

European Technical Approval ETA-13/0224

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung <i>Trade nam</i> e	Modersohn Ankerschiene MBA Modersohn Anchor Channel MBA
Zulassungsinhaber Holder of approval	Wilhelm Modersohn GmbH & Co. KG Eggeweg 2 a 32139 Spenge DEUTSCHLAND
Zulassungsgegenstand und Verwendungszweck	Ankerschienen
Generic type and use of construction product	Anchor channels
Geltungsdauer: vom Validity: from	8 May 2013
bis to	8 May 2018
Herstellwerk Manufacturing plant	Werk Spenge Eggeweg 2a 32139 Spenge

Diese Zulassung umfasst This Approval contains

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

27 Seiten einschließlich 19 Anhänge

27 pages including 19 annexes

Page 2 of 27 | 8 May 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products¹, modified by Council Directive 93/68/EEC² and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council³;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, as amended by Article 2 of the law of 8 November 2011⁵;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC⁶.
- 2 Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- 3 This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- 4 This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- 5 Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- 6 The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

¹ Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

³ Official Journal of the European Union L 284, 31 October 2003, p. 25

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 27 | 8 May 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The Modersohn Anchor Channel MBA is an anchor channel consisting of a C-shaped channel cold-formed steel and at least two metal anchors non-detachably fixed on the profile back.

The anchor channel is imbedded surface-flush in the concrete. Modersohn special screws (hammerhead or hooked) with appropriate hexagon nuts and washers will be fixed in the channel.

An illustration of the product and intended use is given in Annex 1.

1.2 Intended use

The anchor channel is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences.

The anchor channel is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C12/15 at minimum to C90/105 at most according to EN 206-1:2000-12. The anchor channel may be anchored in cracked and non-cracked concrete.

The anchor channel may be used for transmission of tensile loads, shear loads, or a combination of tensile and shear loads perpendicular to the longitudinal axis of the channel.

The intended use of the anchor channel (channel profile, anchor, special screw, washer and nut) concerning corrosion is given in Annex 3, Table 1 depending on the chosen material.

The provisions made in this European technical approval are based on an assumed working life of the anchor channel of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor channel corresponds to the drawings and information given in Annex 2 to 6. The characteristic material values, dimensions and tolerances of the anchor channel not indicated in the Annexes shall correspond to respective values laid down in the technical documentation⁷ of this European technical approval.

Regarding the requirements concerning safety in case of fire it is assumed that the anchor channel meets the requirements of class A1 in relation to reaction to fire in accordance with the stipulations of the Commission decision 96/603/EC, amended by 2000/605/EC.

7

The technical documentation of this European technical approval is deposited at Deutsches Institut für Bautechnik and, as far as it is relevant to the tasks of the approved body involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 4 of 27 | 8 May 2013

The characteristic values for the design of the anchorages are given in Annexes 7 to 16.

The anchor channel shall be marked with the identifying mark of the producer, the type, the size and additionally with the type of stainless steel, e.g. MBA 38/17-D4 according to Annex 2. The position of the anchor is marked for anchor channels with weld-on anchors by nail holes in the channel profile.

Each special screw is marked with the identifying mark of the producer, the strength grade and the type of stainless steel according to Annex 2.

2.2 Method of verification

2.2.1 General

The assessment of the fitness of the anchor channel for the intended use with regard to the requirements of mechanical resistance and stability as well as safety in use in the sense of the Essential Requirements 1 and 4 was performed based on the following verifications:

Verifications for tension loads for

1.	Distribution of acting tension loads	
2.	Steel failure - anchor	N _{Rk,s,a}
3.	Steel failure - special screw	N _{Rk,s,s}
4.	Steel failure - connection channel/ anchor	N _{Rk,s,c}
5.	Steel failure - local flexure of channel lips	N _{Rk,s,I}
6.	Steel failure - flexure resistance of channel	$M_{Rk,s,flex}$
7.	Steel failure - transfer of setting torque into prestressing force	T _{inst}
8.	Concrete failure - pullout	N _{Rk,p}
9.	Concrete failure - concrete cone	N _{Rk,c}
10.	Concrete failure - splitting due to installation	c_{min},s_{min},h_{min}
11.	Concrete failure - splitting due to loading	N _{Rk,sp}
12.	Concrete failure - blow-out	N _{Rk,cb}
13.	Reinforcement	$N_{Rk,re},N_{Rd,a}$
14.	Displacement under tension loads	δ_{N}
Ver	ifications for shear loads for	
1.	Distribution of acting shear loads	
2.	Steel failure without lever arm - special screw	V _{Rk,s,s}
3.	Steel failure without lever arm - flexure channel lips	V _{Rk,sl}
4.	Steel failure with lever arm	М ⁰ _{Rk,s}
5.	Concrete failure - pry-out	V _{Rk,cp}
6.	Concrete failure - concrete edge	V _{Rk,c}
7.	Reinforcement	V _{Rk,c,re}
8.	Displacement under shear loads	δ _V

In addition to the specific clauses relating to dangerous substances contained in this European Technical Approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

Page 5 of 27 | 8 May 2013

3 Evaluation and attestation of conformity and CE-marking

3.1 System of attestation of conformity

According to the Decision 2000/273/EC of the European Commission⁸ system 2(i) (referred to as system 1) of the attestation of conformity applies.

This system of attestation of conformity is defined as follows:

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - (1) factory production control;
 - (2) further testing of samples taken at the factory by the manufacturer in accordance with a prescribed test plan;
- (b) Tasks for the approved body:
 - (3) initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - (5) continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/raw/constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited with Deutsches Institut für Bautechnik.⁹

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchor channels in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

⁸ Official Journal of the European Communities L 86 of 07.04.2000

The control plan is a confidential part of the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 27 | 8 May 2013

3.2.2 Tasks of the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor channel. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacture),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- trade name of the anchor channels and special screws.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the approval and consequently the validity of the CE marking on the basis of the approval and if so whether further assessment or alterations to the approval shall be necessary.

4.2 Design of anchorages

The fitness of the anchor channel for the intended use is given under the following condition: The design of the anchorage is based on the CEN/TS 1992-4:2009 "Design of fastenings for use in concrete", part 1 and 3 under the responsibility of an engineer experienced in anchorages and concrete work.

Page 7 of 27 | 8 May 2013

The verification for shear load with supplementary reinforcement follows CEN/TS 1992-4-3:2009, section 6.3.6 and 6.3.7 or alternatively Annexes 15 and 16.

The reduction of the member cross section caused by the anchor channel is taken into account for the verification of the concrete member if necessary.

The member thickness is not less than h_{min} indicated in Annex 7, Table 8.

The edge distance of the anchors on the profile back of the channel is not less than c_{min} indicated in Annex 7, Table 8.

The spacing of the anchors is between the s_{min} and s_{max} given in Annex 5, Table 5.

The spacing of the special screws is not less than $s_{min,s}$ given in Annex 8, Table 9.

The effective anchorage depth is not less than min h_{ef} according to Annex 7, Table 8.

The characteristic resistances are calculated with the minimum effective anchorage depth.

Taking into account the loads to be anchored verifiable calculation notes and drawings are generated.

The position, the type, the size, the length, of the anchor channel, if applicable the spacing of the anchors, and if applicable the position as well as the size of the special screws are indicated on the design drawings. The material of the anchor channel and the special screw is given additionally on the drawings.

4.3 Installation of the anchor channel

The fitness for use of the anchor channel can only be assumed, if the following installation conditions are observed:

- Installation by appropriately qualified personnel and under the supervision of the person responsible for technical matters on site.
- Use of the anchor channel only as supplied by the manufacturer without exchanging the components.
- Installation in accordance with the manufacturer's specifications given in Annexes 18 and 19 and the design drawings.
- The anchor channels are fixed on the formwork such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors are properly compacted. The channels are protected from penetration of concrete into the internal space of the channels.
- Size and spacing of special screws corresponding to the design drawings.
- Orientating the special screw (notch according Annex 6) rectangular to the channel axis.
- Observation of the prescribed values (e.g. T_{inst} according Annex 8) of installation.
- The setting torques given in Annex 8 must not be exceeded.

Page 8 of 27 | 8 May 2013

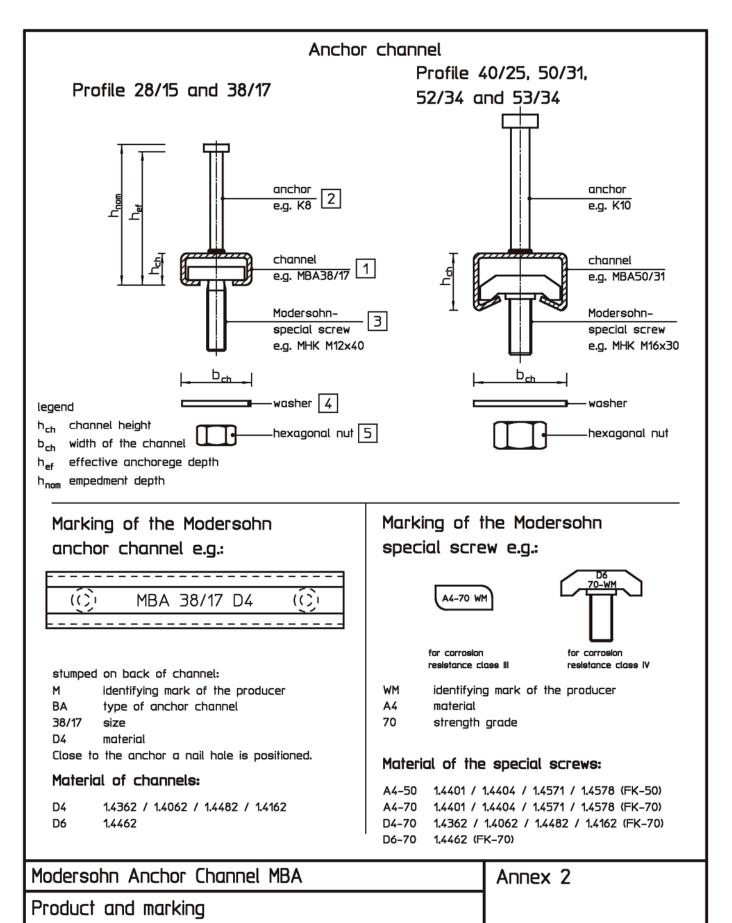
5 Responsibility of the manufacturer

It is in the responsibility of the manufacturer to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to and 4.2 and 4.3 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

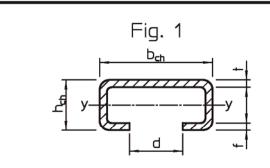
The minimum data required are:

- dimensions of the anchor channel,
- mentioning of the matching screws,
- materials of the anchor channel (channel, anchor, screw, washer, nut)
- details on the installation procedure, preferably by using illustrations,
- maximum setting torque,
- identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.


Uwe Bender Head of Department *beglaubigt:* Müller

Page 9 of European technical approval ETA-13/0224 of 8 May 2013



		interd	ed use		
		1	2		
		medium corrosion exposure	high corrosion exposure		
1989 (1987)	specification	Anchor channels may be used in structures subject to internal conditions. They may also be used in structures subject to external atmospheric exposure (including industrial and marine atmosphere) and in permanently damp internal conditions, if no particular aggressive conditions (e.g. permanent dipping into seawater etc. acc. column 2) exist.	Anchor channels may also be used in structres subject to exposure in particular aggressive conditions (e.g. permanent dipping into seawater, the splash zone of seawater or an atmosphere with chemical pollution e.g. in desulphurization plants or road tunnels where deicing materials are used).		
		mate	riale		
4	channel profile	stainless steel s nannel profile 1.4362 / 1.4062 / 1.4482 / 1.4162 EN 10088			
2	anchor	stainless steel 1.4301 / 1.4401 / 1.4404 / 1.4571 EN 10088	stainless steel 1.4362 / 1.4401 / 1.4404 / 1.4571 EN 10088		
m	Modersohn special screw, shaft and thread according to EN ISO 4018	stainless steel 1.4401 / 1.4404 / 1.4571 1.4362 EN ISO 3506-1	stainless steel 1.4462 ¹⁾ EN ISO 3506-1		
4	washer, EN ISO 7089 and EN ISO 7093-1 production class A, 200HV	stainless steel 1.4401 / 1.4404 / 1.4571 EN 10088	stainless steel 1.4462 ¹⁾ EN 10088		
5 EN ISO 4032		stainless steel 1.4401 / 1.4404 / 1.4571 EN ISO 3506-2	stainless steel 1.4462 ¹⁾ EN ISO 3506-2		
1) 1.	.4462 not applicable for	indoor swimming-pools	L		
	rsohn Anchor (Channel MDA	Annex 3		

Page 12 of European technical approval ETA-13/0224 of 8 May 2013

English translation prepared by DIBt

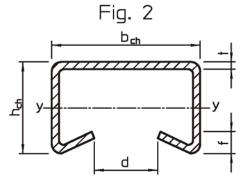


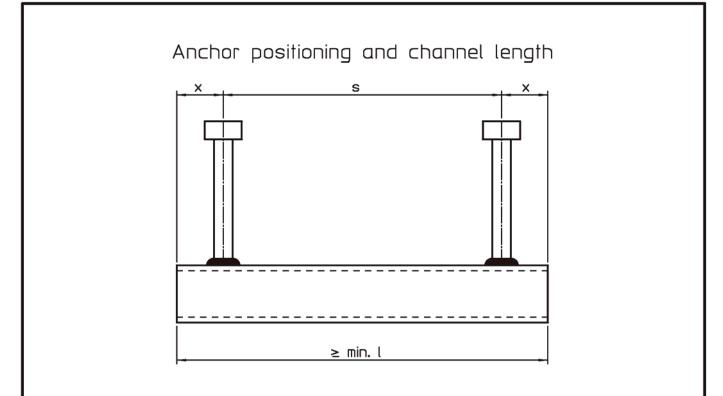
Table 2: Geometrical profile properties

			C	dimensions	moment of inertia		
anchor channel	figure	b _{ch}	h _{ch}	t	d	f	۱ _y
				[mm]	[mm ⁴]		
28/15	1	28,00	15,00	2,30	12,00	2,30	3874
38/17	1	38,00	17,00	3,00	18,00	3,00	7787
40/25	2	40,00	25.00	2,50	18,00	5,50	19095
50/31	2	50,00	31,00	3,00	22,00	7,35	44781
52/34	2	52,00	34,00	4,00	22,00	7,80	70663
53/34	2	53,00	34,00	4,50	22,00	7,70	76681

Table 3: Types of anchors

type	anchor	shaft ød ₁	head ød ₂	head thickness Δ	-
	channel		[mm]		1
K6	28/15	6	13	5	N
K8	38/17, 40/25	8	16	5	Ļ
K10	50/31	10	19	7	
K13	52/34, 53/34	13	25	8	

Modersohn Anchor Channel MBA


Geometrical profile properties, types of anchor

Annex 4

Page 13 of European technical approval ETA-13/0224 of 8 May 2013

English translation prepared by DIBt

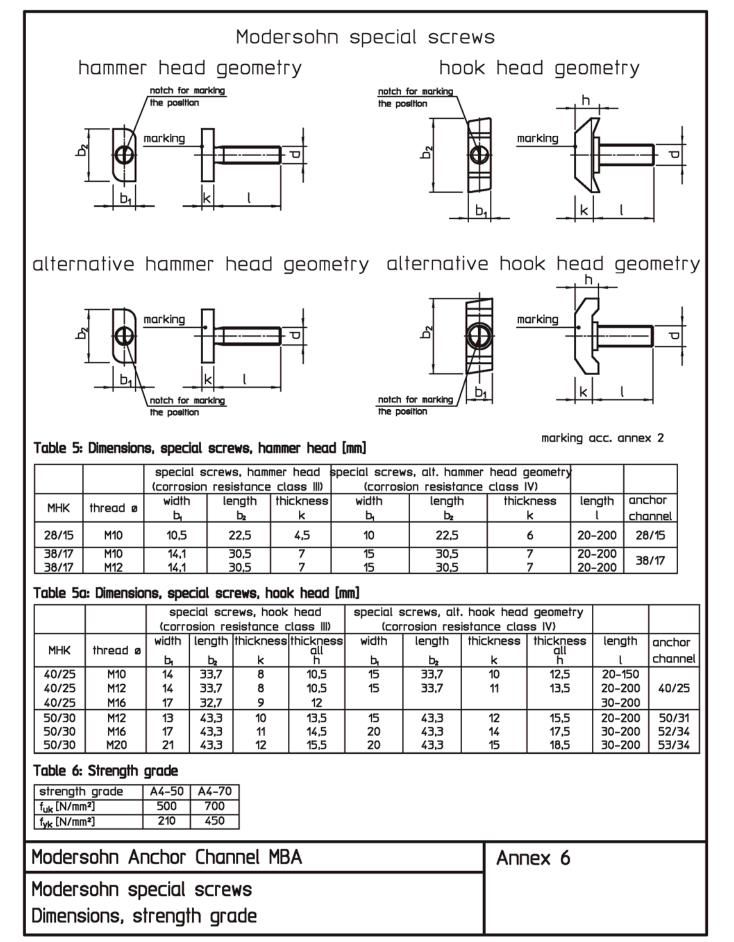
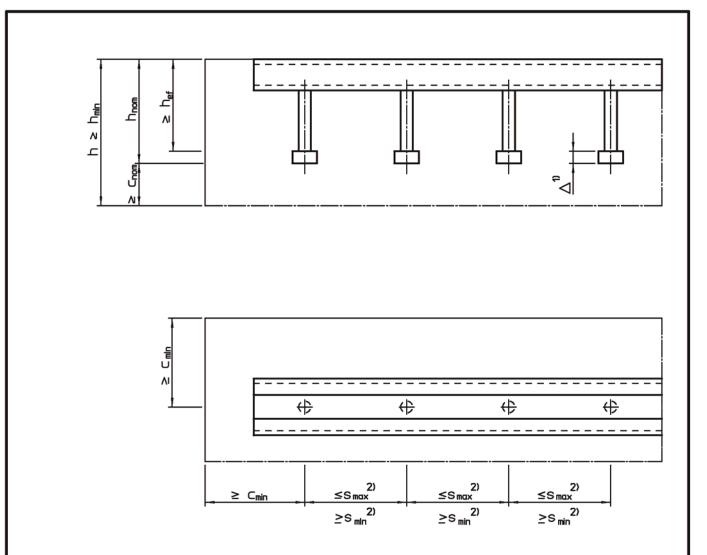


Table 4: Anchor positioning, channel length

	anchor	spacing	end spacing	min. channel length		
anchor channel	s min	s max	×	min. l		
		[m	mm]			
28/15	50	200	25	100		
38/17	50	200	25	100		
40/25	50	250	25	100		
50/31	50	250	25	100		
52/34	80	350	35	450		
53/34	80	250	25	150		

Modersohn Anchor Channel MBA	Annex 5
Anchor positioning, channel lenght	



Page 15 of European technical approval ETA-13/0224 of 8 May 2013

English translation prepared by DIBt

Table 7: Minimum anchorage depth, edge distance and member thickness

anchor channel			28/15	38/17	40/25	50/31	52/34	53/34
min. anchorage depth		min. h _{ef}	45	72	80	99	151	151
min. edge distance	Ē	C _{min}	40	50	50	75	100	100
min. member thickness h _{min}					h _{ef} +	∆ ¹⁾ +⊂ _{nom} ³⁾		

1) \triangle - anchor head thickness

2) s_{min} , s_{max} acc. Annex 5, Table 4

3) $c_{nom} \ge 30 mm$

Modersohn Anchor Channel MBA	Annex 7
Installation parameters of	
Modersohn Anchor Channel	

				setting i	orque T _{inet} 5)	
	Modersohn	min. spacing	gene	ral ²)	steel-steel contact *	
anchor channel	special screws ø	s _{mine} s) of the Modersohn special screws	A4-50 ¹⁾	A4-70 ¹⁾	A4-50 ¹⁾	A4-70 ¹
	[mm]	[mm]		[N	m]	
28/15	10	50	-	13	-	40
29/47	10	50	-	15	-	40
38/17	12	60	-	25	-	70
	10	50	15	-	15	-
40/25	12	60	25	-	25	-
	16	80	45	-	65	-
	12	60	25	-	25	-
50/31	16	80	60	-	65	-
	20	100	75	-	130	-
	12	60	25	-	25	-
52/34	16	80	60	-	65	-
53/34	20	100	120	-	130	-

Table 8: Minimum spacing and setting torque of Modersohn special screws

1) materials acc. Annex 3, Table 1

2) acc. Annex 9, Fig. 1

3) acc. Annex 9, Fig. 2

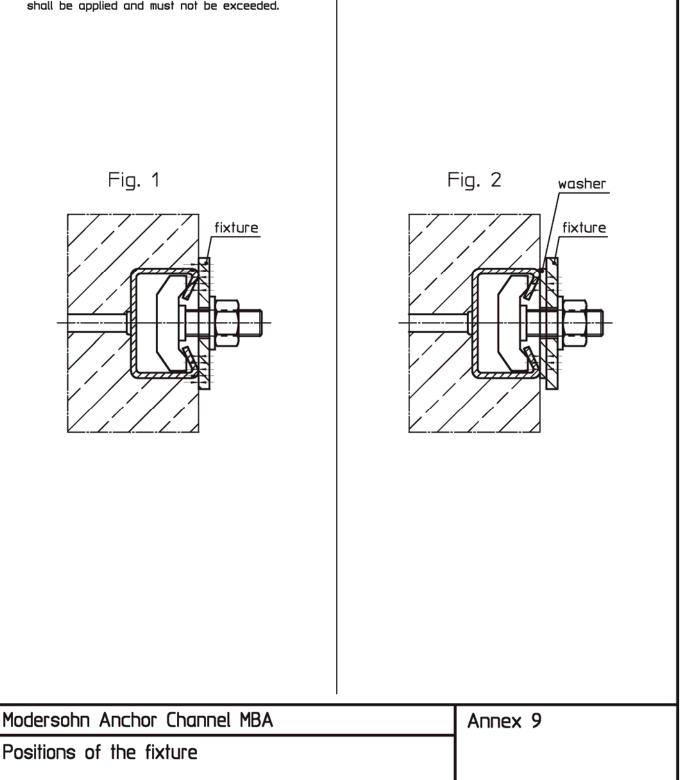
4) acc. Annex 10, Fig. 1

5) T_{inst} must not be exceeded

Modersohn Anchor Channel MBA	Annex 8
Installation parameters of	
Modersohn special screw	

Page 17 of European technical approval ETA-13/0224 of 8 May 2013

English translation prepared by DIBt



General

The fixture is braced to concrete or to the anchor channel respectively braced to concrete and anchor channel. The setting torques according to Annex 8, Table 8 shall be applied and must not be exceeded.

Steel-steel contact

The fixture is braced to the anchor channel by suitable washer. The setting torques according to Annex 8, Table 8 shall be applied and must not be exceeded.

able 9: Characteristic values for tension loads - steel failure channel									
anchor c	hannel		28/15	38/17	40/25	50/31	52/34 53/34		
steel failure, anchor									
characteristic resistance	N _{Rk,s,a}	[kN]		not relevant					
partial safety factor	γ	1) 1s			1,8				
steel failure, connectio	on channel	anchor							
characteristic resistance	N _{Rk,s,c}	[kN]	18	28	20	32	76		
partial safety factor	γ	1) 1s,ca	1,8						
steel failure, local flex			for s _e ≥ s	elb					
spacing of Modersohn special screws for N _{Rk,s,l}	S _{sib}	[mm]	40	48	64	73	81		
characteristic resistance	N _{Rk,s,l}	[kN]	18	28	20	32	76		
partial safety factor	γ _I	Ms, ¹)	1,8						
steel failure, local flex	kure of ch	annel lips ·	for s _{elb} ≥	S _e ≥ S _{min.e} 2	3				
characteristic resistance	N _{Rk,s,l}	[kN]	0,5 · (1+s _s /s _{slb}) · N _{Rk,s,l} ≤ N _{Rk,s,c}						
partial safety factor	γ	1) Ms,l			1,8				

1) in absence of other national regulations 2) s_{min.s} acc. to Annex 8, Table 8

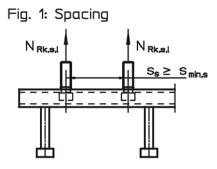
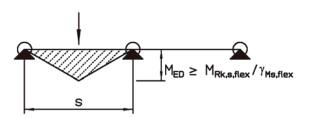



Fig. 2: Assumption of system

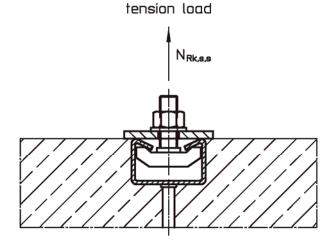
Table 10: Flexure resistance of channel

anchor channel	28/15	38/17	40/25	50/31	52/34	53/34			
charcteristic flexure resistance of channel	R ^{k,g,flex} [Nm]	432	836	1262	2528	3297	3297		
partial safety factor	γ _{Ms,flex} 11		1,15						
1) in absence of other national regulations									

Modersohn Anchor Channel MBA

Annex 10

Characteristic values for tension loads Steel failure channel



steel failure of Modersohn special screws											
Modersohn special screw ø 28/15 38/17 40/25 50/30											
riogersorin	special s			A4-70 ¹	A4-70 ¹	A4-501'	A4-50 ¹¹				
Steel failure											
					40,6	25,4	-				
characteristic	2، N _{Rk,s,s}	[kN]	FLAU	[LAI]	[LAI]	[LAI]	M12	-	52,6	41,9	42,2
resistance	IN Rk,s,s		M16	-	-	64,1	78,5				
			M20	-	-	-	102,2				
partial safety factor $\gamma_{MS,S}^{3}$ A4-5					2,8	36					
partial safety factor	Ϋ́Μ	S,S	A4-70 ¹	1,87							

Table 11: Characterietic values for tension load

1) materials according to Annex 3, Table 1 2) in conformity to EN ISO 898-1: 1999

3) in absence of other national regulations

Modersohn Anchor Channel MBA	Annex 11
Characteristic values for tension loads	
Steel failure of Modersohn special screws	

anchor channel					38/17	40/25	50/31	52/34 53/34	
pullout failure									
characteristic resis- tance in cracked concrete C12/15	round anchors	N _{Rk.p}	[kN]	9,4	13,6	13,6	18,4	32,2	
	C20/25					1,67			
	C25/30]		2,00					
in and a sing factor	C30/37	Ψ _ε [-		2,47					
increasing factor for N _{Rk.p}	C35/45		Ψ _c [–]	3,00					
	C40/50			3,33					
	C45/55			3,67					
	≥C50/60			4,00					
		Ψι	JCF,N	1,4					
partial safety factor		γ _{Mp}	_ = γ _{MC} ¹	1,5					
concrete cone failure	e N ^o Rik _i c see C	EN/TS 199	2-4-3 sec	tion 6.2.5					
			α_{ch}	0,81	0,87	0,89	0,91	0,97	
effective anchorage	depth	h _{ef}		45	72	80	99	151	
chracteristic edge dis	stance	C _{cr,N}	[mm]	111	164	178	206	258	
characteristic spacing		Scr,N		223	328	356	413	516	
		Ψ.	ICF,N			1.4			
partial safety factor γ_{Mc}^{-1}		γ	1) Mc			1,5			

1) in absence of other national regulations

Table 13: Displacements under tension loads

anchor channel			28/15	38/17	40/25	50/31	52/34 53/34
tension load	N _{EK}	[kN]	4,2	7,6	9,9	18,7	29,2
short time displacement	σ _{NO}	[mm]	0,4	0,4	0,5	0,5	0,6
long time displacement	σ _N	[mm]	1,6	1,6	1,6	1,6	1,6

Modersohn Anchor Channel MBA	Annex 12
Characteristic values for tension loads	
Concrete failure and displacement	

anchor channel				28/15	38/17	40/25	50/31	52/34 53/34	
steel failure, l	ocal flexure of char	inel lip							
characteristic	resistance	V _{Rk,s,l}	[kN]	18	30	31	59	74	
partial safety	factor	γ _M	1) s,l			1,8			
pry out failure	2			•					
factor k in eq	juation (31) of	<u>م</u> ا	3) 5			2,0			
CEN/TS 1992-	4–3		-			2,0			
partial safety	factor	γ _M	1) IC			1,5			
concrete edge	e failure				-				
	cracked concrete without edge reinforcement or stirrups	α _p .	$\Psi_{\rm re,V}$	2,5	3,5	4.0	4.0	4,0	
product of	cracked concrete with straight edge reinforcement (≥ø 12mm)	α _p ·Ψ _{re.V}		Э,0	4,2	4,8	4,8	4,8	
factor a _p and Ψ _{re.V}		cracked concrete with edge rein- forcement and stirrups with a spacing a ≤ 100mm and a ≤ 2·c ₁	α _p ·Ψ _{re.V}		3,5	4,9	5,6	5,6	5,6
effect of the structural com	thickness of the ponent	α _h	.v			⟨h/h _{cr.V} ⟩ ⁰	5		
characteristic	haracteristic height		h _{er.v}			2∙c ₁ + 2∙h	ch		
characteristic	aracteristic edge distance		r.V			2∙c ₁ + b _{ct}	r		
characteristic	haracteristic spacing		r,V			4∙c ₁ + 2∙b	ch		
partial safety	factor	γ _M	γ _{Mc} ¹ , 1,5						
 1) in absence of other national regulations 2) proof according to CEN/TS 1992-4-1: 2009, section 5 3) without supplementary reinforcement. In case of supplementary reinforcement the faktor k₅ should be multiplied with 0.75 									
dersohn Anchor Channel MBA Annex 13									

Table 15: Characteristic values for shear load steel failure of Modersohn special screws

Modersohn special screw ø				M10	M12	M16	M20
steel failure							
characteristic	۲ (² کار کې	TLAU1	A4-501'	17,4	25,3	47,1	73,5
resistance	V Rk,s,s	[kN]	A4-70 ¹	24,4	35,4	65,9	102,9
characteristic	M°	[Nm]	A4-50 ¹	37,4	65,5	166,5	324,5
flexure resistance	M ^⁰ Rk,s,s	LININJ	A4-70 ¹	52,3	91,7	233,1	454,4
partial action factor	N	γ _{Ms,s} ³			2,	38	
partial safety factor	٩٢	ls,s	A4-70 ¹		1,5	56	

1) materials according to Annex 3, Table 1

2) in conformity to EN ISO 898-1: 1999

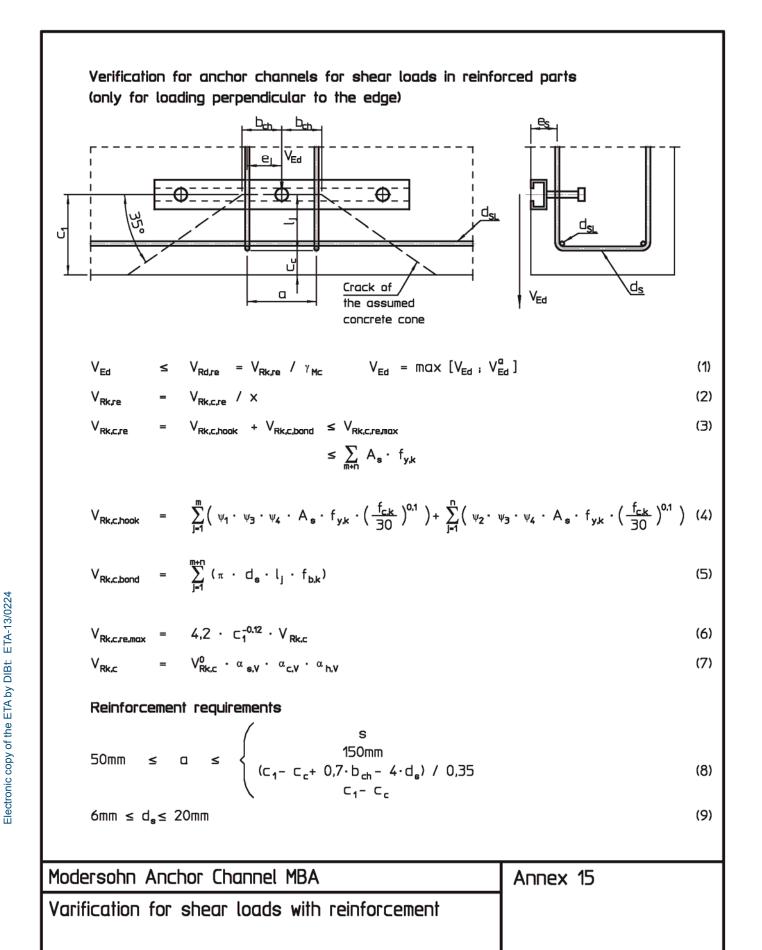
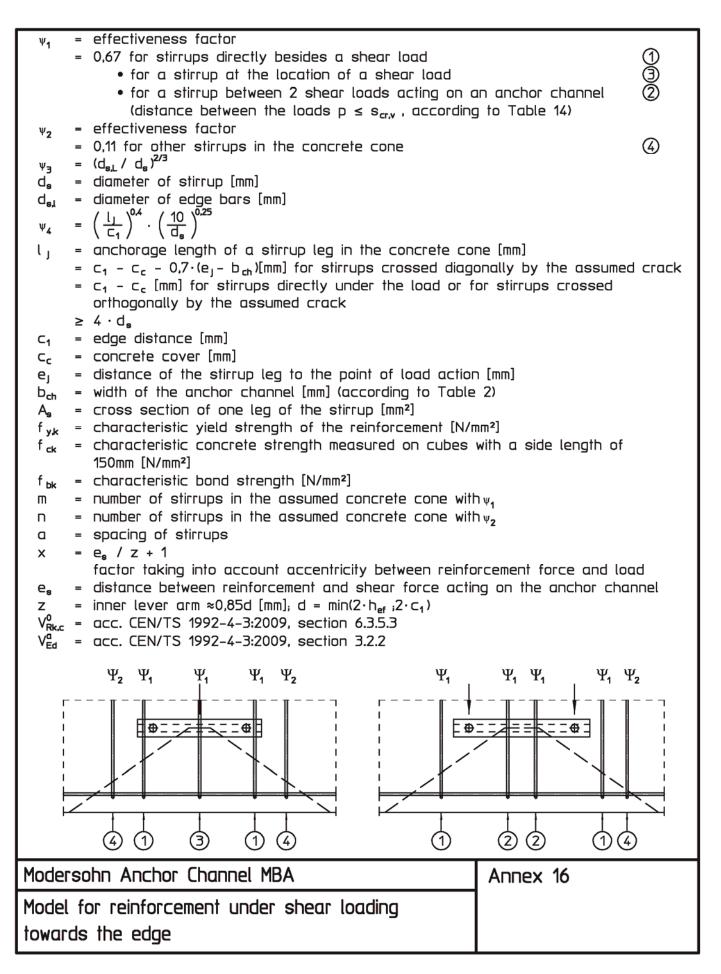
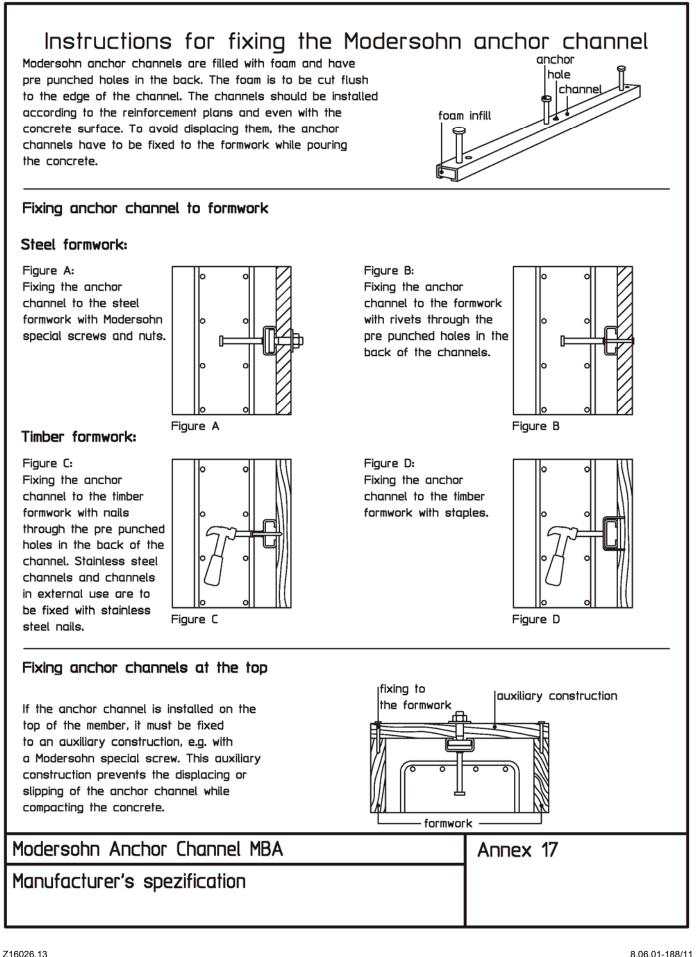

3) in absence of other national regulations

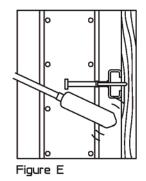
Table 16: Displacements under shear loads

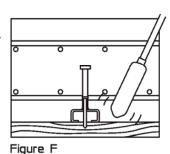

anchor channel			28/15	38/17	40/25	50/31	52/34 53/34
shear load	V _{EK}	[kN]	2,7	7,8	7,6	9,4	16,2
short time displacement	σ _{vo}	[mm]	0,4	0,6	0,6	0,8	0,9
long time displacement	σγ	[mm]	0,6	0,9	0,9	1,2	1.4

Modersohn Anchor Channel MBA	Annex 14
Characteristic values for shear loads Steel failure special screws and displacements	
Sieer ruiture special screws and displacements	



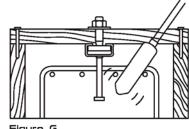
Page 26 of European technical approval ETA-13/0224 of 8 May 2013


English translation prepared by DIBt


Regular compacting of concrete

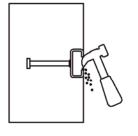
1. Figure E:

If anchor channels are installed at the side of a member, the concrete below the anchor channel must be thoroughly compacted. Improper compacting of the concrete can lead to air entrapments and thereby a reduced load capacity.



2. Figure F: When installing an anchor channel at the bottom side of a member, the concrete needs to be compacted thoroughly to ensure a sufficient bonding.

3. Figure G:


Anchor channels installed on the top of a member must be fixed to an auxiliary construction to prevent displacing or slipping. A suitable vibrator has to be used to compact the concrete. If you press the anchor channel into the concrete, you have to compact the concrete with a vibrator!

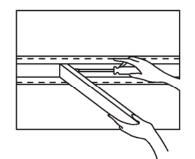
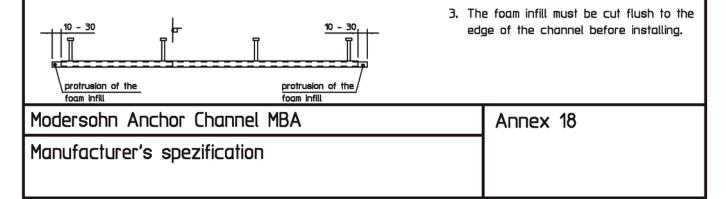


Figure G

How to remove the channel infill

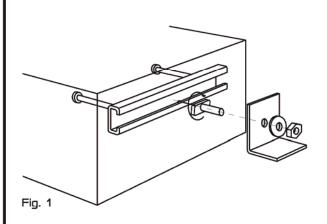
After dismantling the formwork remove the fixing material and the remaining concrete. Next remove the foam infill with a suitable tool e.g. a screw driver.

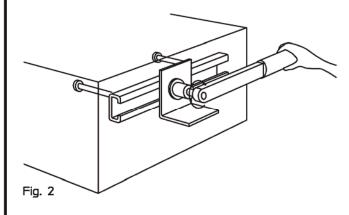
1. Every piece of channel must have at


2. The channel must be cut acc. Annex 5

least two anchors.

Table 4.


Cutting to size long anchor channels


Modersohn anchor channels will be delivered prefabricated. The channels can be cut to size at the construction site. Then please follow the instructions:

Fastening the Modersohn special screw to the anchor channel

a) Torque (general)

- 1. Insert the Modersohn special screw into the horizontal slot of the channel (Fig. 1).
- Turn the special screw 90° in clockwise direction, then the head of the screw locks into position (Fig. 1).
- 3. Minimum distance to the edge of the channel is to be set acc. Annex 5, Table 4.
- 4. Place the washer under the nut (Fig. 1).
- Check if the Modersohn special screw is installed correctly. The notch on the bottom of the threaded bolt of the screw must be set crosswise to the longitudinal axis.
- Tighten the nut with the torque mentioned in Table 17 (Fig. 2). The torque must not be exceeded.

	Anchor	Т	inst [N	lm]	
	channel	M10	M12	M16	M20
ataaaath	28/15	13	-	-	-
strength arade	38/17	15	25	-	-
3	40/25	15	25	45	-
A4-50 A4-70	50/31	-	25	60	75
A4-70	52/34 53/34	-	25	60	120

Table 17

b) Torques (steel-to-steel contact)

- 1. Place a washer between the channel and the attachment to create a defined contact.
- Tighten the nut with the torque mentioned in Table 18. The torque must not be exceeded.

strength	T _{inst} [Nm]						
grade	M10	M12	M16	M20			
A4-50	15	25	65	130			
A4-70	40	70	-	-			

Table 18

Modersohn Anchor Channel MBA	Annex 19
Manufacturer's spezification	

Fig. 3