Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

European Technical Approval ETA-99/0010

English translation prepared by DIBt - Original version in German language

Handelsbezeichnung Trade name

Zulassungsinhaber Holder of approval

Zulassungsgegenstand und Verwendungszweck

Generic type and use of construction product

Geltungsdauer: Validity:

vom from bis

to

Herstellwerk

Manufacturing plant

MKT Bolzenanker BZ plus und BZ-IG MKT Wedge anchor BZ plus and BZ-IG

MKT

Metall-Kunststoff-Technik GmbH & Co. KG Auf dem Immel 2

67685 Weilerbach

Kraftkontrolliert spreizender Dübel zur Verankerung im Beton

Torque controlled expansion anchor for use in concrete

15 May 2013

15 May 2018

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach

Diese Zulassung umfasst This Approval contains 41 Seiten einschließlich 33 Anhänge 41 pages including 33 annexes

Diese Zulassung ersetzt This Approval replaces ETA-99/0010 mit Geltungsdauer vom 27.03.2012 bis 30.01.2014 ETA-99/0010 with validity from 27.03.2012 to 30.01.2014

Europäische Organisation für Technische Zulassungen European Organisation for Technical Approvals

Page 2 of 41 | 15 May 2013

I LEGAL BASES AND GENERAL CONDITIONS

- 1 This European technical approval is issued by Deutsches Institut für Bautechnik in accordance with:
 - Council Directive 89/106/EEC of 21 December 1988 on the approximation of laws, regulations and administrative provisions of Member States relating to construction products1, modified by Council Directive 93/68/EEC2 and Regulation (EC) N° 1882/2003 of the European Parliament and of the Council3;
 - Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 19984, as amended by Article 2 of the law of 8 November 20115;
 - Common Procedural Rules for Requesting, Preparing and the Granting of European technical approvals set out in the Annex to Commission Decision 94/23/EC6;
 - Guideline for European technical approval of "Metal anchors for use in concrete Part 2: Torque controlled expansion anchors ", ETAG 001-02.
- Deutsches Institut für Bautechnik is authorized to check whether the provisions of this European technical approval are met. Checking may take place in the manufacturing plant. Nevertheless, the responsibility for the conformity of the products to the European technical approval and for their fitness for the intended use remains with the holder of the European technical approval.
- This European technical approval is not to be transferred to manufacturers or agents of manufacturers other than those indicated on page 1, or manufacturing plants other than those indicated on page 1 of this European technical approval.
- This European technical approval may be withdrawn by Deutsches Institut für Bautechnik, in particular pursuant to information by the Commission according to Article 5(1) of Council Directive 89/106/EEC.
- Reproduction of this European technical approval including transmission by electronic means shall be in full. However, partial reproduction can be made with the written consent of Deutsches Institut für Bautechnik. In this case partial reproduction has to be designated as such. Texts and drawings of advertising brochures shall not contradict or misuse the European technical approval.
- The European technical approval is issued by the approval body in its official language. This version corresponds fully to the version circulated within EOTA. Translations into other languages have to be designated as such.

Official Journal of the European Communities L 40, 11 February 1989, p. 12

Official Journal of the European Communities L 220, 30 August 1993, p. 1

Official Journal of the European Union L 284, 31 October 2003, p. 25

⁴ Bundesgesetzblatt Teil I 1998, p. 812

⁵ Bundesgesetzblatt Teil I 2011, p. 2178

Official Journal of the European Communities L 17, 20 January 1994, p. 34

Page 3 of 41 | 15 May 2013

II SPECIFIC CONDITIONS OF THE EUROPEAN TECHNICAL APPROVAL

1 Definition of product and intended use

1.1 Definition of the construction product

The MKT Wedge anchor BZ plus and BZ-IG is an anchor made of galvanised steel or made of stainless steel or high corrosions resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. This European technical approval comprises the following anchor types:

- Anchor type BZ plus with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type BZ-IG S with internal thread, hexagon head nut and washer S-IG, sizes M6 to M12,
- Anchor type BZ-IG SK with internal thread, countersunk head screw and countersunk washer SK-IG, sizes M6 to M12,
- Anchor type BZ-IG B with internal thread, hexagon nut and washer MU-IG, sizes M6 to M12. An illustration of the product and intended use is given in Annexes 1, 2 and 20.

1.2 Intended use

The anchor is intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 of Council Directive 89/106 EEC shall be fulfilled and failure of anchorages made with these products would cause risk to human life and/or lead to considerable economic consequences.

The anchor may be used for anchorages with requirements related to resistance to fire.

The anchor is to be used only for anchorages subject to static or quasi-static loading in reinforced or unreinforced normal weight concrete of strength classes C20/25 at least and C50/60 at most according to EN 206:2000-12. It may be anchored in cracked and non-cracked concrete.

Anchor made of galvanised steel:

The MKT Wedge Anchor BZ plus made of galvanised steel may only be used in structures subject to dry internal conditions.

Anchor made of stainless steel

The MKT Wedge anchor BZ plus A4 may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e. g. in desulphurization plants or road tunnels where de-icing materials are used).

Page 4 of 41 | 15 May 2013

Anchor made of high corrosion resistant steel

The MKT Wedge anchor BZ plus HCR may be used in structures subject to dry internal conditions and also in structures subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

The provisions made in this European technical approval are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

2 Characteristics of the product and methods of verification

2.1 Characteristics of the product

The anchor corresponds to the drawings and provisions given in the Annexes. The characteristic material values, dimensions and tolerances of the anchor not given in the Annexes shall correspond to the respective values laid down in the technical documentation⁷ of this European technical approval.

Regarding the requirements concerning safety in case of fire it is assumed that the anchor meets the requirements of class A1 in relation to reaction to fire in accordance with the stipulations of the Commission decision 96/603/EC, amended by 2000/605/EC.

The characteristic values for the design of anchorages are given in the Annexes.

Each MKT Wedge Anchor BZ plus is marked in accordance with Annex 3. Each MKT Wedge Anchor BZ-IG is marked in accordance with Annex 21.

The anchor shall only be packaged and supplied as a complete unit.

2.2 Methods of verification

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Essential Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Anchors for Use in Concrete", Part 1 "Anchors in general" and Part 2 "Torque-controlled expansion anchors", on the basis of Option 1.

The assessment of the anchor for the intended use in relation to the requirements for resistance to fire has been made in accordance with the technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire".

In addition to the specific clauses relating to dangerous substances contained in this European technical approval, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

The technical documentation of this European technical approval is deposited at the Deutsches Institut für Bautechnik and, as far as relevant for the tasks of the approved bodies involved in the attestation of conformity procedure, is handed over to the approved bodies.

Page 5 of 41 | 15 May 2013

3 Evaluation and attestation of conformity and CE marking

System of attestation of conformity 3.1

According to the decision 96/582/EG of the European Commission⁸ the system 2(i) (referred to as system 1) of attestation of conformity applies.

System 1: Certification of the conformity of the product by an approved certification body on the basis of:

- (a) Tasks for the manufacturer:
 - factory production control;
 - further testing of samples taken at the factory by the manufacturer in accordance (2)with a prescribed control plan;
- Tasks for the approved body: (b)
 - initial type-testing of the product;
 - (4) initial inspection of factory and of factory production control;
 - continuous surveillance, assessment and approval of factory production control.

Note: Approved bodies are also referred to as "notified bodies".

3.2 Responsibilities

3.2.1 Tasks of the manufacturer

3.2.1.1 Factory production control

The manufacturer shall exercise permanent internal control of production. All the elements, requirements and provisions adopted by the manufacturer shall be documented in a systematic manner in the form of written policies and procedures, including records of results performed. This production control system shall insure that the product is in conformity with this European technical approval.

The manufacturer may only use initial/ raw/ constituent materials stated in the technical documentation of this European technical approval.

The factory production control shall be in accordance with the control plan which is part of the technical documentation of this European technical approval. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Deutsches Institut für Bautechnik⁹.

The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

3.2.1.2 Other tasks for the manufacturer

The manufacturer shall, on the basis of a contract, involve a body which is approved for the tasks referred to in section 3.1 in the field of anchors in order to undertake the actions laid down in section 3.2.2. For this purpose, the control plan referred to in sections 3.2.1.1 and 3.2.2 shall be handed over by the manufacturer to the approved body involved.

The manufacturer shall make a declaration of conformity, stating that the construction product is in conformity with the provisions of this European technical approval.

Z35875.13 8.06.01-477/12

Electronic copy of the ETA by DIBt: ETA-99/0010

Official Journal of the European Communities L 254 of 08.10.1996.

The control plan is a confidential part of the documentation of the European technical approval, but not published together with the European technical approval and only handed over to the approved body involved in the procedure of attestation of conformity. See section 3.2.2.

Page 6 of 41 | 15 May 2013

3.2.2 Tasks for the approved bodies

The approved body shall perform the

- initial type-testing of the product,
- initial inspection of factory and of factory production control,
- continuous surveillance, assessment and approval of factory production control

in accordance with the provisions laid down in the control plan.

The approved body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.

The approved certification body involved by the manufacturer shall issue an EC certificate of conformity of the product stating the conformity with the provisions of this European technical approval.

In cases where the provisions of the European technical approval and its control plan are no longer fulfilled the certification body shall withdraw the certificate of conformity and inform Deutsches Institut für Bautechnik without delay.

3.3 CE marking

The CE marking shall be affixed on each packaging of the anchor. The letters "CE" shall be followed by the identification number of the approved certification body, where relevant, and be accompanied by the following additional information:

- the name and address of the producer (legal entity responsible for the manufacturer),
- the last two digits of the year in which the CE marking was affixed,
- the number of the EC certificate of conformity for the product,
- the number of the European technical approval,
- the number of the guideline for European technical approval
- use category (ETAG 001-1 Option 1),
- size.

4 Assumptions under which the fitness of the product for the intended use was favourably assessed

4.1 Manufacturing

The European technical approval is issued for the product on the basis of agreed data/information, deposited with Deutsches Institut für Bautechnik, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to Deutsches Institut für Bautechnik before the changes are introduced. Deutsches Institut für Bautechnik will decide whether or not such changes affect the European technical approval and consequently the validity of the CE marking on the basis of the European technical approval and if so whether further assessment or alterations to the European technical approval shall be necessary.

Page 7 of 41 | 15 May 2013

4.2 Design of anchorages

The fitness of the anchor for the intended use is given under the following conditions:

The anchorages are designed either in accordance with

- ETAG 001 "Guideline for European technical approval of Metal Anchors for use in concrete", Annex C, method A

or in accordance with

- CEN/TS 1992-4:2009, design method A

under the responsibility of an engineer experienced in anchorages and concrete work.

Verifiable calculation notes and drawings are taking account of the loads to be anchored.

The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports).

The design of anchorages under fire exposure has to consider the conditions given in the technical Report TR 020 "Evaluation of anchorages in concrete concerning resistance to fire". The relevant characteristic anchor values are given in Annexes. The design method covers anchors with a fire attack from one side only. If the fire attack is from more than one side, the design method may be taken only, if the edge distance of the anchor is $c \ge 300$ mm.

4.3 Installation of anchors

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- For anchor version BZ-IG B the commercial standard rod may only be used if the following requirements are fulfilled:
- Material, Dimensions and mechanical properties according to Annex 22, Table 22,
- Confirmation of material and mechanical properties of the metal parts by inspection certificate 3.1 according to EN 10204:2004, the documents should be stored,
- Use of the hexagon nut and washer with special coating as supplied by the holder of the approval.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools,
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply,
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances,
- Positioning of the drill holes without damaging the reinforcement,
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application,

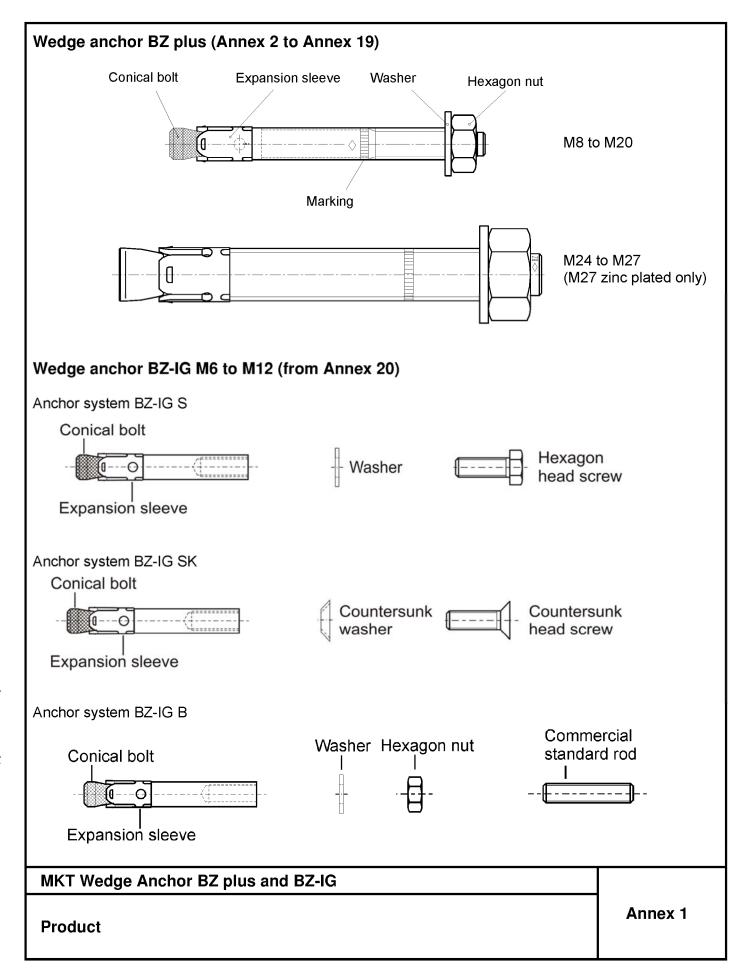
Page 8 of 41 | 15 May 2013

- Cleaning of the hole of drilling dust,
- Anchor installation such that the effective anchorage depth is complied with. This compliance
 is ensured when the embedment mark of the anchor does no more exceed the concrete
 surface.
- Application of the torque moment given in the Annexes using a calibrated torque wrench.

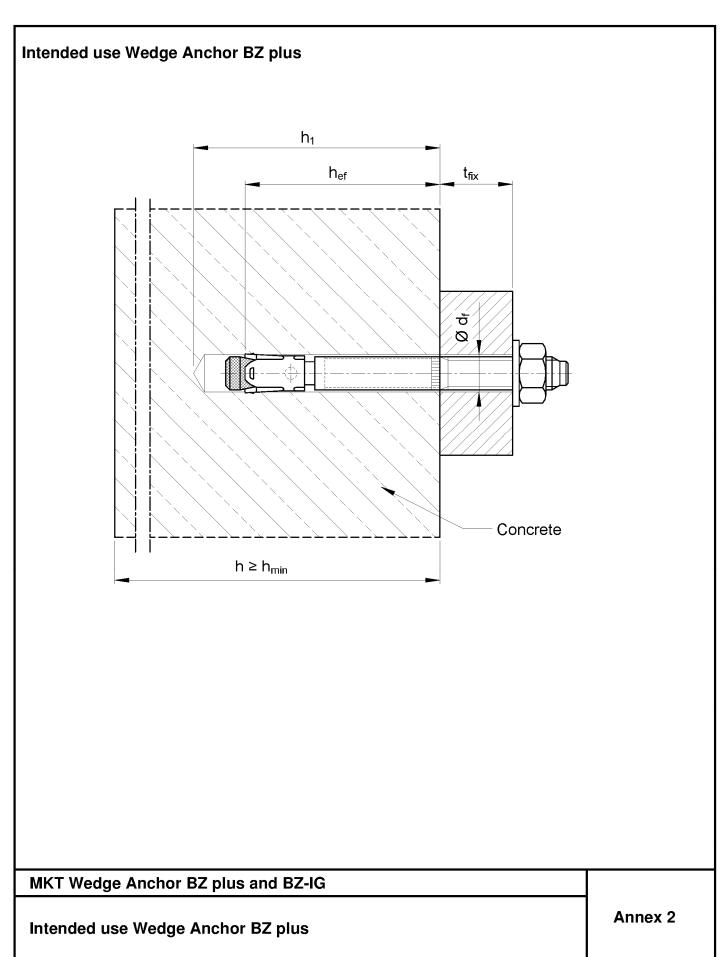
5 Indications to the manufacturer

The manufacturer is responsible to ensure that the information on the specific conditions according to 1 and 2 including Annexes referred to as well as sections 4.2 and 4.3 is given to those who are concerned. This information may be made by reproduction of the respective parts of the European technical approval. In addition all installation data shall be shown clearly on the package and/or on an enclosed instruction sheet, preferably using illustration(s).

The minimum data required are:


- Diameter of drill bit,
- Thread diameter,
- Maximum diameter of clearance hole in the fixture,
- Maximum thickness of the fixture,
- Minimum effective anchorage depth,
- Minimum hole depth,
- Torque moment,
- Information on the installation procedure, including cleaning of the hole, preferably by means of an illustration,
- Reference to any special installation equipment needed,
- Identification of the manufacturing batch.

All data shall be presented in a clear and explicit form.


Uwe Bender
Head of Department

beglaubigt: Lange

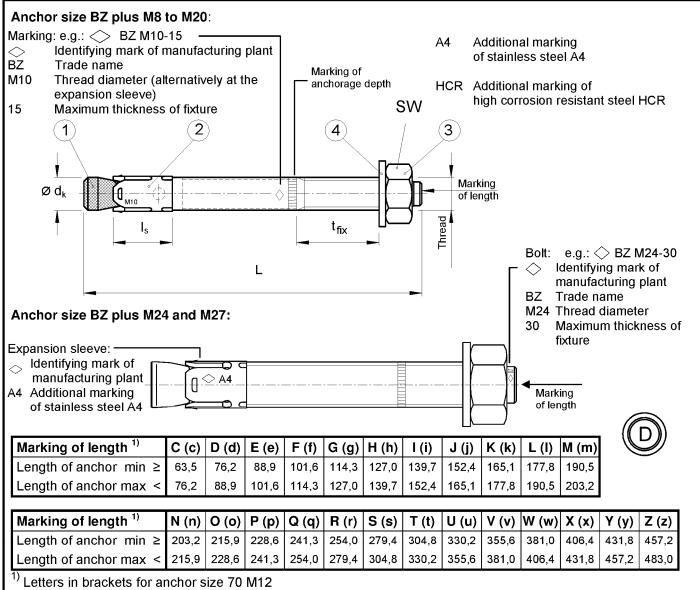


Table 1: Anchor dimensions, BZ plus

	Anchor size			M8	M10	70 M12	M16	M20	M24	125 M24	M27
1	Conical bolt		Thread	M8	M10	M12	M16	M20	M24	M24	M27
		\varnothingd_k	=	7,9	9,8	12,0	15,7	19,7	24	24	28
		t _{fix} max	\leq	3000	3000	3000	3000	3000	3000	3000	3000
	Steel, zinc pla	ated	L max	3065	3080	3095	3120	3137	3161	-	3178
	Stainless ste A4, HCR	eel	L max	3065	3080	3095	3120	3137	3153	3178	-
2	Expansion sleeve	Is	=	14,5	18,5	22	24,3	28	32	32	36
3	Hexagon nut		SW	13	17	19	24	30	36	36	41
4	Washer						see T	able 2			·

Dimensions in mm

MKT Wedge Anchor BZ plus and BZ-IG

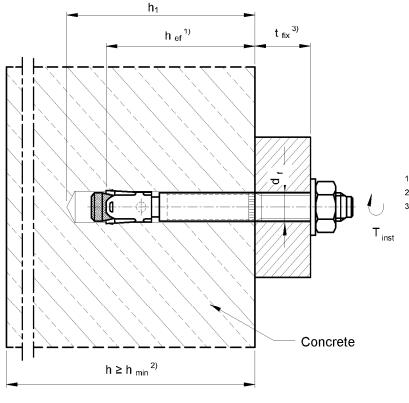
Anchor dimensions, BZ plus

Annex 3

Table 2: Materials, BZ plus

Part	Anchor size	Steel, zinc plated M8 to M20	Steel, zinc plated M24 and M27	Stainless steel A4	High corrosion resistant steel (HCR)
1	Conical bolt	Cold formed or machined steel, Cone plastic	Threaded bolt, steel property class 8.8, EN ISO 898-1	Stainless steel 1.4401, 1.4404, 1.4571 or 1.4578,	High corrosion resistant steel 1.4529 or 1.4565,
Ľ	Conicar boil	coated (M8 to M20)	Threaded cone, steel, property class 8, EN ISO 898-2	EN 10088 Cone plastic coated	EN 10088 Cone plastic coated
2	Expansion sleeve	Steel acc. to EN 100 1.4301 or 1.4401 for Steel EN 10139 for	M8-M20;	Stainless steel 1.4401 or 1.4571, EN 10088	Stainless steel 1.4401 or 1.4571, EN 10088
3	Hexagon nut	Property class 8 acc galvanised, coated	e. to EN ISO 898-2,	ISO 3506, property class 70, stainless steel 1.4401 or 1.4571, EN 10088, coated	ISO 3506, property class 70, high corrosion resistant steel 1.4529 or 1.4565, EN 10088, coated
4	Washer acc. to EN ISO 7089, or EN ISO 7093, or EN ISO 7094	Steel, galvanised		Stainless steel 1.4401 or 1.4571, EN 10088	High corrosion resistant steel 1.4529 or 1.4565, EN 10088

MKT Wedge Anchor BZ plus and BZ-IG


Materials, BZ plus

Annex 4

Table 3: Installation parameters, BZ plus

Anchor siz	e			М8	M10	70 M12	M16	M20	M24	125 M24	M27
Nominal dri	ll hole diameter	d_0	[mm]	8	10	12	16	20	24	24	28
Cutting diameter of drill bit		$d_{cut} \leq$	[mm]	8,45	10,45	12,5	16,5	20,55	24,55	24,55	28,55
Depth of	Steel, zinc plated	h ₁ ≥	[mm]	60	75	90	110	125	145	-	160
drill hole	Stainless steel A4, HCR	h ₁ ≥	[mm]	60	75	90	110	125	130	160	-
Effective	Steel, zinc plated	h _{ef}	[mm]	46	60	70	85	100	115	-	125
anchorage depth	Stainless steel A4, HCR	h _{ef}	[mm]	46	60	70	85	100	100	125	-
Installation	Steel, zinc plated	T _{inst}	[Nm]	20	25	45	90	160	200	-	300
torque	Stainless steel A4, HCR	T _{inst}	[Nm]	20	35	50	110	200	200	290	-
Diameter of in the fixture	clearance hole	$d_f\!\leq\!$	[mm]	9	12	14	18	22	26	26	30

- $^{1)}$ Effective anchorage depth h_{ef} $^{2)}$ Minimum thickness of concrete member h_{min} $^{3)}$ Thickness of fixture $t_{\rm fix}$

MKT Wedge Anchor BZ plus and BZ-IG

Installation parameters, BZ plus

Annex 5

Drill hole perpendicular to concrete surface. Blow out dust. Drive in anchor. Max. tightening torque T_{inst} shall be applied by using torque wrench.

MKT Wedge Anchor BZ plus and BZ-IG	
Installation instructions, BZ plus	Annex 6

Table 4: Standard thickness of concrete member and respective minimum spacing and edge distance, BZ plus

Anchor size			М8	M10	70 M12	M16	M20	M24	125 M24	M27
Steel zinc plated										
Minimum thickness of member	h _{std}	[mm]	100	120	140	170	200	230	-	250
Cracked concrete										
Minimum spacing	S _{min}	[mm]	40	45	60	60	95	100	-	125
	for c ≥	[mm]	70	70	100	100	150	180	-	300
Minimum edge distance	C _{min}	[mm]	40	45	60	60	95	100	-	180
	for $s \ge$	[mm]	80	90	140	180	200	220	-	540
Non-cracked concrete										
Minimum spacing	S _{min}	[mm]	40	45	60	65	90	100	-	125
	for c ≥	[mm]	80	70	120	120	180	180	-	300
Minimum edge distance	C _{min}	[mm]	50	50	75	80	130	100	-	180
	for $s \ge$	[mm]	100	100	150	150	240	220	-	540
Stainless steel A4, HCR										
Minimum thickness of member	h _{std}	[mm]	100	120	140	160	200	200	250	-
Cracked concrete										
Minimum spacing	S _{min}	[mm]	40	50	60	60	95	180	125	-
	fürc≥	[mm]	70	75	100	100	150	180	125	-
Minimum edge distance	C _{min}	[mm]	40	55	60	60	95	180	125	-
	für s ≥	[mm]	80	90	140	180	200	180	125	-
Non-cracked concrete										
Minimum spacing	S _{min}	[mm]	40	50	60	65	90	180	125	-
	für c ≥	[mm]	80	75	120	120	180	180	125	-
Minimum edge distance	C _{min}	[mm]	50	60	75	80	130	180	125	-
	für s ≥	[mm]	100	120	150	150	240	180	125	•

Intermediate values by linear interpolation.

Table 5: Minimum thickness of concrete of member and respective minimum spacing and edge distance, BZ plus

Anchor size			М8	M10	70 M12	M16	M20	M24	125 M24	M27
Steel zinc plated and Stainless	s steel A	4, HCR	i							
Minimum thickness of member	h _{min}	[mm]	80	100	120	140	-	-	-	<u> </u>
Cracked concrete										
Minimum spacing	S _{min}	[mm]	40	45	60	70	-	-	-	
	for c ≥	[mm]	70	90	100	160	-		-	-
Minimum edge distance	C _{min}	[mm]	40	50	60	80	-	-	-	-
	for s ≥	[mm]	80	115	140	180	-		-	-
Non-cracked concrete										
Minimum spacing	S _{min}	[mm]	40	60	60	80			-	-
	für c ≥	[mm]	80	140	120	180	-	-	_	· -
Minimum edge distance	C _{min}	[mm]	50	90	75	90	-	_	-	
	für s ≥	[mm]	100	140	150	200	-	-	-	-

Intermediate values by linear interpolation.

MKT Wedge Anchor BZ plus and BZ-IG

Minimum thickness of member, Minimum spacing and edge distance, BZ plus

Annex 7

Table 6: Characteristic values for tension loads, ETAG 001, Annex C, BZ plus, steel zinc plated

Anchor size			M8	M10	70 M12	M16	M20	M24	M27
Steel failure				•					•
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1,	,53	1,	5	1,6	1,	5
Pullout									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	3)	3)	3)
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	3)	3)	3)
Splitting for standard thickness of	concrete n	nember	(The high	ner resista	nce of Cas	e 1 and C	ase 2 may	be applied	d.)
Standard thickness of concrete	h _{std} ≥	[mm]	100	120	140	170	200	230	250
Case 1									
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	9 ¹⁾	12 ¹⁾	20 ¹⁾	30 ¹⁾	40 ¹⁾	3)	50 ¹⁾
Respective spacing	S _{cr,sp}	[mm]				3 h _{ef}			
Respective edge distance	C _{cr,sp}	[mm]				1,5 h _{ef}			
Case 2									
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	3)	3)	3)
Respective spacing	S _{cr,sp} ²⁾	[mm]		4	h _{ef}		4,4 h _{ef}	3 h _{ef}	5 h _{ef}
Respective edge distance	C _{cr,sp} ²⁾	[mm]		2	h _{ef}		2,2 h _{ef}	1,5 h _{ef}	2,5 h _{ef}
Splitting for minimum thickness o			r						
Minimum thickness of concrete	h _{min} ≥	[mm]	80	100	120	140	-	-	-
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	-	-	-
Respective spacing	S _{cr,sp} 2)	[mm]		5	h _{ef}		-	-	-
Respective edge distance	C _{cr,sp} 2)	[mm]		2,5	h _{ef}		-	-	-
Increasing factors	C30/37	[-]				1,22			
for $N_{Rk,p}$ and $N_{Rk,sp}^0$ ψ_C	C40/50	[-]				1,41			
	C50/60	[-]				1,55			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Spacing	S _{cr,N}	[mm]		•		3 h _{ef}			-
Edge distance	C _{cr,N}	[mm]				1,5 h _{ef}			
Partial safety factor γ _{Mr}	= γ _{Msp} =γ _{Mc}	[-]				1,5			

For the proof against splitting failure according to ETAG 001, Annex C, $N_{Rk,c}^0$ in equation (5.3) has to be replaced by $N_{Rk,sp}^0$ with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

3) Pullout is not decisive

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for tension loads, ETAG 001, Annex C, BZ plus, steel zinc plated

Annex 8

The values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly interpolated for the member thickness $h_{min} < h < h_{std}$ (Case 2) $(\psi_{h,sp} = 1,0)$.

Table 7: Characteristic values for tension loads, ETAG 001, Annex C, BZ plus, stainless steel A4, HCR

Anchor size			М8	M10	70 M12	M16	M20	M24	125 M24
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	11	0
Partial safety factor	γMs	[-]		1	,5		1,68	1	,5
Pullout									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	3)	3)	40
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	3)	3)	3)
Splitting for standard thickness of	concrete m	nember	(The high	ner resista	nce of Cas	e 1 and C	ase 2 may	be applie	d.)
Standard thickness of concrete	h _{std} ≥	[mm]	100	120	140	160	200	200	250
Case 1							_		
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp}	[kN]	9 ¹⁾	12 ¹⁾	20 ¹⁾	30 ¹⁾	40 ¹⁾	-	-
Respective spacing	$S_{\text{cr,sp}}$	[mm]			3 h _{ef}			-	-
Respective edge distance	C _{cr,sp}	[mm]			$1,5\ h_{ef}$			-	-
Case 2									
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	3)	3)	3)
Respective spacing	S _{cr,sp} 2)	[mm]	230	250	280	400	440	600	500
Respective edge distance	C _{cr,sp} ²⁾	[mm]	115	125	140	200	220	300	250
Splitting for minimum thickness o	f concrete n	nember	1						
Minimum thickness of concrete	h _{min} ≥	[mm]	80	100	120	140	-	-	-
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	-	-	-
Respective spacing	S _{cr,sp} 2)	[mm]		5	i h _{ef}		-	-	-
Respective edge distance	C _{cr,sp} ²⁾	[mm]		2,5	i h _{ef}		-	-	-
Increasing factors	C30/37	[-]				1,22			
for $N_{Rk,p}$ and $N_{Rk,sp}^0$ ψ_C	C40/50	[-]				1,41			
	C50/60	[-]				1,55			
Concrete cone failure		'							
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	100	125
Spacing	S _{cr,N}	[mm]				3 h _{ef}	-		-
Edge distance	C _{cr,N}	[mm]				1,5 h _{ef}			
Partial safety factor γ _{Mr}	= γ _{Msp} =γ _{Mc}	[-]				1,5			

For the proof against splitting failure according to ETAG 001, Annex C, $N_{Rk,c}^0$ in equation (5.3) has to be replaced by $N_{Rk,sp}^0$ with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

3) Pullout is not decisive

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for tension loads, ETAG 001, Annex C, BZ plus, stainless steel A4, HCR

Annex 9

The values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly interpolated for the member thickness $h_{min} < h < h_{std}$ (Case 2) $(\psi_{h,sp} = 1,0)$.

English translation prepared by DIBt

Table 8:	Displacements under tension loads, BZ plus
----------	--

Anchor size			М8	M10	70 M12	M16	M20	M24	125 M24	M27
Steel zinc plated										
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	-	24
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	-	0,9
	$\delta_{N\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	-	1,4
Tension load in non-cracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	-	34
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	-	0,3
	$\delta_{N^{\infty}}$	[mm]	0,	8	1,4		0,8		-	1,4
Stainless steel A4, HCI	R									
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	17,0	19,0	-
Displacement	δ_{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	0,5	-
	$\delta_{\text{N}\infty}$	[mm]	1,2	1,4	1,4	1,4	1,0	1,6	1,8	-
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	24,1	33,5	-
Displacement	δ_{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	1,5	0,5	-
	$\delta_{N_{\infty}}$	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	1,1	-

MKT Wedge Anchor BZ plus and BZ-IG

Displacements under tension loads, BZ plus

Annex 10

Table 9: Characteristic values for shear loads, ETAG 001, Annex C, B
--

		М8	M10	70 M12	M16	M20	M24	125 M24	M27
teel zinc	plated								
$V_{Rk,s}$	[kN]	15	22	30	60	69	114	-	169,4
γMs	[-]		1	,25		1,33	1,25	-	1,25
tainless	steel A	4, HCR							
$V_{Rk,s}$	[kN]	13	20	30	55	86	123	,6	-
γ̃Ms	[-]		1	,25		1,4	1,	25	-
zinc pla	ited								
M ⁰ _{Rk,s}	[Nm]	23	47	82	209	363	898	-	1331,5
γMs	[-]		1	,25		1,33	1,25	-	1,25
less ste	el A4, I	HCR				•			
M ⁰ _{Rk,s}	[Nm]	26	52	92	233	454	785	,4	-
γ̃Ms	[-]		1	,25		1,4	1,	25	-
						•	•		
k	[-]				2,0				
γмср	[-]				1,5				
l _f	[mm]	46	60	70	85	100	115	-	125
I _f	[mm]	46	60	70	85	100	100	125	-
d _{nom}	[mm]	8	10	12	16	20	2	4	27
γмс	[-]		•	•	1,	5			
	$\begin{array}{c} V_{Rk,s} \\ \hline \gamma_{Ms} \\ \hline tainless \\ V_{Rk,s} \\ \hline \gamma_{Ms} \\ \hline zinc pla \\ \hline M^0_{Rk,s} \\ \hline \gamma_{Ms} \\ \hline less steem \\ M^0_{Rk,s} \\ \hline \gamma_{Ms} \\ \hline \\ k \\ \hline \gamma_{Mcp} \\ \hline \\ l_f \\ \hline \\ d_{nom} \\ \\ \end{array}$	$\begin{array}{c c} V_{Rk,s} & [kN] \\ \hline \gamma_{Ms} & [-] \\ \hline \mbox{tainless steel A} \\ \hline V_{Rk,s} & [kN] \\ \hline \gamma_{Ms} & [-] \\ \hline \mbox{zinc plated} \\ \hline \mbox{M0}_{Rk,s} & [Nm] \\ \hline \gamma_{Ms} & [-] \\ \hline \mbox{less steel A4, I} \\ \hline \mbox{M0}_{Rk,s} & [Nm] \\ \hline \gamma_{Ms} & [-] \\ \hline \mbox{k} & [-] \\ \hline \mbox{k} & [-] \\ \hline \mbox{y}_{Mcp} & [-] \\ \hline \mbox{l} & [mm] \\ \hline \mbox{l}_f & [mm] \\ \hline \mbox{d}_{nom} & [mm] \\ \hline \mbox{d}_{nom} & [mm] \\ \hline \mbox{l} & [-] \\$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	teel zinc plated $V_{Rk,s}$ [kN] 15 22 γ_{Ms} [-] 1 1 tainless steel A4, HCR $V_{Rk,s}$ [kN] 13 20 γ_{Ms} [-] 1 γ_{Ms} [-] 1 1 γ_{Ms} [-] 1 γ_{Ms}	teel zinc plated $V_{Rk,s}$ [kN] 15 22 30 γ_{Ms} [-] 1,25 tainless steel A4, HCR $V_{Rk,s}$ [kN] 13 20 30 γ_{Ms} [-] 1,25 zinc plated $M^0_{Rk,s}$ [Nm] 23 47 82 γ_{Ms} [-] 1,25 less steel A4, HCR $M^0_{Rk,s}$ [Nm] 26 52 92 γ_{Ms} [-] 1,25 γ_{Ms} [-] 1,2	teel zinc plated $V_{Rk,s}$ [kN] 15 22 30 60 γ_{Ms} [-] 1,25 tainless steel A4, HCR $V_{Rk,s}$ [kN] 13 20 30 55 γ_{Ms} [-] 1,25 zinc plated $M^0_{Rk,s}$ [Nm] 23 47 82 209 γ_{Ms} [-] 1,25 tess steel A4, HCR $M^0_{Rk,s}$ [Nm] 26 52 92 233 γ_{Ms} [-] 1,25 γ_{Ms} [-] 1,5 γ_{M	teel zinc plated $V_{Rk,s}$ [kN] 15 22 30 60 69 γ_{Ms} [-] 1,25 1,33 tainless steel A4, HCR $V_{Rk,s}$ [kN] 13 20 30 55 86 γ_{Ms} [-] 1,25 1,4 zinc plated $M^0_{Rk,s}$ [Nm] 23 47 82 209 363 γ_{Ms} [-] 1,25 1,33 tess steel A4, HCR $M^0_{Rk,s}$ [Nm] 26 52 92 233 454 γ_{Ms} [-] 1,25 1,4 γ_{Ms} [-] 1,25 1,35 tess steel A4, HCR $M^0_{Rk,s}$ [Nm] 26 52 92 233 454 γ_{Ms} [-] 1,25 1,4 γ_{Ms} [-] 1,5 1,5 1,4	teel zinc plated $V_{Rk,s}$ [kN] 15 22 30 60 69 114 γ_{Ms} [-] 1,25 1,33 1,25 tainless steel A4, HCR $V_{Rk,s}$ [kN] 13 20 30 55 86 123 γ_{Ms} [-] 1,25 1,4 1, zinc plated $M_{Rk,s}^0$ [Nm] 23 47 82 209 363 898 γ_{Ms} [-] 1,25 1,33 1,25 less steel A4, HCR $M_{Rk,s}^0$ [Nm] 26 52 92 233 454 785 γ_{Ms} [-] 1,25 1,4 1, γ_{Ms} [-] 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 10: Displacements under shear loads, BZ plus

Anchor size			M8	M10	70 M12	M16	M20	M24	125 M24	M27
Steel zinc plated										
Shear load in cracked and non-cracked concrete	٧	[kN]	8,6	12,6	17,1	34,3	36,8	64,9	-	96,8
Displacement	δ_{V0}	[mm]	2,3	2,2	2,2	4,0	1,8	3,5	-	3,6
	$\delta_{V\!\infty}$	[mm]	3,5	3,3	3,4	6,0	2,7	5,3	-	5,4
Stainless steel A4, HCR										
Shear load in cracked and non-cracked concrete	٧	[kN]	7,3	11,6	16,9	31,3	43,8	70	,6	-
Displacement	δ_{V0}	[mm]	3,2	4,4	5,2	6,5	2,9	2,	,8	-
	$\delta_{\text{V}_{\infty}}$	[mm]	4,8	6,6	7,8	9,8	4,3	4,	.2	-

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for shear loads, ETAG 001, Annex C, Displacements under shear loads, BZ plus

Annex 11

Characte under fire	MKT Wed	Table 11:	Characteristic values of tension resistance under fire exposure in cracked and non-cracked concrete C20/25 to C 50/60, ETAG001, Annex C, BZ plus	teris d anc	tic v d no	alue n-cra	ss of acke	f ten:	sion	res ete (istar C20/;	ice t 25 tc	inde C &	er fire 50/60	, ex	posi 7AG(ıre i 01,	n Ann	ex (nld 2	<u>s</u>			
	dge	Anchor size			M8			M10			70 M12			M16			M20		M24	1/125	M24/125 M24 A4	44	≥	M27	
	Anch	Fire resistance duration	R	30	06 09	120	30 6	06 09	120	30 60	06	120	30 66	06 09	120	30	6 09	90 120	30	09	90 13	120 30	09 (06	120
	or l	Steel failure							1												-				
	BZ p	Characteristic	Naks fi	1,4	1,1 0,8	7,0	2,2 1,	1,8 1,4	1,2	3,2 2,8	2,4	2,2	6,0 5,	5,2 4,4	4,0	9,4	8,2 6	6,9 6,3		13,6 11,8 10,0		9,1 17,6	6 15,3	13,0	11,8
	lus	resistance	[kN] A4 / HCR	3,8	2,9 2,0	1,6	6,9 5,	5,2 3,5	2,7	11,5 8,6	5,6	4,2 2	1,5 16	21,5 16,0 10,5	7,8	33,5 25,0 16,4 12,1	5,0 16	,4 12,		35,9	48,2 35,9 23,6 17,4	- 4,7	'	'	'
	and	Pullout failure	d)																						
	BZ-	Characteristic resistance in	NZ.																	11,0	8	8,8			
	IG	concrete C20/25 to C50/60	NRk,p.fi [KN] A4 / HCR		د ن	1,0	7	2,3	8,	4,0		3,2	6,3	e,	5,0	<i>.,</i>	0'6	7,2		9,0 / 12,6 ¹⁾		7,2 / 10,1	12,6		10,1
Z pl		Concrete cone failure	e failure						1			1									=				
us		Characteristic resistance in	VZ.																	25,5	20	20,4			
		concrete C20/25 to	N Rk,c,fi [KN] A4 /		2,6	2,1	5	5,0	4,0	7,4		5,9	12,0	0,	9,6	_	18,0	14,4		3		14,4	31,5		25,2
		C50/60	HCF	<u>~</u>								\dashv							9	18,1/31,5"		25,2			
		Spacing	Scr,N,fi											4 x h _{ef}	 و										
		Edge distance	Ccr,N,fi											2 x h _{ef}	Jet										
		Minimum spacing and edge distance under fire exposure from one	ing and under one									-	Accor	According to Annex 7	Ann	ex 7									
		side		\downarrow																					
Ann		Minimum spacing and edge distance under fire exposure from more than one side	ing and under rom side								Smin	accon	ding t	Smin according to Annex 7; c _{min} ≥ 300 mm	3× 7; ∙	O Min VI	300 п	Ē							
iex 12		In absence of other national regulations the	other nations 24 A4	ıl regul	lations		artials	s safet	y fact	or for	partials safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 recommended	n eou	nder	fire ex	osur	e YM,fi	0, 1	гесот	ımend	Ped					
	\dagger															l	l	l		l	l	l	l	l]

Deutsches Institut für **Bautechnik**

0,69 72,0 75,0

46,0

47,0

48,0

50,0

26,0

27,0

28,0

29,0

13,0

14,0

14,0

15,0

5,3

5,4

5,6

5,9 2,5

2,7

ი ზ

1,1 1,2

, 0

Ķ

M⁰Rk,s,fi_ [Nm]

Characteristic esistance

arm

Steel failure with lever

55

75,1

114,3

153,5

32,1

43,4

66,1

88,8

16,4

22,2

33,9

45,5 6,5

<u>α</u>

13,3

17,9

3,4

9,0 6,8 4,5

1,6

2,1

2,9 3,8 A4/ HCR

English translation prepared by DIBt

Table 12:	Characteristic shear resistance under fire exposure	te	l isi	E:	l she	ear	5	Sist	lan lan	93		<u>ē</u>	lire	×	soc	l en													
	in cracked and non	;ke	p	pur	u l)-uc	cra	ck() pe) Jon	cre	ţ	C2	0/25	to	C2)9/0), E	TA(005	1, 4	ınne	ı-cracked concrete C20/25 to C50/60, ETAG001, Annex C, BZ plus	, BZ	plt	SL			
Anchor size				M8	ω			M10			70	70 M12	<u></u>		2	M16			2	M20		M24	M24 / 125 M24 A4	5 M2	1 A4		M	M27	
Fire resistance duration	R [min]		30	09	30 60 90 120)	30 6	90	30 60 90 120 30	36	09 ()6 (90 120	30	09		90 120	30	90	06	120	30	09	06	120	30	09	06	120
Steel failure without lever arm	rithout lev	era	Ē																										
Characteristic	VRK,s,fi	VZ.	1,6	1,5	1,6 1,5 1,2 1,0	_	2,6 2	.,5 2,	2,6 2,5 2,1 2,0	3,8	3,6	3 3,4	3,5 3,4	1,0	6,8	6,5	6,4	11,0	11,0	10,0	11,0 11,0 10,0 10,0	16,0	15,0	15,0	14,0	15,0 14,0 20,6	19,8	19,0	18,6
resistance		A4 / HCR	3,8	2,9	A4/ HCR 3,8 2,9 2,0 1,6		3,9 5	,2 3,	5 2,7	7 11,	5 8,6	3 5,6	3 4,2	21,5	6,9 5,2 3,5 2,7 11,5 8,6 5,6 4,2 21,5 16,0 10,5 7,8	10,5	7,8	33,5	3 25,0	16,4	12,1	33,5 25,0 16,4 12,1 48,2		23,6	35,9 23,6 17,4	ı	-	-	ı

concrete pryout failure:

In Equation (5.6) of ETAG 001, Annex C, 5.2.3.3 the k-factor 2,0 and the relevant values of N RKC, of Table 11 have to be considered.

Concrete edge failure:

The initial value $V_{R_Kc,f}$ of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:

 $V_{RK,c,f}^0 = 0.20 \times V_{RK,c}^0$ (R120)

with $V_{Rk,c}^0$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

 $V_{RK,c,ff}^0 = 0.25 \times V_{RK,C}^0$ (R30, R60, R90)

In absence of other national regulations the partial factor for resistance under fire exposure man = 1,0 recommended.

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic shear resistance under fire exposure, ETAG 001, Annex C, BZ plus Annex 13

Table 13: Characteristic values for tension loads, CEN/TS 1992-4, BZ plus, steel zinc plated

Anchor size			M8	M10	70 M12	M16	M20	M24	M27
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	60	86	126	196
Partial safety factor	γMs	[-]	1,	53	1,	5	1,6	1,	5
Pullout									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	3)	3)	3)
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	3)	3)	3)
Splitting for standard thickness of	concrete n	nember	(The high	ner resista	nce of Cas	e 1 and C	ase 2 may	be applied	1.)
Standard thickness of concrete	h _{std} ≥	[mm]	100	120	140	170	200	230	250
Case 1									
Characteristic resistance in concrete C20/25	$N^0_{\text{Rk,sp}}$	[kN]	9 ¹⁾	12 ¹⁾	20 ¹⁾	30 ¹⁾	40 ¹⁾	3)	50 ¹⁾
Respective spacing	S _{cr,sp}	[mm]				3 h _{ef}			
Respective edge distance	C _{cr,sp}	[mm]				1,5 h _{ef}			
Case 2									
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	3)	3)	3)
Respective spacing	S _{cr,sp} 2)	[mm]		4	h _{ef}		4,4 h _{ef}	3 h _{ef}	5 h _{ef}
Respective edge distance	C _{cr,sp} 2)	[mm]		2	h _{ef}		2,2 h _{ef}	1,5 h _{ef}	2,5 h _{ef}
Splitting for minimum thickness of	concrete r	nembe	r						
Minimum thickness of concrete	h _{min} ≥	[mm]	80	100	120	140	-	-	-
Characteristic resistance in concrete C20/25	N ⁰ _{Rk,sp}	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	-	-	-
Respective spacing	S _{cr,sp} 2)	[mm]		5	h _{ef}		-	-	-
Respective edge distance	C _{cr,sp} ²⁾	[mm]		2,5	h _{ef}		-	-	-
Increasing factors	C30/37	[-]				1,22			
for $N_{Rk,p}$ and $N_{Rk,sp}^0$ ψ_C	C40/50	[-]				1,41			
, , , , , , , , , , , , , , , , , , , ,	C50/60	[-]				1,55			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	115	125
Spacing	S _{cr,N}	[mm]				3 h _{ef}	•		
Edge distance	C _{cr,N}	[mm]				1,5 h _{ef}			
Partial safety factor γ _{Mo}	= _{γMsp} = _{γMc}	[-]				1,5			

¹⁾ For the proof against splitting failure according to CEN/TS 1992-4-4, N⁰_{Rk,c} in equation (12) has to be replaced by N⁰_{Rk,sp} with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for tension loads, CEN/TS 1992-4, BZ plus, steel zinc plated

Annex 14

The values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly interpolated for the member thickness $h_{min} < h < h_{std}$ (Case 2) ($\psi_{h,sp}$ = 1,0). Pullout is not decisive

Characteristic values for tension loads, CEN/TS 1992-4, BZ plus, stainless steel A4, HCR

Anchor size			М8	M10	70 M12	M16	M20	M24	125 M24
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	27	40	64	108	11	0
Partial safety factor	γMs	[-]		1	,5		1,68	1,	,5
Pullout									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	16	25	3)	3)	40
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	25	35	3)	3)	3)
Splitting for standard thickness of o	concrete m	nember	(The high	ier resista	nce of Case	e 1 and C	ase 2 may	be applied	d.)
Standard thickness of concrete	h _{std} ≥	[mm]	100	120	140	160	200	200	250
Case 1									
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	9 ¹⁾	12 ¹⁾	20 ¹⁾	30 ¹⁾	40 ¹⁾	-	-
Respective spacing	S _{cr,sp}	[mm]				h _{ef}		-	-
Respective edge distance	C _{cr,sp}	[mm]			1,5	h _{ef}		-	-
Case 2									
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	3)	3)	3)
Respective spacing	S _{cr,sp} 2)	[mm]	230	250	280	400	440	600	500
Respective edge distance	C _{cr,sp} 2)	[mm]	115	125	140	200	220	300	250
Splitting for minimum thickness of	concrete n	nember	<u> </u>						_
Minimum thickness of concrete	h _{min} ≥	[mm]	80	100	120	140	-	-	-
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	12 ¹⁾	16 ¹⁾	25 ¹⁾	35 ¹⁾	-	-	-
Respective spacing	S _{cr,sp} 2)	[mm]			i h _{ef}		-	-	-
Respective edge distance	C _{cr,sp} 2)	[mm]		2,5	i h _{ef}		-	-	-
Increasing factors	C30/37	[-]				1,22			
for $N_{Rk,p}$ and $N_{Rk,sp}^0$ ψ_C	C40/50	[-]				1,41			
	C50/60	[-]				1,55			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	46	60	70	85	100	100	125
Spacing	S _{cr,N}	[mm]				3 h _{ef}			
Edge distance	C _{cr,N}	[mm]				1,5 h _{ef}			
Partial safety factor γ _{Mp} =	γ _{Msp} =γ _{Mc}	[-]				1,5			

¹⁾ For the proof against splitting failure according to CEN/TS 1992-4-4, N_{Rk,c} in equation (12) has to be replaced by N_{Rk,sp} with consideration of the member thickness ($\psi_{ucr,N} = 1,0$).

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for tension loads, CEN/TS 1992-4, BZ plus, stainless steel A4, HCR

Annex 15

The values $s_{cr,sp}$ and $c_{cr,sp}$ may be linearly interpolated for the member thickness $h_{min} < h < h_{std}$ (Case 2) ($\psi_{h,sp}$ = 1,0). Pullout is not decisive

English translation prepared by DIBt

Table 15: Displacements under tension loads, BZ plus

Anchor size			M8	M10	70 M12	M16	M20	M24	125 M 24	M27
Steel zinc plated										
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	21,1	-	24
Displacement	δ_{N0}	[mm]	0,6	1,0	0,4	1,0	0,9	0,7	-	0,9
	$\delta_{N\infty}$	[mm]	1,4	1,2	1,4	1,3	1,0	1,2	-	1,4
Tension load in non-cracked concrete	N	[kN]	5,7	7,6	11,9	16,7	23,8	29,6	-	34
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,3	0,4	0,5	-	0,3
	$\delta_{N\infty}$	[mm]	0,	,8	1,4		0,8		-	1,4
Stainless steel A4, HCR										
Tension load in cracked concrete	N	[kN]	2,4	4,3	7,6	11,9	17,1	17,0	19,0	-
Displacement	δ_{N0}	[mm]	0,7	1,8	0,4	0,7	0,9	0,5	0,5	-
	$\delta_{N\infty}$	[mm]	1,2	1,4	1,4	1,4	1,0	1,6	1,8	-
Tension load in non-cracked concrete	N	[kN]	5,8	7,6	11,9	16,7	23,8	24,1	33,5	-
Displacement	δ_{N0}	[mm]	0,6	0,5	0,7	0,2	0,4	1,5	0,5	-
	$\delta_{N\infty}$	[mm]	1,2	1,0	1,4	0,4	0,8	1,1	1,1	-

MKT Wedge Anchor BZ plus and BZ-IG

Displacements under tension loads, BZ plus

Annex 16

Table 16:	Characteristic values for shear loads,	CEN/TS 1992-4, BZ plus
-----------	--	------------------------

Anchor size				M8	M10	70 M12	M16	M20	M24	125 M24	M27
Steel failure witho	out lever arm, Ste	el zinc	plated								
Characteristic resis	tance	$V_{Rk,s}$	[kN]	15	22	30	60	69	114	-	169,4
Factor of ductility		k_2	[-]			1,	0			-	1,0
Partial safety factor	-	γ _{Ms}	[-]		1	,25		1,33	1,25	-	1,25
Steel failure witho	ut lever arm, Sta	inless	steel A4	, HCR							
Characteristic resis	tance	$V_{Rk,s}$	[kN]	13	20	30	55	86	123	,6	-
Factor of ductility		k ₂	[-]				1,0				-
Partial safety factor	•	γMs	[-]		1	,25		1,4	1,	25	-
Steel failure with I	ever arm, Steel a	zinc pla	ted								
Characteristic bend	ling resistance	$M^0_{Rk,s}$	[Nm]	23	47	82	209	363	898	-	1331,5
Partial safety factor	-	γMs	[-]		1	,25		1,33	1,25	-	1,25
Steel failure with I	ever arm, Stainle		A4, H	CR							
Characteristic bend	ling resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	233	454	785	,4	1
Partial safety factor	-	γMs	[-]		1	,25		1,4	1,	25	-
Concrete pryout fa	ailure										
Factor in equation (CEN/TS 1992-4-4,		k ₃	[-]				2,	0			
Partial safety factor	•	γмср	[-]				1,	5			
Concrete edge fai	lure										
Effective length of	Steel zinc plated	I_{f}	[mm]	46	60	70	85	100	115	-	125
anchor in shear loading	Stainless steel A4, HCR	l _f	[mm]	46	60	70	85	100	100	125	-
Outside diameter o	f anchor	d_{nom}	[mm]	8	10	12	16	20	2	4	27
Partial safety factor	-	γмс	[-]				1,	5			

Table 17: Displacements under shear loads, BZ plus

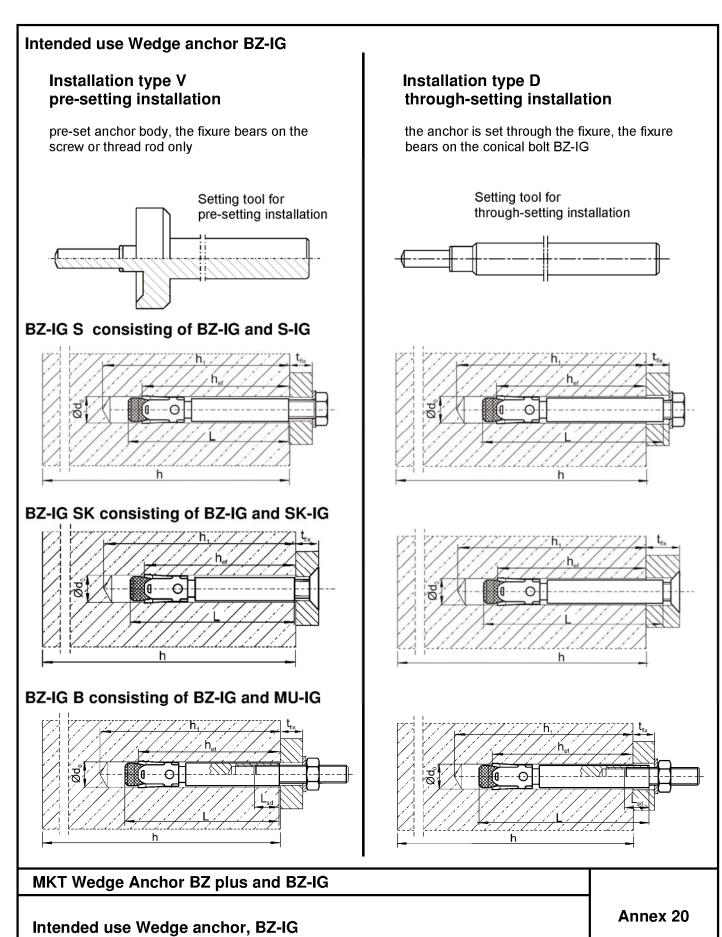
Anchor size			М8	M10	70 M12	M16	M20	M24	125 M24	M27
Steel zinc plated										
Shear load in cracked and non-cracked concrete	V	[kN]	8,6	12,6	17,1	34,3	36,8	64,9	-	96,8
Displacement	δ_{V0}	[mm]	2,3	2,2	2,2	4,0	1,8	3,5	-	3,6
	$\delta_{V_{\infty}}$	[mm]	3,5	3,3	3,4	6,0	2,7	5,3	-	5,4
Stainless steel A4, HCR										
Shear load in cracked and non-cracked concrete	V	[kN]	7,3	11,6	16,9	31,3	43,8	70	,6	-
Displacement	δ_{V0}	[mm]	3,2	4,4	5,2	6,5	2,9	2,	8	-
	$\delta_{V_{\infty}}$	[mm]	4,8	6,6	7,8	9,8	4,3	4,	2	-

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for shear loads, CEN/TS 1992-4, Displacements under shear loads, BZ plus

Annex 17

English translation prepared by DIBt


Characteristic values cracked and non-crack	M8	R 30 60 90 120 30 [min]	Vz. 1,4 1,1 0,8 0,7 2,2	[kN] A4/ 3,8 2,9 2,0 1,6 6,9 HCR	Characteristic vz. resistance in N _{Rk,p,fi} 1,3 1,0 concrete C20/25 [kN] A4 / HCR	Concrete cone failure	Characteristic vz. resistance in N°RK.c.fi 2,6 2,1 to C50/60 HCR	Scr,N,fi	C _{cr,N,fi}	Minimum spacing and edge distance under fire exposure from one side	Minimum spacing and edge distance under fire exposure from more than one side	γм,ñ [-]	Only 125 M24 A4
of tension ked concre	M10	60 90 120	1,8 1,4 1,2	5,2 3,5 2,7	2,3 1,8		5,0 4,0	_					
resistance ste C20/25 t	70 M12	30 60 90 120	3,2 2,8 2,4 2,2	11,5 8,6 5,6 4,2	4,0 3,2		7,4 5,9				S _{min} accc		
under fire o C 50/60,	M16	06 09 08	6,0 5,2 4,4	21,5 16,0 10,5	6,3		12,0	4 x h _{ef}	$2 \times h_{ef}$	According to Annex 7	rding to Anne	1,0	
lues of tension resistance under fire exposure in cracked concrete C20/25 to C 50/60, CEN/TS 1992-4, BZ plus	M20	120 30 60 90	4,0 9,4 8,2 6,9	7,8 33,5 25,0 16,4 12,1	5,0		9,6	-	36	Annex 7	s _{min} according to Annex 7; c _{min} ≥ 300 mm		
2-4, BZ plus	M24/125 M24 A4	120 30 60 90 120 30	6,3 13,6 11,8 10,0 9,1 17,6	12,1 48,2 35,9 23,6 17,4 -	7,2 8,8 9,0 / 12,6 ¹⁾ / 10,1		25,5 20,4 14,4 14,4 18,1 / 31,5 ¹⁾ 25,2	-					
	M27	60 90 120	15,3 13,0 11,8	-	12,6 10,1		31,5 25,2	_					

English translation prepared by DIBt

/edge An	Table 19:	Characteristic shear resistance under fire exposure in cracked and non-cracked concrete C20/25 to C50	eristic ed anc	sh(I nc	ear i in-ci	esis ack	itan ed c	ce L	unde crete	e C	re e) 20/2	xpo: :5 to	sure C5	09/0		Z L	S 1	992-	The exposure C20/25 to C50/60, CEN/TS 1992-4, BZ plus	Z pl	SI			
cho	Anchor size		M8			M10			70 M12	2		Σ	M16			M20		Ĭ <u>₩</u>	M24 / 125 M24 A4	5 M2	1 A4		M27	
r BZ p	Fire resistance duration	R [min]	30 60 9	90 120	30	06 09	90 120	30	6 09	90 120	30	09	06	120	30	09	90 120	30	09	06	120	30	09	90 120
lus	Steel failure without lever	vithout lever	arm																					
	Characteristic	V _{Rk.s.fi}	1,6 1,5 1	,2 1,0		2,6 2,5 2,1	2,0	3,8	3,6 3	3,5 3,4	4 7,0	8,8	6,5	6,4	11,0 11,0 10,0	1,0 10	0,0 10,0	0 16,0) 15,0	15,0	14,0	20,6	19,8	19,0 18,6
BZ-l	resistance	[kN] A4/ HCR	3,8 2,9 2,	0,1	6,9	5,2 3,5	2,7	11,5	8,6	5,6 4,2		21,5 16,0 10,5	10,5	7,8	33,5 2	25,0 16,4 12,1	4,	1 48,2	2 35,9	23,6	17,4	ı	,	,
G	Steel failure with lever arm	vith lever arn	٠																					
	Characteristic	M ⁰ Rk.s.fi	1,7 1,6 1	1,2 1,1	3,3	3,2 2,7	7 2,5	5,9	5,6 5	5,4 5,3		15,0 14,0 14,0 13,0	14,0	13,0	29,0 28,0 27,0 26,0	3,0 27	,0 26,	0 20'0	0 48,0		46,0	47,0 46,0 75,0 72,0 69,0 68,0	72,0 (0,66
	resistance	[Nm] A4 / HCR	3,8 2,9	2,1 1,6	0,6	6,8 4,5	3,4	17,9	13, 3	8,8 6,5	5 45,5	33,9	22,2	16,4	88,8	66,1 43,4	,4 32,1	1 153,	153,5 114,3 75,1	3 75,1	55,5	1	1	
	concrete pryout failure: In Equations (D.6 and D.7) of 18 have to be considered.		CEN/TS 1992-4-	992-4		nex D,	D.3.3.	2 the	k-facto	or is s	imilar	to the	k ₃ -fac	tor for	norm	al tem,	peratu	ure and	1, Annex D,D.3.3.2 the k-factor is similar to the k ₃ -factor for normal temperature and the relevant values of N ⁰ Rkof of Table	levant	value	s of N	O Rk,c,fi C	of Tab
	Concrete edge failure: The initial value V ⁰ RK.C.f. of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:	e failure: V ^o Rk.c.fi of the ch	ıaracteristi	ic resi	stance	in col	ncrete	C20/;	25 to ()9/050	apun (r fire ()Sodx	ire ma	ıy be o	leterr	ined [.yc						
			>	V ⁰ Rk,c,fi = (0,25>	0,25 x V ^o rkc (R30, R60, R90)	(R30,	R60,	R90)		*	$V_{Rk,c,f}^0 = 0,20 \times V_{Rk,c}^0$ (R120)	= 0,2() × √°	ik,c (R1	20)								
	with Vork.c initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.	value of the cha	aracteristic	resis	stance	in crao	yed c	oncre	te C2()/25 u	nder n	ormal	temp	eratur										
	Partial safety factor	γм,ғі [-]												1,0										
Annex 19																								

Electronic copy of the ETA by DIBt: ETA-99/0010

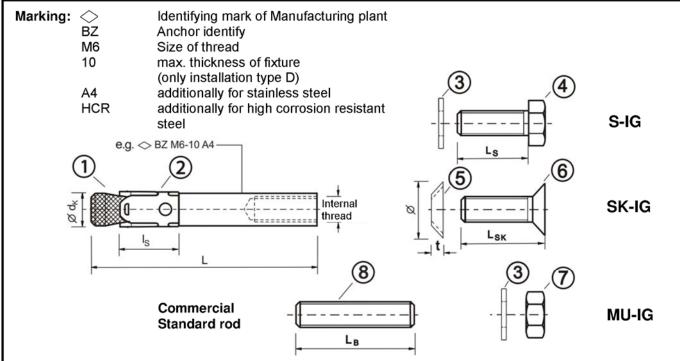


Table 20: Anchor dimensions, BZ-IG

No.	Anchor size		М6	M8	M10	M12
	Conical bolt with Internal thread	$\emptyset d_k$	7,9	9,8	11,8	15,7
1	Installation type V	L	50	62	70	86
	Installation type D	L	50 + t _{fix}	62 + t _{fix}	70 + t _{fix}	86 + t _{fix}
2	Expansion sleeve	l _s	14,5	18,5	22,0	24,3
3	Washer			see ta	ble 21	
	Hexagon head screv	width accross flats	10	13	17	19
4	Installation type V	Ls	t _{fix} + (13 to 21)	t _{fix} + (17 to 23)	t _{fix} + (21 to 25)	t _{fix} + (24 to 29)
	Installation type D	Ls	14 to 20	18 to 22	20 to 22	25 to 28
5	Countersunk	Ø countersink	17,3	21,5	25,9	30,9
5	washer	t	3,9	5,0	5,7	6,7
6	Countersunk head screw	bit size	Torx T30	Torx T45 (Steel, zinc plated) T40 (Stainless steel A4, HCR)	Hexagon socket 6 mm	Hexagon socket 8 mm
	Installation type V	L _{sk}	t _{fix} + (11 to 19)	t _{fix} + (15 to 21)	t _{fix} + (19 to 23)	t _{fix} + (21 to 27)
	Installation type D	L _{sk}	16 to 20	20 to 25	25	30
7	Hexagon nut wi	dth accross flats	10	13	17	19
8	Commercial ty	ype V L _B ≥	t _{fix} + 21	t _{fix} + 28	t _{fix} + 34	t _{fix} + 41
°	Standard rod ¹⁾ ty	ype D L _B ≥	21	28	34	41

1) acc. to specifications (Table 21)

Dimensions in mm

MKT Wedge Anchor BZ plus and BZ-IG

Anchor dimensions, BZ-IG

Annex 21

Z43748.13

Electronic copy of the ETA by DIBt: ETA-99/0010

Table 21: Materials, BZ-IG

No.	Part	Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042	Stainless steel A4	High corrosion resistant steel HCR
1	Conical bolt BZ-IG With internal thread	Machined steel, Cone plastic coated	Stainless steel, 1.4401, 1.4404, 1.4571, 1.4362, EN 10088, Cone plastic coated	Stainless steel, 1.4529, 1.4565, EN 10088, Cone plastic coated
2	Expansion sleeve BZ-IG	Stainless steel, 1.4301, 1.4303, EN 10088	Stainless steel, 1.4401, 1.4571, EN 10088	Stainless steel, 1.4401, 1.4571, EN 10088
3	Washer S-IG / MU-IG acc. to DIN EN 7089 or DIN EN 7093 or DIN EN 7094	Steel, EN 10025-2	Stainless steel, 1.4401, 1.4571, EN 10088	Stainless steel, 1.4529, 1.4565, EN 10088
4	Hexagon head screw S-IG	Steel, Property class 8.8, EN ISO 898-1, coated	Stainless steel, 1.4401, 1.4571, EN 10088, Property class 70, EN ISO 3506, coated	Stainless steel, 1.4529, 1.4565, EN 10088, Property class 70, EN ISO 3506, coated
5	Countersunk washer SK-IG	Steel, EN 10083-2	Stainless steel, 1.4401, 1.4404, 1.4571, EN 10088, zinc plated, coated	Stainless steel, 1.4529, 1.4565, EN 10088, zinc plated, coated
6	Countersunk head screw SK-IG	Steel, Property class 8.8, acc. to EN ISO 898-1, coated	Stainless steel, 1.4401, 1.4571, EN 10088, Property class 70, EN ISO 3506, coated	Stainless steel, 1.4529, 1.4565, EN 10088, Property class 70, EN ISO 3506, coated
7	Hexagon nut MU-IG	Steel, Property class 8, acc. to EN ISO 898-2, coated	Stainless steel, 1.4401, 1.4571, EN 10088, Property class 70, EN ISO 3506, coated	Stainless steel, 1.4529, 1.4565, EN 10088, Property class 70, EN ISO 3506, coated
8	Commercial standard rod	Property class 8.8, acc. to EN ISO 898-1 A ₅ > 8 % ductile	Stainless steel, 1.4401, 1.4571, EN 10088, Property class 70, EN ISO 3506	Stainless steel, 1.4529, 1.4565, EN 10088, Property class 70, EN ISO 3506

MKT Wedge Anchor BZ plus and BZ-IG	
Materials, BZ-IG	Annex 22

Electronic copy of the ETA by DIBt: ETA-99/0010

Table 22: Installation parameters, BZ-IG

Anchor size				М6	М8	M10	M12
Effective anchorage depth		h_{ef}	[mm]	45	58	65	80
Drill hole diameter		d _o	[mm]	8	10	12	16
Cutting diameter of drill bit		d _{cut} ≤	[mm]	8,45	10,45	12,5	16,5
Depth of drill hole		h ₁ ≥	[mm]	60	75	90	105
Screwing depth of thread rod		$L_{sd}^{(2)} \ge$	[mm]	9	12	15	18
Locate Heating and an end		S	[Nm]	10	30	30	55
Installation moment, zinc plated steel	T_{inst}	SK	[Nm]	10	25	40	50
Zinc plated steel		В	[Nm]	8	25	30	45
Installation moment,		S	[Nm]	15	40	50	100
stainless steel A4 and high	T_{inst}	SK	[Nm]	12	25	45	60
corrosion resistant steel HCR		В	[Nm]	8	25	40	80
Installation type V							
Diameter of clearance hole in the t	fixture	$d_{f}\!\leq\!$	[mm]	7	9	12	14
		S	[mm]	1	1	1	1
Minimum thickness of fixture	t _{fix} ≥	SK	[mm]	5	7	8	9
		В	[mm]	1	1	1	1
Installation type D							
Diameter of clearance hole in the t	fixture	$d_f \le$	[mm]	9	12	14	18
		S	[mm]	5	7	8	9
Minimum thickness of fixture 1)	$t_{\text{fix}} \geq$	SK	[mm]	9	12	14	16
	19000	В	[mm]	5	7	8	9

¹⁾ The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm according to equation (5.5) of ETAG 001, Annex C.

2) see Annex 21

Setting check for Installation type V:

The anchor is placed correctly in the drill hole if the setting tool leaves a visible marking on the concrete surface.

Table 23: Minimum thickness of concrete member, minimum spacing and minimum edge distance, BZ-IG

Anchor size			М6	М8	M10	M12
Minimum thickness of concrete member	h _{min}	[mm]	100	120	130	160
Cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	70	80
	fürc≥	[mm]	60	80	100	120
Minimum edge distance	C _{min}	[mm]	50	60	70	80
	für s ≥	[mm]	75	100	100	120
Non-cracked concrete						
Minimum spacing	S _{min}	[mm]	50	60	65	80
	für c≥	[mm]	80	100	120	160
Minimum edge distance	C _{min}	[mm]	50	60	70	100
	für s ≥	[mm]	115	155	170	210

MKT Wedge A	nchor B	7 plus and	B7-IG
-------------	---------	------------	--------------

Installation parameters,
Minimum member thickness,
Minimum spacing and edge distance, BZ-IG

Annex 23

Installation	instructions pre-setting ins	stallation, BZ-IG
1	90°	Drill hole perpendicular to concrete surface.
2		Blow out dust.
3	■ B.Z. B.Z	Setting tool insert in anchor.
4	BZ-IGS	Drive in anchor with setting tool.
5	-K	Check screwing depth by the excess length (K) of the screw.
6	Tinst	Max. tightening torque T _{inst} may be applied by using torque wrench.

MKT Wedge	Anchor	BZ plus	and	BZ-IG

Installation instructions, BZ-IG

Annex 24

Installation instructions through-setting installation, BZ-IG Drill hole perpendicular to concrete surface. 2 Blow out dust. 3 Setting tool insert in anchor. **BZ-IGS BZ-IGS** Drive in anchor with setting tool. 5 Drive in screw. T_{INST} Max. tightening torque T_{inst} may be applied 6 by using torque wrench.

MKT Wed	ae Anchoi	BZ plus	and BZ-IG
	, - ,	p.s.v	

Installation instructions through-setting installation, BZ-IG

Annex 25

i labic 24.	Table 24:	Characteristic values for tension loads	s, ETAG 001	, Annex C, BZ-I
-------------	-----------	---	-------------	-----------------

	М6	M8	M10	M12
	•	•		
k,s [kN]	16,1	22,6	26,0	56,6
ls [-]		1	,5	•
k,s [kN]	14,1	25,6	35,8	59,0
ls [-]		1,	87	
•	•			
k,p [kN]	5	9	12	20
spacing a	nd edge dista	nce)		
k,p [kN]	9	12	16	25
sp [mm]		3	h _{ef}	•
		1,5	h _{ef}	
n resistance	e)			
,p [kN]	12	16	20	30
sp [mm]		5	h _{ef}	•
sp [mm]		2,5	h _{ef}	
′37 [- <u>]</u>		1,	22	
[′] 50 [-]		1,	41	
60 [-]		1,	55	
f [mm]	45	58	65	80
··· +				
_N [mm]		1,5	h _{ef}	
γ _{Mc} [-]		1	,8	
	[kN] spacing ar spacin	[kN] 16,1 [s] [-] [kN] 14,1 [s] [-] [kN] 5 [kN] 5 [kN] 9 [kN] 9 [kN] 9 [kN] 9 [kN] 12 [kN] 12 [kN] 12 [kN] 12 [kN] 12 [kN] 15 [kN] 15 [kN] 15 [kN] 16,1	[kN] 16,1 22,6 [s] [-] 1 [kN] 14,1 25,6 [s] [-] 1, [s] [kN] 5 9 [spacing and edge distance) [sp [mm] 3,5 [mm] 1,5 [n] resistance) [sp [mm] 5,5 [mm] 5,5 [mm] 5,5 [mm] 5,7 [-] 1,7 [-]	[kN] 16,1 22,6 26,0 [s] [-] 1,5 [kN] 14,1 25,6 35,8 [s] [-] 1,87 [kN] 5 9 12 spacing and edge distance) [k,p] [kN] 9 12 16 [sp] [mm] 3 hef [mm] 1,5 hef [mm] 5 hef [sp] [mm] 2,5 hef [37 [-] 1,22 [50 [-] 1,41 [60 [-] 1,55 [mm] 3 hef [mm] 1,5 hef [mm] 1,5 hef [mm] 2,5 hef [mm] 3 hef [mm] 3 hef [mm] 3 hef [mm] 1,55

Table 25: Displacements under tension loads

Anchor size			М6	М8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacement	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
Displacement -	$\delta_{\text{N}\infty}$	[mm]	0,8	0,8	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Displacement	δ_{N0}	[mm]	0,4	0,5	0,7	0,8
Displacement -	$\delta_{\text{N}\infty}$	[mm]	0,8	0,8	1,2	1,4

Characteristic values for tension loads, ETAG 001, Annex C Displacements under tension loads, BZ-IG

Annex 26

Table 26: Characteristic values for shear loads, ETAG 001, Annex C, BZ-IG

Anchor size			М6	M8	M10	M12
BZ-IG zinc plated					•	•
Steel failure without lever arm, Installa	ation typ	e V				
Characteristic resistance	$V_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, Installa	ation typ	e D				
Characteristic resistance	$V_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, Installatio	n type V					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, Installatio	n type D					
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207
Partial safety factor for $V_{Rk,s}$ (type V, D) and $M^0_{Rk,s}$ (type V, D)	γ _{Ms}	[-]		1,	25	
BZ-IG stainless steel A4 and high cor	rosion re	sistant	steel HCR			
Steel failure without lever arm, Installa	ation typ	e V				
Characteristic resistance	$V_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial safety factor	γ _{Ms}	[-]		1,	25	
Steel failure without lever arm, Installa	· · · · · · · · · · · · · · · · · · ·	e D				
Characteristic resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Partial safety factor	γ _{Ms}	[-]		1,	25	
Steel failure with lever arm, Installatio	n type V					
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,6
Partial safety factor	γ _{Ms}	[-]		1,	56	
Steel failure with lever arm, Installatio						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	28,2	44,3	69,9	191,2
Partial safety factor	γ _{Ms}	[-]		1,	25	
Concrete pryout failure	·					
Factor in equation (5.6) ETAG 001, Annex C, 5.2.3.3	k	[-]	1,5	1,5	2,0	2,0
Partial safety factor	γмср	[-]		1	,5	
Concrete edge failure						
Effective length of anchor in shear loading	I _f	[mm]	45	58	65	80
Effective diameter of anchor	d_{nom}	[mm]	8	10	12	16
Partial safety factor	γмс	[-]		1	,5	

Table 27: Displacements under shear loads, BZ-IG

Anchor size			М6	М8	M10	M12
Shear load in cracked and non-cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
	$\delta_{V^{\infty}}$	[mm]	4,2	4,4	3,8	5,3

Characteristic values for shear loads, ETAG 001, Annex C, Displacements under shear loads, BZ-IG

Annex 27

Deutsches
Institut
für
Bautechnik

English translation prepared by DIBt

Charac under	MKT W	Table 98. Characteristic val	our source of a source of source of				<u>'</u>	ļ ,											
	/edge	in cracked		ed co	ncrei	te C	20/25	to C	50/6i), ET	AG 0	01, /	Anne	Š,	BZ-I	ڻ ت			
	An	Anchor size			M 6	40			M 8				M 10				M 12		
	chor E	Fire resistance duration	R [min]	30	09	06	120	30	09	06	120	30 (09	90 1:	120 3	30	6 09	90 13	120
	Z pl	Steel failure:																	
	lus an	Characteristic N _{Rk e fi}	Steel zinc plated	7,0	9'0	5,0	4,0	4.,	1,2	6,0	8,0	2,5	2,0 1	7,5	£, 2	3,7	2,9 2	2,2	8,
	d BZ-I	resistance [KN]	Stainless steel A4 / HCR	2,9	6,1	1,0	0,5	5,4 ;	8,8	2,1	1,3	8,7 6	6,3	3,9 2	2,7 12	12,6	9,2 5	5,7 4	4,0
	G	Pullout failure:																	
		Characteristic resistance in concrete C20/25 to C50/60	N _{Rk,p,fi} [KN]		6, 1		1,0	.,	2,3		8,	63	3,0	- 7	2,4	5	5,0	4	0,4
		Concrete cone failure:																	
		Characteristic resistance in concrete C20/25 to C50/60	N ⁰ _{Rk,c,fi} [kN]		2,4		2,0	,	9, 9		3,7		6,1	4	6, 4)	10,3		8,2
		Spacing	S _{cr,N,fi}								4 x h _{ef}								
		Edge Distance	Ccr,N,fi								2 x h _{ef}								
		Minimum spacing and edge distance under fire exposure from one side	stance under fire						Ø	ccordi	according to Annex 23	nnex 2	က						
Ar		Minimum spacing and edge distance exposure from more than one size	stance under fire size				,	S _{min} aC	cordii	g to ,	s _{min} according to Annex 23; c _{min} ≥ 300 mm.	:3; c _{mi}	n ≥ 30	0 mm					
inex 28		In absence of other national regulation	egulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.	ial safe	ty fact	or for	resista	ance u	nder	lire e)	unsod	. γ _{M,fi}	1,0	s recc	mme	nded.			
	1												l	l		l			1

Deutsches Institut für **Bautechnik**

in cracked and non-cracked concrete C20/25 to C50/60, ETAG 001, Annex C, BZ-IG Characteristic values to tension loads under fire exposure

nchor size:		M6	ی			M8	_∞			M10	0			M12	2	
R	30	09	06	90 120	30	09	06	120	30	09	90	120	30	09	06	120

Anchor size:			M6	9			Σ	M8			M10	0			M12	\sim 1
R Fire resistance duration [min]	n R [min]	30	09	06	120	30	60	60 90 120 30 60 90 120	120	30	09	06 09	120	30	09	
Steel failure without lever arm:	lever arm:															
Characteristic	Steel Zinc plated	2'0	9'0	0,5	0,4	1,4	1,2	0,7 0,6 0,5 0,4 1,4 1,2 0,9 0,8	8,0	2,5	2,0	1,5	1,3	2,0 1,5 1,3 3,7	2,9	
V _{Rk,s,fi} resistance [kN]	Stainless steel A4 / HCR	2,9	1,9	1,0	6,0	5,4	3,8	2,9 1,9 1,0 0,5 5,4 3,8 2,1 1,3 8,7	1,3	8,7	6,3	3,9	2,7	12,6	9,2	

<u>_</u> ∞

2,2

5,7

Characteristic Steel 0,5 0,4 0,3 1,4 1,2 0,9 0,8 3,3 2,6 2,0 1,6 5,7 4,6 M ⁰ Rk.s.n. Resistance [Nm] A4/HCR 2,2 1,5 0,7 0,4 5,5 3,9 2,2 1,3 11,2 8,1 5,1 3,5 19,6 14,3	Steel failure with lever	ith lever arm:															
ce [Nm] A4/HCR 2,2 1,5 0,7 0,4 5,5 3,9 2,2 1,3 11,2 8,1 5,1 3,5 19,6 14,3	Characteristic	Steel	0,5	4,0	0,4	6,0	1,4	1,2	6,0	8,0	3,3	2,6	2,0	1,6		4,6	3,4
	Resistance		2,2	1,5	2,0	0,4	5,5		2,2	1,3	11,2	8,1	5,1	3,5	19,6	14,3	8,9

6,2

Concrete pryout failure:

In Equation (5.6) of ETAG 001, Annex C, 5.2.3.3 the k-factor of Table 26 and the relevant values of N⁰ Rk, c, fi of Table 28 have to be considered

Concrete edge failure:

The initial value V⁰_{Rk,c,f} of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:

 $V_{Rk,c,fi}^0 = 0,20 \times V_{Rk,c}^0$ (R120)

with ${\sf V}^0_{\sf Rk,c}$ initial value if the characteristic resistance in cracked concrete C20/25 under normal temperature.

 $V_{Rk,c,f}^0 = 0,25 \times V_{Rk,c}^0$ (R30, R60, R90)

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{M,fi}$ = 1,0 is recommended.

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values of shear resistance under fire exposure, ETAG 001, Annex C, BZ-IG

Annex 29

Fable 29:

I Table 30:	Table 30:	Characteristic values for tension loa	ds. CEN/TS 1992-4. BZ-I0
-------------	-----------	---------------------------------------	--------------------------

Anchor size			М6	M8	M10	M12
Steel failure					•	
Characteristic resistance, steel zinc plated	$N_{Rk,s}$	[kN]	16,1	22,6	26,0	56,6
Partial safety factor	γ _{Ms}	[-]		1	,5	
Characteristic resistance, stainless steel A4 and high corrosion resistant steel HCR	$N_{Rk,s}$	[kN]	14,1	25,6	35,8	59,0
Partial safety factor	γ _{Ms}	[-]		1,	,87	
Pullout failure						
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	9	12	20
Pullout and splitting (Choice of m	inimum spa	cing and	l edge distar	nce)		
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	12	16	25
Respective spacing	S _{cr,sp}	[mm]		3	h _{ef}	
Respective edge distance	C _{cr,sp}	[mm]		1,5	5 h _{ef}	
Pullout and splitting (Choice of maximum re						
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	12	16	20	30
Respective spacing	S _{cr,sp}	[mm]			h _{ef}	
Respective edge distance	C _{cr,sp}	[mm]		2,5	5 h _{ef}	
Increasing factors for N _{Rk,p} for	C30/37	[-]		1,	,22	
cracked and non-cracked ψ_0	C40/50	[-]		1,	,41	
concrete	C50/60	[-]		1,	,55	
Concrete cone failure			·			
Effective anchoring depth	h_{ef}	[mm]	45	58	65	80
Factor for cracked concrete	k _{cr}	[-]			, 2	
Factor for non-cracked concrete	k _{ucr}	[-]),1	
Spacing	S _{cr,N}	[mm]			h _{ef}	
Edge distance	$C_{cr,N}$	[mm]		1,5	h _{ef}	
Partial safety factor γ_{Mp} =	$= \gamma_{Msp} = \gamma_{Mc}$	[-]		1	,8	

Table 31: Displacements under tension loads

Anchor size			М6	М8	M10	M12
Tension load in cracked concrete	N	[kN]	2,0	3,6	4,8	8,0
Displacement	δ_{N0}	[mm]	0,6	0,6	0,8	1,0
Displacement -	δ _{N∞}	[mm]	8,0	0,8	1,2	1,4
Tension load in non-cracked concrete	N	[kN]	4,8	6,4	8,0	12,0
Dianlessment	δ_{N0}	[mm]	0,4	0,5	0,7	0,8
Displacement -	δ _{N∞}	[mm]	0,8	0,8	1,2	1,4

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for tension loads, CEN/TS 1992-4, Displacements under tension loads, BZ-IG

Annex 30

Table 32: Characteristic values for shear loads, CEN/TS 1992-4, BZ-IG

Anchor size			М6	М8	M10	M12
BZ-IG zinc plated						
Steel failure without lever arm, Install	ation typ	e V				
Characteristic resistance	$V_{Rk,s}$	[kN]	5,8	6,9	10,4	25,8
Steel failure without lever arm, Install	ation typ	e D				
Characteristic resistance	$V_{Rk,s}$	[kN]	5,1	7,6	10,8	24,3
Steel failure with lever arm, Installation						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	12,2	30,0	59,8	104,6
Steel failure with lever arm, Installation						
Characteristic bending resistance	$M^0_{Rk,s}$	[Nm]	36,0	53,2	76,0	207
Partial safety factor for $V_{Rk,s}$ (type V, D) and $M^{o}_{Rk,s}$ (type V, D)	$\gamma_{ extsf{Ms}}$	[-]		1,2	25	
Factor of ductility	k ₂	[-]		1,	0	
BZ-IG stainless steel A4 and high cor	rosion re	sistant s	steel HCR			
Steel failure without lever arm, Install	ation typ	e V				
Characteristic resistance	$V_{Rk,s}$	[kN]	5,7	9,2	10,6	23,6
Partial safety factor	γмѕ	[-]		1,2	25	
Steel failure without lever arm, Install	ation typ	e D				
Characteristic resistance	$V_{Rk,s}$	[kN]	7,3	7,6	9,7	29,6
Partial safety factor	γмs	[-]		1,2	25	
Steel failure with lever arm, Installation						
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	10,7	26,2	52,3	91,6
Partial safety factor	γмѕ	[-]		1,	56	
Steel failure with lever arm, Installation	n type D					
Characteristic bending resistance	M ⁰ _{Rk,s}	[Nm]	28,2	44,3	69,9	191,2
Partial safety factor	γ _{Ms}	[-]		1,2	25	
Factor of ductility	k ₂	[-]		1,	0	
Concrete pryout failure						
Factor in equation (16) CEN/TS 1992-4-4, 5.2.2.3	k ₃	[-]	1,5	1,5	2,0	2,0
Partial safety factor	γмср	[-]		1,	5	1
Concrete edge failure						
Effective length of anchor in shear loading	I _f	[mm]	45	58	65	80
Effective diameter of anchor	d _{nom}	[mm]	8	10	12	16
Partial safety factor	γмс	[-]		1,	5	<u> </u>
	,					

Table 33: Displacements under shear loads, BZ-IG

Anchor size			М6	M8	M10	M12
Shear load in cracked and non-cracked concrete	V	[kN]	4,2	5,3	6,2	16,9
Displacements	δ_{V0}	[mm]	2,8	2,9	2,5	3,6
	δ _V ∞	[mm]	4,2	4,4	3,8	5,3

MKT Wedge Anchor BZ plus and BZ-IG

Characteristic values for shear loads, CEN/TS 1992-4, Displacements under shear loads, BZ-IG

Annex 31

English translation prepared by DIBt

		120		1,8	4,0		4,0		8,2							
	M 12	06	-	2,2	5,7		5,0									
	Σ	09		2,9	9,2				10,3							
		30		3,7	12,6											
 		120		1,3	2,7		2,4		4,9				<u>ا</u>	Ė		
1 4	M 10	06		1,5	3,9							according to Annex 23	s _{min} according to Annex 23; c _{min} ≥ 300 mm.	2000		
1992	Σ	09		2,0	6,3		3,0		6,1					1,0		
SL		30		2,5	8,7					hef	hef					
e s		120		8,0	6,1		8,		3,7	4 x h _{ef}	$2 \times h_{ef}$		o Anne			
 Sod: /60,	8 W	06		6,0	2,1		2,3				accor	ding to				
(e ex	≥	09		1,2	8 ဗ				4,6				S _{min} accord			
er fil 25 tc		30		1,.4	5,4											
und (220/		120		0,4	0,5		1,0		2,0							
 bads rete	9 M	06		0,5	1,0		1,3									
ion Ic	Σ	09		9,0	6,1				2,4							
tensi		30		7,0	2,9							istance under			Ŷм,ñ [-]	
stic values to tension loads under fire exposure and non-cracked concrete C20/25 to C50/60, CEN/TS 1992-4, BZ-IG		R [min]		Steel zinc plated	Stainless steel A4 / HCR		N _{Rk,p,fi} [KN]		N ^o rk,c,fi [KN]	S _{cr,N,fi}	C _{cr,N,fi}		istance under one size	one size		
34: Characteristic v		Fire resistance duration	ilure:		[KN]	failure:	Characteristic resistance in concrete C20/25 to C50/60	Concrete cone failure:	Characteristic resistance in concrete C20/25 to C50/60		stance	Minimum spacing and edge distance under fire exposure from one side	Minimum spacing and edge distance under fire exposure from more than one size		Partial safety factor	
Anchor size Anchor size Fire resistance of Characteristic resistance Characteristic response freshown spacir fire exposure freshosure fr												Partial s				
Characteristic values of tension resistance under fire exposure, CEN/TS 1992-4, BZ-IG											x 32					

Electronic copy of the ETA by DIBt: ETA-99/0010

120

Charac	MKT Wedge Anchor BZ plus and BZ-IG Characteristic values of shear resistance under fire exposure, CEN/TS 1992-4, BZ-IG											Annex 33			
Table 35: Char	Anchor size:	Fire resistance duration	Steel failure without lever arm:	Characteristic		Steel failure with lever a		Resistance [N	Concrete pryout failure:	the relevant values of	Concrete edge failure: The initial value Vorkein of	$V_{Rk,c,ff}^0 = 0,25 \times$	with V ⁰ RK,c initial value if th	Partial safety ץ _{M,ñ} factor [-]	
Characteristic values to tension loads under fire exposur in cracked and non-cracked concrete C20/25 to C50/60, CEN/TS 1992-4, BZ-IG		on R [min]	lever arm:	Steel zinc plated	[kN] Stainless steel A4 / HCR	rer arm:	M ^o Rks f	[Nm] A4 / HCR	ure: I D.7) of CEN/TS 1992-4-1. Annex D.D.3.3.2 the k-factor is similar to the k ₃ -factor for normal temperature	the relevant values of N RK, C, fi of Table 34 have to be considered.	re: _{sf} of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:		if the characteristic resistance in cracked concrete C20/25 under normal temperature.	f.	
to ter ked c		30		0,7,0	2,9		0,5	2,2	2-4-1./	ve to b	resistaı	(360	sistano		
nsion load oncrete C2	M6	06 09		0,6 0,5	1,9 1,0		0,4 0,4	1,5 0,7	hnex	e con	nce in		i c		
		0 120		5 0,4	0 0,5		4 0,3	7 0,4	D.D.3	sidere	concr		racked		
s un 20/25		30		4,	5,4		1,4	5,5	.3.2 th	; ! ! ;;	ete C2	°,	conc		
der fi to C5	Δ	09		2,	3,8		1,2	3,9	e k-fac		0/25 to	$V_{Rk,c,f}^0 = 0,20 \times V_{Rk,c}^0$ (R120)	rete C		
re ex 0/60,	M8	06		6,0	2,1		6,0	2,2	otor is		o C50,),20 x	20/25		
posi CEN		120		8,0	1,3		8,0	1,3	simila		un 09/	$V_{\rm Rk,c}$	under	1,0	
ır TS 19		30		2,5	8,7		3,3	11,2	r to th	2	der fir	(R12	norm		
992-4,	M10	09		2,0	6,3		2,6	1,8	e ka-f8	2	e expc	<u> </u>	al tem		
, BZ-	(06		7,7	9,5		2,0	5,1	ctor fe		sure		peratu		
<u> </u>		120		6, 1	2,7		1,6	3,5	or nor		may t		ıre.		
		30		3,7	12,6		5,7	19,6	malte		oe det				
	M12	09		2,9	9,2		4,6	14,3	mper		ermin				
		06		2,2	5,7		3,4	6,8	ature a		d by:				

6,2