

European Technical Approval ETA-12/0258

Handelsbezeichnung Trade name	fischer Superbond fischer Superbond
Zulassungsinhaber Holder of approval	fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND
Zulassungsgegenstand und Verwendungszweck Generic type and use of construction product	Verbundanker in den Größen M8 bis M30 zur Verankerung im Beton Bonded Anchor of sizes M8 to M30 for use in concrete
Geltungsdauer: vom <i>Validity: from</i> bis <i>to</i>	26 June 2013 8 August 2017
Herstellwerk Manufacturing plant	fischerwerke

English translation prepared by DIBt - Original version in German language

Diese Zulassung umfasst	37 Seiten einschließlich 27 Anhänge
This Approval contains	37 pages including 27 annexes
Diese Zulassung ersetzt	ETA-12/0258 mit Geltungsdauer vom 08.08.2012 bis 08.08.2017
This Approval replaces	ETA-12/0258 with validity from 08.08.2012 to 08.08.2017

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 37 | 26 June 2013

I LEGAL BASES AND GENERAL CONDITIONS

1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:

Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;

Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;

Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶;

Guideline for European technical approval of "Metal anchors for use in concrete - Part 5: Bonded anchors", ETAG 001-05.

- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.
- ¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12
- Official Journal of the European Communities L 220, 30 August 1993, p. 1
- ³ Official Journal of the European Union L 284, 31 October 2003, p. 25
- Bundesgesetzblatt Teil I 1998, p. 812
- ⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 37 | 26 June 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The fischer Superbond is a bonded anchor consisting of a cartridge with injection mortar FIS SB, FIS SB Low Speed or FIS SB High Speed or a mortar capsule fischer RSB and a steel element. The steel elements are either

- fischer anchor rods FIS A in the range of M8 to M30 or
- fischer threaded rod RGM in the range of M8 to M30 or
- fischer internal threaded anchor RG MI in the range of M8 to M20 or
- Reinforcing bar in the range of Ø 8 to Ø 32 or
- fischer rebar anchor FRA in the range of 12 to 24.

In case of the injection system the anchor rod is placed into a drilled hole filled with injection mortar.

The mortar capsule is placed in the hole and the threaded rod or the internal threaded anchor is driven by machine with simultaneous hammering and turning.

The steel elements are anchored via the bond between steel element, injection mortar and concrete.

An illustration of the product and intended use is given in Annexes 1 to 4.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences. Safety in case of fire (Essential Requirement 2) is not covered in this European technical approval. The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at most according to EN 206:2000-12.

The anchor may be installed in cracked or non-cracked concrete.

The capsule system may be used in dry or wet concrete or in flooded holes excepting sea water. The injection system may be used in dry or wet concrete; it must not be installed in flooded holes.

The anchor with steel elements given in Annex 4 may also be used under seismic action for performance category C1 according to Annexes 25 to 27.

The anchor may be used in the following temperature ranges:

Temperature range I: -40 °C to +40 °C	(max short term temperature +40 °C and max long term temperature +24 °C)
Temperature range II: -40 °C to +80 °C	(max short term temperature +80 °C and max long term temperature +50 °C)
Temperature range III: -40 °C to +120 °C	(max short term temperature +120 °C and max long term temperature +72 °C)

Page 4 of 37 | 26 June 2013

Temperature range IV: -40 °C to +150 °C

(max short term temperature +150 °C and max long term temperature +90 °C)

Elements made of zinc plated or hot-dip galvanised steel:

The steel elements made of zinc plated or hot-dip galvanised steel may only be used in structures subject to dry internal conditions.

Elements made of stainless steel A4:

The steel elements made of stainless steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of high corrosion resistant steel C:

The steel elements made of high corrosion resistant steel may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e. g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used).

Elements made of reinforcing bars:

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Reports TR 029 and TR 045 only. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with post-installed reinforcing bars in concrete structures designed in accordance with EN1992-1-1: 2004 are not covered by this European technical approval.

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of product and methods of verification

2.1 Characteristics of product

The anchor corresponds to the drawings and provisions given in the Annexes. The values, dimensions and tolerances of the anchor not indicated in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

The characteristic anchor values for the design of anchorages are given in the Annexes.

The two components of the injection mortar fischer FIS SB, FIS SB High Speed and SB Low Speed are delivered in unmixed condition in side-by side-cartridges of sizes 390 ml, 585 ml, 1100 ml or 1500 ml or in resin capsules RSB according to Annex 1.

7

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 37 | 26 June 2013

Each mortar cartridge and each mortar capsule RSB and each steel element is marked in accordance with the Annexes.

Elements made of reinforcing bars shall comply with the specifications given in Annex 9.

The marking of embedment depth may be done on jobsite.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 5 "Bonded anchors" on the basis of Option 1 and ETAG 001 Annex E "Assessment of Metal Anchors under Seismic Action".

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3 Evaluation and attestation of conformity and CE marking

3.1 System of attestation of conformity

According to the decision 96/582/EG of the European Commission⁸ the system 2(i) (referred to as system 1) of attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed control plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

8

Page 6 of 37 | 26 June 2013

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial / raw / constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan relating to this European technical approval which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks of manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.3. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

3.2.2 Tasks of approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan relating to this European technical approval.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

9

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 7 of 37 | 26 June 2013

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval,
- use category (ETAG 001-1 Option 1, in addition: seismic performance category C1 where applicable),
- size.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the European technical approval and consequently the validity of the CE marking on the basis of the European technical approval and if so whether further assessment or alterations to the European technical approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed in accordance with the EOTA Technical Report TR 029 "Design of bonded anchors"¹⁰ and EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action" under the responsibility of an engineer experienced in anchorages and concrete work.

Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastenings in stand-off installation or with a grout layer under seismic action are not covered by this European technical approval.

The Technical Report TR 029 "Design of Bonded Anchors" is published in English on EOTA website www.eota.eu.

Page 8 of 37 | 26 June 2013

Post-installed reinforcing bars may be used as anchor designed in accordance with the EOTA Technical Report TR 029 and TR 045 only. The basic assumptions for the design according to anchor theory shall be observed. This includes the consideration of tension and shear loads and the corresponding failure modes as well as the assumption that the base material (concrete structural element) remains essentially in the serviceability limit state (either non-cracked or cracked) when the connection is loaded to failure. Such applications are e.g. concrete overlay or shear dowel connections or the connections of a wall predominantly loaded by shear and compression forces with the foundation, where the reinforcing bars act as dowels to take up shear forces. Connections with reinforcing bars in concrete structures designed in accordance with EN 1992-1-1:2004 (e.g. connection of a wall loaded with tension forces in one layer of the reinforcement with the foundation) are not covered by this European technical approval.

Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.

For the fischer internal threaded anchor RG MI fastening screws or threaded rods made of appropriate steel and strength class acc. to Annex 8 shall be specified. The minimum and maximum thread engagement length I_E of the fastening screw or the threaded rod for installation of the fixture shall be met the requirements according to Annex 6, Table 3. The length of the fastening screw or the threaded rod shall be determined depending on thickness of fixture, admissible tolerances, available thread length and minimum and maximum thread engagement length I_E .

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor,
- anchor installation in accordance with the manufacturer's specifications and drawings using the tools indicated in the technical documentation of this European technical approval,
- For use of the injection mortar fischer FIS SB, fischer FIS SB High Speed and fischer FIS SB Low speed commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:
 - material, dimensions and mechanical properties of the metal parts according to the specifications given in Annex 8, Table 7,
 - confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
 - marking of the threaded rod with the envisage embedment depth. This may be done by the manufacturer of the rod or the person on jobsite.
- fischer resin capsules RSB may only be used with corresponding fischer threaded rods RGM,
- reinforcing bars shall comply with specifications given in Annex 9,
- checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- check of concrete being well compacted, e.g. without significant voids,

Page 9 of 37 | 26 June 2013

- marking and keeping the effective anchorage depth,
- edge distance and spacing not less than the specified values without minus tolerances,
- positioning of the drill holes without damaging the reinforcement,
- drill holes for the cartridge injection system must be made by hammer drilling only,
- drill holes for the capsule system by hammer drilling or diamond drilling,
- in case of aborted hole: The hole shall be filled with mortar,
- the cartridge injection system must not be installed in flooded holes,
- cleaning the drill hole and installation in accordance with Annexes 11 to 14,
- if the anchor is proper installed mortar must be visible at the member surface.
- the anchor component installation temperature shall be at least 0 °C when using the injection system FIS SB and -15 °C when using the capsule system RSB,
- during curing of the mortar the temperature of the concrete must not fall below 0°C for the injection mortar FIS SB Low Speed,
- during curing of the mortar the temperature of the concrete must not fall below -15 °C for the injection mortar FIS SB,
- during curing of the mortar the temperature of the concrete must not fall below -20 °C for the injection mortar FIS SB High Speed,
- during curing of the mortar the temperature of the concrete must not fall below -30 °C for the capsule system RSB,
- the curing time until the anchor may be loaded as given in Annex 3, Table 1 has to be observed,
- installation torque moments are not required for functioning of the anchor. However, the torque moments given in the Annexes must not be exceeded.

5 Indications to the manufacturer

5.1 Responsibility of the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to section 1 and 2 including Annexes referred to as well as sections 4.2, 4.3 and 5.2 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:

- diameter of drill bit,
- hole depth,
- diameter of anchor rod,
- minimum effective anchorage depth,
- maximum thickness of the fixture,
- information on the installation procedure, including cleaning of the hole with the cleaning equipments, preferably by means of an illustration,
- temperature of anchor components while installation,
- ambient temperature of the concrete during installation of the anchor,
- admissible processing time (open time) of a cartridge,

Page 10 of 37 | 26 June 2013

- curing time until the anchor may be loaded as a function of the ambient temperature in the concrete during installation,
- installation torque moment,
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.

5.2 Packaging, transport and storage

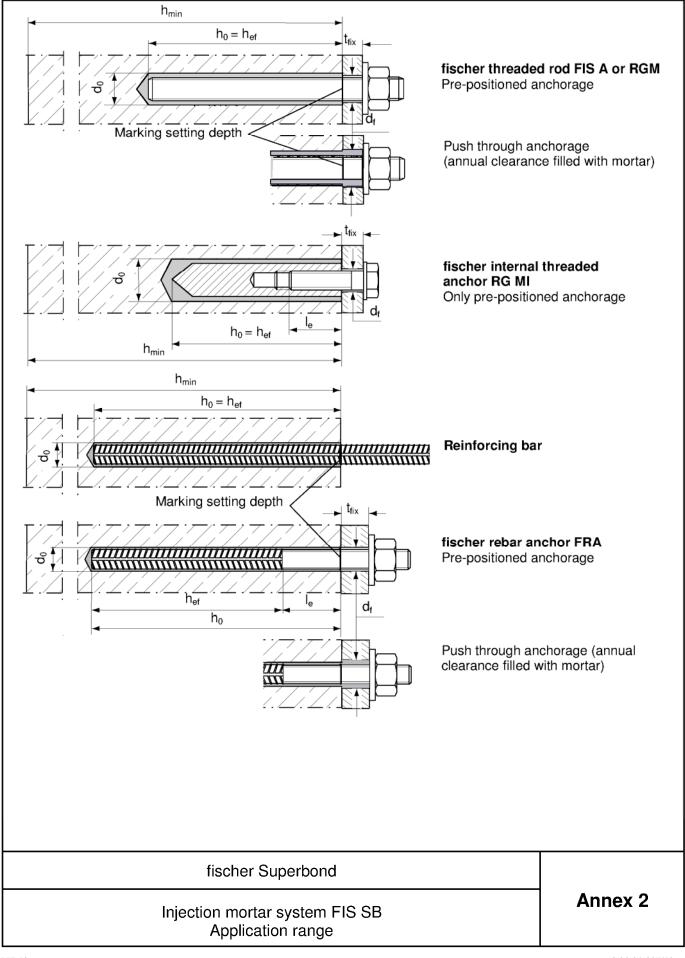
The mortar cartridges and the capsules shall be protected against sun radiation and shall be stored according to the manufacturer instructions in dry condition at temperatures of at least +5 °C to not more than +25 °C (Short time storage up to +35 °C is admissible).

Mortar cartridges and glass capsules with expired shelf life must no longer be used.

The anchor shall only be packaged and supplied as a complete unit. Mortar cartridges and capsules may be packed separately from metal parts.

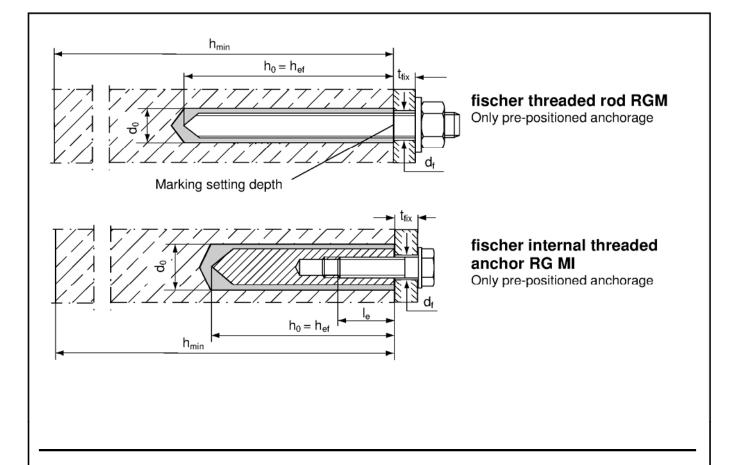
The manufacturer's installation instruction shall indicate that the mortar cartridges and capsules can be used only with the corresponding steel elements.

Uwe Bender Head of Department *beglaubigt:* Lange


Page 11 of European technical approval ETA-12/0258 of 26 June 2013

Injection system FIS SB	Resin capsule s	ystem RSB
Imprint: FIS SB, FIS SB High Speed, FIS SB Low Speed.Processing notes, shelf-life, piston travel scale, curing and processing times (depending on temperature), hazard code Liber Liber Li	Resin capsule RSE	
fischer threaded rod FIS A or RGM Size: M8, M10, M12, M16, M20, M24, M27,M30	fischer threaded rod RGM Size: M8, M10, M12, M16, M	
Washer Hexagon nut fischer internal threaded anchor RG MI Size: M8, M10, M12, M16, M20 Screw	fischer internal threaded a Size: M8, M10, M12, M16, M	
	-	
Reinforcing bar Size: Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø28, Ø32		
fischer rebar anchor FRA Size: 12, 16, 20, 24		
Hexagon Washer nut		
Marking setting depth		
Product		Annex 1

Page 12 of European technical approval ETA-12/0258 of 26 June 2013



Page 13 of European technical approval ETA-12/0258 of 26 June 2013

English translation prepared by DIBt

Table 1: Maximum permissible processing times and minimum curing times
(minimum cartridge temperature 0 ℃; minimum capsule temperature -15 ℃)

Tomporatura in		m processin		Minimum curing time t _{cure} [minutes]				
Temperature in the anchorage bas	e FIS SB Low							
[°0]	Speed	FIS SB	Speed	Speed	FIS SB	Speed	RSB	
-30 to -20			_				120 hours	
>-20 to -15			60			24 hours	48 hours	
>-15 to -10		60	30		36 hours	8 hours	30 hours	
>-10 to -5		30	15		24 hours	3 hours	16 hours	
>-5 to ±0		20	10		8 hours	2 hours	10 hours	
>±0 to +5	30	13	5	17 hours	4 hours	1 hour	45	
>+5 to +10) 15	9	3	8 hours	120	45	30	
>+10 to +20) 12	5	2	4,5 hours	60	30	20	
>+20 to +30) 8	4	1	60	45	15	5	
>+30 to +40) 5	2		60	30		3	

ficebor	Cuparband
nscher	Superbond

Resin capsule system RSB Application range Processing times, curing times FIS SB and RSB

Page 14 of European technical approval ETA-12/0258 of 26 June 2013

English translation prepared by DIBt

Intended use		Injection system FIS SB / High Speed / Low Speed	Resin Capsule system RSB
Installation in cracked or uncracked concrete	Per	mitted for all anchor and sizes	Permitted for RGM and RG MI all sizes
Installation in in dry or wet concrete	Per	mitted for all anchor and sizes	Permitted for RGM and RG MI al sizes
Installation in flooded holes		Not permitted	Permitted for RGM and RG MI al sizes
Installation in diamond drilled holes; uncracked concrete		Not permitted	Permitted for RGM and RG MI al sizes
Installation in diamond drilled holes; cracked concrete		Not permitted	Permitted for RGM and RG MI drill holes \geq 18mm
Design methods			
	St	atic and quasi-static action	
Design according to ETAG 001, TR 029	Per	mitted for all anchor and sizes	Permitted for RGM and RG MI al sizes
Seismic action / P	erfor	mence category C1 – Hammer c	drilled holes only
Design according to ETAG 001, TR 045		mitted for FIS SB with: Threaded rods FIS A all sizes Threaded rods RGM all sizes Reinforcing bars B500B all sizes Commercial standard threaded rods all sizes	Permitted for RGM all sizes
Temperature range			
		max. long term temperature	max. short term temperature
Temperature range I: -40 °C to +40 °	С	+24 ℃	+40°C
Temperature range II: -40 °C to +80 °	с	+50 ℃	+80°C
Temperature range III: -40 ℃ to +120	°℃	+72℃	+120℃
Temperature range IV: -40 ℃ to +150	າດ	+90 °C	+150℃

fischer Superbond

Intended use, design methods and temperature range

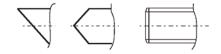
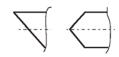
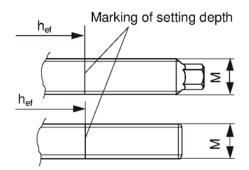


Table 2	: Installation p	parameters fo	or fische	r threa	ded r	ods F	IS A a	nd RG	βM			
Size					M8	M10	M12	M16	M20	M24	M27	M30
	Nominal drill bit diameter		d ₀	[mm]	10	12	14	18	24	28	30	35
	Depth of drill h	ole	h ₀	h_0 [mm] $h_0 = h_{ef}$								
	Effective anchorage		h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Injection mortar	_depth		h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
FIS SB	Diameter of clearance	pre- positioned	≤ d _f	[mm]	9	12	14	18	22	26	30	33
	hole in the fixture ¹⁾	push through	≤ d _f	[mm]	11	14	16	20	26	30	33	40
	Nominal drill bit diameter			[mm]	10	12	14	18	25	28		35
	Depth of drill hole		h ₀	[mm]	$h_0 = h_{ef}$							
	Effective		h _{ef,1}	[mm]		75	75	95				
Resin	anchorage		h _{ef,2}	[mm]	80	90	110	125	170	210		280
capsule	depth		h _{ef,3}	[mm]		150	150	190	210			
RSB	Diameter of clearance hole in the fixture ¹⁾	Only pre- positioned anchorage	≤ d _f	[mm]	9	12	14	18	22	26		33
minimum	spacing and edge distance	$s_{min} = c_{min}$		[mm]	40	45	55	65	85	105	120	140
Minimum concrete		h_{\min}	[mm]	h _{ef} -	+ 30 (≥	100)		ŀ	n _{ef} + 2d	0		
Maximum moment	torque		T _{inst,max}	[Nm]	10	20	40	60	120	150	200	300
Thickness	s of fixture		t _{fix,mim}	[mm]				l	0			
THICKNES			t _{fix,max}	[mm]				30	000			


1) For bigger clearance holes in the fixture see chapter 1.1 of the TR 029


fischer threaded rods rod FIS A and RGM

Alternative point geometry threaded rods FIS A

Alternative point geometry threaded rods RGM

Marking (on random place): Property class 8.8 or high corrosions-resistant steel C, property class 80: • Stainless steel A4, property class 50 and high corrosion-resistant steel C, property class 50: ••

fischer Superbond

fischer threaded rods FIS A und RGM Installation parameters and dimensions

Electronic copy of the ETA by DIBt: ETA-12/0258

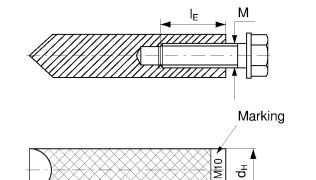


Table 3: Installation parameters for fischer internal threaded anchors RG MI

Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H	[mm]	12	16	18	22	28
Nominal drill bit diameter	d_0	[mm]	14	18	20	24	32
Length of anchor	L _H	[mm]	90	90	125	160	200
Effective anchorage depth h_{ef} and drill hole depth h_0	$h_{\text{ef}} = h_0$	[mm]	90	90	125	160	200
Minimum spacing and minimum edge distance	$\mathbf{S}_{\min} = \mathbf{C}_{\min}$	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	≤ d _f	[mm]	9	12	14	18	22
Minimum thickness of concrete member	h _{min}	[mm]	120	125	165	205	260
Carow in death	I _{E,min}	[mm]	8	10	12	16	20
Screw-in depth –	I _{E,max}	[mm]	18	23	26	35	45
Maximum torque moment	T _{inst.max}	[Nm]	10	20	40	80	120

1) For bigger clearance holes in the fixture see chapter 1.1 of the TR 029

fischer internal threaded anchor RG MI

 L_H

Marking: Anchor size e.g.: M10 Stainless steel additional A4 e.g.: M10 A4 High corrosion-resistant steel additional C e.g.: M10 C

fischer Superbond

Y

fischer internal threaded anchors RG MI Installation parameters and dimensions Annex 6

Z59517.13

Table 4: Allocation Resin capsule RSB to threaded rods RGM

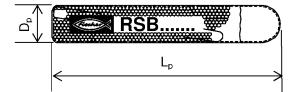

Size			M8	M10	M12	M16	M20	M24	M30
Nominal drill bit diameter	d_0	[mm]	10	12	14	18	25	28	35
Minimum setting depth	h _{ef,1}	[mm]		75	75	95			
Associated resin capsule RSB		[-]		10 mini	12 mini	16 mini			
Medium setting depth	h _{ef, 2}	[mm]	80	90	110	125	170	210	280
Associated resin capsule RSB		[-]	8	10	12	16	20	20 E/24	30
Maximum setting depth	h _{ef, 3}	[mm]		150	150	190	210		
Associated resin capsule RSB		[-]		2x10mini	2x12mini	2x16mini	20 E/24		

Table 5: Allocation resin capsule RSB to internal threaded rods RG MI

Size			M8	M10	M12	M16	M20
Nominal drill bit diameter	d ₀	[mm]	14	18	20	24	32
Setting depth	h _{ef}	[mm]	90	90	125	160	200
Associated resin capsule RSB		[-]	10	12	16	16 E	20 E/24

Table 6: Dimensions of resin capsule RSB

Capsule		[-]	RSB 8	RSB 10 mini	RSB 10	RSB 12 mini	RSB 12	RSB 16 mini	RSB 16	RSB 16 E	RSB 20	RSB 20 E /24	RSB 30
Diameter	Dp	[mm]	9,0	10,5		12	2,5		16,5		23	3,0	27,5
Length	Lp	[mm]	85	72	90	72	97	72	95	123	160	190	260

fischer Superbond

Resin capsule RSB Parameters and allocations

Table 7: Materials: threaded rods, washers, hexagon nuts and screws

		Material	
Designation	Steel, zinc plated	Stainless steel A4	High corrosion- resistant steel C
Threaded rod	Property class 5.8 or 8.8; EN ISO 20898-1 zinc plated ≥ 5μm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50, 70 or 80 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088 or 1.4062 pr EN 10088:2011	Property class 50 or 80 EN ISO 3506 or property class 70 with f _{yk} =560 N/mm ² 1.4529; 1.4565 EN 10088
Washer EN ISO 7089	Zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	1.4529; 1.4565 EN 10088
Hexagon nut EN 24032	Property class 5 or 8; EN ISO 20898-2 zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 50 oder 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Property class 50, 70 or 80 EN ISO 3506 1.4529; 1.4565 EN 10088
Screw or threaded rod for internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 20898-1 zinc plated ≥ 5µm, EN ISO 4042 A2K or hot-dip galvanised EN ISO 10684	Property class 70 EN ISO 3506 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362 EN 10088	Property class 70 EN ISO 3506 1.4529; 1.4565 EN 10088

fischer Superbond

Materials

Nominal drill bit diameter d_0 [mm](10)12(12)14(14)161820253035Drill hole depth h_0 mm h_0 h_{ef} h_0 h_{ef} h_0 h_{ef} h_0 h_{ef} Effective $h_{ef,max}$ mm 606070758090100112anchorage depth $h_{ef,max}$ mm 160200240280320400500560Minimum spacing and $s_{min} =$ (mm) 404555606585110130Minimum edge distance C_{min} (mm) h_{ef} + 30 h_{ef} + 2d_0 h_{ef} + 2d_0 h_{ef} + 2d_0** <t< th=""><th>Nominal bar size</th><th>Ød</th><th>[mm]</th><th>8¹⁾</th><th>10¹⁾</th><th>12</th><th>1)</th><th>14</th><th>16</th><th>20</th><th>25</th><th>28</th><th>32</th></t<>	Nominal bar size	Ød	[mm]	8 ¹⁾	10 ¹⁾	12	1)	14	16	20	25	28	32
Drill hole depth h_0 [mm] $h_0 = h_{ef}$ Effective $h_{ef,min}$ [mm] 60 60 70 75 80 90 100 112 anchorage depth $h_{ef,max}$ [mm] 160 200 240 280 320 400 500 560 Minimum spacing and smin = [mm] 40 45 55 60 65 85 110 130 Minimum edge distance c_{min} [mm] 40 45 55 60 65 85 110 130 Minimum thickness of concrete member h_{min} [mm] $h_{ef} + 30$ $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ '' Both drill bit diameter can be used Heinforcing bar $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ Marking setting depth Marking setting depth $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ Properties of reinforcement: refer to EN 1992-1-1 Annex C, Table C.1 and C.2N $h_{ef} - 2d_0$ $h_{ef} - 2d_0$ Marking setting depth Non-zinc-plated bars and de-coiled rod $h_{ef} - 2d_0$ $h_{ef} - 2d_0$ Output $h_{ef} - 2d_0$ $h_{ef} - 2d_0$ $h_{ef} - 2d_0$ $h_{ef} - 2d_0$		d ₀	[mm]	(10)12	(12)14	(14)	16	18	20	25	30	35	40
Effective $h_{ef,min}$ [mm] 60 60 70 75 80 90 100 112 anchorage depth $h_{ef,max}$ [mm] 160 200 240 280 320 400 500 560 Minimum spacing and minimum edge distance G_{min} [mm] 40 45 55 60 65 85 110 130 Minimum thickness of concrete member h_{min} [mm] $h_{ef} + 30$ $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ ***********************************		b	[mm]					 bb					
anchorage depth $h_{ef.max}$ [mm] 160 200 240 280 320 400 500 560 Minimum spacing and smin = minimum edge distance G_{min} [mm] 40 45 55 60 65 85 110 130 Minimum thickness of concrete member h_{min} [mm] $h_{ef} + 30$ $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ ***********************************		÷		60	60	70				00	100	110	128
Minimum spacing and minimum edge distance $s_{min} = [mm]$ 40 45 55 60 65 85 110 130 Minimum thickness of concrete member h_{min} $[mm]$ $h_{ef} + 30$ $h_{ef} + 2d_0$ $h_{ef} + 2d_0$ *** *** *** *** *** $h_{ef} + 2d_0$ *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***													640
minimum edge distance c_{min} (min) 40 43 55 60 65 85 110 130 Minimum thickness of concrete member h_{min} $[mm]$ ≥ 100 $h_{ef} + 2d_0$ ************************************			[]	100	200	24	0	200	320	400	500	500	040
Minimum thickness of concrete member h_{min} [mm] $h_{ef} + 30$ $h_{ef} + 2d_0$ 1) Both drill bit diameter can be used Image: Concrete member Image: Concrete member Image: Concrete member Reinforcing bar Image: Concrete member Image: Concrete member Marking setting depth Non-zinc-plated bars and de-coiled rod Class C C Characteristic yield strength Must be compared bars and de-coiled rod Minimum value of $k = (f, f_{1,1})$			[mm]	m] 40 45 55 60 65 85				110	130	160			
Reinforcing bar Image: constraint of the second	Minimum thickness of concrete member	h _{min}							ł	ז _{ef} + 20	d ₀		
ClassBCCharacteristic yield strength f_{yk} oder $f_{0.2k}$ [MPa]400 to 600Minimum value of $k = (f_1/f_1)$ ≥ 1.08 ≥ 1.15	Marking setting depth												
Characteristic yield strength f_{yk} oder $f_{0.2k}$ [MPa]400 to 600Minimum value of k = (f_v/f_v)> 1.08 $\geq 1,15$						Non-z	inc-r	lated	bars a	nd de	-coiled	hrod	
$Minimum value of k - (f_{v}/f_{v}) \ge 1.08 \ge 1,15$						11011 2		latoa	<u></u>			1100	_
$ M \ n \ m \ m \ n \ n \ n \ n \ n \ n \ n$	Class												
	Class	ıgth	f _{vk}	oder f _{0,2k}	[MPa]					00	С		
Characteristic strain at maximum force ε_{ijk} [%] ≥ 5.0 ≥ 7.5	Class Characteristic yield stren		f _{vk}	oder f _{0,2k}	[MPa]		В	40)0 2	C ≥ 1,15		

			,==
Characteristic strain at maximu	m force ε _{uk} [%]	≥ 5,0	≥ 7,5
Bentability		Bend / Re	bend test
Maximum deviation	Nominal bar size [mm]		
from nominal mass	≤ 8	± 6	5,0
(individual bar) [%]	> 8	± 4	l,5
Bond: Minimum relative rib	Nominal bar size [mm]		
area, f _{R,min}	8 to 12	0,0	40
(determination to EN 15630)	> 12	0,0	56

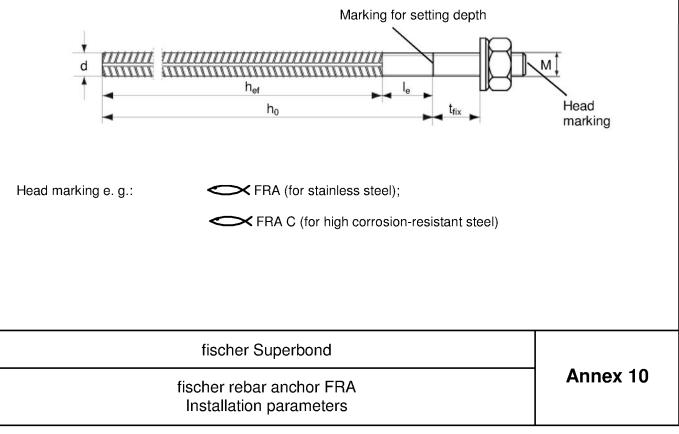
Rib height h:

The rib height must be $0.05 \bullet d \le h \le 0.07 \bullet d$

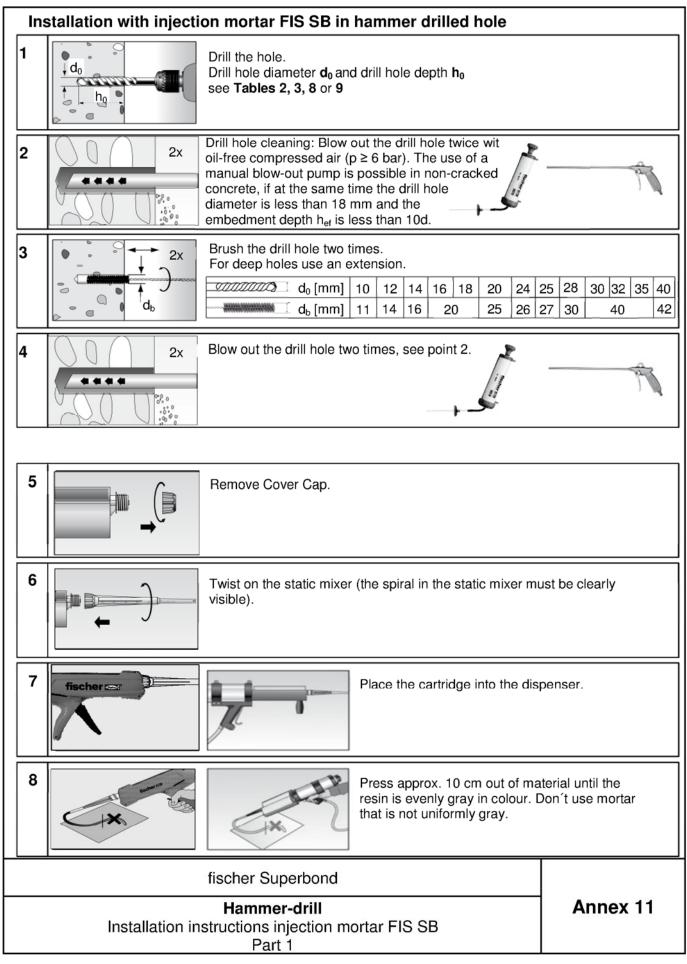
d = Nominal bar size

fischer Superbond

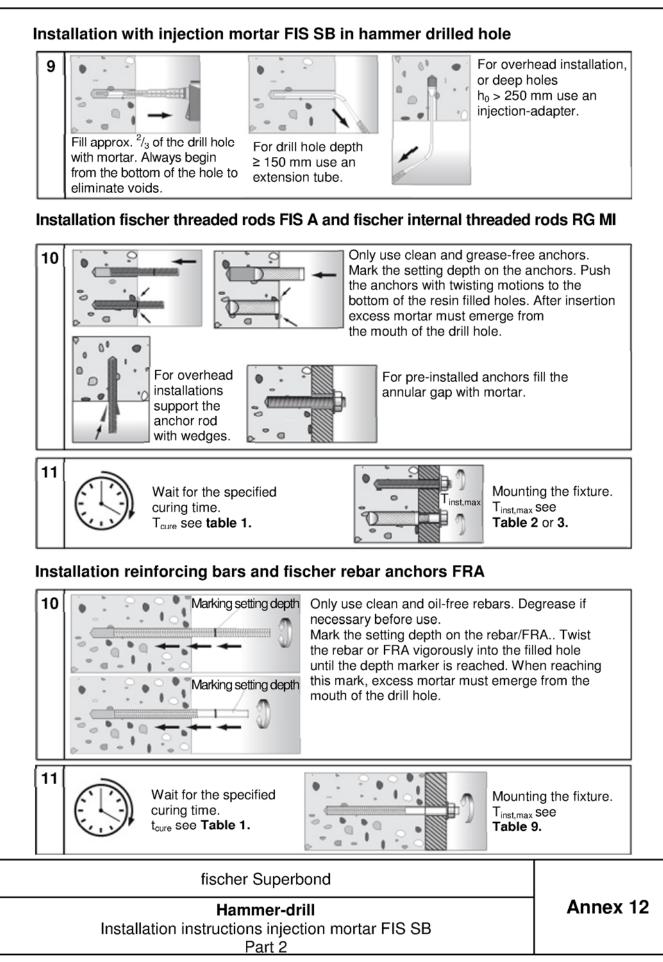
Reinforcing bars Installation parameters Materials

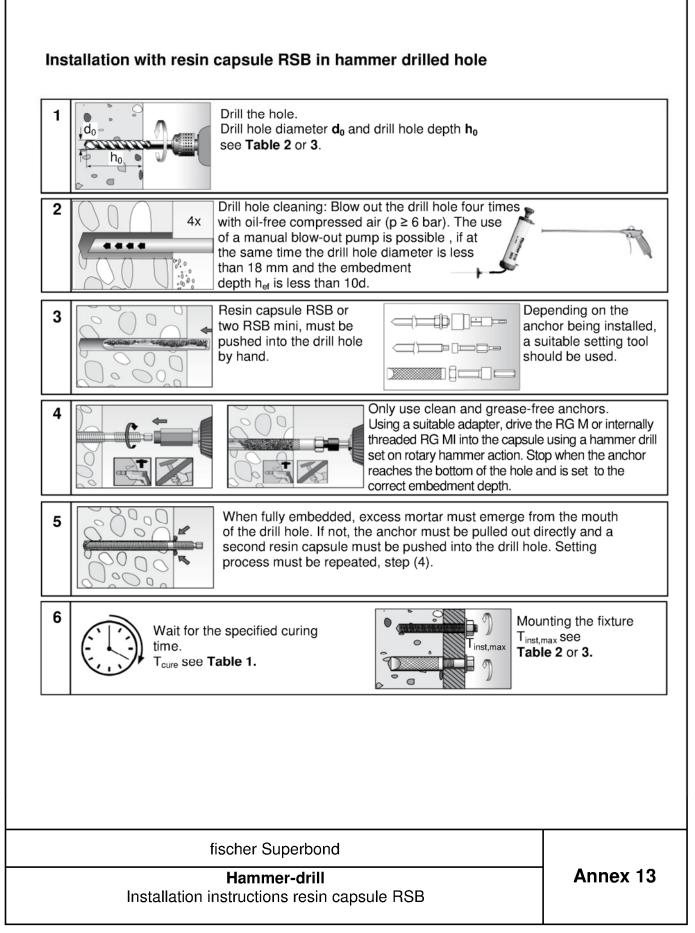

Table 9: Installation parameters fischer rebar anchor FRA

Threaded diameter			M12	1)	M16	M20	M24	
Nominal bar size	d	[mm]	12		16	20	25	
Nominal drill bit diameter	d ₀	[mm]	(14) 16		20	25	30	
Depth of drill hole $(h_0 = I_{ges})$	h _o	[mm]			h _{ef} + l _e			
Effective encharge depth	h _{ef,min}	[mm]	70		80	90	96	
Effective anchorage depth —	h _{ef,max}	[mm]	140)	220	300	380	
Distance concrete surface to welded join	ا _e	[mm]			1(00		
Minimum spacing and minimum edge distance	S _{min} =C _{min}	[mm]	55		65	85	105	
Diameter of clearance hole	Pre-positioned ≤ d _f	[mm]	14		18	22	26	
in the fixture ²⁾	Push through ≤ d _f	[mm]	18		22	26	32	
Minimum thickness of concrete member		[mm]	h _{ef} +30 ≥ 100			$h_{ef} + 2d_0$		
Maximum torque moment	T _{ins,max}	[Nm]	40		60	120	150	
Thickness of the fixture —	minimum t _{fix}	[mm])		
mickness of the lixture —	maximum t _{fix}	[mm]		3000				


¹⁾Both drill bit diameter can be used

²⁾ For bigger clearance holes in the fixture see chapter 1.1 of the TR 029


fischer rebar anchor FRA



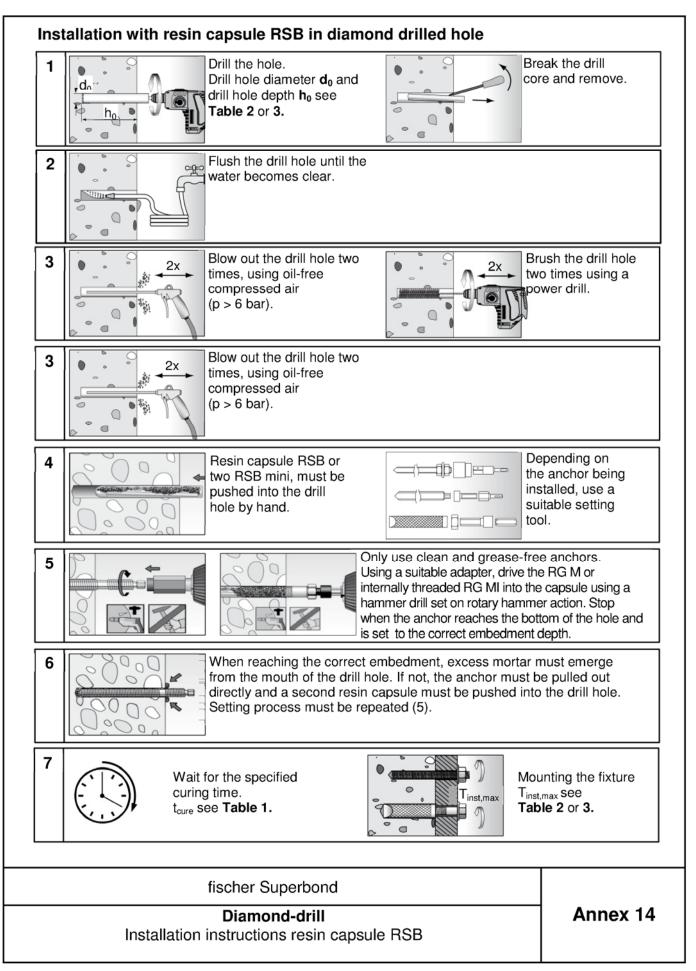


Table 10: Characteristic values to tension load of fischer threaded rods FIS A and RGM with mortar FIS SB or capsule RSB in hammer drilled hole Size M8 M10 M12 M16 M20 M24 M27⁷⁾ M30 Steel failure Property 5.8 [kN] 19 29 43 79 123 177 230 281 class esistance N_{Rks} Characteristic 8.8 [kN] 30 126 47 68 196 282 368 449 50 [kN] 19 29 43 79 123 177 230 281 Stainless Property steels A4 70 [kN] 26 41 59 110 172 247 322 393 and steel C class 80 [kN] 30 47 68 126 196 282 368 449 5.8 Property [-] 1,50 Partial safety factor class 8.8 [-] 1,50 ΥMs,N 50 [-] 2,86 Stainless steels A4 Property 70 [-] 1,50²⁾ / 1,87 and steel C class 80 [-] 1.60 Combined pullout and concrete cone failure Diameter of calculation 10 12 16 20 24 27 30 d [mm] 8 Characteristic bond resistance in non-cracked concrete C20/25 Temperature range I³⁾ 13 13 $[N/mm^2]$ 12 13 13 12 10 10 $\tau_{Rk.ucr}$ Temperature range II³⁾ 10 $[N/mm^2]$ 12 12 12 13 13 12 10 $\tau_{\mathsf{Rk},\mathsf{ucr}}$ Temperature range III³⁾ 10 [N/mm²]11 11 11 11 11 9 9 $\tau_{\mathsf{Rk},\mathsf{ucr}}$ Temperature range IV³⁾ [N/mm²] 10 10 10 11 10 10 8 8 $\tau_{\text{Rk,ucr}}$ Characteristic bond resistance in cracked concrete C20/25 Temperature range I³⁾ 7,5 7,5 $[N/mm^2]$ 6,5 7,0 7,5 7,5 7,5 7,5 $\tau_{\mathsf{Rk,cr}}$ Temperature range II³⁾ [N/mm²]6,0 6,5 7,5 7,5 7,5 7,5 7,0 7,0 $\tau_{\text{Rk,cr}}$ Temperature range III³⁾ [N/mm²]5,5 6,0 6,5 6,5 6,5 6,5 6,0 6,0 $\tau_{Rk,cr}$ Temperature range IV³⁾ $[N/mm^2]$ 5,0 5,5 6,0 6,0 6,0 6,0 5,5 5,5 $\tau_{\text{Rk,cr}}$ C25/30 1,02 [-] C30/37 1.04 [-] Increasing C35/45 [-] 1,07 factor Ψ_{c} C40/50 1,08 [-] for τ_{Bk} C45/55 [-] 1,09 C50/60 [-] 1,10 Splitting failure h / h_{ef} ≥ 2,0 1,0 h_{ef} Edge distance $2,0 > h / h_{ef} > 1,3$ 4,6 h_{ef} – 1,8 h c_{cr,sp} [mm] h / h_{ef} ≤ 1,3 2,26 h_{ef} s_{cr,sp} [mm] Spacing 2c_{cr,sp} 1,5⁴⁾ Partial safety factor¹⁾ dry and wet 1,54) flooded hole⁶⁾ 1.8⁵⁾ $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-] ¹⁾In absence of other national regulations ⁷⁾ Only FIS SB ²⁾ For steel C: $f_{uk} = 700 \text{ N/mm}^2$; $f_{yk} = 560 \text{ N/mm}^2$ ³⁾See annex 4 ⁴⁾The partial safety factor $\gamma_2 = 1.0$ is included ⁵⁾The partial safety factor $\gamma_2 = 1,2$ is included ⁶⁾Only RSB

fischer Superbond

Hammer-drill fischer threaded rods FIS A and RGM Characteristic values and tension load

Size					M8	M10	M12	M16	M20	M24	M27 ⁴⁾	M30
Steel	failure with	out lever a	ırm									
		Property	5.8	[kN]	9	15	21	39	61	89	115	141
ristio K		class	8.8	[kN]	15	23	34	63	98	141	184	225
acte	Stainless Stainless Steels A4 Present failure with level C Stainless Stainless Stainless Stainless Stainless Present Pr		50	[kN]	9	15	21	39	61	89	115	141
Characteristic esistance V _{Rks}	steels A4	Property class	70	[kN]	13	20	30	55	86	124	161	197
0 2	and sleer C	Clabb	80	[kN]	15	23	34	63	98	141	184	225
Steel	failure with	lever arm										
두 紫		Property	5.8	[Nm]	19	37	65	166	324	560	833	1123
i₹Be	Class To Stainless Property	class	8.8	[Nm]	30	60	105	266	519	896	1333	1797
ta fainless by Stainless treels A4		50	[Nm]	19	37	65	166	324	560	833	1123	
hara 10 m	5 Stainless F steels A4 F and steel C	teels A4 Froperty	70	[Nm]	26	52	92	232	454	784	1167	1573
			80	[Nm]	30	60	105	266	519	896	1333	1797
Partia	al safety fac											
		Property	5.8	_[-]				,	25			
1)		class	8.8	[-]				, , ,	25			
(Ms,v ¹⁾		Property	50	[-]					38			
	and steel C	class	70 80	[-]					'/ 1,56 33			
°onc		failuro	00	[-]				Ι,	33			
								2	00			
			k	[-]				_ ,	00			
			γ _{Map} ¹⁾	[-]				1,	5 ³⁾			
Conc	rete edge fa	ilure			See Technical Report TR 029, Section 5.2.3.4							
Partial safety factor $\gamma_{Mc}^{(1)}$ [-]												

Table 12: Displacements to tension load

Size		M8	M10	M12	M16	M20	M24	M27	M30	
Non-cracked and	I cracked concrete; te	emperatu	ure range	e I, II, III,	IV					
Displacement	δ _{N0} [mm/(N/mm²)]	0,07	0,08	0,09	0,10	0,11	0,12	0,13	0,13	
Displacement	$\delta_{N^{\infty}}$ [mm/(N/mm ²)]	0,13	0,14	0,15	0,17	0,17	0,18	0,19	0,19	
Calculation of characteristic displacement with $\delta v = (\delta v_0 + \tau_0)/14$										

Calculation of characteristic displacement with δ_{N} = $(\delta_{N0}$ \bullet $\tau_{Sd})$ / 1,4

Table 13: Displacements to shear load

Size		M8	M10	M12	M16	M20	M24	M27	M30	
Displacement	δ _{v0} [mm/kN]	0,18	0,15	0,12	0,09	0,07	0,06	0,05	0,05	
Displacement	δ _{v∞} [mm/kN]	0,27	0,22	0,18	0,14	0,11	0,09	0,08	0,07	
Calculation of obstratoristic displacement with $\delta = (\delta - \delta V_{\perp})/(1.4)$										

Calculation of characteristic displacement with $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer Superbond

Hammer and diamond-drill fischer threaded rods FIS A and RGM Characteristic values to shear load and displacements

Table 14: Characteristic values to tension load of fischer internal threaded anchors RG MI with mortar FIS SB or capsule RSB in hammer drilled hole Size M 8 M 10 M 12 M 16 M 20 Steel failure Property 5.8 [kN] 19 29 43 79 123 Characteristic [kN] 29 47 68 108 179 class 8.8 resistance with N_{Rk.s} 41 172 Property A4 [kN] 26 59 110 screw class 70 С [kN] 26 41 59 110 172 5.8 1,50 Property [-] class 8.8 [-] 1,50 Partial safety γ Ms, N $^{1)}$ Property 1,87 factor A4 [-] 1,87 class 70 С [-] Combined pullout and concrete cone failure Diameter of calculation d_H [mm] 12 16 18 22 28 Characteristic bond resistance in non-cracked concrete C20/25 Temperature range $I^{(2)}$ (40 °C/24 °C) Temperature range $II^{(2)}$ (80 °C/50 °C) 12 9,5 $[N/mm^2]$ 12 11 11 $\tau_{Rk.ucr}$ 11 12 10 [N/mm^{2·} 11 9,0 $\tau_{\mathsf{Rk},\mathsf{ucr}}$ Temperature range III²⁾ (120 °C/72 °C) $[N/mm^2]$ 11 10 10 9 8 $\tau_{\mathsf{Rk},\mathsf{ucr}}$ 10 Temperature range IV²⁾ (150 $^{\circ}$ C/90 $^{\circ}$ C) 9,5 9 8,5 7,5 $[N/mm^2]$ $\tau_{\rm Rk,ucr}$ Characteristic values in cracked concrete C20/25 Temperature range I²⁾ (40 °C/24 °C) Temperature range II²⁾ (80 °C/50 °C) $[N/mm^2]$ 5,0 $\tau_{\rm Rk,cr}$ $[N/mm^2]$ 5,0 $\tau_{\mathsf{Rk.cr}}$ Temperature range III²⁾ (120°C/72°C) $[N/mm^2]$ 4.5 $\tau_{Rk,cr}$ Temperature range IV²⁾ (150°C/90°C) $[N/mm^2]$ 4,0 $\tau_{\text{Rk,cr}}$ C25/30 1,02 [-] C30/37 [-] 1,04 C35/45 1,07 Increasing factors [-] Ψ_{c} C40/50 1,08 for τ_{Rk} [-] C45/55 1,09 [-] C50/60 [-] 1,10 Splitting failure h / h_{ef}≥ 2,0 1,0 h_{ef} c_{cr,sp} [mm] 4,6 h_{ef} – 1,8 h Edge distance $2,0 > h / h_{ef} > 1,3$ h / h_{ef}≤ 1,3 2,26 h_{ef} 2c_{cr,sc} Spacing [mm] S_{cr,sp} Partial safety factor dry and wet 1.5^{3} flooded hole⁵⁾ 1,8⁴⁾ $1.5^{3)}$ $\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-]

¹⁾ In absence of other national regulations.

²⁾ See annex 4.

³⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

⁴⁾ The partial safety factor $\gamma_2 = 1,2$ is included.

⁵⁾ Only RSB

fischer Superbond

Hammer-drill fischer internal threaded anchor RG MI Characteristic values to tension load

Size					M 8	M 10	M 12	M 16	M 20
Steel failure withou	it lever ar	m							
		Property	5.8	[kN]	9,2	14,5	21,1	39,2	69
Characteristic		class	8.8	[kN]	14,6	23,2	33,7	54,0	90
resistance	$V_{Rk,s}$	Property	A4	[kN]	12,8	20,3	29,5	54,8	86
		class 70	C	[kN]	12,8	20,3	29,5	54,8	86
		Property	5.8	[-]			1,25		
Partial safety		class	8.8	[-]			1,25		
factor	γ Ms, V	Property	A4	[-]			1,56		
		class 70	С	[-]			1,56		
Steel failure with le	ver arm								
		Property	5.8	[Nm]	20	39	68	173	337
Characteristic	М ⁰ _{Rk,s}	class	8.8	[Nm]	30	60	105	266	519
bending moment	IVI Rk,s	Property	A4	[Nm]	26	52	92	232	454
		class 70	С	[Nm]	26	52	92	232	454
		Property	5.8	[-]			1,25		
Partial safety	N	class	8.8	[-]			1,25		
factor	γ Ms, V	Property	A4	[-]			1,56		
		class 70	С	[-]			1,56		
Concrete pryout fai									
Factor k in equation				[-]			2,0		
Report TR 029, Sect	ion 5.2.3.	3							
Partial safety factor			Ϋ́Mo	¹⁾ [-]			1,5 ²⁾		
Concrete edge failu	ire			1)	See T	echnical Re		9, Section 5	5.2.3.4
Partial safety factor			γ _N	4c ¹⁾ [-]			1,5 ²⁾		

¹⁾ In absence of other national regulations. ²⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

Table 16: Displacements to tension load

Size		M 8	M 10	M 12	M 16	M 20			
Non-cracked concrete an	d cracked concrete; temperat	ure range	I, II, III, IV						
Displacement	$\delta_{N0} [mm/(N/mm^2)]$	0,09	0,10	0,10	0,11	0,19			
Displacement	$\delta_{N^{\infty}}$ [mm/(N/mm ²)]	0,13	0,15	0,15	0,17	0,19			
Calculation of characteristic displacement with $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$									

Table 17: Displacements to shear load

Size		M 8	M 10	M 12	M 16	M 20			
Displacement	δ _{vo} [mm/kN]	0,12	0,09	0,08	0,07	0,05			
Displacement	δ _{V∞} [mm/kN]	0,18	0,14	0,12	0,10	0,08			
Calculation of characteristic displacement $\delta_{12} = (\delta_{11} + V_{22})/(1.4)$									

Calculation of characteristic displacement $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

	fischer Superbond
Annex 18	Hammer and diamond-drill
	fischer internal threaded anchor RG MI
	Characteristic values to shear load and displacements

Table 18: Characteri with caps		to tension I diamond d			threade	ed rods	RGM		
Size			M 8	M 10	M 12	M 16	M 20	M 24	M 30
Steel failure			С	haracteris	tic resista	nce for ste	el failure s	see table	10
Combined pullout and co	oncrete cone	failure							
Diameter of calculation	d	[mm]	8	10	12	16	20	24	30
Characteristic bond resis	stance in nor	n-cracked cor	ncrete C	20/25					
Temperature range I ¹⁾ (40 ℃/24 ℃)	$ au_{Rk,ucr}$	[N/mm²]	13	13	14	14	14	13	11
Temperature range II ¹⁾ (80 ℃/50 ℃)	$ au_{Rk,ucr}$	[N/mm²]	12	13	13	14	13	13	10
Temperature range III ¹⁾ (120℃/72℃)	$ au_{Rk,ucr}$	[N/mm²]	11	12	12	12	12	11	9,5

Temperature range IV ¹⁾ (150℃/90℃)	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	10	11	11	11	11	10	8,5
Characteristic bond resis	stance in c	racked concret	te C20/2	5					
Temperature range I ¹⁾ (40 ℃/24 ℃)	$\tau_{\text{Rk,cr}}$	[N/mm ²]				7,5	7,5	7,5	7,5
Temperature range II ¹⁾ (80 ℃/50 ℃)	$\tau_{\text{Rk,cr}}$	[N/mm ²]				7,5	7,5	7,5	7,0
Temperature range III ¹⁾ (120℃/72℃)	$\tau_{\text{Rk,cr}}$	[N/mm ²]				6,5	6,5	6,5	6,5
Temperature range IV ¹⁾ (150℃/90℃)	$\tau_{\text{Rk,cr}}$	[N/mm ²]				6,0	6,0	6,0	6,0
	_	C25/30 [-]				1,02			
	_	C30/37 [-]				1,04			
Increasing factors	111	C35/45 [-]				1,07			
for τ _{Rk}	Ψ_{c} -	C40/50 [-]	· · · · · · · · · · · · · · · · · · ·						
	-	C45/55 [-]				1,09			
	-	C50/60 [-]				1,10			
Splitting failure									
Edge distance		h / h _{ef} ≥ 2,0				1,0 h _{ef}			
•	2,0) > h / h _{ef} > 1,3			4,6	6 h _{ef} – 1,8	3 h		
c _{cr,sp} [mm]		h / h _{ef} ≤ 1,3				2,26 h _{ef}			
Spacing		s _{cr,sp} [mm]				2c _{cr,sp} 1,5 ³⁾			
Partial safety factor ²⁾		dry and wet				$1,5^{3}$			
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-]		flooded hole	1,8	3 ⁴⁾			1,5 ³⁾		

¹⁾ See Annex 4. ²⁾ In absence of other national regulations. ³⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

⁴⁾ The partial safety factor $\gamma_2 = 1,2$ is included.

Diamond-drill Characteristic values to tension load of fischer threaded rods RGM

Table 19: Characteristic values to tension load of fischer internal threaded anchors RG MI with capsule RSB in diamond drilled hole

Size			M 8	M 10	M 12	M 16	M 20		
Steel failure			Char	acteristic resis	tance for steel	failure see tal	ble 14		
Combined pullout and co	ncrete con	e failure							
Diameter of calculation	d	[mm]	12	16	18	22	28		
Characteristic bond resis	tance in no	n-cracked con	crete C20/	25					
Temperature range I^{1} (40 °C/24 °C)	$ au_{Rk,ucr}$	[N/mm ²]	13	12	12	11	10		
Temperature range II ¹⁾ (80 $^{\circ}$ /50 $^{\circ}$)	$ au_{Rk,ucr}$	[N/mm ²]	13	12	12	11	9,5		
Temperature range III ¹⁾ (120°C/72°C)	$ au_{Rk,ucr}$	[N/mm ²]	11	11	10	9,5	8,5		
Temperature range IV ¹⁾ (150°C/90°C)	$ au_{Rk,ucr}$	[N/mm ²]	10	10	9,5	9,0	8,0		
Characteristic bond resis	tance in cr	acked concrete	e C20/25						
Temperature range I^{1} (40 °C/24 °C)	$\tau_{\text{Rk,cr}}$	[N/mm ²]		5,0	5,0	5,0	5,0		
Temperature range II ¹⁾ (80 $^{\circ}$ C/50 $^{\circ}$ C)	$\tau_{\rm Rk,cr}$	[N/mm ²]		5,0	5,0	5,0	5,0		
Temperature range III ¹⁾ (120°C/72°C)	τ _{Rk,or}	[N/mm ²]		4,5	4,5	4,5	4,5		
Temperature range IV ¹⁾ (150 °C/90 °C)	$\tau_{\rm Rk,cr}$	[N/mm ²]		4,0	4,0	4,0	4,0		
· · · ·		C25/30 [-]			1,02				
		C30/37 [-]			1,04				
Increasing factors	Т. —	C35/45 [-]			1,07				
for τ _{Rk}	Ψ _c —	C40/50 [-]			1,08				
		C45/55 [-]			1,09				
C50/60 [-		C50/60 [-]	1,10						
Splitting failure									
Edge		h / h _{ef} ≥ 2,0			1,0 h _{ef}				
distance c _{cr,sp} [mm]	2,0	> h / h _{ef} > 1,3		4	⊧,6 h _{ef} – 1,8 h	<u>ו</u>			
uistanue		h / h _{ef} ≤ 1,3			2,26 h _{ef}				
Spacing s _{cr.sp.}		[mm]			2c _{cr,sp} 1,5 ³⁾				
Partial safety factor ²⁾		dry and wet							
$\gamma_{Mp} = \gamma_{Mc} = \gamma_{Msp}$ [-]		flooded hole	1,8 ⁴⁾		1,5	$5^{(3)}$			

¹⁾ See Annex 4. ²⁾ In absence of other national regulations. ³⁾ The partial safety factor $\gamma_2 = 1,0$ is included. ⁴⁾ The partial safety factor $\gamma_2 = 1,2$ is included.

fischer Superbond	
Diamond-drill	Annex 20
Characteristic values to tension load of	
internal threaded rods RG MI	

¹⁾ e cone ⁻ d	[kN] [-]	28	44							
e cone d	[-]	28	44							
e cone : d			44	63	85	111	173	270	339	443
d	c					1,4				
	failure		_							
in non-	[mm]	8	10	12	14	16	20	25	28	32
	-cracked co	ncrete	C20/2	5						
$\tau_{\text{Rk,ucr}}$	[N/mm ²]	8,0	8,5	9,0	9,5	9,5	10	9,5	9,0	7,5
$\tau_{\text{Rk,ucr}}$	[N/mm ²]	8,0	8,5	9,0	9,0	9,5	9,5	9,0	8,5	7,5
$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,0	7,5	8,0	8,0	8,5	8,5	8,0	7,5	6,5
$\tau_{\text{Rk,ucr}}$	[N/mm ²]	6,5	7,0	7,0	7,5	7,5	8,0	7,5	7,0	6,0
in crac	ked concre	te C20	/25							
$\tau_{Rk,cr}$	[N/mm²]	4,5	6,0	6,0	6,0	7,0	6,0	6,0	6,0	6,0
$\tau_{Rk,cr}$	[N/mm ²]	4,5	5,5	5,5	5,5	6,5	6,0	6,0	6,0	6,0
$\tau_{Rk,cr}$	[N/mm ²]	4,0	5,0	5,0	5,0	6,0	5,5	5,5	5,5	5,5
$\tau_{Rk,cr}$	[N/mm ²]	3,5	4,5	4,5	4,5	5,5	5,0	5,0	5,0	5,0
	C25/30 [-]			1		1,02				<u> </u>
-	C30/37 [-]					1,04				
-	C35/45 [-]					1,07				
с -	C40/50 [-]					1,08				
-	C45/55 [-]					1,09				
	C50/60 [-]					1,10				
							<u>.</u>			
							f			
	1)					$\leq C_{cr,sp}$ 1 E^{2}				
	$\tau_{Rk,ucr}$ $\tau_{Rk,ucr}$ $r_{Rk,cr}$ $\tau_{Rk,cr}$ $\tau_{Rk,cr}$ $\tau_{Rk,cr}$ $\tau_{Rk,cr}$ $\tau_{Rk,cr}$ $\tau_{Rk,cr}$	$\begin{array}{c c} \tau_{\rm Rk,ucr} & [\rm N/mm^2] \\ \hline \tau_{\rm Rk,ucr} & [\rm N/mm^2] \\ \hline t_{\rm Rk,ucr} & [\rm N/mm^2] \\ \hline t_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline \tau_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline \hline \hline \tau_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline \hline \hline \tau_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline \hline \hline \tau_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline \hline \hline \hline \tau_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline \hline \hline \hline \tau_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline \hline \hline \hline \hline \hline \hline \tau_{\rm Rk,cr} & [\rm N/mm^2] \\ \hline $	$\begin{array}{c c} \tau_{\text{Rk,ucr}} & [\text{N/mm}^2] & 7,0 \\ \hline \tau_{\text{Rk,ucr}} & [\text{N/mm}^2] & 6,5 \\ \hline \textbf{in cracked concrete C20} \\ \hline \tau_{\text{Rk,or}} & [\text{N/mm}^2] & 4,5 \\ \hline \tau_{\text{Rk,or}} & [\text{N/mm}^2] & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 4,0 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & -1 \\ \hline \tau_{\text{C35/45}} & -1 \\ \hline c & -50/60 & [-] \\ \hline \hline c & -1 \\ \hline c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c cccc} \tau_{\text{Rk,ucr}} & [\text{N/mm}^2] & 7,0 & 7,5 & 8,0 & 8,0 \\ \hline \tau_{\text{Rk,ucr}} & [\text{N/mm}^2] & 6,5 & 7,0 & 7,0 & 7,5 \\ \hline \textbf{in cracked concrete C20/25} \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 4,5 & 6,0 & 6,0 & 6,0 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 4,5 & 5,5 & 5,5 & 5,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 4,0 & 5,0 & 5,0 & 5,0 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \tau_{\text{Rk,cr}} & [\text{N/mm}^2] & 3,5 & 4,5 & 4,5 & 4,5 \\ \hline \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline $T_{Rk,uor} & [N/mm^2] & 7,0 & 7,5 & 8,0 & 8,0 & 8,5 & 8,5 & 8,0 \\ \hline $T_{Rk,uor} & [N/mm^2] & 6,5 & 7,0 & 7,0 & 7,5 & 7,5 & 8,0 & 7,5 \\ \hline $in \ $ccacked \ $concrete \ $C20/25$ \\ \hline $T_{Rk,cr} & [N/mm^2] & 4,5 & 6,0 & 6,0 & 6,0 & 7,0 & 6,0 & 6,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 4,5 & 5,5 & 5,5 & 5,5 & 6,5 & 6,0 & 6,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 4,0 & 5,0 & 5,0 & 5,0 & 6,0 & 5,5 & 5,5 \\ \hline $T_{Rk,cr} & [N/mm^2] & 4,0 & 5,0 & 5,0 & 5,0 & 6,0 & 5,5 & 5,5 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 3,5 & 4,5 & 4,5 & 4,5 & 5,5 & 5,0 & 5,0 \\ \hline $T_{Rk,cr} & [N/mm^2] & 1,04 & $-5,0$	$\begin{split} & \tau_{\text{Fik},\text{ucr}} [\text{N/mm}^2] 7,0 7,5 8,0 8,0 8,5 8,5 8,5 8,0 7,5 \\ & \tau_{\text{Fik},\text{ucr}} [\text{N/mm}^2] 6,5 7,0 7,0 7,5 7,5 7,5 8,0 7,5 7,0 \\ \hline \textbf{in cracked concrete C20/25} \\ & \tau_{\text{Fik},\text{or}} [\text{N/mm}^2] 4,5 6,0 6,0 6,0 7,0 6,0 6,0 6,0 \\ & \tau_{\text{Fik},\text{or}} [\text{N/mm}^2] 4,5 5,5 5,5 5,5 6,5 6,0 6,0 6,0 \\ & \tau_{\text{Fik},\text{or}} [\text{N/mm}^2] 4,0 5,0 5,0 5,0 6,0 5,5 5,5 \\ & \tau_{\text{Fik},\text{or}} [\text{N/mm}^2] 3,5 4,5 4,5 4,5 5,5 5,5 5,5 5,5 \\ & \tau_{\text{Fik},\text{or}} [\text{N/mm}^2] 3,5 4,5 4,5 4,5 5,5 5,0 5,0 5,0 \\ & \sigma_{\text{C25/30}} \left[-1 & -1,02 & -1,$

fischer Superbond

Hammer drill

Characteristic values to tension load of reinforcing bars

Table 21: Characteristic values to shear load of reinforcing bars with mortar FIS SB in hammer drilled hole

Size		Ød	8	10	12	14	16	20	25	28	32
Steel failure without leve	er arm										
Characteristic resistance ¹⁾	$V_{Rk,s}$	[kN]	13,8	21,6	31,1	42,4	55,3	87	135	170	221
Partial safety factor	γ _{Ms,V}	[-]		1,5							
Steel failure with lever a	rm										
Characteristic bending moment ¹⁾	${\sf M}^0_{\sf Rk,s}$	[Nm]	33	65	112	178	265	518	1012	1422	2123
Partial safety factor	γ _{Ms,V}	[-]					1,5				
Concrete pryout failure											
Factor k in equation (5.7) (Technical Report TR 029, Section 5.2.3.3	of	[-]					2,0				
Partial safety factor	γ _{Mcp} ²⁾	[-]					1,5 ³⁾				
Concrete edge failure				Se	e Techr	ical Rep		29, Sec	tion 5.2.3	3.4	
Partial safety factor	γ _{Mc} ²⁾	[-]					1,5 ³⁾				

¹⁾ The values given obtain for reinforcing bars B500B with $f_{uk} = 550 \text{ N/mm}^2$ and $f_{yk} = 500 \text{ N/mm}^2$ Other reinforcing bars have to be calculated according to TR 029, Equation (5.1). ²⁾ In absence of other national regulations. ³⁾ The partial safety factor $\gamma_2 = 1,0$ is included.

Table 22: Displacements of reinforcing bars to tension load

Size		Ød	8	10	12	14	16	20	25	28	32
Non-cracked an	d non-e	cracked concre	te; temp	perature	range l	, II, III, I \	/				
Displacement	δ_{N0}	[mm/(N/mm ²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,12	0,13	0,13
Displacement	δ _{N∞}	[mm/(N/mm ²)]	0,12	0,13	0,13	0,15	0,16	0,16	0,18	0,20	0,20
Calculation of o	characte	eristic displacem	ent with	$\delta_{N} = (\delta_{N})$	₀ • τ _{Sd}) /	1,4					

Table 23: Displacements of reinforcing bars to shear load

Size		Ød	8	10	12	14	16	20	25	28	32
Displacement	δ_{V0}	[mm/kN]	0,18	0,15	0,12	0,10	0,09	0,07	0,06	0,05	0,05
Displacement	δ _{V∞}	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,09	0,08	0,06
		مريح والمريحا والم		e /e	$-\mathbf{M} \rightarrow \mathbf{I}$						

Calculation of characteristic displacement with $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

fischer	Superbond
lischer	Superboliu

Hammer-drill Characteristic values to shear load and displacements of reinforcing bars

Size		M12	M16	M20	M24
Steel failure	1				
Characteristic resistance	N _{Rk,s} [kN]	63	111	173	270
Partial safety factor	γ _{Ms,N} ¹⁾ [-]		1,	,4	
Combined pullout and c	oncrete cone failure				
Diameter of calculation	d [mm]	12	16	20	25
Characteristic bond res	istance in non-cracked	I concrete C2	0/25		
Temperature range I ³⁾ (40 ℃ / 24 ℃)	τ _{Rk,ucr} [N/mm ²]	9,0	9,5	10	9,5
Temperature range II ³⁾ (80 °C / 50 °C)	$ au_{Rk,ucr} [N/mm^2]$	9,0	9,5	9,5	9,0
Temperature range III ³⁾ (120℃ / 72℃)	$ au_{Rk,ucr}$ [N/mm ²]	8,0	8,5	8,5	8,0
Temperature range IV ³⁾ (150℃ / 90℃)	τ _{Rk,ucr} [N/mm²]	7,0	7,5	8,0	7,5
Characteristic bond res	istance in cracked con	crete C20/25			
Temperature range I ³⁾ (40℃ / 24℃)	τ _{Bk,cr} [N/mm²]	6,0	7,0	6,0	6,0
Temperature range II ³⁾ (80°C / 50°C)	τ _{Rk,cr} [N/mm²]	5,5	6,5	6,0	6,0
Temperature range III ³⁾ (120℃ / 72℃)	τ _{Bk,cr} [N/mm ²]	5,0	6,0	5,5	5,5
Temperature range IV ³⁾ (150℃ / 90℃)	τ _{Rk,cr} [N/mm ²]	4,5	5,5	5,0	5,0
	C25/30 [-]		1,0	02	
	C30/37 [-]		· · · ·	04	
Increasing	C35/45 [-]		1,0	07	
factors Ψ_{c}	C40/50 [-]		1,0	08	
for τ _{Rk}	C45/55 [-]		1,(09	
	C50/60 [-]		1,	10	
Splitting failure					
Edge distance -	h / h _{ef} ≥ 2,0			h _{ef}	
c _{cr,sp} [mm] –	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} -	– 1,8 h	
	h / h _{ef} ≤ 1,3		2,26	ծ h _{ef}	
	s _{cr,sp} [mm]		2 c	cr.sp	
Partial safety factor	$\gamma_{\rm Mp} = \gamma_{\rm Mc} = \gamma_{\rm Msp}^{(1)} [-]$		1.5	5 ²⁾	

¹⁾ In absence of other national regulations. ²⁾ The partial safety factor $\gamma_2 = 1,0$ is included. ³⁾ See annex 4.

fischer Superbond

Hammer-drill Characteristic values to tension load of fischer rebar anchors FRA

Table 25: Characteristic values to shear load of fischer rebar anchors FRA with mortar
FIS SB in hammer drilled hole

Size			M12	M16	M20	M24		
Steel failure without lever an	n	•			•			
Characteristic resistance	$V_{Rk,s}$	[kN]	30	55	86	124		
Partial safety factor	γ̃Ms,∨	[-]		1,	56			
Steel failure with lever arm								
Characteristic bending moment	${\sf M}^0{}_{\sf Rk,s}$	[Nm]	92	233	454	785		
Partial safety factor	γ̃Ms,V	[-]		1,	56			
Concrete pryout failure	• •	•						
Factor k in equation (5.7) of Technical Report TR 029, Section 5.2.3.3	k	[-]		2	,0			
Partial safety factor	$\gamma_{Mcp}^{(1)}$	[-]	1,5 ²⁾					
Concrete edge failure			See Tee	chnical Report 7		5.2.3.4		
Partial safety factor	Υ _{Mc} ¹⁾	[-]	1,5 ²⁾					

 $^{1)}$ In absence of other national regulations. $^{2)}$ The partial safety factor γ_2 = 1,0 is included.

Table 26: Displacements of fischer rebar anchors FRA to tension load

Size	Ø	12	16	20	24					
Non-cracked and non-cracked concrete; temperature range I, II, III, IV										
Displacement	δ _{N0} [mm/(N/mm²)]	0,09	0,10	0,11	0,12					
Displacement	δ _{N∞} [mm/(N/mm ²)]	0,13	0,16	0,16	0,18					
Calculation of characteristic displacement with $\delta_N = (\delta_{N0} \bullet \tau_{Sd}) / 1,4$										

Table 27: Displacements of fischer rebar anchors FRA to shear load

Size	Ø	12	16	20	24
Displacement	δ _{v0} [mm/kN]	0,12	0,09	0,07	0,06
Displacement	δ _{v∞} [mm/kN]	0,18	0,14	0,11	0,09
O a lass tables of a lass a stable with the st	2) 2 Hits and a second second		•		

Calculation of characteristic displacement with $\delta_V = (\delta_{V0} \bullet V_{Sd}) / 1,4$

Hammer-drill Characteristic values to shear load and displacements of fischer rebar anchors FRA

Seismic design according TR045 "Design of metal anchors under seismic action"

The recommended seismic performance categories are given in Table 28. The value of a_a or that of the product a_a S used in a Member State to define thresholds for the seismicity classes may be found in its National Annex of EN 1998-1:2004 and may be different to the values given in Table 28. Furthermore, the assignment of the seismic performance categories C1 and C2 to the seismicity level and building importance classes is in the responsibility of each individual Member State.

Table 28: Recommended seismic performance categories for anchors

Seismicity level ¹⁾		Importance Class acc. to EN 1998-1:2004,4.2.5							
Class	a _g ·S ³⁾	I	Ш	IV					
Very low ²⁾	a _g ·S ≤ 0,05 g	No additional requirement							
Low ²⁾	0,05 g < a _g ·S ≤ 0,1 g	C1	C1 ⁴⁾ or C2 ⁵⁾		C2				
> low	a _g ·S > 0,1 g	C1	C2						

¹⁾ The values defining the seismicity levels are may be found in the National Annex of EN 1988-1:2004. ²⁾ Definition according to EN 1998-1:2004, 3.2.1. ³⁾ $a_g = design ground acceleration on Type A ground (EN 1998-1:2004, 3.2.1).$ ⁴⁾ C1 for fixing non-structural elements to structures

⁵⁾ C2 for fixing structural elements to structures

The seismic design resistance R_{d.seis} of a fastening shall be determined as follows:

 $R_{d,seis} = R_{k,seis} / \gamma_{M,seis}$

The characteristic seismic design resistance R_{k.seis} of a fastening shall be determined as follows:

 $R_{k,seis} = \alpha_{gap} \times \alpha_{seis} \times R^{0}_{k,seis}$

The basic characteristic seismic resistance R⁰_{k,seis} for "steel failure", "combined pull-out and concrete cone failure" under tension load and "steel failure" under shear load shall be taken from table 31. For all other failure modes R⁰_{k,seis} shall be determined as for static and quasi-static action according to tables 10, 11, 20 and 21.

The reduction factors α_{seis} and α_{gap} are given in table 29.

Table 29: Reduction factors α_{seis} and α_{qap}

		c	(_{seis}	α _{gap}		
Loading	Failure mode Single Fastener with		Connections with hole clearance ¹⁾	Connections without hole clearance		
	Steel failure	1,0	1,0		1,00	
Tension	Combined pull-out and concrete failure	1,0	0,85	1,00		
	Concrete cone failur	0,85	0,75]		
	Splitting failure	1,0	0,85	7		
	Steel failure	1,0	0,85			
Shear	Concrete edge failure	1,0	0,85	0,50		
	Concrete pry-out failure	0,85	0,75			

¹⁾ Connections with hole clearance according to CEN/TS 1992-4-4: 2009, Table 1

fischer Superbond

Recommended performance categories and reduction factors for loads under seismic action

Table 30A: Characteristic values for seismic action valid for performance category C1 of fischer threaded rods FIS A and RGM with mortar FIS SB or capsule RSB in hammer drilled hole

Seize				M8	M10	M12	M16	M20	M24	M27	M30	
Character	ristic resistance te	ension load, s	teel failu	ire		•						
		Property	5.8	19	29	43	79	123	177	230	281	
N _{Rk,s,seis}		class	8.8	30	47	68	126	196	282	368	449	
			50	19	29	43	79	123	177	230	281	
[kN]	Stainless steel A4 and steel C	A4 Property class	70	26	41	59	110	172	247	322	393	
		01033	80	30	47	68	126	196	282	368	449	
		Property	5.8				1	,50				
$\gamma_{M,s,seis}$ 1)		class	class 8.8 1,50					,50				
	Staiplage steel A4		50	2,86								
[-]	Stainless steel A and steel C	A4 Property class	70	1,50 ²⁾ / 1,87								
		01000	80	1,6								
Character	ristic bond resista	nce, combine	d pullou	t and o	concret	e cone	failure					
Temperatu	re range I ³⁾	$ au_{Rk,seis}$	[N/mm²]	4,6	5,0	5,6	5,6	5,6	5,6	5,6	6,4	
Temperatu	3)		[N/mm²]	4,3	4,6	5,6	5,6	5,6	5,6	5,3	6,0	
Temperatu	3)		[N/mm²]	3,9	4,3	4,9	4,9	4,9	4,9	4,5	5,1	
Temperatu			[N/mm²]	3,6	3,9	4,5	4,5	4,5	4,5	4,1	4,7	
γ _{M,p,seis} 1)			and wet	1,5 ⁴)								
		floode	d hole6)	1,8	8 ⁵⁾				,5 ⁴⁾			

Characteristic resistance shear load, steel failure without lever arm

			5.8	9	15	21	39	61	89	115	141	
V _{Bk.s.seis} ⁷⁾	V _{Rk,s,seis} ⁷⁾	class	8.8	15	23	34	63	98	141	184	225	
		Duanantu	50	9	15	21	39	61	89	115	141	
[kN]		Property class	70	13	20	30	55	86	124	161	197	
anus			80	15	23	34	63	98	141	184	225	
		Property	5.8	1,25								
$\gamma_{M,s,seis}$ ¹⁾		class	8.8	1,25								
		Property - class -	50	2,38								
[-]	Stainless steel A4 and steel C		70	1,25 ²⁾ / 1,56								
			80	1,33								

¹⁾ In absence of other national regulations

³⁾ See annex 4.

 $^{5)}$ The partial safety factor γ_2 = 1,2 is included $^{7)}$ For fischer treaded rods FIS A / RGM the factor for steel ductility is 1,0

 $^{2)}$ For steel C with f_{yk} = 560 N/mm² $^{4)}$ The partial safety factor γ_2 = 1,0 is included ⁶⁾ Only RSB

fischer Superbond

Hammer-drill Characteristic values for loads under seismic action categories C1 fischer threaded rods FIS A und RGM

Table	e 30B: Characteri of standar											
Seize				M8	M1	о м	12 N	116	M20	M24	M27	M30
	teristic resistance	tension load	3			<u> </u>				1112		11100
Steel fa				See Table 30A								
	teristic bond resist and concrete cone		ined				Se	e Tabl	e 30A			
Charac	teristic resistance	shear load,	steel failu	re with	out le	ver arr	n					
		Property	5.8	6	11	1	15	27	43	62	81	99
$V_{Rk,s,seis}$		class	8.8	11	16	6 2	24	44	69	99	129	158
	Stainless steel A4	Broporty	50	6	11	1	15 3	27	43	62	81	99
[kN]	and steel C	Property class	70	9	14	1 2	21 ;	39	60	87	113	138
			80		16	6 2	24	44	69	99	129	158
		5.8					1,25					
$\gamma_{M,s,seis}$ ¹⁾		class	8.8					1,25				
	Stainless steel A4 Prop	Property	50	_				2,38				
[-]	and steel C	class —	70	_				1,56				
		I	80					1,33	5			
Rebar I	B500B		size	8	10	12	14	16	20	25	28	32
	teristic resistance	tension load	d, steel fai	lure								
N _{Rk,s,seis}	;)		[kN]	28	44	63	85	111	173	270	339	443
γM,s,seis	,		[-]					1,4				
	teristic bond resist		· ·				1					
	ature range I ³⁾	$\tau_{\text{Rk,seis}}$	[N/mm ²]	3,2	4,3	4,5	4,5	5,3	4,5	4,5	4,5	
	ature range II ³⁾	$\tau_{Rk,seis}$	[N/mm ²]	3,2	3,9	4,1	4,1	4,9	4,5			5,1
-	ature range III ³⁾ ature range IV ³⁾	$\tau_{Rk,seis}$	[N/mm ²]		~ ~	0.0	0.0			4,5	4,5	5,1
	ature range IV*/			2,8	3,6	3,8	3,8	4,5	4,1	4,1	4,1	5,1 4,7
	_	$\tau_{\text{Rk,seis}}$	[N/mm ²]	2,8	3,6 3,2	3,8 3,4	3,8 3,4	4,5 4,1	4,1 3,8		-	5,1
γM,p,seis	1)	τ _{Rk,seis}			-			4,5		4,1	4,1	5,1 4,7
YM,p,seis	_		[N/mm ²]	2,5	3,2	3,4	3,4	4,5 4,1		4,1	4,1	5,1 4,7
YM,p,seis Charac	teristic resistance s		[N/mm ²]	2,5	3,2	3,4	3,4	4,5 4,1 1,5 ²⁾ 38,7	3,8	4,1	4,1	5,1 4,7
YM,p,seis Charac V _{Rk,s,seis}	teristic resistance s		[N/mm ²] [-] steel failu	2,5 re with	3,2 nout le	3,4 ver ari	3,4	4,5 4,1 1,5 ²⁾	3,8	4,1	4,1 3,8	5,1 4,7 4,3
<u>YM,p,seis</u> Charac V _{Rk,s,seis} <u>YM,s,seis</u>	teristic resistance	shear load,	[N/mm ²] [-] steel failu [kN] [-]	2,5 re with	3,2 nout le 15,1	3,4 ver arı 21,8	3,4	4,5 4,1 1,5 ²⁾ 38,7 1,5 ²⁾	3,8	4,1 3,8 94,5	4,1 3,8 119,0	5,1 4,7 4,3
<u>YM,p,seis</u> Charac V _{Rk,s,seis} <u>YM,s,seis</u>	n absence of other n	shear load, ational regu	[N/mm ²] [-] steel failu [kN] [-]	2,5 re with 9,7	3,2 nout le 15,1	3,4 ver arı 21,8	3,4 m 29,7	4,5 4,1 1,5 ²⁾ 38,7 1,5 ²⁾	3,8	4,1 3,8 94,5	4,1 3,8 119,0	5,1 4,7 4,3
<u>YM,p,seis</u> Charac V _{Rk,s,seis} <u>YM,s,seis</u>	n absence of other n	shear load, national regu fische	IN/mm ²] [-] steel failu [kN] [-]	2,5 re with 9,7	3,2 nout le 15,1	3,4 ver arı 21,8	3,4 m 29,7	4,5 4,1 1,5 ²⁾ 38,7 1,5 ²⁾	3,8	4,1 3,8 94,5) is inclu	4,1 3,8 119,0	5,1 4,7 4,3 154,7
<u>YM,p,seis</u> Charac V _{Rk,s,seis} <u>γM,s,seis</u> ¹⁾ Ι ³⁾ ξ	n absence of other n	shear load, national regu fische Ha	steel failu [kN] [-] lations	2,5 re with 9,7 bond	3,2 15,1 ²⁾ The	3,4 ver arı 21,8 partia	m 29,7	4,5 4,1 1,5 ²⁾ 38,7 1,5 ²⁾ factor	3,8 60,9 $\gamma_2 = 1,0$	4,1 3,8 94,5) is inclu	4,1 3,8 119,0	5,1 4,7 4,3 154,7