γ _{Ms,V} 1)			_	_	1,	,25	_	_	_			
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	112			
Partial safety factor	γ _{Ms,V} 1)				1,	,56			2,	,38			
Concrete pry-out failure													
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2	2,0						
Partial safety factor	γ _{Mop} ¹⁾					1,5	50 ²⁾						
Concrete edge failure ³⁾													
Effective length of anchor	J _t	[mm]				$I_t = min(h$	n _{ef} ; 8 d _{nom})	1					
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30			
Partial safety factor	γ _{Mα} 1)					1.5	50 ²⁾			_			

¹⁾ In absence of other national regulations

G&B Fissaggi Injection system EPO PLUS RE for concrete

Application with threaded rod

Design according to CEN/TS 1992-4, Characteristic values for shear loads in cracked and non-cracked concrete under static and quasi-static action

Annex 17

²⁾ The partial safety factor $\gamma_2 = 1.0$ is included.

³⁾ See CEN/TS 1992-4-5 Section 6.3.4

Design according to CEN/TS 1992-4: Characteristic values for tension Table 12a: loads in non-cracked concrete under static and quasi-static action

Anchor size reinforcing ba	nr			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resistate reinforcing bar according to		N _{Rk,s}	[kN]					A _s x f _{uk} ⁶)			
Partial safety factor		γ _{Ms,N} 1)			C	EN/TS 1	992-4-1	Section	4.4.3.1	.1, Eq. 4	t ⁶⁾	
Combined pull-out and co	ncrete failure			•								
Characteristic bond resistan	ce in non-cracked concr	ete C20/2	25									
Temperature range I ⁴⁾ :	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	12	12	11	11	10	10	9,5	9,0	9,0
40℃/24℃	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	12	11	9,5	9,0	8,0	7,0	6,0	6,0	5,5
Temperature range II ⁴⁾ :	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,5	5,5	5,5
60℃/43℃	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,0	4,5	4,5
		C30/37						1,04				
ncreasing factors for concrete		C40/50						1,08				
	C50/60	_					1,10					
Factor according to CEN/TS 1992-4-5 Section 6	.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	.2.3.1	k _{ucr}	[-]					10,1				
Edge distance		C _{cr,N}	[mm]					1,5 h _{et}				
Axial distance		S _{cr,N}	[mm]					3,0 h _{et}				
Splitting failure												
		h/	h _{ef} ⁵⁾ ≥ 2,0		1,0 h _{ef}		h/h _{ef} 3					
Edge distance c _{cr,sp} [mm] for	_	2,0 > h /	h _{ef} ⁵⁾ > 1,3	4,6	h _{ef} - 1,8	h	1,3 -					
		h/	h _{ef} ⁵⁾ ≤ 1,3	2	2,26 h _{ef}				1,0·h _{ef}	2,26	·h _{ef}	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Partial safety factor (dry and	wet concrete)	$\gamma_{Mp} = \gamma_{M}$	$_{lc} = \gamma_{Msp}^{1}$			1,8 ²⁾				2,	1 ³⁾	
Partial safety factor (flooded	bore hole)		$I_{c} = \gamma_{Msp}^{1}$					2,1 ³⁾				

¹⁾ In absence of other national regulations

Attend chapter 4.2 for design of post-installed rebar as anchor

G&B Fissaggi Injection system EPO PLUS RE for concrete Annex 18 Application with reinforcing bar Design according to CEN/TS 1992-4 Characteristic values for tension loads in non-cracked concrete under static and quasi-static action

²⁾ The partial safety factor $\gamma_2 = 1.2$ is included.

³⁾ The partial safety factor $\gamma_2 = 1.4$ is included.

⁴⁾ Explanations see section 1.2
5) h = concrete member thickness, hef = effective anchorage depth

 $^{^{6)}}$ f_{uk} , f_{yk} according to the relevant Technical Specification for the reinforcing bar

Table 12b: Design according to CEN/TS 1992-4: Characteristic values for tension loads in cracked concrete under static and quasi-static action

in cr	acked concrete	under stat	ic and q	uası-s	static a	action	1				
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure				•	•				•		
Characteristic tension res according to Annex 4	istance, reinforcing bar	N _{Rk,s}	[kN]				A _s x f _{uk} ⁶⁾)			
Partial safety factor		γ _{Ms,N} 1)			CEN/TS	1992-4-	1 Section	4.4.3.1.1	, Eq. 4 ⁶⁾		
Combined pull-out and	concrete failure	•									
Characteristic bond resist	tance in cracked concre	te C20/25									
Temperature range I ⁴⁾ :	dry and wet concrete	$ au_{\text{Rk,cr}}$	[N/mm²]	6,5	5,5	5,5	5,0	4,5	4,5	4,5	
40℃/24℃	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	6,5	5,5	5,0	4,0	3,5	3,5	3,5	
Temperature range II ⁴⁾ :	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5	
60℃/43℃	flooded bore hole	$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5	
lucus saines factous fau con		C30/37									
Increasing factors for con Ψ_c	crete	1,011 0 10					4,0 3,5 3,5 3,5 3,0 2,5 2,5 3,0 2,5 2,5 1,04 1,08 1,10 7,2 7,2 1,5 h _{ef} 3,0 h _{ef}				
Factor according to CEN/TS 1992-4-5 Section	n 6.2.2.3	k ₈	[-]				7,2				
Concrete cone failure											
Factor according to CEN/TS 1992-4-5 Section	n 6.2.3.1	k _{cr}	[-]				7,2				
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}				
Splitting failure											
	_	h /	/ h _{ef} ⁵⁾ ≥ 2,0	1,	0 h _{el}	h/h _{ef} ₹					
Edge distance c _{cr.sp} [mm] for		2,0 > h	/ h _{ef} ⁵⁾ > 1,3	4,6 h _e	ո - 1,8 h	1,3 -					
		h /	/ h _{ef} ⁵⁾ ≤ 1,3	2,2	26 h _{ef}	<u> </u>	1	1,0·h _{ef} 2,26·h _e			
Axial distance		S _{cr,sp}	[mm]	·							
Partial safety factor (dry a	and wet concrete)	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{-1}$			1,82)			2,	,1 ³⁾		
Partial safety factor (flood	led bore hole)	$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}^{-1}$					2,1 ³⁾				

Attend chapter 4.2 for design of post-installed rebar as anchor

G&B Fissaggi Injection system EPO PLUS RE for concrete Annex 19 Application with reinforcing bar Design according to CEN/TS 1992-4 Characteristic values for tension loads in cracked concrete under static and quasi-static action

¹⁾ In absence of other national regulations ²⁾ The partial safety factor $\gamma_2 = 1.2$ is included. ³⁾ The partial safety factor $\gamma_2 = 1.4$ is included. ⁴⁾ Explanations see section 1.2

 $^{^{5)}}$ h = concrete member thickness, h_{ef} = effective anchorage depth

 $^{^{6)}}$ f_{uk} , f_{yk} according to relevant Technical Specification for the reinforcing bar

Design according to CEN/TS 1992-4: Characteristic values for shear loads Table 13: in cracked and non-cracked concrete under static and quasi-static action

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance, reinforcing bar according to Annex 4	V _{Rk,s}	[kN]	$0.50 \times A_s \times f_{uk}^{4}$								
Partial safety factor	γ _{Ms,V} 1)			CEN	N/TS 19	92-4-1 S	Section 4	1.4.3.1.1	, Eq. 5 -	+ 6 ⁴⁾	
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	0,8									
Steel failure with lever arm											
Characteristic bending moment, reinforcing bar according to Annex 4	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk} ⁴⁾								
Partial safety factor	γ _{Ms,V} 1)			CEN	N/TS 19	92-4-1 S	Section 4	1.4.3.1.1	, Eq. 5 -	+ 6 ⁴⁾	
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Partial safety factor	γ _{Mcp} 1)						1,50 ²⁾				
Concrete edge failure ³⁾											
Effective length of anchor	l _t	[mm]	I _I = min(h _{et} ; 8 d _{nom})								
Outside diameter of anchor	d _{nom}	[mm]	m] 8 10 12 14 16 20 24 27						30		
Partial safety factor	γ _{Mα} 1)		1,50 ²⁾								

¹⁾ In absence of other national regulations

Attend chapter 4.2 for design of post-installed rebar as anchor

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Application with reinforcing bar Design according to CEN/TS 1992-4, Characteristic values for shear loads in cracked and non-cracked concrete under static and quasi-static action	Annex 20

 $^{^{2)}}$ The partial safety factor γ_2 = 1.0 is included. $^{3)}$ See CEN/TS 1992-4-5 Section 6.3.4 $^{4)}$ $f_{uk},\,f_{yk}$ according to relevant Technical Specification for the reinforcing bar

Table 14:	Displacements for tension loads threaded rod 1)
-----------	---

Anchor size threa	ded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked con	crete C20/25	i								
40℃/24℃ ²⁾	δ _{N0}	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40 0/24 0	$\delta_{N_{\infty}}$	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
60℃/43℃ ²⁾	δ_{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
60 C/43 C	$\delta_{N\infty}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete	C20/25									
40℃/24℃ ²⁾	δ _{N0}	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058
400/240	$\delta_{N_{\infty}}$	[mm/(N/mm²)]		•	0,21	0,21	0,21	0,21	0,21	0,21
60℃/43℃ ²⁾	δ_{N0}	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
60 0/43 0	$\delta_{N\infty}$	[mm/(N/mm²)]		_	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{N0}} \cdot \tau_{\text{Sd}} / 1,4$; Displacement for long term load = $\delta_{\text{N}_{\infty}} \cdot \tau_{\text{Sd}} / 1,4$;

Table 15: Displacement for shear load threaded rod 3)

Anchor size threaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
All temperatures	δ_{V0}	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

 $^{^{3)}}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d / 1,4;$ Displacement for long term load = $\delta_{V_{\infty}} \cdot V_d / 1,4;$ (V_d: design shear load)

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Application with threaded rod Displacements	Annex 21

 $^{(\}tau_{Sd}$: design bond strength) ²⁾ Explanations see section 1.2

Table 16: Displacements for tension loads reinforcing bar 1)											
Anchor size r	reinforcinç	j bar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked	Non-cracked concrete C20/25										
40℃/24℃ ²⁾	δ_{N0}	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40-0/24-0	$\delta_{N_{\infty}}$	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60℃/43℃ ²⁾	δ_{N0}	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60 C/43 C	δ_{N_∞}	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked cond	Cracked concrete C20/25										
40℃/24℃ ²⁾	δ_{N0}	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40 0/24 0	δ_{N_∞}	[mm/(N/mm²)]			0,21	0,21	0,21	0,21	0,21	0,21	0,21
609(4290 2)	δ_{N0}	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
60℃/43℃ ²⁾	$\delta_{N\infty}$	[mm/(N/mm²)]	1		0,24	0,24	0,24	0,24	0,24	0,24	0,24

 $^{^{1)}}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{\text{N0}} \cdot \tau_{\text{Sd}} \, / \, 1,4;$ Displacement for long term load = $\delta_{\text{N}\infty} \cdot \tau_{\text{Sd}} \, / \, 1,4;$

Table 17: Displacement for shear loads reinforcing bar 3)

Anchor size reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
All	δ_{V0}	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
temperatures	$\delta_{V_{\infty}}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

 $^{^{3)}}$ Calculation of the displacement for design load Displacement for short term load = $\delta_{V0} \cdot V_d \, / \, 1,4;$ Displacement for long term load = $\delta_{V\infty} \cdot V_d \, / \, 1,4;$ (V_d: design shear load)

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Application with reinforcing bar Displacements	Annex 22

 $^{(\}tau_{Sd}$: design bond strength) ²⁾ Explanations see section 1.2

Design according to TR 045; Design under seismic action

The decision of the selection of the seismic performance category is in the responsibility of each individual Member State.

Furthermore, the values of $a_g \cdot S$ assigned to the seismicity levels may be different in the National Annexes to EN 1998-1:2004 (EC8) compared to the values given in Table 18.

The recommended category C1 and C2 given in Table 18 are given in the case that no National requirements are defined.

Table 18: Recommended seismic performance categories for anchors

Sei	smicity level ^{a)}	Importance Class acc. to EN 1998-1:2004, 4.2.5						
	a _g ⋅ S ^{c)}	1	1 11 111					
Very low b)	a _g ·S ≤ 0,05 g		No additional requirement					
Low b)	0,05 g < a _g ·S ≤ 0,1 g	C1	C1 ^{d)} or C2 ^{e)}					
> Low b)	$a_g \cdot S > 0.1 g$	C1	C2					

- The values defining the seismicity levels may be found in the National Annex of EN 1998-1.
- b) Definition according to EN 1998-1:2004, 3.2.1.
- a_g = Design ground acceleration on Type A ground (EN 1998-1: 2004, 3.2.1),
 - S = Soil factor (see e.g. EN 1998-1: 2004, 3.2.2).
- d) C1 attachments of non-structural elements
- C2 for connections between structural elements of primary and/or secondary seismic members

Calculation of characteristic seismic resistance R_{k.seis}

Tension load: $R_{k,seis} = \alpha_{gap} \cdot \alpha_{seis} \cdot \alpha_{N,seis} \cdot R_k^0$

with $R_k^0 = N_{Rk,s}$, $N_{Rk,p}$, $N_{Rk,c}$, $N_{Rk,sp}$ (calculation according to CEN/TS 1992-4 or TR029)

 $\alpha_{N,seis}$ = see Table 19 or Table 20 for $N_{Rk,s}$ and $N_{Rk,p}$

 $\alpha_{N,seis} = 1.0$ for $N_{Rk,c}$ and $N_{Rk,sp}$

 α_{gap} = see Table 21

 α_{seis} = see Table 21

Shear load: $R_{k,seis} = \alpha_{gap} \cdot \alpha_{seis} \cdot \alpha_{V,seis} \cdot R_k^0$

with $R_{k}^{0} = V_{Rk,s}$, $V_{Rk,c}$, $V_{Rk,cp}$ (calculation according to CEN/TS 1992-4 or TR029)

 $\alpha_{V,seis}$ = see Table 19 or Table 20 for $V_{Rk,s}$

 $\alpha_{V,seis}$ = 1,0 for $V_{Rk,c}$ and $V_{Rk,cp}$

 α_{gap} = see Table 21 α_{seis} = see Table 21

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Design according to TR 045; Design under seismic action	Annex 23

Deutsches
Institut
für
Bautechnik

Table 19: Reduction factors $\alpha_{N,seis}$ and $\alpha_{V,seis}$ for seismic design category C1 for threaded rods

Anchor size threaded rods				M 16	M 20	M24	M 27	M 30
Tension load								
Steel failure (N _{Rk,s})	$\alpha_{N,seis}$	[-]	1,0					
Combined pull-out and concrete failure (N _{Rk,p})	$\alpha_{N,seis}$	[-]	0,68	0,68	0,68	0,69	0,69	0,69
Shear load								
Steel failure without lever arm (V _{Rk,s})	$\alpha_{V,seis}$	[-]	0,70					

Table 20: Reduction factors $\alpha_{\text{N,seis}}$ and $\alpha_{\text{V,seis}}$ for seismic design category C1 for reinforcing bar

Anchor size reinforcing bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Tension load									
Steel failure (N _{Rk,s})	$\alpha_{N,seis}$	[-]				1,0			
Combined pull-out and concrete failure (N _{Rk,p})	$\alpha_{N,seis}$	[-]	0,68	0,68	0,68	0,68	0,69	0,69	0,69
Shear load									
Steel failure without lever arm (V _{Rk,s})	$\alpha_{V,seis}$	[-]				0,70			

Table 21: Reduction factors α_{gap} and α_{seis} for resistance under seismic actions

Loading	Failure modes	α_{gap}	α _{seis} - Single fastener	α _{seis} - Fastener group
	Steel failure	1,0	1,0	1,0
	Pull-out failure	1,0	1,0	0,85
Tension	Combined pull-out and concrete failure	1,0	1,0	0,85
	Concrete cone failure	1,0	0,85	0,75
	Splitting failure	1,0	1,0	0,85
	Steel failure without lever arm	0,5 1)	1,0	0,85
Choor	Steel failure with lever arm	NPD 2)	NPD ²⁾	NPD ²⁾
Shear	Concrete edge failure	0,5 1)	1,0	0,85
	Concrete pry-out failure	0,5 1)	0,85	0,75

The limitation for size of the clearance hole is given in TR 029 Table 4.1, $\alpha_{\rm gap} = 1.0$ in case of no clearance between fastener and fixture

No Performance Determined

G&B Fissaggi Injection system EPO PLUS RE for concrete	
Design according to TR 045; Reduction factors	Annex 24