

## **Allgemeine** bauaufsichtliche Zulassung

## Zulassungsstelle für Bauprodukte und Bauarten

#### **Bautechnisches Prüfamt**

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen: 131-1.14.1-30/10

## **Zulassungsnummer:**

Z-14.1-621

#### **Antragsteller:**

Montana Bausysteme AG Durisolstraße 11 5612 Villmergen **SCHWEIZ** 

## Geltungsdauer

16.04.2013

vom: 16. April 2013 bis: 16. April 2018

## **Zulassungsgegenstand:**

Vollperforierte Trapez- und Wellprofile aus Aluminium und deren Befestigung

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst fünf Seiten und 17 Anlagen.





# Allgemeine bauaufsichtliche Zulassung Nr. Z-14.1-621

Seite 2 von 5 | 16. April 2013

#### I ALLGEMEINE BESTIMMUNGEN

- Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 4 Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.



## Allgemeine bauaufsichtliche Zulassung

Nr. Z-14.1-621

Seite 3 von 5 | 16. April 2013

#### II BESONDERE BESTIMMUNGEN

#### 1 Zulassungsgegenstand und Anwendungsbereich

Zulassungsgegenstand sind Dach- und Wandbekleidungen aus tragenden vollperforierten Trapez- und Wellprofilen aus Aluminium sowie deren Verbindung mit der Unterkonstruktion mit mechanischen Verbindungselementen. Die Unterkonstruktionen sind nicht Gegenstand dieser allgemeinen bauaufsichtlichen Zulassung.

Sofern in dieser allgemeinen bauaufsichtlichen Zulassung nichts anderes festgelegt wird, gelten die Bestimmungen in DIN EN 1999-1-4:2010-05 in Verbindung mit DIN EN 1999-1-4/NA:2010-12, DIN EN 1999-1-4/A1:2011-11 und DIN 18807-9:1998-06 sowie die Bestimmungen in den allgemeinen bauaufsichtlichen Zulassungen oder europäischen technischen Zulassungen für mechanische Verbindungselemente.

## 2 Bestimmungen für die Bauprodukte

#### 2.1 Eigenschaften und Zusammensetzung

#### 2.1.1 Trapez- und Wellprofile

#### 2.1.1.1 Abmessungen

Die Abmessungen der vollperforierten Trapez- und Wellprofile müssen den Angaben in den Anlagen entsprechen. Für die Grenzabmaße der Nennblechdicke der Profiltafeln gelten die Toleranzen nach DIN EN 485-4:1994-01, für die unteren Grenzabmaße jedoch nur die halben Werte.

## 2.1.1.2 Werkstoffe, Bauprodukte

Als Werkstoffe für die Herstellung der vollperforierten Trapez- und Wellprofile sind die in DIN EN 1999-1-4:2010-05, Tabelle 3.1, in Verbindung mit DIN EN 1999-1-4/A1:2011-11 genannten Aluminiumlegierungen zu verwenden.

Für die mechanischen Werkstoffeigenschaften gelten abweichend von den Angaben in DIN EN 485-2:2009-01 folgende Werte:

 $R_{p0,2} \ge 165 \text{ N/mm}^2$ 

 $R_m \geq 175 \ N/mm^2.$ 

#### 2.1.2 Verbindungselemente

Als Verbindungselemente dürfen Schrauben gemäß Anlage 8 verwendet werden. Abweichend davon dürfen auch andere allgemein bauaufsichtlich zugelassene oder europäisch technisch zugelassene Verbindungselemente verwendet werden, sofern eine Gleichwertigkeit hinsichtlich der Tragfähigkeiten und der Geometrie (Schrauben- und Schraubenkopfabmessungen sowie Durchmesser, Material und Dicke der Dichtscheiben und der darin befindlichen EPDM-Dichtungen) gegeben ist.

#### 2.1.3 Korrosionsschutz

Es gelten die Bestimmungen in DIN 18807-9:1998-06, Abschnitt 4.5.

#### 2.2 Kennzeichnung

Die Verpackung der vollperforierten Trapez- und Wellprofile muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 erfüllt sind.



# Allgemeine bauaufsichtliche Zulassung Nr. Z-14.1-621

Seite 4 von 5 | 16. April 2013

## 2.3 Übereinstimmungsnachweis

## 2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung der vollperforierten Trapez- und Wellprofile mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Produktprüfung nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller der vollperforierten Trapezund Wellprofile eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einschließlich Produktprüfung einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

#### 2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten vollperforierten Trapez- und Wellprofile den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Für die werkseigene Produktionskontrolle sind die in DIN 18807-9:1998-06, Abschnitt 5.2, aufgeführten Maßnahmen durchzuführen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Einzelteile, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

#### 2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig, mindestens einmal pro Jahre zu überprüfen. Im Rahmen der Fremdüberwachung ist eine Inspektion des Werkes und der werkseigenen Produktionskontrolle einschließlich einer Produktprüfung vollperforierten Trapez- und Wellprofile durchzuführen. Die Probennahme und Prüfungen obliegen jeweils der anerkannten Stelle.

Für die Fremdüberwachung sind die in DIN 18807-9:1998-06, Abschnitt 5.3, aufgeführten Maßnahmen durchzuführen.

Zusätzlich ist die Kennzeichnung zu prüfen.

Die vollperforierten Trapez- und Wellprofile sind der laufenden Produktion zu entnehmen.



#### Allgemeine bauaufsichtliche Zulassung

Nr. Z-14.1-621

Seite 5 von 5 | 16. April 2013

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik oder der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

#### 3 Bestimmungen für Entwurf und Bemessung

#### 3.1 Allgemeines

Durch eine statische Berechnung sind in jedem Einzelfall die Gebrauchstauglichkeit und die Tragsicherheit nach den geltenden Technischen Baubestimmungen nachzuweisen, sofern im Nachfolgenden nichts anderes bestimmt wird.

Für jede Schnittgröße ist nachzuweisen, dass die Beanspruchungen nicht größer sind als die Beanspruchbarkeiten. Abweichend von DIN EN 1999-1-4:2010-05 gelten die Interaktionsbeziehungen in den Anlagen 1.1 bis 7.4.

#### 3.2 Vollperforierte Trapez- und Wellprofile

Die für den Tragsicherheitsnachweis und den Nachweis der Gebrauchstauglichkeit der vollperforierten Trapez- und Wellprofile erforderlichen Querschnitts- und Tragfähigkeitswerte sind den Anlagen 1.1 bis 7.4 zu entnehmen.

### 3.3 Verbindungselemente

Als charakteristische Werte für die maximal aufnehmbaren Kräfte der Verbindungen der vollperforierten Trapez- und Wellprofilen mit der Unterkonstruktion dürfen für die Durchknöpftragfähigkeit der Verbindungen bei Verwendung

- der Schrauben nach Anlage 8 die Werte nach Anlage 8 verwendet werden oder
- anderer Verbindungselemente unter Beachtung von Abschnitt 2.1.2 die Werte in den entsprechenden allgemeinen bauaufsichtlichen Zulassungen (z. B. Zulassung Nr. Z-14.1-4) oder europäischen technischen Zulassungen für mechanische Verbindungselemente verwendet werden, wobei die Werte nach Anlage 8 nicht überschritten werden dürfen.

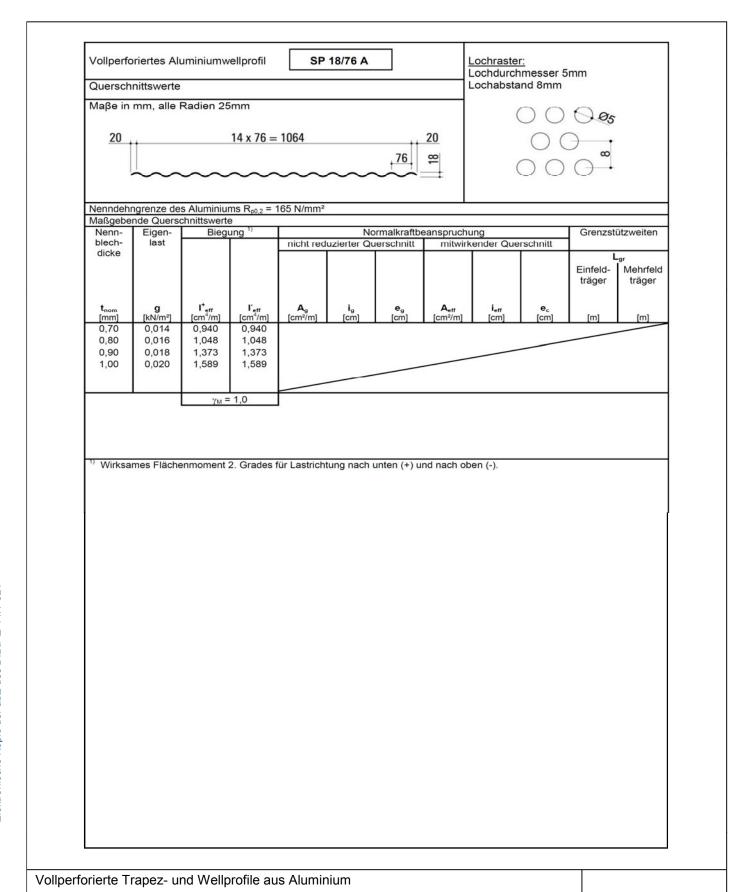
#### 3.4 Teilsicherheitsbeiwerte

Zur Ermittlung der Beanspruchbarkeiten aus den charakteristischen Werten ist für die Tragfähigkeitswerte der Schnittgrößen  $\gamma_M$  = 1,1 und für die Durchknöpftragfähigkeit der Teilsicherheitsbeiwert  $\gamma_M$  = 1,33 anzusetzen.

#### 4 Bestimmungen für die Ausführung

Für die Ausführung von Dach- und Wandbekleidungen mit vollperforierten Trapez- und Wellprofilen gelten die Bestimmungen von DIN 18807-9:1998-06.

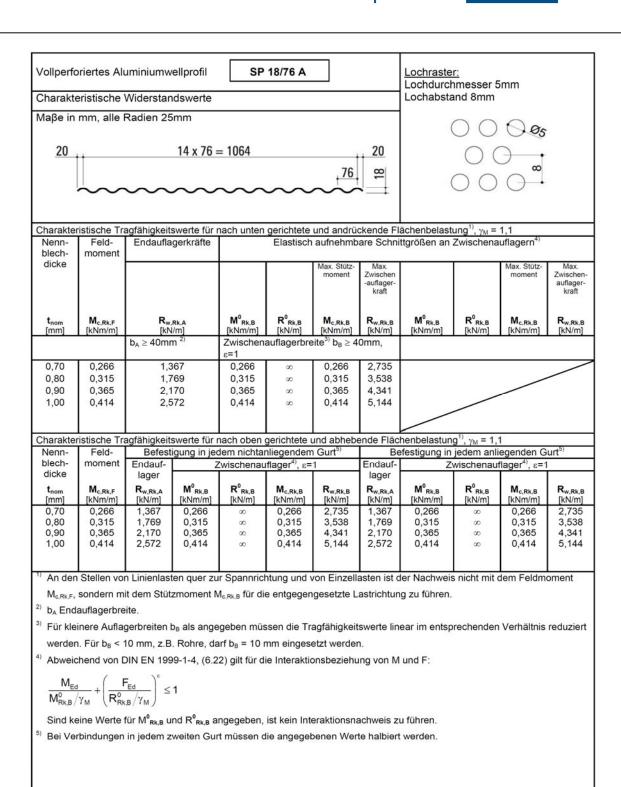
#### 5 Bestimmungen für Nutzung, Unterhalt, Wartung


Die vollständig auf der Unterkonstruktion befestigten Aluminium-Wellprofile dürfen zu Reinigungs- und Wartungsarbeiten nur mit Hilfe lastverteilender Maßnahmen begangen werden.

Andreas Schult

Beglaubigt

Referatsleiter






Wellprofil SP 18/76 A

Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit, Teilsicherheitsbeiwert

Anlage 1.1



Vollperforierte Trapez- und Wellprofile aus Aluminium

Wellprofil SP 18/76 A

Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte

Anlage 1.2



| 1                               | nittswerte                     |                                                              | ellprofil                                                  | SP                    | 18/76 A                |                        |                             | Lochraste<br>Lochdurc<br>Lochabste | hmesser 3              |                           |                    |
|---------------------------------|--------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------|------------------------|------------------------|-----------------------------|------------------------------------|------------------------|---------------------------|--------------------|
| Маβе in                         | mm, alle F                     | Radien 25                                                    | 14 x 76 =                                                  | 1064                  | ~~                     | ,76                    | 20                          |                                    | 0 0                    | 0 e3                      |                    |
|                                 |                                |                                                              | ms R <sub>p0,2</sub> = 16                                  | 65 N/mm²              |                        |                        |                             |                                    |                        |                           |                    |
| Maßgebe<br>Nenn-                | ende Querso                    | chnittswerte<br>Biegu                                        |                                                            |                       | No                     | rmalkraftb             | oonennie                    | auna.                              |                        | Cronzel                   | ützweiten          |
| blech-                          | Eigen-<br>last                 | ыед                                                          | ing                                                        | nicht red             | uzierter Qu            |                        |                             | rkender Que                        | erschnitt              | Grenzsi                   | utzweiten          |
| t <sub>nom</sub> [mm] 0,70 0,80 | g<br>[kN/m²]<br>0,017<br>0,019 | I <sup>+</sup> eff<br>[cm <sup>4</sup> /m]<br>1,396<br>1,719 | F <sub>eff</sub><br>[cm <sup>4</sup> /m]<br>1,396<br>1,719 | <b>A</b> g<br>[cm²/m] | i <sub>g</sub><br>[cm] | e <sub>g</sub><br>[cm] | A <sub>eff</sub><br>[cm²/m] | i <sub>eff</sub><br>[cm]           | e <sub>c</sub><br>[cm] | Einfeld-<br>träger<br>[m] | Mehrfeld<br>träger |
| 0,90<br>1,00                    | 0,022<br>0,024                 | 2,042<br>2,366                                               | 2,042<br>2,366                                             | _                     |                        |                        |                             |                                    |                        |                           |                    |
|                                 |                                | γ <sub>M</sub> =                                             | 10                                                         |                       |                        |                        |                             |                                    |                        |                           |                    |
|                                 |                                |                                                              |                                                            |                       |                        |                        |                             |                                    |                        |                           |                    |
|                                 |                                |                                                              |                                                            |                       |                        |                        |                             |                                    |                        |                           |                    |

Z54821.12 1.14.1-30/10

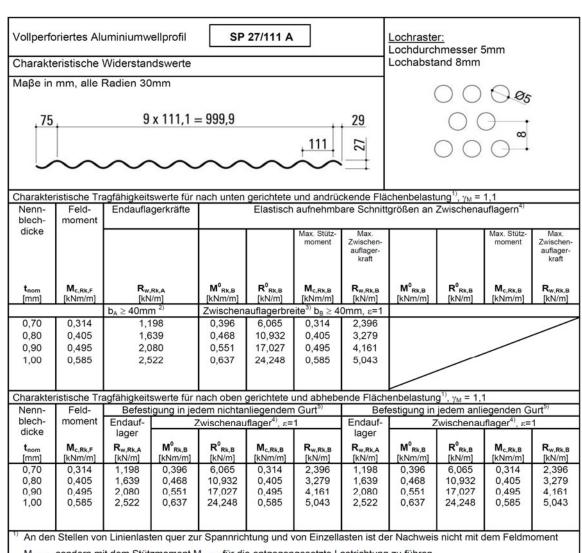
| Vollperfo                       | riertes Alı                                                      | uminiumw                                                                           | ellprofil                      | SP                                        | 18/76 A                                  |                                       |                                 | Lochraste                                        |                                          |                                |                                 |
|---------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------|---------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------|---------------------------------|
| Charakte                        | eristische                                                       | Widerstan                                                                          | dswerte                        |                                           |                                          |                                       |                                 | Lochdurch<br>Lochabsta                           |                                          |                                |                                 |
| Maβe in                         | mm, alle l                                                       | Radien 25                                                                          | imm                            |                                           |                                          |                                       |                                 |                                                  |                                          | San                            |                                 |
| 20                              | +                                                                |                                                                                    | 14 x 76 :                      | = 1064                                    |                                          |                                       | 20                              |                                                  | 0 0                                      | ○ rù.                          | 2                               |
|                                 | <u> </u>                                                         |                                                                                    |                                |                                           |                                          | 76                                    | 8                               |                                                  | 0 0                                      | 55.5                           |                                 |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          |                                       | `—                              |                                                  |                                          |                                |                                 |
| Charakter<br>Nenn-              | istische Tra                                                     | agfähigkeits<br>Endaufla                                                           |                                | nach unten                                |                                          |                                       |                                 | L<br>ächenbelast<br>ttgrößen an                  |                                          |                                |                                 |
| blech-<br>dicke                 | moment                                                           | Eridddid                                                                           | gernrane                       |                                           | Liuotioon                                | Max. Stütz-                           | Max.                            | I I I I I I I I I I I I I I I I I I I            | I                                        | Max. Stütz-                    | Max.                            |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          | moment                                | Zwischen<br>-auflager-<br>kraft |                                                  |                                          | moment                         | Zwischen-<br>auflager-<br>kraft |
| t <sub>nom</sub><br>[mm]        | M <sub>c,Rk,F</sub><br>[kNm/m]                                   | [kN                                                                                |                                | M <sup>0</sup> <sub>Rk,B</sub><br>[kNm/m] | R <sup>0</sup> <sub>Rk,B</sub><br>[kN/m] | M <sub>c,Rk,B</sub><br>[kNm/m]        | R <sub>w,Rk,B</sub><br>[kN/m]   | <b>M</b> <sup>0</sup> <sub>Rk,B</sub><br>[kNm/m] | R <sup>0</sup> <sub>Rk,B</sub><br>[kN/m] | M <sub>c,Rk,B</sub><br>[kNm/m] | R <sub>w,Rk,B</sub><br>[kN/m]   |
|                                 |                                                                  | b <sub>A</sub> ≥ 40mm                                                              | n <sup>2)</sup>                | Zwischen<br>ε=1                           | auflagerbre                              | eite <sup>3)</sup> b <sub>B</sub> ≥ 4 | 0mm,                            |                                                  |                                          |                                |                                 |
| 0,70<br>0,80                    | 0,343<br>0,421                                                   |                                                                                    | '35<br>306                     | 0,343<br>0,421                            | 8                                        | 0,343<br>0,421                        | 3,471<br>4,612                  |                                                  |                                          |                                |                                 |
| 0,90<br>1,00                    | 0,498<br>0,576                                                   | 2,8<br>3,4                                                                         | 377                            | 0,498<br>0,576                            | oo<br>oo                                 | 0,498<br>0,576                        | 5,754<br>6,895                  |                                                  |                                          |                                |                                 |
| 1,00                            | 0,070                                                            | 0,4                                                                                |                                | 0,070                                     |                                          | 0,070                                 | 0,000                           |                                                  |                                          |                                |                                 |
| Charakter<br>Nenn-              | istische Tra<br>Feld-                                            |                                                                                    |                                |                                           | gerichtete u<br>nliegendem               |                                       |                                 | henbelastun<br>efestigung in                     |                                          |                                | 45)                             |
| blech-                          | moment                                                           | Endauf-                                                                            |                                |                                           | iflager <sup>4)</sup> , ε=               |                                       | Endauf-                         |                                                  |                                          | flager <sup>4)</sup> , ε=1     |                                 |
| dicke<br>t <sub>nom</sub>       | $M_{c,Rk,F}$                                                     | lager<br>R <sub>w,Rk,A</sub>                                                       | M <sup>0</sup> <sub>Rk,B</sub> | R <sup>0</sup> <sub>Rk,B</sub>            | M <sub>c,Rk,B</sub>                      | R <sub>w,Rk,B</sub>                   | lager<br>R <sub>w,Rk,A</sub>    | M <sup>0</sup> <sub>Rk,B</sub>                   | R <sup>0</sup> <sub>Rk,B</sub>           | M <sub>c,Rk,B</sub>            | R <sub>w,Rk,B</sub>             |
| [mm]<br>0,70                    | [kNm/m]<br>0,343                                                 | [kN/m]<br>1,735                                                                    | [kNm/m]<br>0,343               | [kN/m]<br>∞                               | [kNm/m]<br>0,343                         | [kN/m]<br>3,471                       | [kN/m]<br>1,735                 | [kNm/m]<br>0,343                                 | [kN/m]<br>∞                              | [kNm/m]<br>0,343               | [kN/m]<br>3,471                 |
| 0,80<br>0,90                    | 0,421<br>0,498                                                   | 2,306<br>2,877                                                                     | 0,421<br>0,498                 | ∞<br>∞                                    | 0,421<br>0,498                           | 4,612<br>5,754                        | 2,306<br>2,877                  | 0,421<br>0,498                                   | ω<br>ω                                   | 0,421<br>0,498                 | 4,612<br>5,754                  |
| 1,00                            | 0,576                                                            | 3,448                                                                              | 0,576                          | 00                                        | 0,576                                    | 6,895                                 | 3,448                           | 0,576                                            | œ                                        | 0,576                          | 6,895                           |
| 1000                            |                                                                  |                                                                                    |                                |                                           |                                          |                                       |                                 | L<br>ler Nachweis                                |                                          | l<br>dem Feldm                 | oment                           |
| 0)                              | sondern m<br>auflagerbre                                         |                                                                                    | zmoment N                      | A <sub>c,Rk,B</sub> für di                | e entgegen                               | igesetzte L                           | astrichtur                      | ıg zu führen.                                    |                                          |                                |                                 |
|                                 |                                                                  |                                                                                    | o <sub>B</sub> als ange        | geben müs                                 | ssen die Tr                              | agfähigkeit                           | swerte lin                      | ear im entsp                                     | rechenden                                | Verhältnis                     | reduziert                       |
|                                 |                                                                  | 10 mm, z.B                                                                         |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
|                                 |                                                                  | DIN EN 199                                                                         |                                | 2) gilt für d                             | ie Interaktio                            | onsbeziehu                            | ing von M                       | und F:                                           |                                          |                                |                                 |
| $\frac{M_{Ed}}{M_{Rk,B}^0}$     | $\frac{1}{\gamma_{\rm M}} + \left(\frac{1}{R_{\rm Rk}^0}\right)$ | $\left(\frac{E_{\text{Ed}}}{c_{\text{B}}/\gamma_{\text{M}}}\right)^{\epsilon} \le$ | 1                              |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
| ACTIVITY OF THE PROPERTY OF THE |                                                                  | für M <sup>0</sup> <sub>Rk,B</sub> u                                               |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
| Bei Ver                         | bindungen                                                        | in jedem z                                                                         | weiten Gui                     | t mussen o                                | ne angeget                               | benen Wer                             | te nalbier                      | werden.                                          |                                          |                                |                                 |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |
|                                 |                                                                  |                                                                                    |                                |                                           |                                          |                                       |                                 |                                                  |                                          |                                |                                 |

Wellprofil SP 18/76 A

Vollperforierte Trapez- und Wellprofile aus Aluminium

Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte

Anlage 2.2




| Quersch                  | nittswerte                |                                            |                                            |                           |                        |                        |                             |                          | chmesser 5<br>tand 8mm | īmm                                          |                             |
|--------------------------|---------------------------|--------------------------------------------|--------------------------------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------------|------------------------|----------------------------------------------|-----------------------------|
| Maβe in                  | mm, alle l                | Radien 30                                  | mm                                         |                           |                        |                        |                             | 1                        | 0 0                    |                                              |                             |
|                          |                           |                                            |                                            |                           |                        |                        |                             |                          | $\bigcirc$             | 005                                          | •                           |
| , 75                     |                           | 9                                          | x 111,1 :                                  | = 999 9                   |                        |                        | 29                          |                          | 00                     | ) .                                          |                             |
| 173                      |                           |                                            | X 111,11                                   | - 000,0                   |                        |                        | 100                         |                          | 0                      | 0                                            |                             |
|                          |                           |                                            |                                            |                           |                        | 111                    | 27                          |                          | $\circ$                | $\bigcirc$                                   |                             |
|                          | $\sim$                    | $\sim$                                     | $\sim$                                     | $\sim$                    | $\sim$                 | ~                      | ·===                        |                          |                        |                                              |                             |
|                          |                           |                                            |                                            |                           |                        |                        |                             |                          |                        |                                              |                             |
|                          | ngrenze de<br>ende Querso |                                            |                                            | 165 N/mm²                 |                        |                        |                             |                          |                        |                                              |                             |
| Nenn-                    | Eigen-                    | Bieg                                       | ung <sup>1)</sup>                          |                           |                        | ormalkraftbe           |                             |                          |                        | Grenzst                                      | ützweiten                   |
| blech-<br>dicke          | last                      |                                            |                                            | nicht red                 | luzierter Qu           | erschnitt              | mitwi                       | rkender Que              | erschnitt              | <u>.                                    </u> |                             |
| 0.000                    |                           |                                            |                                            |                           |                        |                        |                             |                          |                        | Einfeld-                                     | L <sub>gr</sub><br>Mehrfeld |
|                          |                           |                                            |                                            |                           |                        |                        |                             |                          |                        | träger                                       | träger                      |
| 9                        |                           |                                            |                                            |                           |                        |                        |                             |                          |                        |                                              |                             |
| t <sub>nom</sub><br>[mm] | g<br>[kN/m²]              | I <sup>+</sup> eff<br>[cm <sup>4</sup> /m] | I <sup>*</sup> eff<br>[cm <sup>4</sup> /m] | A <sub>g</sub><br>[cm²/m] | i <sub>g</sub><br>[cm] | e <sub>g</sub><br>[cm] | A <sub>eff</sub><br>[cm²/m] | i <sub>eff</sub><br>[cm] | e <sub>c</sub><br>[cm] | [m]                                          | [m]                         |
| 0,70                     | 0,015<br>0,017            | 2,046                                      | 2,046                                      |                           |                        |                        |                             |                          | 1000 -00 00 0          |                                              |                             |
| 0,80<br>0,90             | 0,017                     | 2,338<br>2,630                             | 2,338<br>2,630                             |                           |                        |                        |                             |                          |                        |                                              |                             |
| 1,00                     | 0,022                     | 2,922                                      | 2,922                                      |                           |                        |                        |                             |                          |                        |                                              |                             |
|                          |                           |                                            | 4.                                         |                           |                        |                        |                             |                          |                        |                                              |                             |
|                          |                           | γ <sub>M</sub> =                           | : 1,0                                      |                           |                        |                        |                             |                          |                        |                                              |                             |
|                          |                           |                                            |                                            |                           |                        |                        |                             |                          |                        |                                              |                             |
|                          |                           |                                            |                                            |                           |                        |                        |                             |                          |                        |                                              |                             |
|                          |                           |                                            |                                            |                           |                        |                        |                             |                          |                        |                                              |                             |
|                          |                           |                                            |                                            |                           |                        |                        |                             |                          |                        |                                              |                             |
| 1) Wirksa                | mes Fläche                | enmoment :                                 | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | mes Fläche                | enmoment :                                 | 2. Grades                                  | für Lastrich              | tung nach i            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment :                                 | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach t            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | nmes Fläche               | enmoment :                                 | 2. Grades                                  | für Lastrich              | tung nach ι            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | mes Fläche                | enmoment :                                 | 2. Grades                                  | für Lastrich              | tung nach ι            | unten (+) ur           | nd nach o                   | iben (-).                |                        |                                              |                             |
| 1) Wirksa                | mes Fläche                | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | ınten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | ınten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment :                                 | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment :                                 | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | anten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | anten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |
| 1) Wirksa                | imes Fläche               | enmoment                                   | 2. Grades                                  | für Lastrich              | tung nach u            | unten (+) ur           | nd nach o                   | ben (-).                 |                        |                                              |                             |

Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit, Teilsicherheitsbeiwert

Wellprofil SP 27/111 A

Anlage 3.1



M<sub>c,Rk,F</sub>, sondern mit dem Stützmoment M<sub>c,Rk,B</sub> für die entgegengesetzte Lastrichtung zu führen. b<sub>A</sub> Endauflagerbreite.

$$\frac{M_{Ed}}{M_{RkB}^0/\gamma_M} + \left(\frac{F_{Ed}}{R_{RkB}^0/\gamma_M}\right)^{\epsilon} \le 1$$

Sind keine Werte für M<sup>0</sup><sub>Rk,B</sub> und R<sup>0</sup><sub>Rk,B</sub> angegeben, ist kein Interaktionsnachweis zu führen.

<sup>5)</sup> Bei Verbindungen in jedem zweiten Gurt müssen die angegebenen Werte halbiert werden.

Vollperforierte Trapez- und Wellprofile aus Aluminium

Wellprofil SP 27/111 A

Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte

Anlage 3.2


<sup>&</sup>lt;sup>3)</sup> Für kleinere Auflagerbreiten b<sub>B</sub> als angegeben müssen die Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für b<sub>B</sub> < 10 mm, z.B. Rohre, darf b<sub>B</sub> = 10 mm eingesetzt werden.

<sup>&</sup>lt;sup>4)</sup> Abweichend von DIN EN 1999-1-4, (6.22) gilt für die Interaktionsbeziehung von M und F:

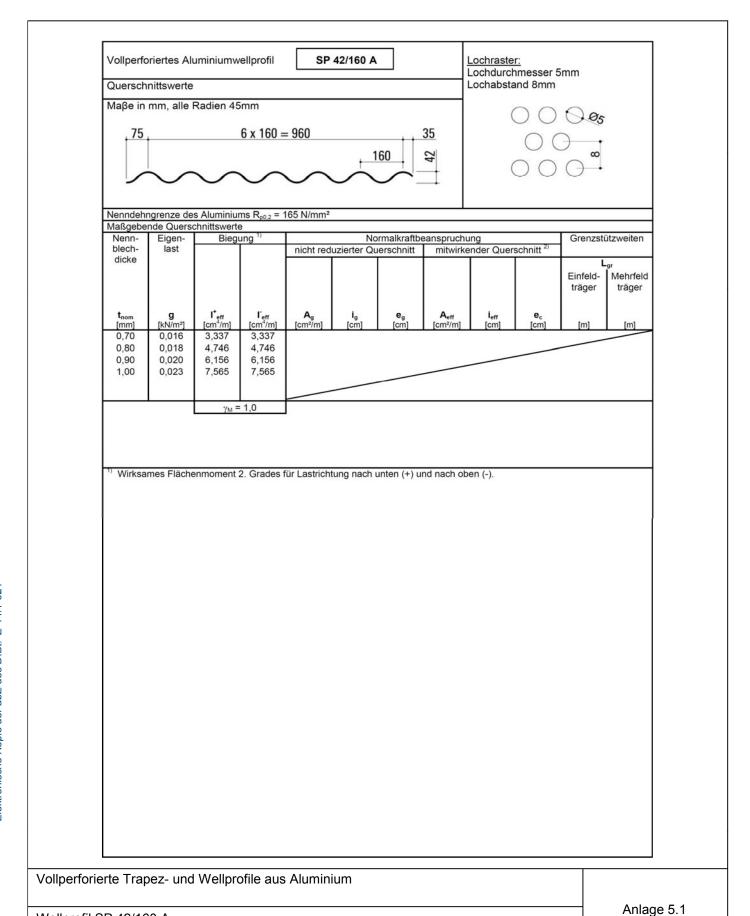


| Querschnittswert                    | е                                          |                                            |                           |                        |                        |                             | Lochabsi                 | and 5.5mr              | n                          |
|-------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|------------------------|------------------------|-----------------------------|--------------------------|------------------------|----------------------------|
| Maβe in mm, alle                    | Radien 30                                  | )mm                                        |                           |                        |                        |                             |                          | 00                     | Ses                        |
|                                     |                                            |                                            |                           |                        |                        |                             |                          | $\circ$                | 0                          |
| 75                                  | 9                                          | x 111,1 =                                  | = 999,9                   |                        | +                      | 29                          |                          | 00                     | .5                         |
|                                     |                                            |                                            |                           |                        | 111                    | 27                          |                          | $\circ$                | $\bigcirc$                 |
| ~~                                  | ~                                          | $\sim$                                     | ~                         | ~~                     | $\checkmark$           | $\vdash$                    |                          |                        |                            |
|                                     |                                            |                                            | 105111                    |                        |                        |                             |                          |                        |                            |
| Nenndehngrenze d<br>Maßgebende Quer | schnittswerte                              | ms R <sub>p0,2</sub> = 1<br>e              | 165 N/mm²                 |                        |                        |                             |                          |                        |                            |
| Nenn- Eigen-<br>blech- last         | Bieg                                       | ung <sup>1)</sup>                          | nicht red                 | Norm                   |                        | eanspruch                   | nung<br>kender Que       | rschnitt 2)            | Grenzstützwe               |
| dicke                               |                                            |                                            | THE TEC                   | deliciter Quer         | SCHIIIL                | HIILWIII                    | Terider Que              |                        | L <sub>gr</sub>            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        | Einfeld- Mel<br>träger trä |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        | l ago, l ac                |
| t <sub>nom</sub> g<br>[mm] [kN/m²]  | I <sup>+</sup> eff<br>[cm <sup>4</sup> /m] | l <sup>*</sup> eff<br>[cm <sup>4</sup> /m] | A <sub>g</sub><br>[cm²/m] | i <sub>g</sub><br>[cm] | e <sub>g</sub><br>[cm] | A <sub>eff</sub><br>[cm²/m] | i <sub>eff</sub><br>[cm] | e <sub>c</sub><br>[cm] | [m] [                      |
| 0,70 0,018<br>0,80 0,021            | 3,172<br>3,672                             | 3,172<br>3,672                             | 5. To                     | Do de des de           | A. 1300-11             |                             | - for the 1500           |                        |                            |
| 0,90 0,023                          | 4,173                                      | 4,173                                      |                           |                        |                        | _                           |                          |                        |                            |
| 1,00 0,026                          | 4,674                                      | 4,674                                      |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            | = 1,0                                      |                           |                        |                        |                             |                          |                        |                            |
|                                     | IM -                                       | 1,0                                        | •                         |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
|                                     |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |
| rte Trapez- un                      |                                            |                                            |                           |                        |                        |                             |                          |                        |                            |

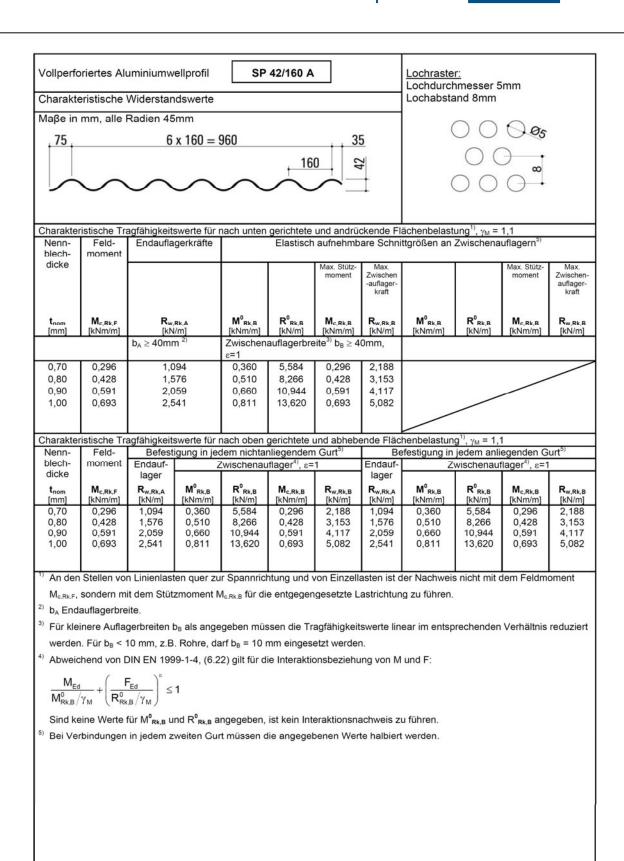
Z54821.12 1.14.1-30/10



Wellprofil SP 27/111 A


Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte

Anlage 4.2


Wellprofil SP 42/160 A

Z54821.12





Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit, Teilsicherheitsbeiwert



Vollperforierte Trapez- und Wellprofile aus Aluminium

Wellprofil SP 42/160 A

Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte

Anlage 5.2



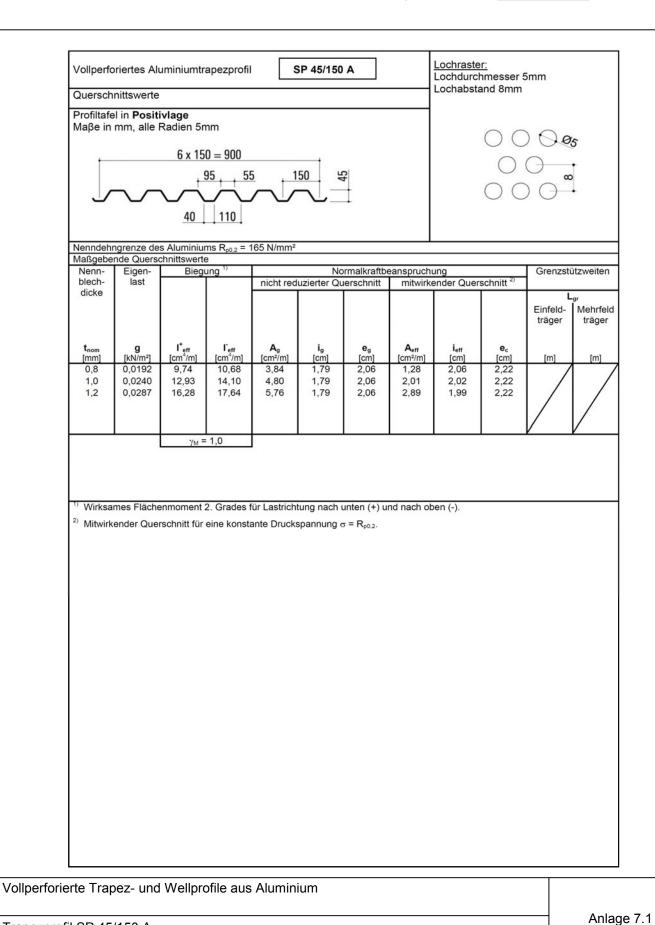
| Querschnittsw                    | s Aluminiumv<br>erte                           |                               | SP 42/16                                               |                        |                      | Lochraster:<br>Lochdurchmesser<br>Lochabstand 5.5m |                      |
|----------------------------------|------------------------------------------------|-------------------------------|--------------------------------------------------------|------------------------|----------------------|----------------------------------------------------|----------------------|
| Maβe in mm, a                    |                                                | 5mm                           |                                                        |                        |                      |                                                    |                      |
| mapo in mini, e                  | o r (autori 4                                  | On all                        |                                                        |                        |                      | 00                                                 | 000                  |
| , 75 ,                           |                                                | 6 x 160 =                     | 960                                                    | , , 3                  | 5                    | 00                                                 | 0.03                 |
|                                  |                                                |                               |                                                        |                        |                      | 00                                                 | .5                   |
|                                  |                                                | _                             |                                                        | 160                    | f                    | 00                                                 | $\bigcirc$ $\square$ |
|                                  |                                                |                               |                                                        | <u></u>                | 1                    |                                                    |                      |
| Nonadohnarona                    | o dos Aluminio                                 | ıma B =                       | 165 N/mm²                                              |                        |                      |                                                    |                      |
| Nenndehngrenz<br>Maßgebende Q    | uerschnittswer                                 | te                            | 105 IN/IIIIII                                          |                        |                      |                                                    |                      |
| Nenn- Eige<br>blech- las         | n- Bieg                                        | gung <sup>1)</sup>            | nicht reduzierte                                       | Normalkraftb           |                      | nung<br>kender Querschnitt 2)                      | Grenzstützweiten     |
| dicke                            |                                                |                               | nicht reduzierte                                       | Querscrinitt           | mitwire              | der Querschillt                                    | L <sub>gr</sub>      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    | Einfeld- Mehrfeld    |
|                                  |                                                |                               |                                                        |                        |                      |                                                    | träger träger        |
| t <sub>nom</sub> g<br>[mm] [kN/r | I <sup>+</sup> eff<br>n²] [cm <sup>4</sup> /m] | l <sup>r</sup> eff<br>[cm⁴/m] | A <sub>g</sub> i <sub>g</sub> [cm <sup>2</sup> /m] [cm | e <sub>g</sub>         | A <sub>eff</sub>     | i <sub>eff</sub> e <sub>c</sub>                    | (2000)               |
| [mm] [kN/r<br>0,70 0,0           | n²] [cm⁴/m]<br>19 6,224                        | [cm <sup>4</sup> /m]<br>6,224 | [cm <sup>2</sup> /m] [cm                               | e <sub>g</sub><br>[cm] | [cm <sup>2</sup> /m] | [cm] [cm]                                          | [m] [m]              |
| 0,80 0,02                        | 8,246                                          | 8,246                         |                                                        |                        |                      |                                                    |                      |
| 0,90 0,02<br>1,00 0,02           |                                                | 10,268<br>12,290              |                                                        |                        |                      |                                                    |                      |
| 1,00                             | 12,200                                         | 12,200                        |                                                        |                        |                      |                                                    |                      |
|                                  | 7/11                                           | = 1,0                         |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |
|                                  |                                                |                               |                                                        |                        |                      |                                                    |                      |

Z54821.12

1.14.1-30/10

Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit, Teilsicherheitsbeiwert

|                          |                                                            |                       |                                           | 0.0                                      |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|--------------------------|------------------------------------------------------------|-----------------------|-------------------------------------------|------------------------------------------|--------------------------------|--------------------------------|-------------------------------|------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------|-------------------------------|--|
| Vollperfo                | oriertes Alu                                               | uminiumw              | ellprofil                                 | SP                                       | 42/160 A                       |                                |                               | Lochraste<br>Lochdurch                                                                   |                                      | mm                             |                               |  |
| Charakte                 | eristische '                                               | Widerstar             | dswerte                                   |                                          |                                |                                |                               | Lochabsta                                                                                | nd 5.5mn                             | n                              |                               |  |
| Maβe in                  | mm, alle l                                                 | Radien 45             | imm                                       |                                          |                                |                                |                               |                                                                                          | $\sim$                               | •                              |                               |  |
| , 75                     |                                                            | 6 2                   | x 160 = 90                                | 60                                       |                                | , 35                           |                               | (                                                                                        | $\cup$                               | 0.03                           |                               |  |
|                          |                                                            |                       |                                           |                                          | 160                            | 42                             |                               | (                                                                                        | 00                                   | 0.0                            |                               |  |
|                          | _                                                          | $\sim$                | $\sim$                                    | $\bigcirc$                               |                                | 4                              |                               |                                                                                          |                                      | 2.5                            |                               |  |
|                          | $\cup$                                                     |                       |                                           |                                          |                                | `—                             |                               | (                                                                                        |                                      | 0                              |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
| Charakter                | ristische Tra                                              | agfähigkeit           | swerte für i                              | nach unten                               | gerichtete                     | und andrüc                     | kende Fl                      | ächenbelast                                                                              | ung <sup>1)</sup> , γ <sub>M</sub> = | 1,1                            |                               |  |
| Nenn-                    | Feld-                                                      |                       | gerkräfte                                 |                                          |                                |                                |                               | ttgrößen an                                                                              |                                      |                                |                               |  |
| blech-<br>dicke          | moment                                                     |                       |                                           |                                          |                                | Max. Stütz-                    | Max.                          | ī                                                                                        |                                      | Max. Stütz-                    | Max.                          |  |
|                          |                                                            |                       |                                           |                                          |                                | moment                         | Zwischen-<br>auflager-        | 10                                                                                       |                                      | moment                         | Zwischen-<br>auflager-        |  |
|                          |                                                            |                       |                                           |                                          |                                |                                | kraft                         |                                                                                          |                                      |                                | kraft                         |  |
|                          | M                                                          |                       |                                           | M <sup>0</sup> <sub>Rk,B</sub>           | R <sup>0</sup> <sub>Rk,B</sub> | M                              | В                             | M <sup>0</sup> <sub>Rk,B</sub>                                                           | R <sup>0</sup> <sub>Rk,B</sub>       | M                              | _                             |  |
| t <sub>nom</sub><br>[mm] | M <sub>c,Rk,F</sub><br>[kNm/m]                             | [kN                   | Rk,A<br>l/m]                              | [kNm/m]                                  | [kN/m]                         | M <sub>c,Rk,B</sub><br>[kNm/m] | R <sub>w,Rk,B</sub><br>[kN/m] | [kNm/m]                                                                                  | [kN/m]                               | M <sub>c,Rk,B</sub><br>[kNm/m] | R <sub>w,Rk,B</sub><br>[kN/m] |  |
| 0,70                     | 0,453                                                      | b <sub>A</sub> ≥ 40mr |                                           |                                          | auflagerbre                    |                                |                               | 1                                                                                        |                                      |                                |                               |  |
| 0,70                     | 0,600                                                      | 0.000000              | 595<br>201                                | 0,573<br>0,717                           | 7,187<br>11,396                | 0,453<br>0,600                 | 3,189<br>4,401                |                                                                                          |                                      |                                |                               |  |
| 0,90                     | 0,747                                                      | 000000                | 306                                       | 0,868                                    | 15,894                         | 0,747                          | 5,613                         |                                                                                          |                                      |                                |                               |  |
| 1,00                     | 0,894                                                      | 3,4                   | 112                                       | 1,021                                    | 20,574                         | 0,894                          | 6,824                         |                                                                                          |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               | nenbelastun                                                                              |                                      |                                | -51                           |  |
| Nenn-<br>blech-          | Feld-<br>moment                                            | Befest<br>Endauf-     |                                           | dem nichtar<br>Zwischenau                |                                |                                | Be<br>Endauf                  | Befestigung in jedem anliegenden Gurt <sup>5)</sup> Zwischenauflager <sup>4)</sup> , ε=1 |                                      |                                |                               |  |
| dicke                    | moment                                                     | lager                 |                                           | wischenau                                | mager*, ε=                     |                                | -lager                        |                                                                                          | wischenau                            | lager , ε= ι                   |                               |  |
| t <sub>nom</sub>         | M <sub>c,Rk,F</sub><br>[kNm/m]                             | R <sub>w,Rk,A</sub>   | M <sup>0</sup> <sub>Rk,B</sub><br>[kNm/m] | R <sup>0</sup> <sub>Rk,B</sub><br>[kN/m] | M <sub>c,Rk,B</sub>            | R <sub>w,Rk,B</sub>            | R <sub>w,Rk,A</sub>           | M <sup>0</sup> <sub>Rk,B</sub>                                                           | R <sup>0</sup> <sub>Rk,B</sub>       | M <sub>c,Rk,B</sub>            | R <sub>w,Rk,B</sub>           |  |
| [mm]<br>0,70             | 0,453                                                      | [kN/m]<br>1,595       | 0,573                                     | 7,187                                    | [kNm/m]<br>0,453               | [kN/m]<br>3,189                | [kN/m]<br>1,595               | [kNm/m]<br>0,573                                                                         | [kN/m]<br>7,187                      | [kNm/m]<br>0,453               | [kN/m]<br>3,189               |  |
| 0,80<br>0,90             | 0,600<br>0,747                                             | 2,201<br>2,806        | 0,717<br>0,868                            | 11,396<br>15,894                         | 0,600<br>0,747                 | 4,401<br>5,613                 | 2,201<br>2,806                | 0,717<br>0,868                                                                           | 11,396<br>15,894                     | 0,600<br>0,747                 | 4,401<br>5,613                |  |
| 1,00                     | 0,894                                                      | 3,412                 | 1,021                                     | 20,574                                   | 0,894                          | 6,824                          | 3,412                         | 1,021                                                                                    | 20,574                               | 0,894                          | 6,824                         |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
| 1) An den                | Stellen vo                                                 | n Linienlas           | ten quer zu                               | r Spannricl                              | ntung und v                    | on Einzella                    | asten ist d                   | er Nachweis                                                                              | nicht mit                            | dem Feldm                      | oment                         |  |
| M <sub>c,Rk,F</sub> ,    | sondern m                                                  | it dem Stüt           | zmoment N                                 | Λ <sub>c,Rk,B</sub> für di               | e entgegen                     | gesetzte L                     | astrichtun                    | g zu führen.                                                                             |                                      |                                |                               |  |
| 2) b <sub>A</sub> Enda   | auflagerbre                                                | ite.                  |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
| 3) Für klei              | inere Aufla                                                | gerbreiten l          | b <sub>B</sub> als ange                   | geben müs                                | ssen die Tr                    | agfähigkeit                    | swerte lin                    | ear im entsp                                                                             | rechenden                            | Verhältnis                     | reduziert                     |  |
| werden                   | n. Für b <sub>B</sub> < 1                                  | 10 mm, z.B            | . Rohre, da                               | arf b <sub>B</sub> = 10 i                | mm einges                      | etzt werder                    | 1.                            |                                                                                          |                                      |                                |                               |  |
| 4) Abweic                | chend von E                                                | OIN EN 199            | 9-1-4, (6.2                               | 2) gilt für d                            | ie Interaktio                  | onsbeziehu                     | ng von M                      | und F:                                                                                   |                                      |                                |                               |  |
| M <sub>e</sub> .         | . ( F                                                      | -, ) <sup>ε</sup>     |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
| M <sub>Pk P</sub>        | $\frac{1}{\gamma_{M}} + \left(\frac{F}{R_{Rk}^{0}}\right)$ | Ed S                  | 1                                         |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|                          | eine Werte                                                 |                       |                                           |                                          | iat kain lat                   | araktianan a                   | obuvojo sv                    | , führen                                                                                 |                                      |                                |                               |  |
| 7268                     | rbindungen                                                 |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
| Bei vei                  | rbindungen                                                 | in jedem z            | weiten Gur                                | t mussen c                               | ne angeger                     | benen wen                      | e naibien                     | werden.                                                                                  |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                | Í                             |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |
|                          |                                                            |                       |                                           |                                          |                                |                                |                               |                                                                                          |                                      |                                |                               |  |


Wellprofil SP 42/160 A

Vollperforierte Trapez- und Wellprofile aus Aluminium

Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte

Anlage 6.2





Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit, Teilsicherheitsbeiwert

Positivlage

Trapezprofil SP 45/150 A

Lochraster: Vollperforiertes Aluminiumtrapezprofil SP 45/150 A Lochdurchmesser 5mm Lochabstand 8mm Charakteristische Widerstandswerte Profiltafel in Positivlage Maβe in mm, alle Radien 5mm  $6 \times 150 = 900$ 

| Nenn-<br>blech-        | Feld-<br>moment         | Endauflagerkräfte                   |                                | Elastisch                      | aufnehmb                       | are Schnitt                                         | größen an                      | Zwischena             | uflagern <sup>5)</sup>         |                                         |
|------------------------|-------------------------|-------------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------------------------|--------------------------------|-----------------------|--------------------------------|-----------------------------------------|
| dicke t <sub>nom</sub> | $M_{c,Rk,F}$            | R <sub>w,Rk,A</sub>                 | M <sup>0</sup> <sub>Rk,B</sub> | R <sup>0</sup> <sub>Rk,B</sub> | Max. Stütz-<br>moment          | Max. Zwischen- auflager- kraft  R <sub>w,Rk,B</sub> | M <sup>0</sup> <sub>Rk,B</sub> | $R^0_{Rk,B}$          | Max. Stütz-<br>moment          | Max. Zwischen- auflager- kraft  Rw,Rk,B |
| [mm]                   | [kNm/m]                 | [kN/m]                              | [kNm/m]                        | [kN/m]                         | [kNm/m]                        | [kN/m]                                              | [kNm/m]                        | [kN/m]                | [kNm/m]                        | [kN/m]                                  |
|                        |                         | b <sub>A</sub> ≥ 40mm <sup>2)</sup> | Zwischen                       | auflagerbre                    | eite <sup>3)</sup> $b_B \ge 4$ | 0mm, ε=2                                            | Zwischen                       | auflagerbre           | eite <sup>4)</sup> $b_B \ge 6$ | 0, ε=2                                  |
| 0,8<br>1,0<br>1,2      | 0,443<br>0,696<br>0,960 | 1,73<br>2,80<br>4,14                | 0,447<br>0,702<br>1,003        | 3,88<br>6,27<br>9,25           | 0,447<br>0,702<br>1,003        | 3,47<br>5,61<br>8,27                                | 0,447<br>0,702<br>1,003        | 4,33<br>7,01<br>10,34 | 0,447<br>0,702<br>1,003        | 3,87<br>6,27<br>9,25                    |

| Charakter                | istische Tra                   | agfähigkeit                   | swerte für i                              | nach oben                                | gerichtete ι                   | und abhebe                  | ende Fläche                   | enbelastun                                | $g^{1)}$ , $\gamma_M = 1$ ,              | 1                              |                             |
|--------------------------|--------------------------------|-------------------------------|-------------------------------------------|------------------------------------------|--------------------------------|-----------------------------|-------------------------------|-------------------------------------------|------------------------------------------|--------------------------------|-----------------------------|
| Nenn-                    | Feld-                          | Bef                           | estigung in                               | jedem anl                                | iegende Gu                     | urt <sup>6)</sup>           | Befes                         | stigung in j                              | edem 2. an                               | liegenden (                    | Gurt <sup>6)</sup>          |
| blech-                   | moment                         | Endauf-                       |                                           | Zwischen                                 | auflager <sup>5)</sup>         |                             | Endauf-                       |                                           | Zwischen                                 | auflager <sup>5)</sup>         |                             |
| dicke                    |                                | lager                         | 18                                        | re l                                     |                                |                             | lager                         | 88                                        | 88                                       |                                |                             |
| t <sub>nom</sub><br>[mm] | M <sub>c,Rk,F</sub><br>[kNm/m] | R <sub>w,Rk,A</sub><br>[kN/m] | M <sup>0</sup> <sub>Rk,B</sub><br>[kNm/m] | R <sup>0</sup> <sub>Rk,B</sub><br>[kN/m] | M <sub>c,Rk,B</sub><br>[kNm/m] | V <sub>w,Rk</sub><br>[kN/m] | R <sub>w,Rk,A</sub><br>[kN/m] | M <sup>0</sup> <sub>Rk,B</sub><br>[kNm/m] | R <sup>0</sup> <sub>Rk,B</sub><br>[kN/m] | M <sub>c,Rk,B</sub><br>[kNm/m] | V <sub>w,Rk</sub><br>[kN/m] |
| 0,8                      | 0,447                          | 9,11                          | /                                         | /                                        | 0,443                          | 9,11                        | 4,56                          |                                           |                                          | 0,221                          | 4,56                        |
| 1,0                      | 0,702                          | 14,83                         | /                                         | /                                        | 0,696                          | 14,83                       | 7,42                          | /                                         | /                                        | 0,348                          | 7,42                        |
| 1,2                      | 1,003                          | 21,36                         | /                                         | /                                        | 0,960                          | 21,36                       | 10,68                         | /                                         | /                                        | 0,480                          | 10,68                       |
|                          |                                |                               | /                                         | /                                        |                                |                             |                               | /                                         | /                                        |                                |                             |
|                          |                                |                               | /                                         | /                                        |                                |                             |                               | /                                         | /                                        |                                |                             |
|                          |                                |                               | /                                         | /                                        |                                |                             |                               | V                                         | V                                        |                                | l .                         |

An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment M<sub>c,Rk,F</sub>, sondern mit dem Stützmoment M<sub>c,Rk,B</sub> für die entgegengesetzte Lastrichtung zu führen.

$$\frac{M_{\text{Ed}}}{M_{\text{Rk,B}}^{\text{0}}/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk,B}}^{\text{0}}/\gamma_{\text{M}}}\right)^{\epsilon} \leq 1$$

Sind keine Werte für M<sup>0</sup><sub>Rk,B</sub> und R<sup>0</sup><sub>Rk,B</sub> angegeben, ist kein Interaktionsnachweis für M und F zu führen. 6) Abweichend von DIN EN 1999-1-4, (6.20), gilt für die Interaktionsbeziehung von M und V:

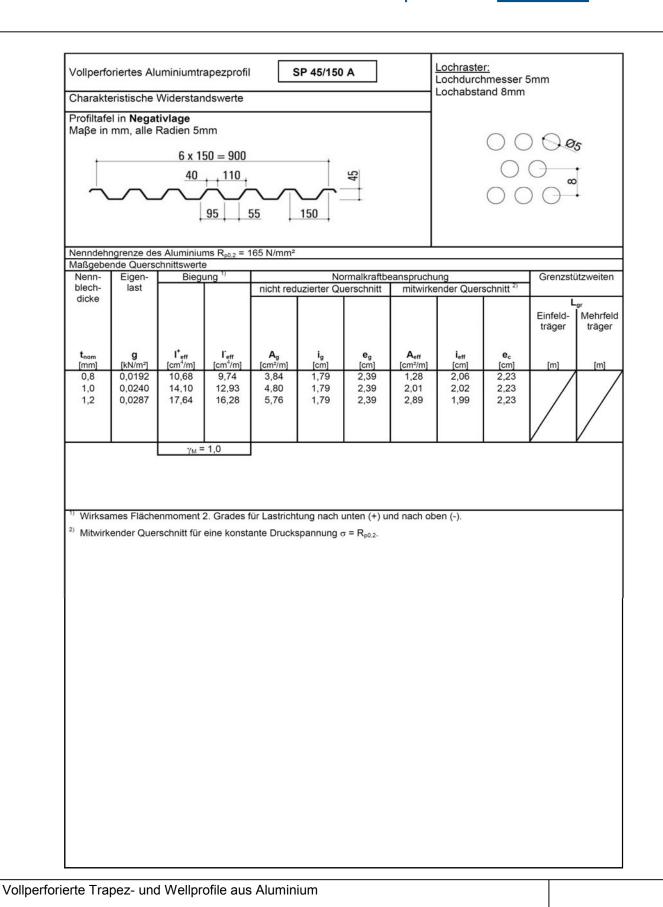
$$\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} + \frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 1,3$$

Vollperforierte Trapez- und Wellprofile aus Aluminium

Trapezprofil SP 45/150 A

Positivlage

Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte


Anlage 7.2

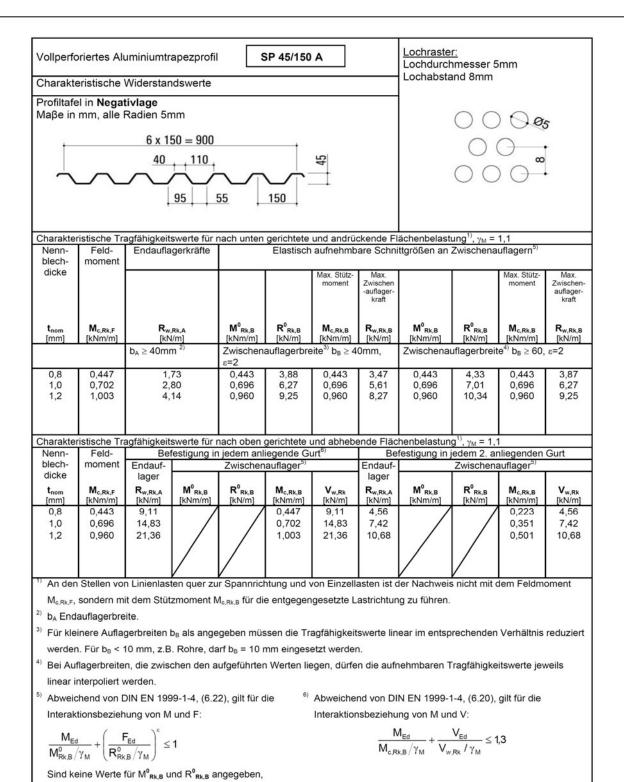
<sup>2)</sup> b<sub>A</sub> Endauflagerbreite.

<sup>&</sup>lt;sup>3)</sup> Für kleinere Auflagerbreiten b<sub>B</sub> als angegeben müssen die Tragfähigkeitswerte linear im entsprechenden Verhältnis reduziert werden. Für b<sub>B</sub> < 10 mm, z.B. Rohre, darf b<sub>B</sub> = 10 mm eingesetzt werden.

<sup>&</sup>lt;sup>4)</sup> Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.

<sup>5)</sup> Abweichend von DIN EN 1999-1-4, (6.22), gilt für die Interaktionsbeziehung von M und F:




Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit, Teilsicherheitsbeiwert

Negativlage

Trapezprofil SP 45/150 A

Anlage 7.3





Vollperforierte Trapez- und Wellprofile aus Aluminium

ist kein Interaktionsnachweis für M und F zu führen.

Trapezprofil SP 45/150 A

Positivlage

Charakteristische Werte der Widerstandsgrößen, Teilsicherheitsbeiwerte

Anlage 7.4



| für die Profile | SP 18/76 A  | Lochraster 3/5.5 | und Lochraster 5/8 |
|-----------------|-------------|------------------|--------------------|
|                 | SP 27/111 A | 0 0 0e3          | 0000               |
|                 | SP 42/160 A | 0 0 0 0          | 000                |
|                 | SP 45/150 A | 0 0 0            | 000                |

in Positiv- und Negativlage

Aufnehmbare Zugkraft  $N_{R,k}$  in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm  $^{1)}$   $^{(2)}$ 

Nennwert der Zugfestigkeit  $R_{\text{m}} \geq 170 \text{N/mm}^2$ 

Als Teilsicherheitsbeiwert ist  $\gamma_{\rm M}$  = 1,33 zu setzen.

|                         | Charakte | eristische Durchknöpftragfä                 | higkeit [kN          | l]                   |                      |                      |                      |
|-------------------------|----------|---------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Profiltyp +             | Verbindu |                                             |                      |                      | nblechdick           |                      |                      |
| Profillage              | Art      | Schraubentyp                                | t <sub>N</sub> =0.80 | t <sub>N</sub> =0.90 | t <sub>N</sub> =1.00 | t <sub>N</sub> =1.10 | t <sub>N</sub> ≥1.20 |
| SP 18/76 A pos. / neg.  |          | SFS SX5 - S12 - 5,5 x L<br>gem. ETA-10/0198 | 0,74                 | 0,81                 | 0,88                 | 0,95                 | 1,02                 |
| SP 27/111 A pos. / neg. |          | SFS SX5 - S16 - 5,5 x L<br>gem. ETA-10/0198 | 0,71                 | 0,83                 | 0,93                 | 1,04                 | 1,14                 |
| SP 42/160 A pos. / neg. |          | SFS SX5 - S16 - 5,5 x L<br>gem. ETA-10/0198 | 0,63                 | 0,76                 | 0,90                 | 1,03                 | 1,16                 |
| SP 45/150 A positiv     |          | SFS SX5 - S22 - 5,5 x L<br>gem. ETA-10/0198 | 0,60                 | 0,70                 | 0,81                 | 0,91                 | 1,01                 |
| SP 45/150 A<br>negativ  |          | SFS SX5 - S22 - 5,5 x L<br>gem. ETA-10/0198 | 0,54                 | 0,63                 | 0,73                 | 0,82                 | 0,91                 |

<sup>1)</sup> Zusätzlich ist die Auszugtragfähigkeit für die Verbindung mit der jeweiligen Unterkonstruktion zu berücksichtigen <sup>2)</sup> die charakteristischen Werte der Längszugtragfähigkeit für die Verbindungen ergeben sich aus dem kleineren der beiden charakteristischen Werte der Durchknöpftragfähigkeit und der Auszugtragfähigkeit der Verbindung mit der Unterkonstruktion

Vollperforierte Trapez- und Wellprofile aus Aluminium

Charakteristische Werte der Widerstandsgrößen der Verbindungen,
Teilsicherheitsbeiwerte

Anlage 8

Z54821.12 1.14.1-30/10