Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

European Technical Approval ETA-12/0086

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

Zulassungsinhaber

Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity:

vom from

bis to

Herstellwerke *Manufacturing plants*

S+P Befestigungsschrauben S+P fastening screws

Schäfer + Peters GmbH Zeilbaumweg 32 74613 Öhringen

74613 Öhringen DEUTSCHLAND

Befestigungsschrauben für Metallbauteile und Bleche

Fastening screws for metal members and sheeting

21 June 2013

3 April 2017

Werk 3 Werk 7

Plant 3 Plant 7

Diese Zulassung umfasst This Approval contains 61 Seiten einschließlich 51 Anhänge 61 pages including 51 annexes

Diese Zulassung ersetzt This Approval replaces ETA-12/0086 mit Geltungsdauer vom 03.04.2012 bis 03.04.2017 ETA-12/0086 with validity from 03.04.2012 to 03.04.2017

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 61 | 21 June 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 61 | 21 June 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product/ products and intended use

1.1 Definition of the construction product

The S+P fastening screws are self drilling and self tapping screws listed in Table 1. The fastening screws are made of stainless steel. They are completed with metallic washers and EPDM sealing rings. For details see the appropriate Annexes.

Screws or washers for which the stainless steel grade A2 according to EN ISO 3506-1 is given in the respective Annexes (e. g. 1.4301 or 1.4567) may be made of stainless steel grade A4 (e. g. 1.4401 or 1.4578) as well.

Screws with width across flats of 3/8" may be produced with width across flats of 8mm as well.

Examples of fastening screws and the corresponding connections are shown in Annex 1.

The fastening screws and the corresponding connections are subject to tension and shear forces.

 Table 1
 Different types of the fastening screws

Annex	Fastening screw	Description
Annex 2*)	SP-B2-2-6,0 x L / SP-B4-2-6,0 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 3	SP-B2-2-4,8 x L / SP-B4-2-4,8 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 4	SP-B2-3-5,5 x L / SP-B4-3-5,5 x L	with hexagon head or pan head with Torx [®] drive system and sealing washer ≥ Ø 16 mm
Annex 5	SP-B2-6-5,5 x L / SP-B4-6-5,5 x L	with hexagon head or pan head with Torx [®] drive system and seal washer ≥ Ø 16 mm
Annex 6	SP-B2-6-6,3 x L / SP-B4-6-6,3 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 7	SP-B2-12-5,5 x L / SP-B4-12-5,5 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 8	SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 9	SP-B2-2-6,3 x L / SP-B4-2-6,3 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 10*)	FSB Ø 6,5 Typ A	with hexagon head and seal washer ≥ Ø 16 mm
Annex 11*)	FSB Ø 6,5 Typ A	with hexagon head and seal washer ≥ Ø 19 mm
Annex 12	FSB Ø 6,3 Typ BZ	with hexagon head and seal washer ≥ Ø 16 mm
Annex 13	FSB Ø 6,3 Typ BZ	with hexagon head and seal washer ≥ Ø 19 mm
Annex 14*)	FSB Ø 8,4 Typ A	with hexagon head and seal washer ≥ Ø 16 mm

Page 4 of 61 | 21 June 2013

Annex 15*)	FSB Ø 8,4 Typ A	with hexagon head and seal washer ≥ Ø 19 mm
Annex 16	FSB Ø 8,0 Typ BZ	with hexagon head and seal washer ≥ Ø 16 mm
Annex 17	FSB Ø 8,0 Typ BZ	with hexagon head and seal washer ≥ Ø 19 mm
Annex 18	SP-A2-6-5,5 x L / SP-A4-6-5,5 x L	with hexagon head and seal washer ≥ Ø 14 mm
Annex 19	SP-A2-6-5,5 x L / SP-A4-6-5,5 x L	with hexagon head and seal washer ≥ Ø 14 mm
Annex 20	SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 21	SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 22	SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 23	SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 24	SP-B2-2-6,3 x L / SP-B4-2-6,3 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 25	SP-B2-2-6,3 x L / SP-B4-2-6,3 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 26	SP-B2-2-6,3 x L / SP-B4-2-6,3 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 27	SP-B2-2-6,3 x L / SP-B4-2-6,3 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 28*)	SP-B2-2 x L / SP-B4-2-6,0 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 29*)	SP-B2-2 x L / SP-B4-2-6,0 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 30*)	SP-B2-2 x L / SP-B4-2-6,0 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 31*)	SP-B2-2 x L / SP-B4-2-6,0 x L	with hexagon head and seal washer ≥ Ø 16 mm
Annex 32	S+P-B2 4,5 x L	with hexagon or round head
Annex 33	S+P-B2 4,5 x L	with hexagon or round head
Annex 34	S+P-B2 4,5 x L	with hexagon or round head
Annex 35	S+P-B2 4,5 x L	with hexagon or round head
Annex 36	S+P-B2 4,5 x L	with hexagon or round head
Annex 37	S+P-B2 4,5 x L	with hexagon head or round head and seal washer ≥ Ø 14 mm
·	·	

Page 5 of 61 | 21 June 2013

Annex 38	S+P-B2 4,5 x L	with hexagon head or round head and seal washer ≥ Ø 14 mm
Annex 39	S+P-B2 4,5 x L	with hexagon head or round head and seal washer ≥ Ø 14 mm
Annex 40	S+P-B2 4,5 x L	with hexagon head or round head and seal washer ≥ Ø 14 mm
Annex 41	S+P-B2 4,5 x L	with hexagon head or round head and seal washer ≥ Ø 14 mm
Annex 42	S+P-B2 6,0 x L	with hexagon head or round head
Annex 43	S+P-B2 6,0 x L	with hexagon head or round head
Annex 44	S+P-B2 6,0 x L	with hexagon head or round head
Annex 45	S+P-B2 6,0 x L	with hexagon head or round head
Annex 46	S+P-B2 6,0 x L	with hexagon head or round head
Annex 47	S+P-B2 6,0 x L	with hexagon head or round head and seal washer ≥ Ø 16 mm
Annex 48	S+P-B2 6,0 x L	with hexagon head or round head and seal washer ≥ Ø 16 mm
Annex 49	S+P-B2 6,0 x L	with hexagon head or round head and seal washer ≥ Ø 16 mm
Annex 50	S+P-B2 6,0 x L	with hexagon head or round head and seal washer ≥ Ø 16 mm
Annex 51	S+P-B2 6,0 x L	with hexagon head or round head and seal washer ≥ Ø 16 mm

^{*)} These fastening screws are applicable for fastening to timber structure

1.2 Intended use

The fastening screws are intended to be used for fastening metal sheeting to metal substructures and as far as stated in Table 1 to timber substructures. The sheeting can either be used as wall or roof cladding or as load bearing wall and roof element.

The fastening screws can also be used for the fastening of other thin gauge metal members.

The component to be fastened is component I and the substructure is component II.

The intended use comprises fastening screws and connections for indoor and outdoor applications. Fastening screws made of stainless steel are intended to be used in external environments with a high or very high corrosion category.

The intended use comprises connections with predominantly static loads (e.g. wind loads, dead loads).

Page 6 of 61 | 21 June 2013

The provisions made in this European technical approval are based on an assumed working life of the fastening screws of 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The fastening screws shall correspond to the drawings given in the appropriate Annexes (see Table 1).

The characteristic material values, dimensions and tolerances of the fastening screws neither indicated in this section nor in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ to this European technical approval.

The characteristic values of the shear and tension resistance of the connections made with the fastening screws are given in the appropriate Annexes or in section 4.2.

The fastening screws are considered to satisfy the requirements of performance class A1 of the characteristic reaction to fire.

2.2 Methods of verification

The assessment of the fitness of the fastening screws for the intended use in relation to the Essential Requirements ER 1 (Mechanical resistance and stability), ER 2 (Safety in case of fire), ER 4 (Safety in use) and additional aspects of durability has been made in accordance with section 3.2 of the Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.

The assessment of the resistance to fire performance is only relevant to the assembled system (fastening screws, sheeting, substructure) which is not part of the European technical approval.

The fastening screws are considered to satisfy the requirements of performance class A 1 of the characteristic reaction to fire, in accordance with the provisions of the EC Decision 96/603/EC (as amended) without the need for testing on the basis of its listing in that decision.

Concerning Essential Requirements No. 1 (Mechanical resistance and stability) and No. 4 (Safety in use) the following applies:

The characteristic values of resistance given in the Annexes were determined by shear and tension tests.

The formulas to calculate the design resistance are given in clause 4.2.1.

The technical documentation to this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as relevant fort the tasks of the approved bodies involved in the attestation of conformity procedure is handed over to the approved bodies.

Page 7 of 61 | 21 June 2013

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the Decision 99/92 of the European Commission⁸ system 3 of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 3: Declaration of conformity of the product by the manufacturer on the basis of:

- (a) Tasks for the manufacturer:
 - (1)factory production control;
- (b) Tasks for the approved body:
 - initial type-testing of the product.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks for the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the "control plan relating to this European technical approval" which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of fastening screws in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks for the approved bodies

The approved body shall perform the

initial type-testing of the product,

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in written reports.

Z24292.13 8.06.02-328/12

Electronic copy of the ETA by DIBt: ETA-12/0086

Official Journal of the European Communities L 80 of 18.03.1998.

The "control plan" is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 8 of 61 | 21 June 2013

3.3 CE marking

The CE marking shall be affixed on each packaging of fastening screws. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the European technical approval,
- the name of the product.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The fastening screws are manufactured in accordance with the provisions of the European technical approval using the manufacturing process as laid down in the technical documentation.

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design

4.2.1 General

Fastening screws completely or partly exposed to external weather or similar conditions are made of stainless steel or are protected against corrosion. For the corrosion protection the rules given in EN 1090-2:2008 + A1:2011, EN 1993-1-3:2006 + AC:2009 and EN 1993-1-4:2006 are taken into account.

For the types of connection (a, b, c, d) listed in the Annexes it is not necessary to take into account the effect of constraints due to temperature. For other types of connection it shall be considered for design as long as constraining forces due to temperature do not occur or are not significant (e. g. sufficient flexibility of the structure).

The loading is predominantly static. (Remark: Wind loads are regarded as predominantly static.) Dimensions, material properties, torque moments $M_{t,norm}$, minimum effective screw-in length l_{ef} and nominal material thicknesses t_N as stated in the European technical approval or in the Annexes are observed.

The verification concept stated in EN 1990:2002 + A1:2005 +A1:2005/AC:2010 is used for the design of the connections made with the fastening screws. The characteristic values (shear and tension resistance) stated in the Annexes are used for the design of the entire connections.

European technical approval ETA-12/0086

Page 9 of 61 | 21 June 2013

English translation prepared by DIBt

The following formulas are used to calculate the values of design resistance:

$$N_{Rd} = \frac{N_{Rk}}{\gamma_M}$$

$$V_{Rd} = \frac{V_{Rk}}{\gamma_M}$$

The recommended partial safety factor $\gamma_{\rm M}$ = 1.33 is used in order to determine the corresponding design resistances, provided no values are given in national regulations of the member state in which the fastening screws are used or in the respective National Annex to Eurocode 3.

In case of combined tension and shear forces the linear interaction formula according to EN 1993-1-3:2006 + AC:2009, section 8.3 (8) is taken into account.

$$\frac{N_{Sd}}{N_{Rd}} + \frac{V_{Sd}}{V_{Rd}} \le 1.0$$

The possibly required reduction of the tension resistance (pull-through resistance) due to the position of the fastener is taken into account:

- in accordance with EN 1993 1 3:2006+ AC:2009, section 8.3 (7) and Fig. 8.2 (component I is made of steel) or EN 1999-1-4:2007 + A1:2011, section 8.1 (6) and Table 8.3 (component I is made of aluminium),
- of 0.7 if the supporting structure is an asymmetric profile (e.g. Z-profile) with t_{II} < 5 mm

Additional rules for connections with timber substructures 4.2.2

As far as no other provisions are made in the following EN 1995-1-1:2004 + A1:2008 applies.

Drill points of self drilling screws are not taken into account for the effective screw-in length.

The following terms are used:

Screw-in length - part of thread screwed into component II including drill point.

 I_b - Length of unthreaded part of the drill-point.

- effective screw-in length $I_{ef} = I_a - I_b$

= $N_{R,k}$ F_{ax,Rk} • k_{mod} $V_{R,k}$ F_{v.Rk} • k_{mod}

according to EN 1995-1-1:2004 + A1:2008, equation (8.40a)

Remark: $F_{ax,Rk} = F_{ax,\alpha,Rk}$ with $\alpha = 90^{\circ}$

 $F_{v,Rk}$ according to EN 1995-1-1:2004 + A1:2008, clause 8.2.3

according to EN 1995-1-1:2004 + A1:2008, Table 3.1

 $M_{v,Rk}$ in equation (8.9) of EN 1995-1-1:2004 + A1:2008 and $f_{ax,k}$ in equation (8.40a) of EN 1995-1-1:2004 + A1:2008 are given in the Annexes of this European technical approval.

The characteristic values for pullout and bearing resistance (timber substructure) calculated according to EN 1995-1-1:2004 + A1:2008 are compared with the characteristic values for component I (pull over and bearing resistance) stated in the right column of the table in the appropriate Annexes. The lower value is used for further calculations.

Page 10 of 61 | 21 June 2013

4.3 Installation

The installation is only carried out according to the manufacturer's instructions. The manufacturer hands over the assembly instructions to the assembler.

It is guaranteed by the execution that no bimetallic corrosion will occur.

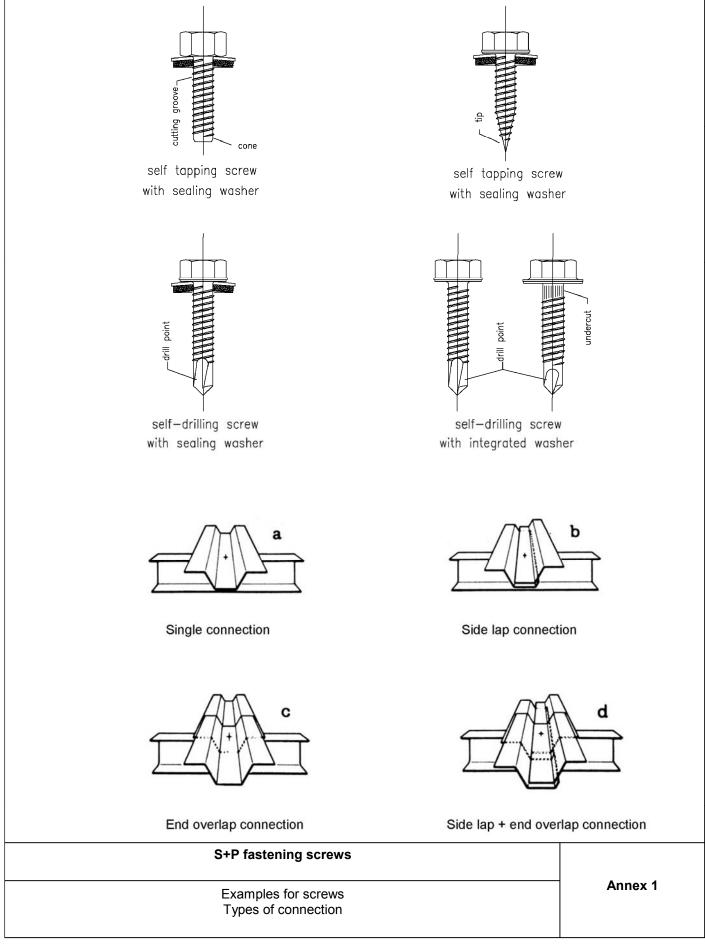
For regular shear forces the components I and II are directly connected to each other so that the fastening screws do not get additional bending. The use of compression resistant thermal insulation strips up to a thickness of 3 mm is allowed.

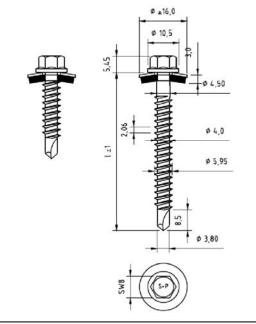
The fastening screws are fixed rectangular to the surface of the components to guarantee a correct load bearing and if necessary rain-proof connection.

Fastening screws for steel substructures are screwed in with the cylindrical part of the thread at least 6 mm if the substructure has a thickness over 6 mm unless otherwise declared in the manufacturer's instruction. Welded drill points are not taken into account for the screw-in length.

The conformity of the installed fasteners with the provisions of the European technical approval is attested by the executing company.

5 Indications to the manufacturer


It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1, 2, 4.2 and 4.3 (including Annexes referred to) is given to those who are concerned. This information may be given by reproduction of the respective parts of the European technical approval.


In addition all installation data (predrill diameter, torque moment, application limits) shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

Andreas Kummerow p. p. Head of Department

*beglaubigt:*Niebur

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

for timber substructures performance determined with

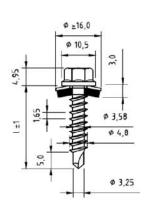
8,646 $M_{y,Rk} =$

Nm N/mm^2 for $I_{ef} \ge 24$ 13,840 $f_{ax,k} =$ mm

t _N	,11 =	0,5	0	0,5	5	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	25		
M _{t,r}	nom =			6					-	-				N-1					
	0,50	0,84 ^{a)}	_	0,84 ^{a)}	_	0,84 ^{a)}	_	0,84 ^{a)}	_	0,84 ^{a)}	_	0,84 ^{a)}	_	0,84 ^{a)}	_	0,84 ^{a)}	_	0,84 ^{a)}	
	0,55	0,84 ^{a)}	_	1,02 ^{a)}	_	1,02 ^{a)}	_	1,02 ^{a)}	_	1,02 ^{a)}	_	1,02 ^{a)}	_	1,02 ^{a)}	_	1,02 ^{a)}	_	1,02 ^{a)}	
	0,63	0,84 ^{a)}	_	1,02 ^{a)}	-	1,29 ^{a)}	, 	1,29 ^{a)}	_	1,29 ^{a)}	_	1,29 ^{a)}	-	1,29 ^{a)}	-	1,29 ^{a)}	-	1,29 ^{a)}	e of
	0,75	0,84 ^{a)}	_	1,02 ^{a)}	_	1,29 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	T T
Ţ.	0,88	0,84 ^{a)}	_	1,02 ^{a)}	_	1,29 ^{a)}	_	1,73 ^{a)}	_	2,39 ^{a)}	_	2,39 ^{a)}	ring resistance component I						
V _{R,k} for	1,00	0,84 ^{a)}	_	1,02 ^{a)}	_	1,29 ^{a)}	_	1,73 ^{a)}	_	2,39 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	
l &	1,13	0,84 ^{a)}	_	1,02 ^{a)}	_	1,29 ^{a)}	_	1,73 ^{a)}	_	2,39 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	bearing com
	1,25	0,84 ^{a)}	_	1,02 ^{a)}	_	1,29 ^{a)}	_	1,73 ^{a)}	_	2,39 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	_	3,04 ^{a)}	eal c
	1,50	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	Δ
	1,75	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	
	2,00	_	_	_	_	_	_	_	_		_		_		_		_	_	
	0,50	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,57 ^{a)}	_	1,57 ^{a)}	_	1,57 ^{a)}	_	1,57 ^{a)}	
	0,55	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,63 ^{a)}	_	1,96	_	1,96 ^{a)}	_	1,96 ^{a)}	0
	0,63	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,63 ^{a)}	_	2,00	_	2,36	_	2,56 ^{a)}	e fo
	0,75	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,63 ^{a)}	_	2,00	_	2,36	_	3,54 ^{a)}	sistance nent I
± <u>z</u> .	0,88	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,63 ^{a)}	_	2,00	_	2,36	_	4,11 ^{a)}	sist
ē	1,00	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,63 ^{a)}	_	2,00	_	2,36	_	4,68 ^{a)}	Б 10
N _{R,k} for t _{N,I}	1,13	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,63 ^{a)}	_	2,00	_	2,36	_	5,20	ough resistar component l
~	1,25	0,62 ^{a)}	_	0,72 ^{a)}	_	0,88 ^{a)}	_	1,13 ^{a)}	_	1,38 ^{a)}	_	1,63 ^{a)}	_	2,00	_	2,36	_	5,72	pull-trough comp
	1,50	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	_	—	ll nd
	1,75	—	_	—	_	—	_	-	_	—	_	—	_	—	_	-	_	—	_
	2,00	—	_	<u> </u>	_	—	_	—	_	<u> </u>	_	—	_	<u> </u>	_	<u> </u>	_		

If component I and component II are made of S320GD or S350GD, the values marked with a) may be increased by 8,3%.

self drilling screw


SP-B2-2-6,0 x L / SP-B4-2-6,0 x L

with hexagon head and sealing washer ≥ Ø 16 mm

Annex 2

Electronic copy of the ETA by DIBt: ETA-12/0086

Materials Fastener:

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) – EN 10088

Washer: stainless steel (1.4301) – EN 10088 Component I: S280GD, S320GD or S350GD – EN 10346

Component II: S235 - EN 10025-1

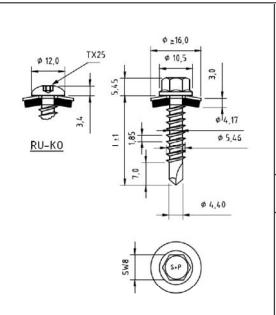
S280GD, S320GD or S350GD - EN 10346

Drilling capacity

 $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	_	0,4	0	0,5	50	0,5	5	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	!5	1,5	0	2,0	10
M _t ,	nom =																						
	0,40	0,62 ^{a)}	_	0,62 ^{a)}		0,62 ^{a)}	_	0,62 ^{a)}	ac	0,62 ^{a)}	а												
		0,62 ^{a)}	_	0,88 ^{a)}		0,97 ^{a)}	_	1,10 ^{a)}	_	1,31 ^{a)}	_	1,52 ^{a)}	_	1,73 ^{a)}	ac	1,73 ^{a)}	ac	1,73 ^{a)}	ac	1,73 ^{a)}	а	1,73 ^{a)}	а
	0,55	0,62 ^{a)}	_	0,88 ^{a)}		1,01 ^{a)}	_	1,15 ^{a)}	_	1,35 ^{a)}	_	1,64 ^{a)}	_	1,92 ^{a)}	_	1,94 ^{a)}	_	1,97 ^{a)}	_	1,97 ^{a)}	_	—	_
1	0,63	0,62 ^{a)}	_	0,88 ^{a)}		1,01 ^{a)}	_	1,21 ^{a)}	_	1,42 ^{a)}	_	1,81 ^{a)}	_	2,20 ^{a)}	_	2,27 ^{a)}	_	2,33 ^{a)}	_	2,33 ^{a)}	_	—	_
1 1	0,75	0,62 ^{a)}	_	0,88 ^{a)}		1,01 ^{a)}	_	1,21 ^{a)}	_	1,53 ^{a)}	_	2,10 ^{a)}	_	2,66 ^{a)}	_	2,79 ^{a)}	_	2,92 ^{a)}	_	2,92 ^{a)}	_	—	_
=	0,88	0,62 ^{a)}	_	0,88 ^{a)}	_	1,01 ^{a)}	_	1,21 ^{a)}	_	1,53 ^{a)}	_	2,10 ^{a)}	_	2,66 ^{a)}	_	2,90	_	3,13	_	3,13	_	-	_
VR,k for t _{N,I}	1,00	0,62 ^{a)}	_	0,88 ^{a)}		1,01 ^{a)}	_	1,21 ^{a)}	_	1,53 ^{a)}	_	2,10 ^{a)}	_	2,66 ^{a)}	_	3,00	_	3,33	_	3,33	_	-	_
5	1,13	0,62 ^{a)}	_	0,88 ^{a)}	_	1,01 ^{a)}	_	1,21 ^{a)}	_	1,53 ^{a)}	_	2,10 ^{a)}	_	2,66 ^{a)}	_	3,10	_	3,54	_	—	_	—	_
	1,25	0,62 ^{a)}	_	0,88 ^{a)}	_	1,01 ^{a)}	_	1,21 ^{a)}	_	1,53 ^{a)}	_	2,10 ^{a)}	_	2,66 ^{a)}	_	3,20	_	3,74	_	—	_	—	_
	1,50	0,62 ^{a)}	_	0,88 ^{a)}	_	1,01 ^{a)}	_	1,21 ^{a)}	_	1,53 ^{a)}	_	2,10 ^{a)}	_	2,66 ^{a)}	_	—	_	—	_	—	_	—	_
	1,75	0,62 ^{a)}	_	0,88 ^{a)}	_	1,01 ^{a)}	_	1,21 ^{a)}	_	1,53 ^{a)}	_	—	_	—	_	—	_	—	_	—	_	—	_
	2,00	0,62 ^{a)}	_	0,88 ^{a)}	_	_	_	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	0,40	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,14 ^{a)}	ac								
	0,50	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	ac	1,57 ^{a)}	ac	1,57 ^{a)}	ac	1,57 ^{a)}	а	1,57 ^{a)}	а
	0,55	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	1,63	_	1,91	_	1,96 ^{a)}	_	-	_
	0,63	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	1,63	_	1,91	_	2,50	_	—	_
1 1	0,75	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	1,63	_	1,91	_	2,50	_	—	_
NR,k for t _{N,I}	0,88	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	1,63	_	1,91	_	2,50	_	—	_
1 5	1,00	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	1,63	_	1,91	_	2,50	_	—	_
=	1,13	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	1,63	_	1,91	_	—	_	—	_
	1,25	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	1,63	_	1,91	_	—	_	—	_
	1,50	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	1,14 ^{a)}	_	1,35 ^{a)}	_	—	_	—	_	—	_	—	_
	1,75	0,39 ^{a)}	_	0,63 ^{a)}	_	0,69 ^{a)}	_	0,78 ^{a)}	_	0,92 ^{a)}	_	—	_	—	_	—	_	—	_	—	_	—	_
	2,00	0,39 ^{a)}	_	0,63 ^{a)}	_	<u> </u>	_	<u> </u>	_	<u>L – </u>	_	<u></u>	_	<u></u>	_		_		_	<u></u>	_	<u></u>	_

If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-2-4,8 x L / SP-B4-2-4,8 x L

with hexagon head and sealing washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350 GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 3,00 \text{ mm}$

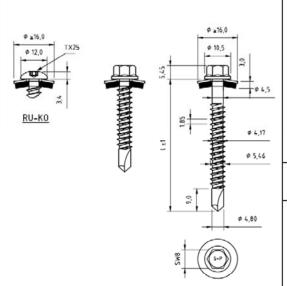
Timber substructures

for timber substructures no performance determined

	t _N	, _{II} =	1,0	00	1,1	3	1,2	25	1,5	0	2,0	0	2,5	0
		nom =						-						
		0,50	1,54	ac	1,54	ac	1,54	ac	1,54	ac	1,54	ac	1,54	а
-		0,55	1,70	_	1,74	_	1,79	_	1,79	_	1,79	_	—	-
-		0,63	1,94	_	2,05	_	2,16	_	2,16	_	2,16	_	—	-
-	II	0,75	2,34	_	2,56	_	2,78	_	2,78	_	2,78	_	—	-
-		0,88	2,47	_	2,70	_	2,93	_	3,18	_	3,18	_	—	-
-	Гoг	1,00	2,59	_	2,84	_	3,08	_	3,57	_	3,57	_	—	-
-	V _{R,k} for t _{N,I}	1,13	2,94	_	3,18	_	3,43	_	3,91	_	—	_	—	-
-	_	1,25	3,28	_	3,53	_	3,77	_	4,26	_	—	_	—	-
-		1,50	3,97	_	4,21	_	4,46	_	4,94	_	—	_	—	-
-		1,75	3,97	_	4,21	_	4,46	_	l —	_	—	_	—	-
		2,00	3,97	_	_	_	—	_	—	_	—	_	_	_
Γ		0,50	1,30	ac	1,45	ac	1,57	ac	1,57 ^{a)}	ac	1,57 ^{a)}	ac	1,57 ^{a)}	а
-		0,55	1,30	_	1,45	_	1,59	_	1,96 ^{a)}	_	1,96 ^{a)}	_	—	-
-		0,63	1,30	_	1,45	_	1,59	_	2,31	_	2,56 ^{a)}	_	—	_
-	II	0,75	1,30	_	1,45	_	1,59	_	2,31	_	3,31	_	—	- 1
-	ż	0,88	1,30	_	1,45	_	1,59	_	2,31	_	3,31	_	—	- 1
-	for	1,00	1,30	_	1,45	_	1,59	_	2,31	_	3,31	_	—	- 1
1	N _{R,k} for t _{n,I}	1,13	1,30	_	1,45	_	1,59	_	2,31	_	—	_	—	- 1
-	_	1,25	1,30	_	1,45	_	1,59	_	2,31	_	—	_	—	-
		1,50	1,30	_	1,45	_	1,59	_	2,31	_	—	_	—	- 1
-		1,75	1,30	_	1,45	_	1,59	_	—	_	—	_	—	-
L		2,00	1,30		_				<u> </u>	_				

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw


SP-B2-3-5,5 x L / SP-B4-3-5,5 x L

with hexagon head or pan head with Torx® drive and sealing washer ≥ Ø 16 mm

Annex 4

Electronic copy of the ETA by DIBt: ETA-12/0086

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350 GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

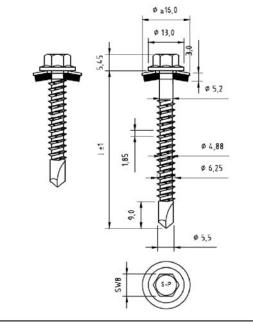
Drilling capacity

 $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

	t _N	, _{II} =	1,5	0	2,0	0	2,5	0	3,0	0	4,0	0	5,0	0
	M _{t,r}	nom =						-	_					
Г		0,50	1,77 ^{a)}	ac										
		0,55	1,93 ^{a)}	_	1,93 ^{a)}	ac								
		0,63	2,18 ^{a)}	_	2,18 ^{a)}	ac								
Ι,	II	0,75	2,58 ^{a)}	_	2,58 ^{a)}	_	2,58 ^{a)}	ac						
		0,88	2,93	_	3,23	_	3,30 ^{a)}	_	3,36 ^{a)}	ac	3,36 ^{a)}	ac	3,36 ^{a)}	а
3	VR,k TOF t _{N,I}	1,00	3,27	_	3,87	_	4,01	_	4,14 ^{a)}	ac	4,14 ^{a)}	ac	4,14 ^{a)}	а
١,	Ŋ.	1,13	3,64	_	3,97	_	4,30	_	4,63	_	4,63	_	—	-
		1,25	4,01	_	4,38	_	4,75	_	5,12	_	5,12	_	—	-
		1,50	4,74	_	5,19	_	5,65	_	6,10	_	6,10	_	—	-
		1,75	4,74	_	5,19	_	5,65	_	6,10	_	6,10	_	—	-
L		2,00			5,19	_	5,65	_	6,10	_	6,10	_	<u> </u>	_
			1,57 ^{a)}	ac										
		0,55	1,96 ^{a)}	_	1,96 ^{a)}	ac								
		0,63	2,07	_	2,91	ac	2,56 ^{a)}	ac						
	II	0,75	2,07	_	2,91	_	3,54 ^{a)}	ac						
Ι,	<u>z</u>	0,88	2,07	_	2,91	_	4,11	_	4,11 ^{a)}	ac	4,11 ^{a)}	ac	4,11 ^{a)}	а
3	و	1,00	2,07	_	2,91	_	4,24	_	4,68 ^{a)}	ac	4,68 ^{a)}	ac	4,68 ^{a)}	а
;	NR,k TOF t _{N,I}	1,13	2,07	_	2,91	_	4,24	_	5,20	_	5,20	_	—	-
-	_	1,25	2,07	_	2,91	_	4,24	_	5,58	_	5,72	_	—	-
		1,50	2,07	_	2,91	_	4,24	_	5,58	_	6,18	_	—	-
		1,75	2,07	_	2,91	_	4,24	_	5,58	_	6,18	_	-	-
L		2,00	2,07	_	2,91	_	4,24	_	5,58	_	6,18	_	<u> </u>	_


If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-6-5,5 x L / SP-B4-6-5,5 x L

with hexagon head or pan head with Torx® drive and sealing washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350 GD - EN 10346

Component II: S235 - EN 10025-1

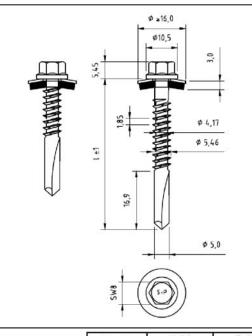
S280GD or S320GD - EN 10346

Drilling capacity $\Sigma t_i \le 6,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	2,0	0	2,5	0	3,0	0	4,0	0	5,0	0
M _{t,i}	nom =					-	-				
	0,50	1,72 ^{a)}	ac								
	0,55	2,01 ^{a)}	ac								
	0,63	2,45 ^{a)}	ac								
	0,75	3,17 ^{a)}	ac								
	0,88	3,75 ^{a)}	_								
V _{R,k} for t _{N,I}	1,00	4,32 ^{a)}	_								
N,X,	1,13	4,67	_	4,67	_	4,67	_	4,67	_	4,67	_
-	1,25	5,03	_	5,03	_	5,03	_	5,03	_	5,03	_
	1,50	5,73	_	5,73	_	5,73	_	5,73	_	5,73	_
	1,75	5,73	_	5,73	_	5,73	_	5,73	_	l —	_
	2,00	5,73	_	5,73	_	5,73	_	5,73	_	_	_
	0,50	1,66 ^{a)}	ac								
	0,55	1,97 ^{a)}	ac								
	0,63	2,45 ^{a)}	ac								
	0,75	3,23	ac	3,23 ^{a)}	ac						
	0,88	3,27	_	4,15	_	4,15 ^{a)}	_	4,15 ^{a)}	_	4,15 ^{a)}	_
٠	1,00	3,27	_	4,41	_	5,00 ^{a)}	_	5,00 ^{a)}	_	5,00 ^{a)}	_
N _{R,k} for t _{N,I}	1,13	3,27	_	4,41	_	5,54	_	5,67 ^{a)}	_	5,67 ^{a)}	_
_	1,25	3,27	_	4,41	_	5,54	_	6,34 ^{a)}	_	6,34 ^{a)}	_
	1,50	3,27	_	4,41	_	5,54	_	6,34 ^{a)}	_	6,34 ^{a)}	_
	1,75	3,27	_	4,41	_	5,54	_	6,34 ^{a)}	_	-	_
	2,00	3,27	_	4,41	_	5,54	_	6,34 ^{a)}	_	_	_


If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-6-6,3 x L / SP-B4-6-6,3 x L

with hexagon head and sealing washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350 GD - EN 10346

Component II: S235 - EN 10025-1

S280GD or S320GD - EN 10346

<u>Drilling capacity</u> $\Sigma t_i \le 13,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t,	_{N,II} =	4,0	0	5,0	0	6,0	0	8,0	0	10,0	00	12,0	00
Mt	, _{nom} =	1/2		,			-			(C) (C)			
	0,50	1,82 ^{a)}	ac										
	0,55	2,09 ^{a)}	ac	2,09 ^{a)}	а								
	0,63	2,51 ^{a)}	ac	2,51 ^{a)}	а								
	0,75	3,19 ^{a)}	ac	3,19 ^{a)}	а								
	0,88	3,67 ^{a)}	ac	3,67 ^{a)}	а								
V _{R,k} for t _{N,I}	1,00	4,14 ^{a)}	ac	4,14 ^{a)}	а								
××	1,13	4,90	ac	4,95	ac	5,01	ac	5,01	ac	5,01	а	—	_
'	1,25	5,65	ac	5,76	ac	5,87	ac	5,87	ac	5,87	а	—	_
	1,50	5,65	_	6,03	_	6,41	ac	6,41	ac	6,41	а	—	-
	1,75	5,65	_	6,03	_	6,41	_	6,41	_	6,41	_	—	_
	2,00		_	6,03	_	6,41	_	6,41	_	6,41	_		_
	0,50	1,57 ^{a)}	ac										
	0,55	1,96 ^{a)}	ac	1,96 ^{a)}	а								
	0,63	2,56 ^{a)}	ac	2,56 ^{a)}	а								
	0,75	3,54 ^{a)}	ac	3,54 ^{a)}	а								
Į į	0,88	4,11 ^{a)}	ac	4,11 ^{a)}	а								
þ	1,00	4,68 ^{a)}	ac	4,68 ^{a)}	а								
N _{R,k} for t _{N,I}	1,13	5,20	ac	5,20	ac	5,20	ac	5,20	ac	5,20	а	—	-
-	1,25	5,58	ac	5,70	ac	5,72	ac	5,72	ac	5,72	а	—	_
	1,50	5,58	_	5,70	_	5,81	ac	5,81	ac	5,81	а	—	-
	1,75	5,58	_	5,70	_	5,81	_	5,81	_	5,81	_	-	-
	2,00	5,58	_	5,70	_	5,81	_	5,81	_	5,81	_	—	_

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-12-5,5 x L / SP-B4-12-5,5 x L with hexagon head and sealing washer $\geq \emptyset$ 16 mm

Annex 7

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350 GD - EN 10346

Component II: S235 - EN 10025-1

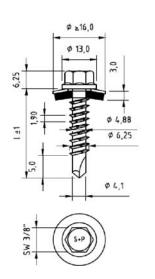
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	_{I,II} =	0,4	10	0,5	50	0,5	5	0,6	3	0,7	5	0,8	8	1,0	0	1,1	13	1,2	25	1,5	50
	nom =			•				•		•	-	_				•					
	0,40	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_	0,80 ^{a)}	_
	0,50	0,80 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_	1,16 ^{a)}	_
	0,55	0,80 ^{a)}	_	1,16 ^{a)}	_	1,30 ^{a)}	_	1,30 ^{a)}	_	1,30 ^{a)}	_	1,30 ^{a)}	_	1,30 ^{a)}	_	1,30 ^{a)}	_	1,30 ^{a)}	_	—	_
II_	0,63	0,80 ^{a)}	_	1,16 ^{a)}	—	1,30 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}		—	_								
V _{R,k} for t _{N,I}	0,75	0,80 ^{a)}		1,16 ^{a)}	_	1,30 ^{a)}	_	1,50 ^{a)}	_	1,84 ^{a)}	_	1,84 ^{a)}	_	—	_						
15 15	0,88	0,80 ^{a)}	_	1,16 ^{a)}	—	1,30 ^{a)}	_	1,50 ^{a)}	_	1,84 ^{a)}	_	2,50 ^{a)}	_	2,50 ^{a)}	_	2,50 ^{a)}	_	_	_	—	_
🛎	1,00	0,80 ^{a)}	_	1,16 ^{a)}	_	1,30 ^{a)}	_	1,50 ^{a)}	_	1,84 ^{a)}	_	2,50 ^{a)}	_	3,16 ^{a)}	_	—	_	—	_	—	_
	1,13	0,80 ^{a)}	_	1,16 ^{a)}	_	1,30 ^{a)}	_	1,50 ^{a)}	_	1,84 ^{a)}	_	2,50 ^{a)}	_	 	_	—	_	—	_	—	_
	1,25	0,80 ^{a)}	_	1,16 ^{a)}	_	1,30 ^{a)}	_	1,50 ^{a)}	_	1,84 ^{a)}	_	l —	_	_	_	—	_	 —	_	—	_
	1,50	0,80 ^{a)}	_	1,16 ^{a)}	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_
	0,40	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,14 ^{a)}	_	1,14 ^{a)}	_	1,14 ^{a)}	_	1,14 ^{a)}	_	1,14 ^{a)}	_
	0,50	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,27 ^{a)}	_	1,55 ^{a)}	_	1,70 ^{a)}	_	1,70 ^{a)}	_	1,70 ^{a)}	_
	0,55	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,27 ^{a)}	_	1,55 ^{a)}	_	1,75	_	1,96	_	—	_
II_	0,63	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,27 ^{a)}	_	1,55 ^{a)}	_	1,75	_	1,96	_	—	_
N _{R,k} for t _{N,I}	0,75	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,27 ^{a)}	_	1,55 ^{a)}	_	1,75	_	1,96	_	—	_
19 19	0,88	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,27 ^{a)}	_	1,55 ^{a)}	_	1,75	_	l —	_	—	_
ž	1,00	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,27 ^{a)}	_	1,55 ^{a)}	_	—	_	—	_	—	_
	1,13	0,40 ^{a)}	_	0,52 ^{a)}	_	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	1,27 ^{a)}	_	—	_	—	_	—	_	—	_
	1,25	0,40 ^{a)}	_	0,52 ^{a)}	—	0,61 ^{a)}	_	0,76 ^{a)}	_	0,99 ^{a)}	_	—	_	—	_	—	_	—	_	—	_
	1,50	0,40 ^{a)}	_	0,52 ^{a)}	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	


If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L with hexagon head and sealing washer $\geq \emptyset$ 16 mm

Annex 8

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350 GD - EN 10346

Component II: S235 - EN 10025-1

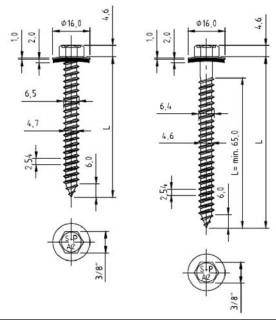
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

		0.40		1 055	1 000			1 400	1 440	1 4 0 5	1 4 50	1 000
	, _{II} =	0,40	0,50	0,55	0,63	0,75	0,88	1,00	1,13	1,25	1,50	2,00
M _{t,}	nom =	a)						n)	a)	a)		
			0,85 ^{a)} —				0,85 ^{a)} —				0,85 ^{a)} —	0,85 ^{a)} —
		0,85 ^{a)} —	1,20 ^{a)} —									
		0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —								
		0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —	1,79 ^{a)} —							
_	0,75	0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —	1	2,37 ^{a)} —	2,37 ^{a)} —	2,37 ^{a)} —			2,37 ^{a)} —	
VR,k for t _{N,I}	0,88	0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —	1,79 ^{a)} —	2,37 ^{a)} —	3,05 ^{a)} —					
5	1,00	0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —		2,37 ^{a)} —	3,05 ^{a)} —	3,73 ^{a)} —	3,73 ^{a)} —	3,73 ^{a)} —	3,73 ^{a)} —	
5	1,13	0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —	1,79 ^{a)} —	2,37 ^{a)} —	3,05 ^{a)} —	3,73 ^{a)} —	4,56 —	4,56 —		
	1,25	0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —	1,79 ^{a)} —	2,37 ^{a)} —	3,05 ^{a)} —	3,73 ^{a)} —	4,56 —	5,38 —		
	1,50	0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —	1,79 ^{a)} —	2,37 ^{a)} —	3,05 ^{a)} —	3,73 ^{a)} —				
	1,75	0,85 ^{a)} —	1,20 ^{a)} —	1,43 ^{a)} —	1,79 ^{a)} —	2,37 ^{a)} —						
	2,00	0,85 ^{a)} —	1,20 ^{a)} —									
	0,40	0,48 ^{a)} —	0,71 ^{a)} —	0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —	1,31 ^{a)} —					
	0,50	0,48 ^{a)} —	0,71 ^{a)} —	0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,66 ^{a)} —				
	0,55	0,48 ^{a)} —	0,71 ^{a)} —	0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	1,97 ^{a)} —	1,97 ^{a)} —	1,97 ^{a)} —	
	0,63	0,48 ^{a)} —	0,71 ^{a)} —	0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	2,25 —	2,45 ^{a)} —	2,45 ^{a)} —	
Щ.	0,75	0,48 ^{a)} —	0,71 ^{a)} —	0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	2,25 —	2,58 —	3,15 —	
1.2	0,88	0,48 ^{a)} —	0,71 ^{a)} —	0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	2,25 —	2,58 —	3,15 —	
N _{R,k} for t _{N,I}			0,71 ^{a)} —		0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	2,25 —	2,58 —	3,15 —	
ž				0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	2,25 —	2,58 —		
	1,25	0,48 ^{a)} —			0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	2,25 —	2,58 —	l — —	
					0,96 ^{a)} —	1,20 ^{a)} —	1,56 ^{a)} —	1,91 ^{a)} —	l — —	l — —	l — —	
				0,81 ^{a)} —	0,96 ^{a)} —	1,20 ^{a)} —						
			0,71 ^{a)} —									


If component I and component II are made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-2-6,3 x L / SP-B4-2-6,3 x L

with hexagon head and sealing washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025

S280GD, S320GD or S350GD - EN 10346

predrilling diameter see table below

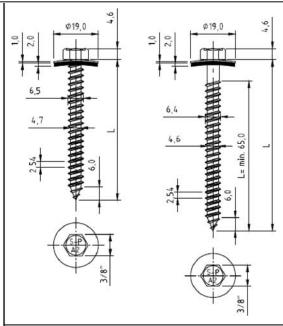
Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 11,480$

Nm $f_{ax,k} =$ N/mm^2 for $I_{ef} \ge 26$ mm 11,522

t _N	, _{II} =	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	0		
	od =	Ø3	,5	Ø4	,0				Ø	4,5					Ø	5,0] /	
M _{t,t}	nom =									_									
	0,50	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	
		1,07 ^{a)}	-	1,07 ^{a)}	_	1,07 ^{a)}	-	1,07 ^{a)}	_	1,07 ^{a)}	-	1,07 ^{a)}	-	1,07 ^{a)}	_	1,07 ^{a)}	-	1,07 ^{a)}	
		1,33 ^{a)}	_	1,33 ^{a)}	_	1,33 ^{a)}	_	1,33 ^{a)}	-	1,33 ^{a)}	_	1,33 ^{a)}	e of						
п		1,33 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	resistance
	0,88	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	sista
V _{R,k} for t _{N,I}	1,00	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}											
Ŋ, ĸ,k	1,13	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,49 ^{a)}	_	3,80 ^{a)}	_	4,41 ^{a)}	_	5,36 ^{a)}	bearing resista component
	1,25	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	4,19 ^{a)}	_	4,75 ^{a)}	_	5,95 ^{a)}	ear
	1,50	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	5,18 ^{a)}	_	5,64 ^{a)}	_	7,17 ^{a)}	Q
	1,75	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	5,18 ^{a)}	_	6,75 ^{a)}	_	8,40 ^{a)}	
	2,00	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	5,18 ^{a)}	_	8,06 ^{a)}	_	9,63 ^{a)}	
	0,50	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,27 ^{a)}											
	0,55	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,50 ^{a)}	_								
	0,63	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	1,87 ^{a)}	e to
п	0,75	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	2,42 ^{a)}	anc
	0,88	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	3,21 ^{a)}	sista
for	1,00	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	3,94 ^{a)}	reę Don
N _{R,k} for t _{N,I}	1,13	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	4,90	ough resista component
_	1,25	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,78	pull-trough resistance component l
	1,50	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,78	Ė
		0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,78	<u>.</u>
	2,00	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,78	


If component I and component II are made of S320GD or S350GD, the values marked with a) may be increased by 8,3%.

self tapping screw

FSB Ø 6,5 Typ A

with hexagon head and sealing washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025

S280GD, S320GD or S350GD - EN 10346

predrilling diameter see table below

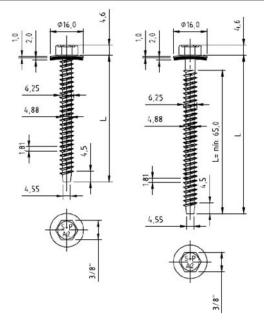
Timber substructures

for timber substructures performance determined with

 $M_{y,Rk} = 11,480$

Nm N/mm^2 for $I_{ef} \ge 26$ 11,522 $f_{ax,k} =$ mm

20						-10				012		100							
t _N	ı,ıı =	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	10		
d	_{pd} =	Ø3	,5	Ø4	,0				Ø	4,5					Ø	5,0		_	
M _t	nom =								*	_									
	0,50	0,92 ^{a)}	_	0,92 ^{a)}	-	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}	_	0,92 ^{a)}							
	0,55	1,07 ^{a)}	_	1,07 ^{a)}	_	1,07 ^{a)}	_	1,07 ^{a)}	_	1,07 ^{a)}	-	1,07 ^{a)}		1,07 ^{a)}	_	1,07 ^{a)}	_	1,07 ^{a)}	
	0,63	1,33 ^{a)}	_	1,33 ^{a)}	_	1,33 ^{a)}	_	1,33 ^{a)}	-	1,33 ^{a)}	_	1,33 ^{a)}	$-^{\gamma}$	1,33 ^{a)}	_	1,33 ^{a)}	-	1,33 ^{a)}	9 0
	0,75	1,33 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	_	1,76 ^{a)}	resistance oonent I
	0,88	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	_	2,26 ^{a)}	ring resista component
] j	1,00	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	2,76 ^{a)}	_	2,76 ^{a)}	_	2,76 ^{a)}	_	2,76 ^{a)}	_	2,76 ^{a)}	res
V _{R,k} for t _{N,I}	1,13	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,49 ^{a)}	_	3,80 ^{a)}	_	4,41 ^{a)}	_	5,36 ^{a)}	bearing comp
1	1,25	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	4,19 ^{a)}	_	4,75 ^{a)}	_	5,95 ^{a)}	cear
	1,50	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	5,18 ^{a)}	_	5,64 ^{a)}	_	7,17 ^{a)}	ă
	1,75	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	5,18 ^{a)}	_	6,75 ^{a)}	_	8,40 ^{a)}	
	2,00	1,33 ^{a)}	_	1,76 ^{a)}	_	2,26 ^{a)}	_	2,76 ^{a)}	_	3,34 ^{a)}	_	3,91 ^{a)}	_	5,18 ^{a)}	_	8,06 ^{a)}	_	9,63 ^{a)}	
	0,50	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	
	0,55	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,77 ^{a)}	_	1,77 ^{a)}	_	1,77 ^{a)}	_	1,77 ^{a)}	
	0,63	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	2,20 ^{a)}	9
۱	0,75	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	2,85 ^{a)}	<u> </u>
	0,88	0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	3,43 ^{a)}	iista ent
l f		0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	3,97 ^{a)}	res
N _{R,k} for t _{N,I}		0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	4,92	ough resistar component l
2		0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,80	pull-trough resistance component l
		0,79 ^{a)}	_	1,00 ^{a)}		1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,80	Ⅎ
		0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,80	Q
		0,79 ^{a)}	_	1,00 ^{a)}	_	1,20 ^{a)}	_	1,39 ^{a)}	_	1,66	_	1,86	_	1,86	_	1,86	_	5,80	


If component I and component II are made of S320GD or S350GD, the values marked with a) may be increased by 8,3%.

self tapping screw

FSB Ø 6,5 Typ A

with hexagon head and sealing washer ≥ Ø 19 mm

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025

S280GD or S320GD - EN 10346

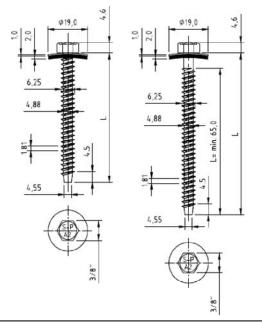
predrilling diameter see table below

Timber substructures

for timber substructures no performance determined

t _N	,II =	1,2	25	1,5	0	2,0	0	2,5	0	3,0	0	4,0	0	5,0	0	6,0	0	7,0	0
d,	_{pd} =		Ø	5,0						Ø5	,3					Ø5	,5	Ø5	,7
M _{t,r}	nom =									_									
	0,50	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_
	0,55	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_
	0,63	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_
"	0,75	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_
	0,88	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_
V _{R,k} for t _{N,I}	1,00	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1,13	3,43	_	3,72	_	4,30	_	4,88	_	5,19 ^{a)}	_	5,19 ^{a)}	_	5,19 ^{a)}	_	5,19 ^{a)}	_	5,19 ^{a)}	_
	1,25	3,85	_	4,11	_	4,64	_	5,17	_	5,69	_	5,76 ^{a)}	_	5,76 ^{a)}	_	5,76 ^{a)}	_	5,76 ^{a)}	_
	1,50	3,85	_	5,10	_	5,52	_	5,95	_	6,37	_	6,95 ^{a)}	_	6,95 ^{a)}	_	6,95 ^{a)}	_	6,95 ^{a)}	_
	1,75	3,85	_	5,10	_	6,63	_	6,96	_	7,28	_	7,94 ^{a)}	_	7,94 ^{a)}	_	7,94 ^{a)}	_	7,94 ^{a)}	_
	2,00	3,85	_	5,10	_	7,93	_	8,17	_	8,41	_	8,89 ^{a)}	_	8,89 ^{a)}	_	8,89 ^{a)}	_	8,89 ^{a)}	_
	0,50	1,27	_	1,27 ^{a)}	_	1,27 ^{a)}	_	1,27 ^{a)}	_	1,27 ^{a)}	_	1,27 ^{a)}	_	1,27 ^{a)}	_	1,27 ^{a)}	_	1,27 ^{a)}	_
	0,55	1,28	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_
	0,63	1,28	_	1,80	_	1,87 ^{a)}	_	1,87 ^{a)}	_	1,87 ^{a)}	_	1,87 ^{a)}	_	1,87 ^{a)}	_	1,87 ^{a)}	_	1,87 ^{a)}	_
"	0,75	1,28	_	1,80	_	2,42	_	2,42 ^{a)}	_	2,42 ^{a)}	_	2,42 ^{a)}	_	2,42 ^{a)}	_	2,42 ^{a)}	_	2,42 ^{a)}	_
	0,88	1,28	_	1,80	_	2,58	_	3,21 ^{a)}	_	3,21 ^{a)}	_	3,21 ^{a)}	_	3,21 ^{a)}	_	3,21 ^{a)}	_	3,21 ^{a)}	_
for	1,00	1,28	_	1,80	_	2,58	_	3,72	_	3,94 ^{a)}	_	3,94 ^{a)}	_	3,94 ^{a)}	_	3,94 ^{a)}	_	3,94 ^{a)}	_
N _{R,k} for t _{N,I}	1,13	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	4,90 ^{a)}	_	4,90 ^{a)}	_	4,90 ^{a)}	_	4,90 ^{a)}	_
~	1,25	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	_
	1,50	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	-
	1,75	1,28	_	1,80	_	2,58	_	3,72	_	4,85		5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	_
	2,00	1,28	_	1,80		2,58	_	3,72	_	4,85	_	5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	_	5,78 ^{a)}	_

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.


self tapping screw

FSB Ø 6,3 Typ BZ

with hexagon head and sealing washer ≥ Ø 16 mm

Annex 12

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025

S280GD or S320GD - EN 10346

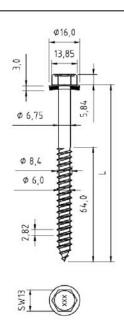
predrilling diameter see table below

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	1,2	25	1,5	0	2,0	0	2,5	0	3,0	0	4,0	0	5,0	0	6,0	0	7,0	0
d,	_{xd} =		Ø	5,0						Ø5	,3					Ø5	,5	Ø5	,7
M _{t,r}	nom =									_									
	0,50	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_	0,90 ^{a)}	_
	0,55	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_	1,05 ^{a)}	_
	0,63	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_	1,31 ^{a)}	_
"	0,75	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_	1,73 ^{a)}	_
	0,88	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_	2,23 ^{a)}	_
V _{R,k} for t _{N,I}	1,00	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_	2,72 ^{a)}	_
N, X,	1,13	3,43	_	3,72	_	4,30	_	4,88	_	5,19 ^{a)}	_	5,19 ^{a)}	_	5,19 ^{a)}	_	5,19 ^{a)}	_	5,19 ^{a)}	_
	1,25	3,85	_	4,11	_	4,64	_	5,17	_	5,69	_	5,76 ^{a)}	_	5,76 ^{a)}	_	5,76 ^{a)}	_	5,76 ^{a)}	_
	1,50	3,85	_	5,10	_	5,52	_	5,95	_	6,37	_	6,95 ^{a)}	_	6,95 ^{a)}	_	6,95 ^{a)}	_	6,95 ^{a)}	_
	1,75	3,85	_	5,10	_	6,63	_	6,96	_	7,28	_	7,94 ^{a)}	_	7,94 ^{a)}	_	7,94 ^{a)}	_	7,94 ^{a)}	_
	2,00	3,85	_	5,10	_	7,93	_	8,17	_	8,41	_	8,89 ^{a)}	_	8,89 ^{a)}	_	8,89 ^{a)}	_	8,89 ^{a)}	_
	0,50	1,27	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_	1,50 ^{a)}	_
	0,55	1,28	_	1,77	_	1,77 ^{a)}	_	1,77 ^{a)}	_	1,77 ^{a)}	_	1,77 ^{a)}	_	1,77 ^{a)}	_	1,77 ^{a)}	_	1,77 ^{a)}	_
	0,63	1,28	_	1,80	_	2,20 ^{a)}	_	2,20 ^{a)}	_	2,20 ^{a)}	_	2,20 ^{a)}	_	2,20 ^{a)}	_	2,20 ^{a)}	_	2,20 ^{a)}	_
"	0,75	1,28	_	1,80	_	2,42	_	2,85 ^{a)}	_	2,85 ^{a)}	_	2,85 ^{a)}	_	2,85 ^{a)}	_	2,85 ^{a)}	_	2,85 ^{a)}	_
	0,88	1,28	_	1,80	_	2,58	_	3,43 ^{a)}	_	3,43 ^{a)}	_	3,43 ^{a)}	_	3,43 ^{a)}	_	3,43 ^{a)}	_	3,43 ^{a)}	_
for	1,00	1,28	_	1,80	_	2,58	_	3,72	_	3,97 ^{a)}	_	3,97 ^{a)}	_	3,97 ^{a)}	_	3,97 ^{a)}	_	3,97 ^{a)}	_
N _{R,k} for t _{N,I}	1,13	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	4,92 ^{a)}	_	4,92 ^{a)}	_	4,92 ^{a)}	_	4,92 ^{a)}	_
_	1,25	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	_
	1,50	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	-
	1,75	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	_
	2,00	1,28	_	1,80	_	2,58	_	3,72	_	4,85	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	_	5,80 ^{a)}	_

If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.


self tapping screw

FSB Ø 6,3 Typ BZ

with hexagon head and sealing washer ≥ Ø 19 mm

Annex 13

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025

S280GD, S320GD or S350GD - EN 10346

predrilling diameter see table below

Timber substructures

for timber substructures performance determined with

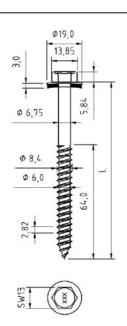
 $M_{y,Rk} = 31,000$

Nm

 $f_{ax,k} = 8,575$

 N/mm^2 for $I_{ef} \ge 34$ mm

	0,50	1,04 ^{a)}	
	0,55	1,22 ^{a)}	
	0,63	1,51 ^{a)}	e of
۱.,	0,75	2,00 ^{a)}	oearing resistance of component I
V _{R,k} for t _{N,1} =	0,88	2,57 ^{a)}	ring resistar component
for	1,00	3,14 ^{a)}	res por
Š.	1,13	6,92 ^{a)}	ing om
_	1,25	7,68 ^{a)}	c c
	1,50	9,27 ^{a)}	Q
	1,75	10,86 ^{a)}	
	2,00	12,45 ^{a)}	
	0,50	1,27 ^{a)}	
	0,55	1,50 ^{a)}	_
	0,63	1,87 ^{a)}	9
"	0,75	2,42 ^{a)}	anc t-
V _{R,k} for t _{N,I} =	0,88	3,21 ^{a)}	ough resistar component l
for	1,00	3,94 ^{a)}	por por
×̈́	1,13	4,90	ugh Som
-	1,25	5,78	pull-trough resistance fo component I
	1,50	5,78	llnd
	1,75	5,78	_
	2,00	5,78	


If component I is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self tapping screw

FSB Ø 8,4 Typ A

with hexagon head and sealing washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025

S280GD, S320GD or S350GD - EN 10346

predrilling diameter see table below

Timber substructures

for timber substructures performance determined with

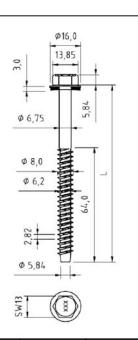
 $M_{y,Rk} = 31,000$

Nm

 $f_{ax,k} = 8,575$

 N/mm^2 for $I_{ef} \ge 34$ mm

	0,50	1,04 ^{a)}	
	0,55	1,22 ^{a)}	
	0,63	1,51 ^{a)}	e of
۱.,	0,75	2,00 ^{a)}	bearing resistance of component I
V _{R.k} for t _{N.I} =	0,88	2,57 ^{a)}	ring resistal component
for	1,00	3,14 ^{a)}	res pon
, Ä	1,13	6,92 ^{a)}	ing om
_	1,25	7,68 ^{a)}	ear
	1,50	9,27 ^{a)}	q
	1,75	10,86 ^{a)}	
	2,00	12,45 ^{a)}	
	0,50	1,50 ^{a)}	
	0,55	1,77 ^{a)}	0
	0,63	2,20 ^{a)}	oull-trough resistance fo component I
	0,75	2,85 ^{a)}	anc t-l
N _{R,k} for t _{N,I} =	0,88	3,43 ^{a)}	ough resistar component l
for	1,00	3,97 ^{a)}	n re por
🐇	1,13	4,92	ugł mo
-	1,25	5,80	-tro
	1,50	5,80	llnd
	1,75	5,80	_
	2,00	5,80	


If component I is made of S320GD or S350GD, the values marked with a) may be increased by 8,3%.

self tapping screw

FSB Ø 8,4 Typ A

with hexagon head and sealing washer ≥ Ø 19 mm

<u>Materials</u>

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

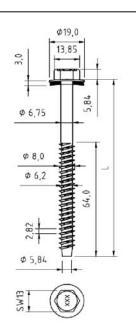
Component I: S280GD, S320GD or S350GD - EN 10346

Component II: S235 - EN 10025

S280GD or S320GD - EN 10346

predrilling diameter see table below

Timber substructures


for timber substructures no performance determined

	t _N	, _{II} =	1,5	50	2,0	00	3,0	00	4,0	00	5,0	00	6,0	00	8,0	00	10,	00
[d,	od =				Ø	6,8					Ø	7,0			Ø	7,2	
[$M_{t,r}$	nom =								9								
		0,50	1,02	1-1	1,02	_	1,02	_	1,02	_	1,02	1-1	1,02	_	1,02	_	1,02	_
		0,55	1,19	_	1,19	_	1,19	_	1,19	_	1,19	_	1,19	_	1,19	_	1,19	_
		0,63	1,48	-	1,48	_	1,48	_	1,48	_	1,48	_	1,48	_	1,48	_	1,48	_
	Ш	0,75	1,95	_	1,95	_	1,95	_	1,95	_	1,95	_	1,95	_	1,95	_	1,95	-
		0,88	2,51	_	2,51	_	2,51	_	2,51	_	2,51	_	2,51	_	2,51	_	2,51	-
	V _{R,k} for t _{N,I}	1,00	3,06	_	3,06	_	3,06	_	3,06	_	3,06	_	3,06	_	3,06	_	3,06	-
	/R,k	1,13	4,36	_	5,24	_	6,59	_	6,59	_	6,59	_	6,59	_	6,59	_	6,59	-
	_	1,25	4,75	_	5,57	_	7,21	_	7,32	_	7,32	_	7,32	_	7,32	_	7,32	-
		1,50	5,75	_	6,45	_	7,86	_	8,83	_	8,83	_	8,83	_	8,83	_	8,83	-
		1,75	5,75	_	7,58	_	8,78	_	9,97	_	10,3	_	10,3	_	10,3	_	10,3	-
		2,00	5,75	_	8,94	_	9,93	_	10,9	_	11,9	_	11,9	_	11,9	_	11,9	_
		0,50	1,27	_	1,27	_	1,27	_	1,27	_	1,27	_	1,27	_	1,27	_	1,27	-
		0,55	1,50	_	1,50	_	1,50	_	1,50	_	1,50	_	1,50	_	1,50	_	1,50	-
		0,63	1,87	_	1,87	_	1,87	_	1,87	_	1,87	_	1,87	_	1,87	_	1,87	-
	п	0,75	2,33	_	2,42	_	2,42	_	2,42	_	2,42	_	2,42	_	2,42	_	2,42	-
	Ť <u>z</u>	0,88	2,33	_	3,21	_	3,21	_	3,21	_	3,21	_	3,21	_	3,21	_	3,21	-
	юį	1,00	2,33	_	3,94	_	3,94	_	3,94	_	3,94	_	3,94	_	3,94	_	3,94	-
	N _{R,k} for t _{N,I}	1,13	2,33	_	4,20	_	4,90	_	4,90	_	4,90	_	4,90	_	4,90	_	4,90	-
	_	1,25	2,33	_	4,20	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	-
		1,50	2,33	_	4,20	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	-
		1,75	2,33	_	4,20	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	-
		2,00	2,33	_	4,20	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	_	5,78	

self tapping screw

FSB Ø 8,0 Typ BZ

with hexagon head and sealing washer ≥ Ø 16 mm

<u>Materials</u>

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: S280GD, S320GD or S350GD - EN 10346

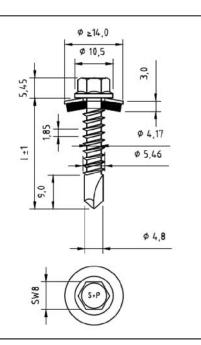
Component II: S235 - EN 10025

S280GD or S320GD - EN 10346

predrilling diameter see table below

Timber substructures

for timber substructures no performance determined


	t _N	, _{II} =	1,5	50	2,0	00	3,0	00	4,0	00	5,0	00	6,0	00	8,0	00	10,	00
ı		_{pd} =			3.55	Ø	6,8					Ø	7,0			Ø	7,2	
	M _{t,i}	nom =								9-								
		0,50	1,02	1-1	1,02	_	1,02	_	1,02	_	1,02	1-1	1,02	_	1,02	_	1,02	_
		0,55	1,19	1-	1,19	_	1,19	_	1,19	_	1,19	_	1,19	_	1,19	_	1,19	_
		0,63	1,48	$\overline{}$	1,48	_	1,48	_	1,48	_	1,48	_	1,48	_	1,48	_	1,48	_
	ш	0,75	1,95	_	1,95	_	1,95	_	1,95	_	1,95	_	1,95	_	1,95	_	1,95	-
	Ţ	0,88	2,51	_	2,51	_	2,51	_	2,51	_	2,51	_	2,51	_	2,51	_	2,51	-
	V _{R,k} for t _{N,I}	1,00	3,06	_	3,06	_	3,06	_	3,06	_	3,06	_	3,06	_	3,06	_	3,06	-
	/R,k	1,13	4,36	_	5,24	_	6,59	_	6,59	_	6,59	_	6,59	_	6,59	_	6,59	-
		1,25	4,75	_	5,57	_	7,21	_	7,32	_	7,32	_	7,32	_	7,32	_	7,32	-
		1,50	5,75	_	6,45	_	7,86	_	8,83	_	8,83	_	8,83	_	8,83	_	8,83	-
		1,75	5,75	_	7,58	_	8,78	_	9,97	_	10,3	_	10,3	_	10,3	_	10,3	-
		2,00	5,75	_	8,94	_	9,93	_	10,9	_	11,9	_	11,9	_	11,9	_	11,9	
		0,50	1,50	_	1,50	_	1,50	_	1,50	_	1,50	_	1,50	_	1,50	_	1,50	-
		0,55	1,77	_	1,77	_	1,77	_	1,77	_	1,77	_	1,77	_	1,77	_	1,77	-
		0,63	2,20	_	2,20	_	2,20	_	2,20	_	2,20	_	2,20	_	2,20	_	2,20	-
	Ш	0,75	2,33	_	2,85	_	2,85	_	2,85	_	2,85	_	2,85	_	2,85	_	2,85	-
	<u>*</u>	0,88	2,33	_	3,43	_	3,43	_	3,43	_	3,43	_	3,43	_	3,43	_	3,43	-
	for	1,00	2,33	_	3,97	_	3,97	_	3,97	_	3,97	_	3,97	_	3,97	_	3,97	-
	N _{R.k} for t _{n,i}	1,13	2,33	_	4,20	_	4,92	_	4,92	_	4,92	_	4,92	_	4,92	_	4,92	-
	_	1,25	2,33	_	4,20	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	-
		1,50	2,33	_	4,20	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	-
		1,75	2,33	_	4,20	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	-
		2,00	2,33	_	4,20	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	_	5,80	_

self tapping screw

FSB Ø 8,0Typ BZ

with hexagon head and sealing washer $\geq \emptyset$ 19 mm

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

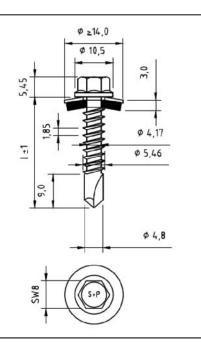
Component II: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	, _{II} =	2,0	00	3,0	00	4,0	00	5,0	00
M _{t,r}	nom =				-	_			
	0,50	0,74	ac	0,74	ac	0,74	ac	0,74	ac
	0,60	0,81	_	0,98	ac	0,98	ac	0,98	ac
۱.,	0,70	0,88	_	1,23	ac	1,23	ac	1,23	ac
] <u>z</u>	0,80	0,95	_	1,47	ac	1,47	ac	1,47	ac
V _{R,k} for t _{N,I} =	0,90	1,08	_	1,72	ac	1,72	ac	1,72	ac
R, F	1,00	1,21	_	1,96	ac	1,96	ac	1,96	ac
^	1,20	1,48	_	1,96	_	1,96	_	1,96	_
	1,50	1,87	_	1,96	_	1,96	_	1,96	_
	2,00	1,87	_	1,96	_	1,96	_	1,96	_
N _{R,II,k} =		1,2	25	1,9	98	3,5	55	3,5	55

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self drilling screw

SP-A2-6-5,5 x L / SP-A4-6-5,5 x L with hexagon head and seal washer $\geq \emptyset$ 14 mm

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

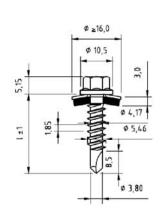
with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 6,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	2,0	00	3,0	00	4,0	00	5,0	00
M _{t,r}	nom =				-	_			
	0,50	0,96	ac	0,96	ac	0,96	ac	0,96	ac
	0,60	1,05	_	1,28	ac	1,28	ac	1,28	ac
۱.,	0,70	1,14	_	1,60	ac	1,60	ac	1,60	ac
V _{R,k} for t _{N,I} =	0,80	1,23	_	1,91	ac	1,91	ac	1,91	ac
وَ	0,90	1,40	_	2,23	ac	2,23	ac	2,23	ac
R, F	1,00	1,57	_	2,55	ac	2,55	ac	2,55	ac
^	1,20	1,92	_	2,55	_	2,55	_	2,55	_
	1,50	2,43	_	2,55	_	2,55	_	2,55	_
	2,00	2,43	_	2,55	_	2,55	_	2,55	_
N _{R,II,k} =		1,6	33	2,5	58	4,6	62	4,6	62


Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self drilling scr	rew
-------------------	-----

SP-A2-6-5,5 x L / SP-A4-6-5,5 x L with hexagon head and seal washer $\geq \emptyset$ 14 mm

Annex 19

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

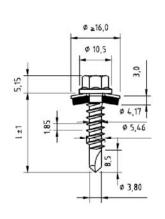
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \leq 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	0,5	50	0,5	55	0,6	33	0,7	75	0,8	38	1,0	00	1,1	13	1,2	25	1,	50
$M_{t,}$	nom =									_	-								
	0,50	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_
	0,60	0,44	_	0,52	_	0,60	_	0,60	_	0,60	_	0,60	_	0,60	_	0,60	_	 	-
II.	0,70	0,44	_	0,52	_	0,65	_	0,76	_	0,76	_	0,76	_	0,76	_	0,76	_	—	-
V _{R,k} for t _{N,I} =	0,80	0,44	_	0,52	_	0,65	_	0,84	_	0,92	_	0,92	_	0,92	_	0,92	_	—	-
o ^x	0,90	0,44	_	0,52	_	0,65	_	0,84	_	1,07	_	1,11	_	1,11	_	_	_	_	-
> >	1,00	0,44	_	0,52	_	0,65	_	0,84	_	1,07	_	1,30	_	_	_	 	_	_	-
	1,20	0,44	_	0,52	_	0,65	_	0,84	_	—	_	—	_	 	_	—	_	—	-
	1,50	0,44	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_]
N _{R,II,k} =	·	0,5	2 ^{a)}	0,6	1 ^{a)}	0,7	6 ^{a)}	0,9	9 ^{a)}	1,2	7 ^{a)}	1,5	5 ^{a)}	1,7	75	1,9	96	1,9	96


Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

If component II is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L with hexagon head and seal washer ≥ Ø 16 mm

(As S

Materials

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S235 - EN 10025-1

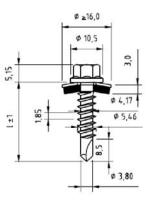
S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	, _{II} =	0,5	50	0,5	55	0,6	33	0,7	75	0,8	38	1,0	00	1,	13	1,2	25	1,5	50
$M_{t,}$	nom =									_	-								
	0,50	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_	0,58	-
	0,60	0,58	_	0,69	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	_	0,79	_	 	-
II_	0,70	0,58	_	0,69	_	0,85	_	0,99	_	0,99	_	0,99	_	0,99	_	0,99	_	 	-
Ę.	0,80	0,58	_	0,69	_	0,85	_	1,10	_	1,20	_	1,20	_	1,20	_	1,20	_	—	-
V _{R,k} for t _{N,I} =	0,90	0,58	_	0,69	_	0,85	_	1,10	_	1,40	_	1,45	_	1,45	_	—	_	—	-
> >	1,00	0,58	_	0,69	_	0,85	_	1,10	_	1,40	_	1,70	_	_	_	—	_	 	-
	1,20	0,58	_	0,69	_	0,85	_	1,10	_	 	_	—	_	—	_	—	_	—	-
	1,50	0,58	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
N _{R,II,k} =		0,5	2 ^{a)}	0,6	1 ^{a)}	0,7	6 ^{a)}	0,9	9 ^{a)}	1,2	7 ^{a)}	1,5	5 ^{a)}	1,7	75	1,9	96	1,9	96


Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

If component II is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw

SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L with hexagon head and seal washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

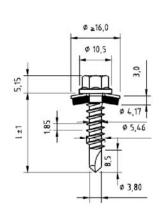
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	t _{N,II} =		0,50		0,60		0,70		0,80		0,90		00	1,2	20	1,5	50
M _{t,r}	nom =								-								
	0,50	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_	0,44	_
	0,60	0,44	_	0,60	_	0,60	_	0,60	_	0,60	_	0,60	_	0,60	_	_	_
ı.	0,70	0,44	_	0,60	_	0,76	_	0,76	_	0,76	_	0,76	_	0,76	_	_	-
V _{R,k} for t _{N,I} =	0,80	0,44	_	0,60	_	0,76	_	0,92	_	0,92	_	0,92	_	0,92	_	_	_
, ₹	0,90	0,44	_	0,60	_	0,76	_	0,92	_	1,11	_	1,11	_	—	_	_	_
>	1,00	0,44	_	0,60	_	0,76		0,92	_	1,11	_	1,30	_	—	_	 	-
	1,20	0,44	_	0,60	_	0,76	_	0,92	_	—	_	—	_	—	_	_	-
	1,50	0,44	_	_	_	_	_	_	_	—	_	—	_	_	_	_	_
II																	
N _{R,II,K} II		0,2	22	0,3	31	0,3	39	0,4	48	0,5	8	0,6	86	0,8	36	0,8	36
Lz																	


Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self	drilling	screw
------	----------	-------

SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L with hexagon head and seal washer ≥ Ø 16 mm

Annex 22

<u>Materials</u>

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

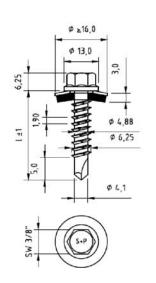
Component II: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity

 $\Sigma t_i \le 2,00 \text{ mm}$

for timber substructures no performance determined


t _N	, _{II} =	0,50		0,60		0,70		0,8	0,80		0,90		00	1,20		1,50	
M _{t,i}	nom =								-	_							
	0,50	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_	0,58	_
	0,60	0,58	_	0,79	_	0,79	_	0,79		0,79	_	0,79	_	0,79	_	—	_
II_	0,70	0,58	_	0,79	_	0,99	_	0,99	_	0,99	_	0,99	_	0,99	_	—	_
r F	0,80	0,58	_	0,79	_	0,99	_	1,20	_	1,20	_	1,20	_	1,20	_	—	_
V _{R,k} for t _{N,I} =	0,90	0,58	_	0,79	_	0,99	_	1,20	_	1,45	_	1,45	_	—	_	—	_
>	1,00	0,58	_	0,79	_	0,99	_	1,20	_	1,45	_	1,70	_	—	_	—	_
	1,20	0,58	_	0,79	_	0,99	_	1,20	_	—	_	—	_	—	_	—	_
	1,50	0,58	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ш																	
N _{R,II,K} =		0,2	29	0,4	10	0,	52	0,6	33	0,7	76	0,8	38	1,1	11	1,1	11
Z																	

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self drilling screw

SP-B2-2H-5,5 x L / SP-B4-2H-5,5 x L with hexagon head and seal washer ≥ Ø 16 mm

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min}$ = 165 N/mm² – EN 573

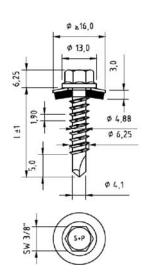
Component II: S235 - EN 10025-1

S280GD, S320GD or S350GD - EN 10346

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _N	t _{N,II} =		50	0,	55	0,6	0,63		75	0,8	38	1,00		1,13		1,3	25	1,5	50	2,0	00
M _{t,}	nom =										_	_									
	0,50	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_
	0,60	0,56	_	0,67	_	0,78	_	0,78	_	0,78	_	0,78	_	0,78	_	0,78	_	0,78	_	—	_
1 11	0,70	0,56	_	0,67	_	0,84	_	0,99	_	0,99	_	0,99	_	0,99	_	0,99	_	0,99	_	—	_
, Z	0,80	0,56	_	0,67	_	0,84	_	1,10	_	1,21	_	1,21	_	1,21	_	1,21	_	1,21	_	l —	_
0.T	0,90	0,56	_	0,67		0,84	_	1,10	_	1,41	_	1,46	_	1,46	_	1,46	_	1,46	_	_	_
V _{R.k} for	1,00	0,56	_	0,67	_	0,84	_	1,10	_	1,41	_	1,70	_	1,70	_	1,70	_	1,70	_	l —	_
^	1,20	0,56	_	0,67		0,84	_	1,10	_	1,41	_	1,70		2,00		2,16	_	l —	_		_
	1,50	0,56	_	0,67		0,84	_	1,10	_	1,41	_	1,70	_	 —	_	_	_	_	_	l —	_
	2,00	0,56	_	—	_	_	_	—	_	—	_	—	_	 —	_	—	_	l —	_	l —	_
N _{R,II,k} =		0,7	1 ^{a)}	0,8	1 ^{a)}	0,9	6 ^{a)}	1,2	0 ^{a)}	1,5	6 ^{a)}	1,9	1 ^{a)}	2,2	25	2,	58	3,′	15	3,	15

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

If component II is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw	
SP-B2-2-6,3 x L / SP-B4-2-6,3 x L with hexagon head and seal washer ≥ Ø 16 mm	Annex 24

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

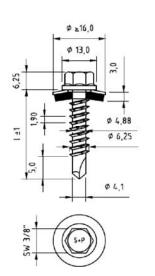
Component II: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \leq 2,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t,	t _{N,II} =		50	0,	55	0,6	0,63		0,75		38	1,00		1,13		1,3	25	1,5	50	2,0	00
M _t	nom =										-	_									
	0,50	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_
	0,60	0,73	_	0,87	_	1,01	_	1,01	_	1,01	_	1,01	_	1,01	_	1,01	_	1,01	_	—	_
	0,70	0,73	_	0,87	_	1,10	_	1,30	_	1,30	_	1,30	_	1,30	_	1,30	_	1,30	_	—	_
, Z	0,80	0,73	_	0,87	_	1,10	_	1,44	_	1,58	_	1,58	_	1,58	_	1,58	_	1,58	_	—	_
V _{R,k} for	0,90	0,73	_	0,87	_	1,10	_	1,44	_	1,84	_	1,90	_	1,90	_	1,90	_	1,90	_	—	_
, x	1,00	0,73	_	0,87	_	1,10	_	1,44	_	1,84	_	2,22	_	2,22	_	2,22	_	2,22	_	—	_
^	1,20	0,73	_	0,87	_	1,10	_	1,44	_	1,84	_	2,22	_	2,61	_	2,82	_	—	_	—	_
	1,50	0,73	_	0,87	_	1,10	_	1,44	_	1,84	_	2,22	_	—	_	—	_	—	_	—	_
	2,00	0,73	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
N _{R,II,k} =		0,7	1 ^{a)}	0,8	1 ^{a)}	0,9	6 ^{a)}	1,2	0 ^{a)}	1,5	6 ^{a)}	1,9	1 ^{a)}	2,2	25	2,	58	3,	15	3,	15

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

If component II is made of S320GD or S350GD, the values marked with ^{a)} may be increased by 8,3%.

self drilling screw	
SP-B2-2-6,3 x L / SP-B4-2-6,3 x L with hexagon head and seal washer ≥ Ø 16 mm	Annex 25

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

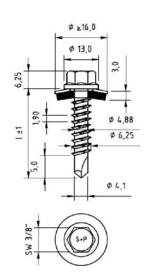
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _N	_{1,11} =	0,5	50	0,6	30	0,7	70	0,8	30	0,9	90	1,0	00	1,2	20	1,5	50	2,00	
M_{t}	nom =									_	-								
	0,50	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	_	0,56	-
	0,60	0,56	_	0,78	_	0,78	_	0,78	_	0,78	_	0,78	_	0,78	_	0,78	_	_	-
п	0,70	0,56	_	0,78	_	0,99	_	0,99	_	0,99	_	0,99	_	0,99	_	0,99	_	—	-
	0,80	0,56	_	0,78	_	0,99	_	1,21	_	1,21	_	1,21	_	1,21	_	1,21	_	—	-
V _{R,k} for t _{N,I}	0,90	0,56	_	0,78	_	0,99	_	1,21	_	1,46	_	1,46	_	1,46	_	1,46	_	—	-
, X,	1,00	0,56	_	0,78	_	0,99	_	1,21	_	1,46	_	1,70	_	1,70	_	1,70	_	_	-
>	1,20	0,56	_	0,78	_	0,99	_	1,21	_	1,46	_	1,70	_	2,16	_	—	_	—	-
	1,50	0,56	_	0,78	_	0,99	_	1,21	_	1,46	_	1,70	_	_	_	—	_	_	_
	2,00	0,56	_	—	_	—	_	—	_	_	_	_	_	_	_	_	_	_	_
N _{R,II,k} =		0,2	29	0,3	39	0,4	19	0,5	59	0,7	71	0,8	33	1,′	11	1,3	38	1,3	38

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self drilling screw	
SP-B2-2-6,3 x L / SP-B4-2-6,3 x L with hexagon head and seal washer ≥ Ø 16 mm	Annex 26

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

Component I: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminium-Alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity $\Sigma t_i \leq 2,50 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _N	_{1,11} =	0,5	50	0,6	30	0,7	70	0,8	30	0,9	90	1,0	00	1,2	20	1,5	50	2,0	00
M_{t}	nom =									_	-								
	0,50	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	_	0,73	-
	0,60	0,73	_	1,01	_	1,01	_	1,01	_	1,01	_	1,01	_	1,01	_	1,01	_	_	-
	0,70	0,73	_	1,01	_	1,30	_	1,30	_	1,30	_	1,30	_	1,30	_	1,30	_	—	-
	0,80	0,73	_	1,01	_	1,30	_	1,58	_	1,58	_	1,58	_	1,58	_	1,58	_	—	-
V _{R,k} for t _{N,I}	0,90	0,73	_	1,01	_	1,30	_	1,58	_	1,90	_	1,90	_	1,90	_	1,90	_	 	_
r, Tx,	1,00	0,73	_	1,01	_	1,30	_	1,58	_	1,90	_	2,22	_	2,22	_	2,22	_	_	_
>	1,20	0,73	_	1,01	_	1,30	_	1,58	_	1,90	_	2,22	_	2,82	_	—	_	_	_
	1,50	0,73	_	1,01	_	1,30	_	1,58	_	1,90	_	2,22	_	_	_	l —	_	_	_
	2,00	0,73	_	—	_	—	_	—	_	_	_	_	_	_	_	_	_	_	_
N _{R,II,k} =		0,3	38	0,5	51	0,6	64	0,7	77	0,9	93	1,0	08	1,4	14	1,8	30	1,8	30

Pull-trough resistance of component I according to EN 1999-1-4, section 8.3.3.1 or specifications of the manufacturer of the aluminium structural sheeting.

self drilling screw	
SP-B2-2-6,3 x L / SP-B4-2-6,3 x L with hexagon head and seal washer ≥ Ø 16 mm	Annex 27

Ø ≥16,0

Ø 5.95

8.5

English translation prepared by DIBt

Electronic copy of the ETA by DIBt: ETA-12/0086

Material

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) - EN 10088

with vulcanized EPDM

Component I: aluminum alloy

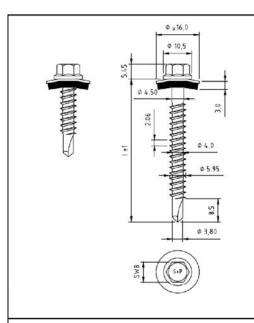
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminum alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity: $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures


Following performance determined

 $M_{y,Rk} = 8,646$ Nm

N/mm² $f_{ax,k} = 13,840$ für l_{ef} ≥ 24 mm

t _{N,II}	[mm] =	0,5	0	0,6	0	0,7	'0	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0		
M	i,nom =								-	_									
	0,50	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	
l _	0,60	0,33	-	0,48	-	0,48	-	0,48	-	0,48	-	0,48	-	0,48	-	0,48	-	0,48	Ę
V _{R k} [kN] for t _{N.} , [mm]	0,70	0,33	-	0,48	-	0,63	-	0,63	-	0,63	-	0,63	-	0,63	-	0,63	-	0,63	component
Ī	0,80	0,33	-	0,48	-	0,63	-	0,78	-	0,78	-	0,78	-	0,78	-	0,78	-	0,78	odu
for	0,90	0,33	-	0,48	-	0,63	-	0,78	-	1,06	-	1,06	-	1,06	-	1,06	-	1,06	
ΙΞ	1,00	0,33	-	0,48	-	0,63	-	0,78	-	1,06	-	1,33	-	1,33	-	1,33	-	1,33	o of
R.	1,20	0,33	-	0,48	-	0,63	-	0,78	-	1,06	-	1,33	-	1,79	-	-	-	1,79	Failure
_	1,50	0,33	-	0,48	-	0,63	-	0,78	-	1,06	-	1,33	-	-	-	-	-	1,79	Fa
	2,00	0,33	-	-	-	-	-	-	-	-	-		-	-	-	-	-	1,79	
N _{R,II,K} [kN]		0,2	2	0,3	4	0,4	7	0,5	9	0,7	'1	0,8	2	1,0)5	1,0	5		

self drilling screw	
SP-B2-2 x L / SP-B4-2-6,0 x L	Annex 28
with hexagon head und sealing washer ≥ Ø 16,0 mm	

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity: $\Sigma t_i \le 2,50 \text{ mm}$

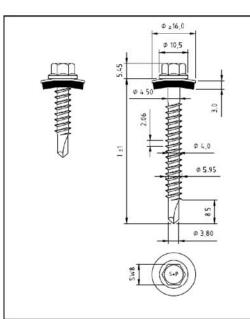
Timber substructures

Following performance determined

 $M_{y,Rk} = 8,646 \text{ Nm}$

 $f_{ax,k} = 13,840 \text{ N/mm}^2 \text{ für } I_{ef} \ge 24 \text{ mm}$

t _{N,I}	[mm] =	0,5	50	0,6	0	0,7	0	0,8	0	0,9	10	1,0	0	1,2	20	1,5	0		
N	/ _{I,nom} =								-	_									
	0,50	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	
	0,60	0,42	-	0,62	-	0,62	-	0,62	-	0,62	-	0,62	-	0,62	-	0,62	-	0,62	- t
] [0,70	0,42	-	0,62	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	ner
<u>-</u>	0,80	0,42	-	0,62	-	0,82	-	1,02	-	1,02	-	1,02	-	1,02	-	1,02	-	1,02	component I
for t	0,90	0,42	-	0,62	-	0,82	-	1,02	-	1,38	-	1,38	-	1,38	-	1,38	-	1,38	cor
V _{R.} [kN] for t _{N.} [mm]	1,00	0,42	-	0,62	-	0,82	-	1,02	-	1,38	-	1,74	-	1,74	-	1,74	-	1,74	Failure of
 	1,20	0,42	-	0,62	-	0,82	-	1,02	-	1,38	-	1,74	-	2,24	-	-	-	2,24	ilure
_	1,50	0,42	-	0,62	-	0,82	-	1,02	-	1,38	-	1,74	-	-	-	-	-	2,24	Fa
	2,00	0,42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2,24	
N _{R,II,k} [kN]		0,2	28	0,4	4	0,6	0	0,7	6	0,9	0	1,0	4	1,3	31	1,3	1	/	


self drilling screw

SP-B2-2 x L / SP-B4-2-6,0 x L

with hexagon head und sealing washer ≥ Ø 16,0 mm

English translation prepared by DIBt

Material

Fastener: stainless steel (1.4301) - EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: aluminum alloy

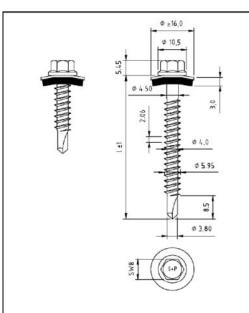
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD, S320GD or S350GD - EN 10346

<u>Drilling capacity:</u> $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

Following performance determined


 $M_{y,Rk} = 8,646$ Nm

 $f_{ax,k} = 13,840 \text{ N/mm}^2 \text{ für } I_{ef} \ge 24 \text{ mm}$

t _{N,II} [I	mm] =	0,5	0	0,5	5	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	:5		$\overline{}$
M _{t,}	nom =								-	_									
	0,50	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	-	0,33	
	0,60	0,33	-	0,41	-	0,41	-	0,41	-	0,41	-	0,41	-	0,41	-	0,41	-	0,41	<u>=</u>
] [0,70	0,33	-	0,41	-	0,53	-	0,53	-	0,53	-	0,53	-	0,53	-	0,53	-	0,53	ner
	0,80	0,33	-	0,41	-	0,53	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	component I
fort	0,90	0,33	-	0,41	-	0,53	-	0,92	-	1,00	-	1,00	-	1,00	-	1,00	-	1,00	
V _{R.k} [kN] for t _{N,I} [mm]	1,00	0,33	-	0,41	-	0,53	-	0,92	-	1,00	-	1,33	-	1,33	-	1,33	-	1,33	Failure of
/R.ĸ[1,20	0,33	-	0,41	-	0,53	-	0,92	-	1,00	-	1,33	-	1,33	-	1,33	-	1,33	ii l
_	1,50	0,33	-	0,41	-	0,53	-	0,92	-	1,00	-	1,33	-	-	-	-	-	1,33	Fa
	2,00	0,33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,33	
NR,II,K [KN]		0,62	2 ^{a)}	0,7	2 ^{a)}	0,88	3 ^{a)}	1,13	3 ^{a)}	1,38	8 ^{a)}	1,63	3 ^{a)}	2,00	D ^{a)}	2,36	ô ^{a)}		

- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

self drilling screw	
SP-B2-2 x L / SP-B4-2-6,0 x L	Annex 30
with hexagon head und sealing washer ≥ Ø 16,0 mm	

Fastener: stainless steel (1.4301) – EN 10088

stainless steel (1.4404) - EN 10088

Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD, S320GD or S350GD - EN 10346

<u>Drilling capacity:</u> $\Sigma t_i \le 2,50 \text{ mm}$

Timber substructures

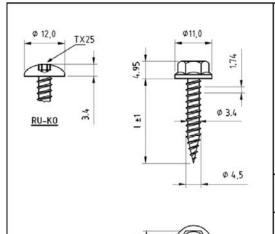
Following performance determined

 $M_{y,Rk} = 8,646$ Nm

 $f_{ax,k} = 13,840 \text{ N/mm}^2 \text{ für } I_{ef} \ge 24 \text{ mm}$

t _{N,II} [[mm] =	0,5	0	0,5	55	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	:5		
M	, _{nom} =								-	_									
	0,50	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	-	0,42	
l _	0,60	0,42	-	0,52	-	0,52	-	0,52	-	0,52	-	0,52	-	0,52	-	0,52	-	0,52	jkei
<u>E</u>	0,70	0,42	-	0,52	-	0,68	-	0,68	-	0,68	-	0,68	-	0,68	-	0,68	-	0,68	ähiç
<u>-</u>	0,80	0,42	-	0,52	-	0,68	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	agfi ii I
lgir 1	0,90	0,42	-	0,52	-	0,68	-	0,92	-	1,31	-	1,31	-	1,31	-	1,31	-	1,31	ıngstraç Bauteil
V _{R k} [kN] für t _{v.!} [mm]	1,00	0,42	-	0,52	-	0,68	-	0,92	-	1,31	-	1,74	-	1,74	-	1,74	-	1,74	Lochleibungstragfähigkeit Bauteil I
/k K	1,20	0,42	-	0,52	-	0,68	-	0,92	-	1,31	-	1,74	-	1,74	-	1,74	-	1,74	Jeik
_	1,50	0,42	-	0,52	-	0,68	-	0,92	-	1,31	-	1,74	-	-	-	-	-	1,74	0-
	2,00	0,42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1,74	_
N _{R.II.K} [kN]		0,6	2 ^{a)}	0,7	2 ^{a)}	0,8	8 ^{a)}	1,1:	3 ^{a)}	1,3	8 ^{a)}	1,63	3 ^{a)}	2,00	O ^{a)}	2,30	6 ^{a)}		

- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD


self drilling screw

SP-B2-2 x L / SP-B4-2-6,0 x L

with hexagon head und sealing washer ≥ Ø 16,0 mm

Annex 31

Fastener: stainless steel (1.4301) – EN 10088
Component I: S280GD or S320GD – EN 10346
Component II: S280GD or S320GD – EN 10346

Drilling capacity:

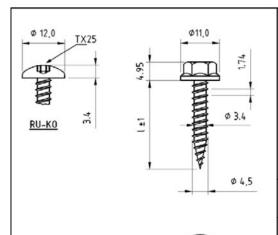
 $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _{N,II} [i	nm] =	0,4	0	0,5	0	0,5	55	0,63	3	0,7	5	0,88	В	1,00)	1,13	3	1,2	5	1,5	0
M _{t,}	nom =											_									
	0,40	0,79	-	0,79	-	0,79	-	0,79	-	0,79	-	0,79	-	0,79	-	0,79	-	0,79	-	0,79	-
ᇹ	0,50	0,79	-	1,11	-	1,11	-	1,11	-	1,11	-	1,11	-	1,11	-	1,11	-	1,11	-	1,11	-
<u>E</u>	0,55	0,79	-	1,11	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	-	-
 Z	0,63	0,79	-	1,11	-	1,41	-	1,91	-	1,91	-	1,91	-	1,91	-	1,91	-	1,91	-	-	-
VR,k [kN] for tN,I [mm]	0,75	0,79	-	1,11	-	1,41	-	1,91	-	2,64	-	2,64	-	2,64	-	2,64	-	2,64	-	-	-
Σ	0,88	0,79	-	1,11	-	1,41	-	1,91	-	2,64	-	3,30	-	3,30	-	-	-	-	-	-	-
ᅑ	1,00	0,79	-	1,11	-	1,41	-	1,91	-	2,64	-	3,30	-	3,90	-	-	-	-	-	-	-
>	1,13	0,79	-	1,11	-	1,41	-	1,91	-	2,64	-	-	-	-	-	-	-	-	-	-	-
	1,25	0,79	-	1,11	-	1,41	-	1,91	-	2,64	-	-	-	-	-	-	-	-	-	-	-
	0,40	0,47 ^{b)}	-	0,69	-	0,78	-	0,78 ^{a)}	-	0,78 ^{a)}	-	0,78 ^{a)}	-	0,78 ^{a)}	-	0,78 ^{a)}	-	0,78 ^{a)}	-	0,78 ^{a)}	-
_	0,50	0,47 b)	-	0,69	-	0,80	-	0,97	-	0,98 ^{a)}	-										
트	0,55	0,47 b)	-	0,69	-	0,80	-	0,97	-	1,10	-	1,11 ^{a)}	-	-	-						
Ę.	0,63	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,32 ^{a)}	-	-	-						
for	0,75	0,47 b)	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 b)	-	1,64	-	1,64	-	1,64	-	-	-
NR,k [kN] for tN,I [mm]	0,88	0,47 b)	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 b)	-	1,64	-	-	-	-	-	-	-
~ 포	1,00	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 b)	-	1,64	-	-	-	-	-	-	-
Ž	1,13	0,47 b)	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	-	-	-	-	-	-	-	-	-	-
	1.25	0,47 b)	-	0.69	-	0.80	-	0.97	-	1,10 b)	-	١.	-	-	-	-	-	-	-	-	-

- The values for VR,k can be increased by 8,3 %, if component I and component II are made of S320GD
- Index a): The indicated values can be increased by 8,3 %, if component I is made of S320GD
- Index b): The indicated values can be increased by 8,3 %, if component II is made of S320GD


thin sheet screw

S+P-B2-4,5 x L

with hexagon head or round head

Annex 32

Fastener: stainless steel (1.4301) – EN 10088

Component I: aluminum alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD or S320GD - EN 10346

Drilling capacity:

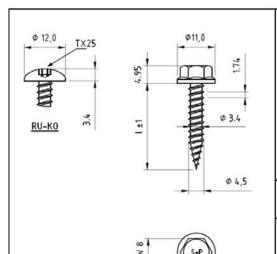
 $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _{N,II} [[mm] =	0,5	0	0,5	5	0,6	3	0,7	5	0,8	8	1,0	0	1,1	3	1,2	5	1,5	0	2,0	10
M _t	,nom =										-	_									
	0,50	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-
=	0,60	0,39	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-
<u> </u>	0,70	0,39	-	0,51	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-
<u>-</u> ,	0,80	0,39	-	0,51	-	0,70	-	0,99	-	0,99	-	0,99	-	0,99	-	0,99	-	0,99	-	0,99	-
for	0,90	0,39	-	0,51	-	0,70	-	0,99	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-
VR,k [kN] for tN,I [mm]	1,00	0,39	-	0,51	-	0,70	-	0,99	-	1,41	-	1,85	-	1,85	-	1,85	-	1,85	-	1,85	-
사 국	1,20	0,39	-	0,51	-	0,70	-	0,99	-	1,41	-	1,85	-	1,85	-	1,85	-	1,85	-	-	-
>	1,50	0,39	-	0,51	-	0,70	-	0,99	-	1,41	-	1,85	-	1,85	-	1,85	-	1,85	-	-	-
	2,00	0,39	-	0,51	-	0,70	-	0,99	-	1,41	-	1,85	-	-	-	-	-	-	-	-	-
NR,II,K [KN]		0,6	9	0,8	0	0,9	7	1,10) ^{a)}	1,44	1 ^{a)}	1,75	; a)	1,75	5 ^{a)}						

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD


thin sheet screw

Annex 33

S+P-B2-4,5 x L

with hexagon head or round head

Fastener: stainless steel (1.4301) – EN 10088

Component I: aluminum alloy

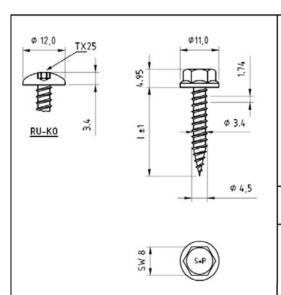
with $R_{m,min}$ = 215 N/mm² – EN 573

Component II: S280GD or S320GD - EN 10346

Drilling capacity:

 $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [mm]=	0,5	0	0,5	55	0,6	3	0,7	5	0,8	88	1,0	0	1,1	3	1,2	25	1,5	0	2,0	10
M _{t,}	nom =										-	_									
	0,50	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-
-	0,60	0,51	-	0,67	-	0,67	-	0,67	-	0,67	-	0,67	-	0,67	-	0,67	-	0,67	-	0,67	-
<u> </u>	0,70	0,51	-	0,67	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-
Z Z	0,80	0,51	-	0,67	-	0,92	-	1,30	-	1,30	-	1,30	-	1,30	-	1,30	-	1,30	-	1,30	-
for	0,90	0,51	-	0,67	-	0,92	-	1,30	-	1,83	-	1,83	-	1,83	-	1,83	-	1,83	-	1,83	-
VR,k [kN] for tN,l [mm]	1,00	0,51	-	0,67	-	0,92	-	1,30	-	1,83	-	2,41	-	2,41	-	2,41	-	2,41	-	2,41	-
X.	1,20	0,51	-	0,67	-	0,92	-	1,30	-	1,83	-	2,41	-	2,41	-	2,41	-	2,41	-	-	-
>	1,50	0,51	-	0,67	-	0,92	-	1,30	-	1,83	-	2,41	-	2,41	-	2,41	-	2,41	-	-	-
	2,00	0,51	-	0,67	-	0,92	-	1,30	-	1,83	-	2,41	-	-	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,6	9	0,8	30	0,9	7	1,10) ^{a)}	1,44	1 ^{a)}	1,75	; a)	1,75	5 ^{a)}						

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

thin sheet screw S+P-B2-4,5 x L with hexagon head or round head

Fastener: stainless steel (1.4301) – EN 10088

Component I: aluminum alloy

with $R_{m,min}$ = 165 N/mm² – EN 573

Component II: aluminum alloy

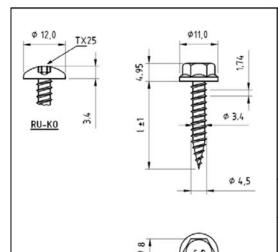
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity:

 $\Sigma t_i \le 3,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _{N,II} [r	nm]=	0,5	0	0,6	0	0,7	0	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0	2,0	0
M _{t,i}	nom =									_	-								
	0,50	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-	0,39	-
=	0,60	0,39	-	0,63	-	0,63	-	0,63	-	0,63	-	0,63	-	0,63	-	0,63	-	0,63	-
<u> </u>	0,70	0,39	-	0,63	-	0,87	-	0,87	-	0,87	-	0,87	-	0,87	-	0,87	-	0,87	-
<u>∓</u>	0,80	0,39	-	0,63	-	0,87	-	1,11	-	1,11	-	1,11	-	1,11	-	1,11	-	1,11	-
VR,k [kN] for tN,I [mm]	0,90	0,39	-	0,63	-	0,87	-	1,11	-	1,48	-	1,48	-	1,48	-	1,48	-	1,48	-
	1,00	0,39	-	0,63	-	0,87	-	1,11	-	1,48	-	1,85	-	1,85	-	1,85	-	1,85	-
국	1,20	0,39	-	0,63	-	0,87	-	1,11	-	1,48	-	1,85	-	2,20	-	2,20	-	-	-
>	1,50	0,39	-	0,63	-	0,87	-	1,11	-	1,48	-	1,85	-	2,20	-	2,20	-	-	-
	2,00	0,39	-	0,63	-	0,87	-	1,11	-	1,48	-	1,85	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,3	0	0,3	9	0,4	9	0,5	8	0,7	'1	0,8	3	1,0	5	1,0	5	1,0	5

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2-4,5 x L	Annex 35
with hexagon head or round head	

English translation prepared by DIBt

Material

Fastener: stainless steel (1.4301) – EN 10088

Component I: aluminum alloy

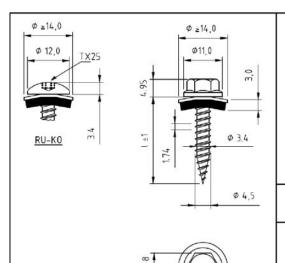
with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity:

 $\Sigma t_i \leq 3,00 \text{ mm}$


Timber substructures

for timber substructures no performance determined

$t_{N, }[mm] = 0,50$			0,6	0	0,70		0,80		0,90		1,00		1,20		1,50		2,00		
M _{t,}	nom =									_	-								
	0,50	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-	0,51	-
=	0,60	0,51	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-
<u> </u>	0,70	0,51	-	0,82	-	1,14	-	1,14	-	1,14	-	1,14	-	1,14	-	1,14	-	1,14	-
VR,k [kN] for tN,I [mm]	0,80	0,51	-	0,82	-	1,14	-	1,45	-	1,45	-	1,45	-	1,45	-	1,45	-	1,45	-
ļ ģ	0,90	0,51	-	0,82	-	1,14	-	1,45	-	1,93	-	1,93	-	1,93	-	1,93	-	1,93	-
<u>Z</u>	1,00	0,51	-	0,82	-	1,14	-	1,45	-	1,93	-	2,41	-	2,41	-	2,41	-	2,41	-
쏪	1,20	0,51	-	0,82	-	1,14	-	1,45	-	1,93	-	2,41	-	2,74	-	2,74	-	-	-
>	1,50	0,51	-	0,82	-	1,14	-	1,45	-	1,93	-	2,41	-	2,74	-	2,74	-	-	-
	2,00	0,51	-	0,82	-	1,14	-	1,45	-	1,93	-	2,41	-	-	-	-	-	-	-
N _{R,II,k} [kN]		0,3	9	0,5	51	0,6	3	0,7	5	0,9	2	1,0	8	1,3	1	1,3	1	1,3	3 1

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2 4,5 x L	Annex 36
with hexagon head or round head	

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: S280GD or S320GD – EN 10346 Component II: S280GD or S320GD – EN 10346

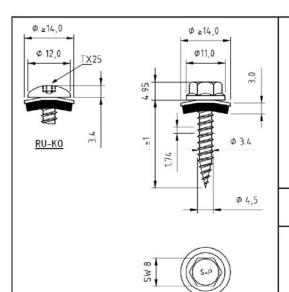
Drilling capacity: $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _{N,II} [r	nm]=	0,4	0	0,5	0	0,5	55	0,6	33	0,7	5	0,88	3	1,0	0	1,1	3	1,2	5	1,5	0
M _{t,r}	om =																				
	0,40	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-
ᇀ	0,50	0,75	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-	1,41	-
<u>Ĕ</u>	0,55	0,75	-	1,41	-	1,65	-	1,65	-	1,65	-	1,65	-	1,65	-	1,65	-	1,65	-	-	-
Z Z	0,63	0,75	-	1,41	-	1,65	-	2,04	-	2,04	-	2,04	-	2,04	-	2,04	-	2,04	-	-	-
for	0,75	0,75	-	1,41	-	1,65	-	2,04	-	2,62	-	2,62	-	2,62	-	2,62	-	2,62	-	-	-
VR,k [kN] for tN,I [mm]	0,88	0,75	-	1,41	-	1,65	-	2,04	-	2,62	-	2,83	-	2,83	-	-	-	-	-	-	-
ν. Υ	1,00	0,75	-	1,41	-	1,65	-	2,04	-	2,62	-	2,83	-	3,02	-	-	-	-	-	-	-
>	1,13	0,75	-	1,41	-	1,65	-	2,04	-	2,62	-	-	-	-	-	-	-	-	-	-	-
	1,25	0,75	-	1,41	-	1,65	-	2,04	-	2,62	-	-	-	-	-	-	-	-	-	-	-
	0,40	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 b)	-	1,44 ^{b)}	-	1,65	-	1,65	-	1,65	-	1,65	-
-	0,50	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 ^{b)}	-	1,75	-	1,75	-	1,75	-	1,75	-
<u> </u>	0,55	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 ^{b)}	-	1,75 ^{b)}	-	1,75 ^{b)}	-	1,75 b)	-	-	-
<u>~</u> ¥	0,63	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 ^{b)}	-	1,75 ^{b)}	-	1,75 ^{b)}	-	1,75 b)	-	-	-
for	0,75	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 ^{b)}	-	1,75 ^{b)}	-	1,75 ^{b)}	-	1,75 b)	-	-	-
NR,k [kN] for tN,! [mm]	0,88	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 ^{b)}	-	1,75 ^{b)}	-	-	-	-	-	_	-
X	1,00	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	1,44 ^{b)}	-	1,75 ^{b)}	-	-	-	-	-	-	-
ž	1,13	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 ^{b)}	-	-	-	-	-	-	-	-	-	_	-
	1,25	0,47 ^{b)}	-	0,69	-	0,80	-	0,97	-	1,10 b)	-	-	-	-	-	-	-	-	-	_	-

- The values for $V_{R,k}$ can be increased by 8,3 %, if component I and component II are made of S320GD
- Index a): The indicated values can be increased by 8,3 %, if component I is made of S320GD
- Index b): The indicated values can be increased by 8,3 %, if component II is made of S320GD


thin sheet screw

S+P-B2 4,5 x L

with hexagon head or round head and sealing washer ≥ Ø 14,0 mm

Annex 37

Electronic copy of the ETA by DIBt: ETA-12/0086

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

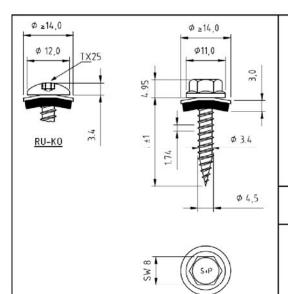
Component I: aluminum alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD or S320GD - EN 10346

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [mm] =	0,5	0	0,5	55	0,6	3	0,7	'5	0,8	88	1,0	0	1,1	3	1,2	:5	1,5	0	2,0	00
M _{t,}	,nom =										-	_									
	0,50	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-
=	0,60	0,57	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-	0,66	-
<u>E</u>	0,70	0,57	-	0,66	-	0,80	-	0,80	-	0,80	-	0,80	-	0,80	-	0,80	-	0,80	-	0,80	-
Z Z	0,80	0,57	-	0,66	-	0,80	-	1,01	-	1,01	-	1,01	-	1,01	-	1,01	-	1,01	-	1,01	-
for	0,90	0,57	-	0,66	-	0,80	-	1,01	-	1,20	-	1,20	-	1,20	-	1,20	-	1,20	-	1,20	-
VR,k [kN] for tN,I [mm]	1,00	0,57	-	0,66	-	0,80	-	1,01	-	1,20	-	1,34	-	1,34	-	1,34	-	1,34	-	1,34	-
사 고	1,20	0,57	-	0,66	-	0,80	-	1,01	-	1,20	-	1,34	-	1,34	-	1,34	-	1,34	-	-	-
>	1,50	0,57	-	0,66	-	0,80	-	1,01	-	1,20	-	1,34	-	1,34	-	1,34	-	1,34	-	-	-
	2,00	0,57	-	0,66	-	0,80	-	1,01	-	1,20	-	1,34	-	-	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,6	9	0,0	30	0,9	7	1,10) ^{a)}	1,44	4 ^{a)}	1,75	5 ^{a)}								

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

thin sheet screw	
S+P-B2 x 4,5 x L	Annex 38
with hexagon head or round head and sealing washer ≥ Ø 14,0 mm	

Electronic copy of the ETA by DIBt: ETA-12/0086

Material

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

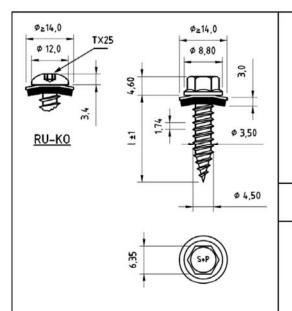
Component I: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD or S320GD - EN 10346

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [i	mm] =	0,5	0	0,5	5	0,6	3	0,7	75	0,8	88	1,0	0	1,1	3	1,2	25	1,5	0	2,0	00
M _{t,i}	nom =										-	-									
	0,50	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-
-	0,60	0,74	-	0,86	-	0,86	-	0,86	-	0,86	-	0,86	-	0,86	-	0,86	-	0,86	-	0,86	-
<u> </u>	0,70	0,74	-	0,86	-	1,04	-	1,04	-	1,04	-	1,04	-	1,04	-	1,04	-	1,04	-	1,04	-
<u>_</u> .	0,80	0,74	-	0,86	-	1,04	-	1,33	-	1,33	-	1,33	-	1,33	-	1,33	-	1,33	-	1,33	-
for	0,90	0,74	-	0,86	-	1,04	-	1,33	-	1,57	-	1,57	-	1,57	-	1,57	-	1,57	-	1,57	-
VR,k [kN] for tN,I [mm]	1,00	0,74	-	0,86	-	1,04	-	1,33	-	1,57	-	1,75	-	1,75	-	1,75	-	1,75	-	1,75	-
보 보	1,20	0,74	-	0,86	-	1,04	-	1,33	-	1,57	-	1,75	-	1,75	-	1,75	-	1,75	-	-	-
>	1,50	0,74	-	0,86	-	1,04	-	1,33	-	1,57	-	1,75	-	1,75	-	1,75	-	1,75	-	-	-
	2,00	0,74	-	0,86	-	1,04	-	1,33	-	1,57	-	1,75	-	-	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,6	9	0,8	0	0,9	7	1,10	o ^{a)}	1,44	4 ^{a)}	1,75	5 ^{a)}								

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

thin sheet screw	
S+P-B2 x 4,5 x L	Annex 39
with hexagon head or round head and sealing washer ≥ Ø 14,0 mm	

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: aluminum alloy

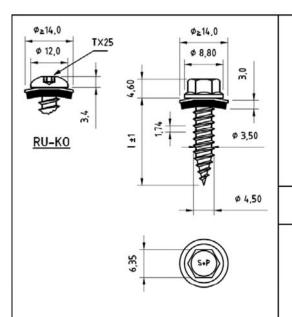
with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminum alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [I	mm] =	0,5	50	0,6	0	0,7	0	0,8	0	0,9	0	1,0	0	1,2	:0	1,5	0	2,0	0
M _{t,}	nom =									_	-								
	0,50	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-	0,57	-
=	0,60	0,57	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-	0,75	-
<u> </u>	0,70	0,57	-	0,75	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-
	0,80	0,57	-	0,75	-	0,92	-	1,10	-	1,10	-	1,10	-	1,10	-	1,10	-	1,10	-
VR,k [kN] for tN,I [mm]	0,90	0,57	-	0,75	-	0,92	-	1,10	-	1,22	-	1,22	-	1,22	-	1,22	-	1,22	-
	1,00	0,57	-	0,75	-	0,92	-	1,10	-	1,22	-	1,34	-	1,34	-	1,34	-	1,34	-
사 국	1,20	0,57	-	0,75	-	0,92	-	1,10	-	1,22	-	1,34	-	2,16	-	2,16	-	-	-
>	1,50	0,57	-	0,75	-	0,92	-	1,10	-	1,22	-	1,34	-	2,16	-	2,16	-	-	-
	2,00	0,57	-	0,75	-	0,92	-	1,10	-	1,22	-	1,34	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,3	0	0,3	19	0,4	.9	0,5	8	0,7	1	0,8	3	1,0	5	1,0	5	1,0	15

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2 x 4,5 x L	Annex 40
with hexagon head or round head and sealing washer ≥ Ø 14,0 mm	

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

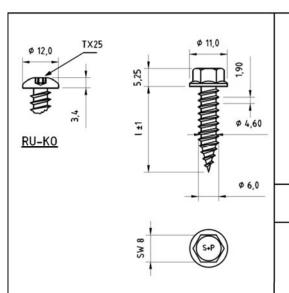
Component I: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$


Timber substructures

for timber substructures no performance determined

t _{N,II} [r	nm] =	0,5	0	0,6	0	0,7	0	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0	2,0	0
$M_{t,r}$	nom =									_	-								
	0,50	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-	0,74	-
-	0,60	0,74	-	0,97	-	0,97	-	0,97	-	0,97	-	0,97	-	0,97	-	0,97	-	0,97	-
<u> </u>	0,70	0,74	-	0,97	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-	1,21	-
Į Ţ	0,80	0,74	-	0,97	-	1,21	-	1,44	-	1,44	-	1,44	-	1,44	-	1,44	-	1,44	-
VR,k [kN] for tN,I [mm]	0,90	0,74	-	0,97	-	1,21	-	1,44	-	1,60	-	1,60	-	1,60	-	1,60	-	1,60	-
	1,00	0,74	-	0,97	-	1,21	-	1,44	-	1,60	-	1,75	-	1,75	-	1,75	-	1,75	-
~ 국	1,20	0,74	-	0,97	-	1,21	-	1,44	-	1,60	-	1,75	-	2,70	-	2,70	-	-	-
>	1,50	0,74	-	0,97	-	1,21	-	1,44	-	1,60	-	1,75	-	2,70	-	2,70	-	-	-
	2,00	0,74	-	0,97	-	1,21	-	1,44	-	1,60	-	1,75	-	-	-	-	-	-	-
N _{R,II,k} [kN]		0,3	19	0,5	51	0,6	3	0,7	'5	0,9	2	1,0	8	1,3	1	1,3	1	1,3	11

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2 x 4,5 x L	Annex 41
with hexagon head or round head and sealing washer ≥ Ø 14,0 mm	

Fastener: stainless steel (1.4301) – EN 10088

Component I: S280GD or S320GD – EN 10346

Component II: S280GD or S320GD – EN 10346

Drilling capacity:

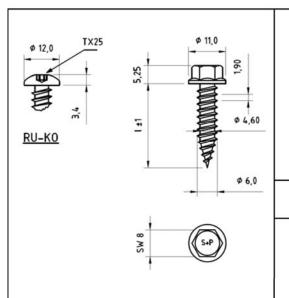
 $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _{N,II}	[mm] =	0,4	<u> </u>	0,5	0	0,5	5	0,63	3	0,7	5	0,88	3	1,0))	1,1	3	1,2	5	1,50	0
	t,nom =											_				•					
	0,40	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-
=	0,50	0,98	-	1,15	-	1,15	-	1,15	-	1,15	-	1,15	-	1,15	-	1,15	-	1,15	-	1,15	-
<u>E</u>	0,55	0,98	-	1,15	-	1,56	-	1,56	-	1,56	-	1,56	-	1,56	-	1,56	-	1,56	-	-	-
¥	0,63	0,98	-	1,15	-	1,56	-	2,21	-	2,21	-	2,21	-	2,21	-	2,21	-	2,21	-	-	-
호	0,75	0,98	-	1,15	-	1,56	-	2,21	-	3,19	-	3,19	-	3,19	-	3,19	-	3,19	-	-	-
N N	0,88	0,98	-	1,15	-	1,56	-	2,21	-	3,19	-	3,19	-	3,19	-	-	-	-	-	-	-
VR,k [kN] for tN,I [mm]	1,00	0,98	-	1,15	-	1,56	-	2,21	-	3,19	-	3,19	-	3,19	-	-	-	-	-	-	-
>	1,13	0,98	-	1,15	-	1,56	-	2,21	-	3,19	-	-	-	-	-	-	-	-	-	-	-
	1,25	0,98	-	1,15	-	1,56	-	2,21	-	3,19	-	-	-	-	-	-	-	-	-	-	-
	0,40	0,53 ^{b)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-	0,69 ^{a)}	-
=	0,50	0,53 ^{b)}	-	0,81	-	0,95	-	1,01 ^{a)}	-	1,01 ^{a)}	-	1,01 ^{a)}	-	1,01 ^{a)}	-						
호	0,55	0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,18 ^{a)}	-	1,18 ^{a)}	-	1,18 ^{a)}	-	1,18 ^{a)}	-	1,18 ^{a)}	-	-	-
₹	0,63	0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,42	-	1,46 ^{a)}	-	1,46 ^{a)}	-	1,46 ^{a)}	-	1,46 ^{a)}	-	-	-
育	0,75	0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,42 ^{b)}	-	1,82	-	1,87 ^{b)}	-	1,87 ^{b)}	-	1,87 ^{b)}	-	-	-
<u>Z</u>		0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,42 ^{b)}	-	1,82 ^{b)}	-	1,87 ^{b)}	-	-	-	-	-	-	-
NR,k [kN] for tN,I [mm]	1,00	0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,42 ^{b)}	-	1,82 ^{b)}	-	1,87 ^{b)}	-	-	-	-	-	-	-
2	1,13	0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,42 ^{b)}	-	-	-	-	-	-	-	-	-	-	-
	1,25	0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,42 ^{b)}	-	-	-	-	-	-	-	-	-	-	-

- The values for $V_{R,k}$ can be increased by 8,3 %, if component I and component II are made of S320GD
- Index a): The indicated values can be increased by 8,3 %, if component I is made of S320GD.
- Index b): The indicated values can be increased by 8,3 %, if component II is made of S320GD.


thin sheet screw

S+P-B2-6,0 x L

with hexagon head or round head

Annex 42

Electronic copy of the ETA by DIBt: ETA-12/0086

Fastener: stainless steel (1.4301) – EN 10088

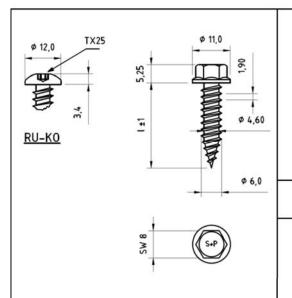
Component I: aluminum alloy

with $R_{m,min}$ = 165 N/mm² – EN 573

Component II: S280GD or S320GD - EN 10346

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [I	nm] =	0,5	0	0,5	5	0,6	3	0,7	'5	0,8	38	1,0	0	1,1	3	1,2	25	1,5	0	2,0	00
M _{t,i}	10m =										-	_									
	0,50	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-
=	0,60	0,70	-	0,84	-	0,84	-	0,84	-	0,84	-	0,84	-	0,84	-	0,84	-	0,84	-	0,84	-
(M, [mm]	0,70	0,70	-	0,84	-	1,06	-	1,06	-	1,06	-	1,06	-	1,06	-	1,06	-	1,06	-	1,06	-
<u>Z</u>	0,80	0,70	-	0,84	-	1,06	-	1,39	-	1,39	-	1,39	-	1,39	-	1,39	-	1,39	-	1,39	-
for	0,90	0,70	-	0,84	-	1,06	-	1,39	-	1,80	-	1,80	-	1,80	-	1,80	-	1,80	-	1,80	-
VR,k [kN] for	1,00	0,70	-	0,84	-	1,06	-	1,39	-	1,80	-	2,20	-	2,20	-	2,20	-	2,20	-	2,20	-
ᄣ	1,20	0,70	-	0,84	-	1,06	-	1,39	-	1,80	-	2,20	-	2,20	-	2,20	-	2,20	-	-	-
>	1,50	0,70	-	0,84	-	1,06	-	1,39	-	1,80	-	2,20		2,20	-	2,20	-	2,20	-	-	-
	2,00	0,70	-	0,84	-	1,06	-	1,39	-	1,80	-	2,20		-	-	-	-	-	-	-	-
N _{R,II,K} [KN]		0,8	1	0,9	5	1,1	8	1,42	2 ^{a)}	1,82	2 ^{a)}	2,18	3 ^{a)}								

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

thin sheet screw S+P-B2-6,0 x L with hexagon head or round head

Fastener: stainless steel (1.4301) – EN 10088

Component I: aluminum alloy

with $R_{m,min}$ = 215 N/mm² – EN 573

Component II: S280GD or S320GD - EN 10346

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

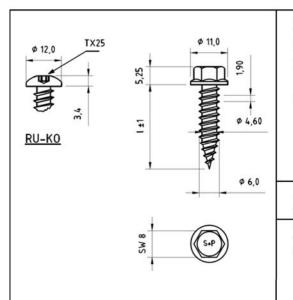
Timber substructures

for timber substructures no performance determined

t _{N,∥} [mm]=	0,5	0	0,5	5	0,6	3	0,7	'5	0,8	88	1,0	0	1,1	3	1,2	:5	1,5	0	2,0	00
Mt	nom =										-	_									
	0,50	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-
	0,60	0,76	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-
l Œ	0,70	0,76	-	0,92	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-
	0,80	0,76	-	0,92	-	1,16	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-
l ä	0,90	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,06	-	2,06	-	2,06	-	2,06	-	2,06	-
V _{R.k} [kN] für t _{N.!} [mm]	1,00	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	2,61	-	2,61	-	2,61	-	2,61	-
W	1,20	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	2,61	-	2,61	-	2,61	-	-	-
_	1,50	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	2,61	-	2,61	-	2,61	-	-	-
	2,00	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	-	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,8	1	0,9	5	1,1	8	1,42	2 ^{a)}	1,82	2 ^{a)}	2,18	3 ^{a)}								

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

thin sheet screw


S+P-B2-6,0 x L

with hexagon head or round head

Annex 44

Z54421.13 8.06

Fastener: stainless steel (1.4301) – EN 10088

Component I: aluminum alloy

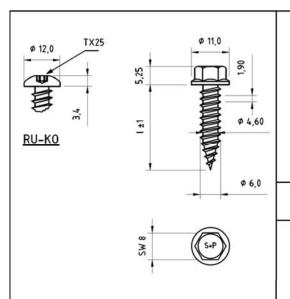
with $R_{m,min}$ = 215 N/mm² – EN 573

Component II: S280GD or S320GD - EN 10346

Drilling capacity:

 $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [I	mm] =	0,5	0	0,6	0	0,7	0	0,8	0	0,9	0	1,0	0	1,2	0	1,5	0	2,0	0
M _{t,i}	nom =									_	-								
	0,50	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-
=	0,60	0,70	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-	0,98	-
<u>E</u>	0,70	0,70	-	0,98	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-	1,25	-
VR,k [kN] for tN,I [mm]	0,80	0,70	-	0,98	-	1,25	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-
φ	0,90	0,70	-	0,98	-	1,25	-	1,53	-	1,87	-	1,87	-	1,87	-	1,87	-	1,87	-
	1,00	0,70	-	0,98	-	1,25	-	1,53	-	1,87	-	2,20	-	2,20	-	2,20	-	2,20	-
꽃	1,20	0,70	-	0,98	-	1,25	-	1,53	-	1,87	-	2,20	-	2,87	-	2,87	-	-	-
>	1,50	0,70	-	0,98	-	1,25	-	1,53	-	1,87	-	2,20	-	2,87	-	2,87	-	-	-
	2,00	0,70	-	0,98	-	1,25	-	1,53	-	1,87	-	2,20	-	-	-	-	-	-	-
N _{R,II,k} [kN]		0,3	6	0,4	7	0,5	9	0,7	0	0,8	4	0,9	8	1,2	4	1,2	4	1,2	24

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2-6,0 x L	Annex 45
with hexagon head or round head	

Fastener: stainless steel (1.4301) – EN 10088

Component I: aluminum alloy

with $R_{m,min}$ = 215 N/mm² – EN 573

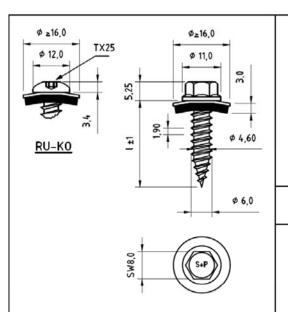
Component II: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity:

 $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [I	mm] =	0,5	0	0,6	0	0,7	'0	0,8	0	0,9	0	1,0	0	1,2	:0	1,5	0	2,0	00
M _{t,}	_{nom} =									_	-								
	0,50	0,91	-	0,91	-	0,91	-	0,91	-	0,91	-	0,91	-	0,91	-	0,91	-	0,91	-
-	0,60	0,91	-	1,27	-	1,27	-	1,27	-	1,27	-	1,27	-	1,27	-	1,27	-	1,27	-
<u> </u>	0,70	0,91	-	1,27	-	1,64	-	1,64	-	1,64	-	1,64	-	1,64	-	1,64	-	1,64	-
Z Z	0,80	0,91	-	1,27	-	1,64	-	2,00	-	2,00	-	2,00	-	2,00	-	2,00	-	2,00	-
for	0,90	0,91	-	1,27	-	1,64	-	2,00	-	2,44	-	2,44	-	2,44	-	2,44	-	2,44	-
VR,k [kN] for tN,I [mm]	1,00	0,91	-	1,27	-	1,64	-	2,00	-	2,44	-	2,87	-	2,87	-	2,87	-	2,87	-
X.	1,20	0,91	-	1,27	-	1,64	-	2,00	-	2,44	-	2,87	-	3,59	-	3,59	-	-	-
>	1,50	0,91	-	1,27	-	1,64	-	2,00	-	2,44	-	2,87	-	3,59	-	3,59	-	-	-
	2,00	0,91	-	1,27	-	1,64	-	2,00	-	2,44	-	2,87	-	-	-	-	-	-	-
N _{R,II,k} [kN]		0,4	7	0,6	52	0,7	'6	0,9	1	1,1	0	1,2	8	1,5	5	1,5	5	1,5	55

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2-6,0 x L	Annex 46
with hexagon head or round head	

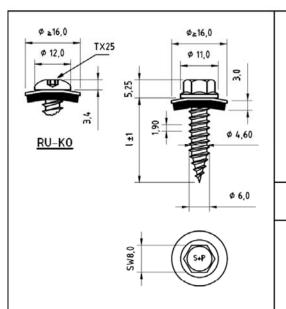
Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: S280GD or S320GD – EN 10346 Component II: S280GD or S320GD – EN 10346

Drilling capacity: $\Sigma t_i \le 2,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

+ 1	mm]=	0,4	0	0,5	0	0,5	5	0,6	3	0,7	5	0,8	ρ.	1.0	n	1,1	3	1,2	5	1,5	0
1	,nom =	0,4		0,0		0,0			,,,	0,7		0,0		1,0		1,1	J	1,2		1,5	
	0,40	0,94	-	0,94	-	0,94	-	0.94		0,94	13-25	0,94	10-00	0.94	- 1	0,94	1-1	0,94	1-11	0.94	
1	0,50	0.94	271741	1,41		1,41		1,41	_	1,41	_	1,41	_	1,41	_	1,41	_	1,41	_	1,41	_
=	0,55	0.94	_	1,41	_	1,75	_	1,75	_	1.75	_	1.75	_	1,75	_	1,75	_	1,75	_	',	_
트	0,63	0.94	_	1,41	_	1,75	_	2,29	_	2,29	_	2,29	_	2,29	_	2,29	_	2,29	_	١.	_
Ę	0,75	0.94	_	1,41	_	1.75	_	2,29	_	3.10	_	3,10	_	3.10	_	3.10	_	3.10	_	١.	_
	0,88	0.94	_	1,41	_	1,75	_	2,29	_	3,10	_	3,10	_	3,10	_] -	_	3,10	_	١.	_
VR,k [kN] for tN,I [mm]	1,00	0.94	_	1,41	_	1,75	_	2,29	_	3.10	_	3,10	_	3,10	_	١.	_	١.	_	١.	_
ξ.	1,13	0.94	_	1,41	_	1,75	_	2,29	_	3.10	_	0,10	_	5,10	_	[_		_		_
^	1,25	0.94	_	1,41	_	1,75	_	2,29	_	3.10	_	_	_		_	[_		_		_
	2.00 *)	0.59		0.85		1,05		1,37		1,79	_	1.79		1,79	_	1,79		1,79		1,79	
		0,53 ^{b)}	-	0,81	-	0,95	-	1,18	-	1,42 b)	-	1,67 ^{a)}	_	1,67 ^{a)}	-	1,67 ^{a)}	-	1,67 ^{a)}	_	1,67 ^{a)}	
l _	0,50	0,53 ^{b)}	_	0,81	_	0.95	_	1.18	-	1,42 b)	_	1.78	_	1,78 b)	-	1,78 ^{b)}	_	1,78 b)	_	1,78 b)	-
E E	0.55	0,53 ^{b)}	_	0.81	_	0.95	_	1,18	-	1,42 b)	_	1,82 b)	_	1,93 ^{b)}	_	1,93 ^{b)}	_	1,93 b)	_	','.'	_
l ž	0.63	0,53 ^{b)}	_	0.81	_	0.95	_	1,18	-	1,42 b)	_	1,82 b)	_	2,18 ^{c)}		2,18 ^{c)}	_	2,18 ^{c)}	_	_	_
fort	0.75	0,53 ^{b)}	_	0,81	_	0.95	_	1,18	-	1,42 b)	_	1,82 b)	_	2,18 ^{b)}		2,18 ^{b)}	_	2,18 b)	_	<u>-</u>	_
NR,k [kN] for tN,I [mm]	0,88	0,53 ^{b)}	_	0,81	_	0,95	_	1,18	-	1,42 b)	_	1,82 b)	_	2,18 b)	_		_		_	_	_
 	1,00	0,53 ^{b)}	_	0,81	_	0,95	-	1,18	-	1,42 b)	_	1,82 b)	-	2,18 b)	_	l <u>-</u>	_	_	_	_	_
<u>E</u>	1,13	0,53 ^{b)}	_	0,81	_	0,95	_	1,18	-	1,42 b)	_		_		_	l <u>-</u>	_	.	_	_	_
	1,25	0,53 ^{b)}	_	0.81	-	0.95	-	1.18	-	1,42 b)	-	_	_	_	_	.	_	_	_	_	_

- The values for V_{R,k} can be increased by 8,3 %, if component I and component II are made of S320GD Index a): The indicated values can be increased by 8,3 %, if component I is made of S320GD
- Index b): The indicated values can be increased by 8,3 %, if component II is made of S320GD Index c): The indicated values can be increased by 8,3 %, if component I and component II are made of S320GD * Component I is predrilled with Ø 7,0 mm

thin sheet screw	
S+P-B2-6,0 x L	Annex 47
with hexagon head or round head and sealing washer ≥ Ø 16,0 mm	

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

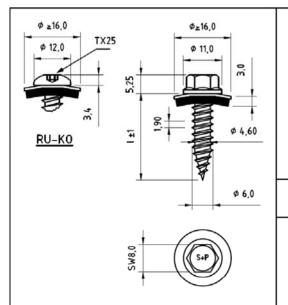
with vulcanized EPDM

Component I: aluminum alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD or S320GD - EN 10346

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$


Timber substructures

for timber substructures no performance determined

t _{N,II} [mm] =	0,5	0	0,5	5	0,6	3	0,7	5	0,8	88	1,0	0	1,1	3	1,2	25	1,5	0	2,0)0
Mt	nom =										-	_									
	0,50	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-
=	0,60	0,58	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-	0,70	-
<u> </u>	0,70	0,58	-	0,70	-	0,89	-	0,89	-	0,89	-	0,89	-	0,89	-	0,89	-	0,89	-	0,89	-
VR,k [kN] for tN,I [mm]	0,80	0,58	-	0,70	-	0,89	-	1,17	-	1,17	-	1,17	-	1,17	-	1,17	-	1,17	-	1,17	-
for	0,90	0,58	-	0,70	-	0,89	-	1,17	-	1,58	-	1,58	-	1,58	-	1,58	-	1,58	-	1,58	-
<u>\sc{2}</u>	1,00	0,58	-	0,70	-	0,89	-	1,17	-	1,58	-	2,01	-	2,01	-	2,01	-	2,01	-	2,01	-
자 녹	1,20	0,58	-	0,70	-	0,89	-	1,17	-	1,58	-	2,01	-	2,01	-	2,01	-	2,01	-	-	-
>	1,50	0,58	-	0,70	-	0,89	-	1,17	-	1,58	-	2,01	-	2,01	-	2,01	-	2,01	-	-	-
	2,00	0,58	-	0,70	-	0,89	-	1,17	-	1,58	-	2,01	-	-	-	-	-	-	-	-	-
NR,II,k [KN]		0,8	1	0,9	5	1,1	8	1,42	a)	1,82	2 ^{a)}	2,18	3 ^{a)}	2,18	3 ^{a)}	2,18	8 ^{a)}	2,18	3 ^{a)}	2,18	3 ^{a)}

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

thin sheet screw	
S+P-B2-6,0 x L	Annex 48
with hexagon head or round head und sealing washer ≥ Ø 16,0 mm	

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

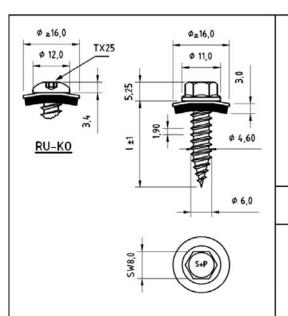
Component I: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: S280GD or S320GD - EN 10346

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures


for timber substructures no performance determined

t _{N,II} [i	mm] =	0,5	0	0,5	5	0,6	3	0,7	7 5	0,8	8	1,0	0	1,1	3	1,2	25	1,5	0	2,0	0
M _{t,}	nom =										-	_									
	0,50	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-
=	0,60	0,76	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-	0,92	-
<u> </u>	0,70	0,76	-	0,92	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-	1,16	-
Ž,	0,80	0,76	-	0,92	-	1,16	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-	1,53	-
for	0,90	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,06	-	2,06	-	2,06	-	2,06	-	2,06	-
VR,k [kN] for tN,l [mm]	1,00	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	2,61	-	2,61	-	2,61	-	2,61	-
요 노	1,20	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	2,61	-	2,61	-	2,61	-	-	-
>	1,50	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	2,61	-	2,61	-	2,61	-	-	-
	2,00	0,76	-	0,92	-	1,16	-	1,53	-	2,06	-	2,61	-	-	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,8	1	0,9	5	1,1	8	1,42	2 ^{a)}	1,82	2 ^{a)}	2,18	3 a)								

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information
- Index a): The indicated values can be increased by 8,3 %, if component II is made of S320GD

thin sheet screw	
S+P-B2-6,0 x L	Annex 49
with hexagon head or round head and sealing washer ≥ Ø 16,0 mm	

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: aluminum alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

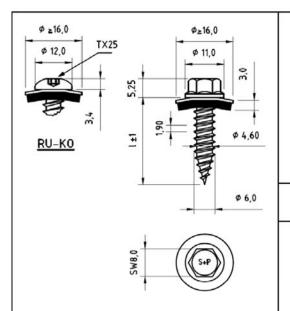
Component II: aluminum alloy

with $R_{m,min} = 165 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined


t _{N,II} [r	t _{N,II} [mm] = 0,50		0	0,60		0,70		0,80		0,90		1,00		1,20		1,50		2,00	
M _{t,r}	nom =									_	-								
	0,50	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-	0,58	-
-	0,60	0,58	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-	0,82	-
VR,k [kN] for tN,I [mm]	0,70	0,58	-	0,82	-	1,05	-	1,05	-	1,05	-	1,05	-	1,05	-	1,05	-	1,05	-
<u>-</u> ,	0,80	0,58	-	0,82	-	1,05	-	1,29	-	1,29	-	1,29	-	1,29	-	1,29	-	1,29	-
fo.	0,90	0,58	-	0,82	-	1,05	-	1,29	-	1,65	-	1,65	-	1,65	-	1,65	-	1,65	-
	1,00	0,58	-	0,82	-	1,05	-	1,29	-	1,65	-	2,01	-	2,01	-	2,01	-	2,01	-
~ 국	1,20	0,58	-	0,82	-	1,05	-	1,29	-	1,65	-	2,01	-	2,85	-	2,85	-	-	-
>	1,50	0,58	-	0,82	-	1,05	-	1,29	-	1,65	-	2,01	-	2,85	-	2,85	-	-	-
	2,00	0,58	-	0,82	-	1,05	-	1,29	-	1,65	-	2,01	-	-	-	-	-	-	-
N _{R,II,k} [kN]		0,3	6	0,4	7 0,59 0,70 0,84		0,98		1,24		1,24		1,24						

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2-6,0 x L	Annex 50
with hexagon head or round head und sealing washer ≥ Ø 16,0 mm	

Electronic copy of the ETA by DIBt: ETA-12/0086

Material

Fastener: stainless steel (1.4301) – EN 10088 Washer: stainless steel (1.4301) – EN 10088

with vulcanized EPDM

Component I: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Component II: aluminum alloy

with $R_{m,min} = 215 \text{ N/mm}^2 - \text{EN } 573$

Drilling capacity: $\Sigma t_i \leq 3,00 \text{ mm}$

Timber substructures

for timber substructures no performance determined

t _{N,II} [r	nm] =	n] = 0,50		0,50 0,60		0,70		0,80		0,90		1,00		1,20		1,50		2,00	
$M_{t,r}$	_{iom} =									_	-								
	0,50	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-	0,76	-
-	0,60	0,76	-	1,07	-	1,07	-	1,07	-	1,07	-	1,07	-	1,07	-	1,07	-	1,07	-
<u>E</u>	0,70	0,76	-	1,07	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	-	1,37	-
Ţ	0,80	0,76	-	1,07	-	1,37	-	1,68	-	1,68	-	1,68	-	1,68	-	1,68	-	1,68	-
VR,k [kN] for tN,I [mm]	0,90	0,76	-	1,07	-	1,37	-	1,68	-	2,15	-	2,15	-	2,15	-	2,15	-	2,15	-
	1,00	0,76	-	1,07	-	1,37	-	1,68	-	2,15	-	2,61	-	2,61	-	2,61	-	2,61	-
~ 국	1,20	0,76	-	1,07	-	1,37	-	1,68	-	2,15	-	2,61	-	3,55	-	3,55	-	-	-
>	1,50	0,76	-	1,07	-	1,37	-	1,68	-	2,15	-	2,61	-	3,55	-	3,55	-	-	-
	2,00	0,76	-	1,07	-	1,37	-	1,68	-	2,15	-	2,61	-	-	-	-	-	-	-
N _{R,II,K} [kN]		0,4	.7	0,6	52	0,7	6	0,9	1	1,1	0	1,2	8	1,5	5	1,5	5	1,5	,5

- Pull-through resistance of component I according to EN 1999-1-4, chapter 8.3.3.1 or manufacturer information

thin sheet screw	
S+P-B2-6,0 x L	Annex 51
with hexagon head or round head und sealing washer ≥ Ø 16,0 mm	