

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts Mitglied der EOTA, der UEAtc und der WFTAO

Datum: Geschäftszeichen: 124-1.15.7-1/13

Zulassungsnummer:

Z-15.7-293

Antragsteller:

Halfen GmbH Liebigstraße 14 40764 Langenfeld

Zulassungsgegenstand:

Halfen-Iso-ElemenT HIT-HP / HIT-SP mit Druckschublager

Geltungsdauer

11.06.2013

vom: 11. Juni 2013

bis: 7. September 2015

Der oben genannte Zulassungsgegenstand wird hiermit allgemein bauaufsichtlich zugelassen. Diese allgemeine bauaufsichtliche Zulassung umfasst 13 Seiten und neun Anlagen mit 44 Seiten. Diese allgemeine bauaufsichtliche Zulassung ersetzt die allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-293 vom 23. Oktober 2012. Der Gegenstand ist erstmals am 7. September 2010 allgemein bauaufsichtlich zugelassen worden.

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-293

Seite 2 von 13 | 11. Juni 2013

I ALLGEMEINE BESTIMMUNGEN

- Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.
- Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.
- Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.
- 4 Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.
- Hersteller und Vertreiber des Zulassungsgegenstandes haben, unbeschadet weiter gehender Regelungen in den "Besonderen Bestimmungen", dem Verwender bzw. Anwender des Zulassungsgegenstandes Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen und darauf hinzuweisen, dass die allgemeine bauaufsichtliche Zulassung an der Verwendungsstelle vorliegen muss. Auf Anforderung sind den beteiligten Behörden Kopien der allgemeinen bauaufsichtlichen Zulassung zur Verfügung zu stellen.
- Die allgemeine bauaufsichtliche Zulassung darf nur vollständig vervielfältigt werden. Eine auszugsweise Veröffentlichung bedarf der Zustimmung des Deutschen Instituts für Bautechnik. Texte und Zeichnungen von Werbeschriften dürfen der allgemeinen bauaufsichtlichen Zulassung nicht widersprechen. Übersetzungen der allgemeinen bauaufsichtlichen Zulassung müssen den Hinweis "Vom Deutschen Institut für Bautechnik nicht geprüfte Übersetzung der deutschen Originalfassung" enthalten.
- Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-293

Seite 3 von 13 | 11. Juni 2013

II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

Der Plattenanschluss Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager aus hochfestem faserbewehrten Mörtel wird als tragendes Verbindungselement mit wärmedämmender Funktion zwischen 16 bis 25 cm dicken plattenartigen Bauteilen aus Stahlbeton nach DIN 1045-1:2008-08 bzw. DIN EN 1992-1-1:2011-01 mit einer Mindestfestigkeitsklasse von C20/25 und einer Rohdichte zwischen 2000 kg/m³ und 2600 kg/m³ unter vorwiegend ruhender Belastung verwendet.

Das Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager (siehe Anlage 1) besteht aus einer 80 mm (HIT-HP) bzw. 120 mm (HIT-SP) dicken Dämmschicht aus Mineralwolle und aus einem statisch wirksamen System aus Stahlstäben zur Aufnahme von Zug- und Querkräften und Druckschublagern. Die Kräfte werden durch Verbund bzw. Flächenpressung an die angrenzenden Bauteile übertragen.

Die Verbindungselemente werden in verschiedene Typen unterteilt (siehe Anlage 1):

- HIT-HP/SP MV:

Zugstäbe und Druckschublager zur Aufnahme von Biegemomenten und Querkräften,

- HIT-HP/SP ZV:

in der Dämmschicht geneigte Stäbe sowie Druckschublager ausschließlich zur Aufnahme von Querkräften,

- HIT-HP/SP MV-...-OD/ -OU/ -WD/ -WU:

Zugstäbe und Druckschublager zur Aufnahme von Biegemomenten und Querkräften zum Anschluss an höhenversetzte plattenartige Bauteile aus Stahlbeton bzw. Wände.

Das Verhältnis von Höhe zu Breite der angeschlossenen Bauteile sollte den Wert 1/3 nicht überschreiten, wenn kein gesonderter Nachweis zur Aufnahme der auftretenden Querzugspannungen geführt wird.

2 Bestimmungen für das Bauprodukt

2.1 Eigenschaften und Zusammensetzung

2.1.1 Abmessungen und Lage der Stäbe und Druckschublager im Bereich der Dämmfuge

Das Verbindungselement Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager muss den Anlagen 1 bis 9 entsprechen.

Das Tragsystem im Bereich der Dämmfuge besitzt Zugstäbe und Druckschublager zur Aufnahme von Biegemomenten und Querkräften oder Querkraftstäbe und Druckschublager zur ausschließlichen Aufnahme von Querkräften.

Die Druckschublager bestehen aus ultra-hochfestem faserbewehrten Mörtel. Die Eigenschaften der Druckschublager sind in einem Datenblatt erfasst.

Die Zugstäbe bestehen in der Dämmfuge und auf einer Länge von mindestens 10 cm innerhalb der angrenzenden Betonbauteile aus nichtrostendem Betonstahl oder nichtrostenden Rundstahlstäben, an deren Enden Betonstahl durch Abbrennstumpfschweißen kraftschlüssig angeschlossen wird. Die Zugstäbe können auch über die Länge von 10 cm innerhalb der angrenzenden Betonbauteile hinaus aus nichtrostendem Betonstahl bestehen (siehe Anlage 3).

Nr. Z-15.7-293

Seite 4 von 13 | 11. Juni 2013

Die Querkraftstäbe bestehen in der Dämmfuge und auf einer Länge von mindestens 10 cm innerhalb der angrenzenden Betonbauteile aus nichtrostendem Betonstahl, an deren Enden Betonstahl durch Abbrennstumpfschweißen kraftschlüssig angeschlossen wird. Die Querkraftstäbe können auch über die Länge von 10 cm innerhalb der angrenzenden Betonbauteile hinaus aus nichtrostendem Betonstahl bestehen (siehe Anlage 3).

Der maximal zulässige Stabdurchmesser für die Zugstäbe beträgt 20 mm, der für die Querkraftstäbe 12 mm. Bei Verwendung von nichtrostendem Betonstahl mit der Werkstoffnummer 1.4362 (siehe Abschnitt 2.1.2) beträgt der maximal zulässige Stabdurchmesser für die Zugstäbe in der Dämmfuge 12 mm.

Im betonfreien Bereich dürfen die Querkraftstäbe keine Krümmung aufweisen. Der Anfangspunkt der Innenkrümmung muss von der freien Betonfläche in Stabrichtung gemessen mindestens 2 de entfernt liegen.

Für die konstruktive Ausbildung des Halfen-Iso-ElemenTes HIT-HP/SP sind die Randbedingungen nach Anlage 6 einzuhalten.

2.1.2 Werkstoffe

Es sind folgende Werkstoffe zu verwenden:

Nichtrostender Stahl: Betonstahl B500 NR nach allgemeiner bauaufsichtlicher Zulassung,

Werkstoff-Nr. 1.4571 oder 1.4362 oder 1.4462

Nichtrostender Stabstahl nach allgemeiner bauaufsichtlicher Zulassung Nr. Z-30.3-6, Werkstoff-Nr. 1.4571 oder 1.4404 oder 1.4362 oder 1.4462, Festigkeitsklasse S460 bzw. S690 in Verbindung mit den mechanischen Eigenschaften und Ober-

flächeneigenschaften gemäß Datenblatt

Betonstahl: B500B nach DIN 488-1

Druckschublager: Ultra-hochfester faserbewehrter Mörtel entsprechend Datenblatt

Dämmfuge: wärmedämmendes Brandschutzmaterial - Mineralwolle gemäß

Datenblatt mit einem Brandverhalten der Klasse A1 nach

DIN EN 13501-1

Kunststoff für die

Verwahrkästen: HD-PE-Kunststoff und Hart-PVC gemäß Datenblatt

Der Beton der anschließenden Bauteile muss mindestens C20/25, bei Außenbauteilen mindestens C25/30 entsprechen.

2.1.3 Brandverhalten

Bei Verwendung der Halfen-Iso-ElemenTe HIT-HP/SP zur Verbindung von Stahlbetonplatten, an die Anforderungen hinsichtlich der Feuerwiderstandsfähigkeit (entsprechende Feuerwiderstandsklasse gemäß DIN 4102-2 bis maximal F 120 - AB bzw. REI 120 nach DIN EN 13501-2) gestellt werden, müssen in jedem Falle folgende Randbedingungen eingehalten werden:

- Die an das Halfen-Iso-ElemenT HIT-HP/SP angrenzenden Bauteile müssen selbst ebenfalls Anforderungen der jeweiligen Feuerwiderstandsklasse nach DIN 4102-2 einschließlich DIN 4102-22 bzw. DIN EN 13501-2 erfüllen.
- Die erforderliche Betondeckung der Zugstäbe nach DIN 1045-1 bzw. DIN EN 1992-1-1 ist einzuhalten.

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-293

Seite 5 von 13 | 11. Juni 2013

2.1.4 Wärmeschutz

Für die Beurteilung des Wärmeschutzes sind folgende Nachweise zu führen:

a) Beurteilung der Tauwassergefahr (Unterschreitung der Tauwassertemperatur)

Für den Plattenanschluss HIT-HP/SP ist nach DIN 4108-2, Abschnitt 6.2 der rechnerische Nachweis des Temperaturfaktors an der ungünstigsten Stelle für die Mindestanforderung von $f_{Rsi} \ge 0.7$ und $\theta_{si} \ge 12.6$ °C entsprechend DIN EN ISO 10211-2 unter Einhaltung der konstruktiven Forderungen dieser Zulassung für den Plattenanschluss erbracht (siehe Anlage 9).

b) Berücksichtigung des erhöhten Transmissionswärmeverlustes nach DIN V 4108-6

Der Plattenanschluss darf, wenn kein genauerer Nachweis geführt wird, als thermisch getrennte Konstruktion im Sinne von DIN 4108 Bbl. 2 angesehen werden. Es darf daher mit einem pauschalen spezifischen Wärmebrückenzuschlag von ΔU_{WB} = 0,05 W/m²·K für die gesamte Umfassungsfläche gerechnet werden.

Für die in Anlage 9 aufgeführten Einbausituationen darf zur Ermittlung des spezifischen Transmissionswärmeverlustes H_T mit den längenbezogenen Wärmedurchgangskoeffizienten Ψ nach Anlage 9 gerechnet werden.

2.1.5 Dauerhaftigkeit und Korrosionsschutz

Die Anforderungen an die Dauerhaftigkeit werden in DIN 1045-1, Abschnitt 6 bzw. DIN EN 1992-1-1, Abschnitt 4 festgelegt. Die Mindestbetonfestigkeitsklassen sowie die Mindestbetondeckung in Abhängigkeit von den jeweiligen Umweltbedingungen sind entsprechend DIN 1045-1 bzw. DIN EN 1992-1-1 einzuhalten. Der Korrosionsschutz wird durch Einhaltung der Betondeckung der bauseitigen Bewehrung nach DIN 1045-1 bzw. DIN EN 1992-1-1 und Verwendung der Werkstoffe nach dieser allgemeinen bauaufsichtlichen Zulassung gewährleistet.

2.2 Herstellung, Verpackung, Transport, Lagerung und Kennzeichnung

2.2.1 Herstellung

Das Halfen-Iso-ElemenT HIT-HP/SP wird aus einem modularen System von Kunststoff-Verwahrkästen mit integriertem wärmedämmendem Brandschutzmaterial aufgebaut. Das wärmedämmende Brandschutzmaterial wird zum Schutz vor Feuchtigkeit oder Nässe durch den Verwahrkasten umschlossen.

Für die Schweißverbindungen der Zugstäbe und Querkraftstäbe ist das Verfahren Abbrennstumpfschweißen (Prozess 24 nach DIN EN ISO 17660-1) zu verwenden.

Es gelten die Festlegungen der allgemeinen bauaufsichtlichen Zulassung Nr. Z-30.3-6 in Verbindung mit DIN EN ISO 17660-1. Die Zugstäbe werden in den oberen Verwahrkästen in ihrer Lage gesichert angeordnet und bilden mit diesen eine Montageeinheit.

Die formgebenden Schalkörper der Druckschublager aus HD-PE-Kunststoff werden mit faserbewehrtem Mörtel vergossen und mit einem Deckel aus PE-Kunststoff verschlossen, wobei die Druckschublager in einem Verwahrkasten aus Hart-PVC angeordnet und lagegesichert sind. Dies bildet eine Montageeinheit. Die Abmessungen der Druckschublager entsprechen Anlage 4.

Im eingebauten Zustand sind die oberen Verwahrkästen mit den unteren Verwahrkästen, ggf. über Distanzboxen verbunden.

2.2.2 Verpackung und Kennzeichnung

Jede Verpackungseinheit der Plattenanschlüsse Halfen-Iso-ElemenT HIT-HP/SP muss vom Hersteller dauerhaft und deutlich lesbar, z. B. mittels Aufkleber mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 "Übereinstimmungsnachweis" erfüllt sind.

Nr. Z-15.7-293

Seite 6 von 13 | 11. Juni 2013

Zusätzlich muss die Kennzeichnung mindestens folgende Angaben enthalten:

- Zulassungsnummer (Z-15.7-293),
- Typenbezeichnung.

An jedem einzelnen Plattenanschluss HIT-HP/SP müssen eindeutige Angaben zum Einbau des Plattenanschlusses und der Anschlussbewehrung angebracht werden. Der Hersteller hat jeder Lieferung eine Einbauanleitung beizufügen.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines

Die Bestätigung der Übereinstimmung des Bauproduktes Halfen-Iso-ElemenT HIT-HP/SP mit den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung muss für jedes Herstellwerk mit einem Übereinstimmungszertifikat auf der Grundlage einer werkseigenen Produktionskontrolle und einer regelmäßigen Fremdüberwachung einschließlich einer Erstprüfung des Bauprodukts nach Maßgabe der folgenden Bestimmungen erfolgen.

Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Bauprodukts eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einschließlich Produktprüfung einzuschalten.

Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.

Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats zur Kenntnis zu geben.

Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichts zur Kenntnis zu geben.

2.3.2 Werkseigene Produktionskontrolle

In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass die von ihm hergestellten Bauprodukte den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entsprechen.

Die werkseigene Produktionskontrolle muss mindestens die im Folgenden aufgeführten Maßnahmen einschließen:

Überprüfung des Ausgangsmaterials und der Bestandteile:

Für den Plattenanschluss Halfen-Iso-ElemenT HIT-HP/SP dürfen nur Baustoffe verwendet werden, für die entsprechend den geltenden Normen und Zulassungen der Nachweis der Übereinstimmung geführt wurde und die entsprechend gekennzeichnet sind oder die nach den Regelungen dieser allgemeinen bauaufsichtlichen Zulassung überwacht und geprüft werden.

Kontrollen und Prüfungen, die während der Herstellung durchzuführen sind:

Die Eigenschaften des Druckschublagers sind nach Prüfplan zu überwachen und zu prüfen.

Nachweise und Prüfungen, die am fertigen Bauprodukt durchzuführen sind:

Die Abmessungen des Bauproduktes Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager und die Ausführung und Nachbehandlung der Schweißverbindungen sind an jedem Halfen-Iso-ElemenT HIT-HP/SP zu überprüfen.

Nr. Z-15.7-293

Seite 7 von 13 | 11. Juni 2013

Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:

- Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials und der Bestandteile,
- Art der Kontrolle oder Prüfung,
- Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials oder der Bestandteile.
- Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

Bei ungenügendem Prüfergebnis sind vom Hersteller unverzüglich die erforderlichen Maßnahmen zur Abstellung des Mangels zu treffen. Bauprodukte, die den Anforderungen nicht entsprechen, sind so zu handhaben, dass Verwechslungen mit übereinstimmenden ausgeschlossen werden. Nach Abstellung des Mangels ist - soweit technisch möglich und zum Nachweis der Mängelbeseitigung erforderlich - die betreffende Prüfung unverzüglich zu wiederholen.

2.3.3 Fremdüberwachung

In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüberwachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

Im Rahmen der Fremdüberwachung ist eine Erstprüfung des Bauproduktes Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager durchzuführen.

Die im Rahmen der Überprüfung der werkseigenen Produktionskontrolle mindestens erforderlichen Prüfungen sind im Prüfplan angegeben. Deren Ergebnisse sind auszuwerten und mit den Anforderungen des Prüfplanes zu vergleichen.

Die Ergebnisse der Zertifizierung und Fremdüberwachung sind mindestens fünf Jahre aufzubewahren. Sie sind von der Zertifizierungsstelle bzw. der Überwachungsstelle dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

3 Bestimmungen für Entwurf und Bemessung

3.1 Allgemeines

Für den Entwurf und die Bemessung gilt DIN 1045-1 bzw. DIN EN 1992-1-1. Eine Mischung beider technischer Baubestimmungen ist nicht zulässig.

DIN EN 1992-1-1 gilt stets in Verbindung mit DIN EN 1992-1-1/NA.

3.2 Entwurf

Mit den Plattenanschlüssen dürfen je nach Typ Biegemomente und/oder Querkräfte übertragen werden. Die Mindestfestigkeitsklasse der zu verbindenden Stahlbetonbauteile aus Normalbeton ist C20/25, bei Außenbauteilen C25/30. Die angeschlossene Platte ist durch Fugen zu unterteilen, die zur Minderung der Temperaturbeanspruchung entsprechend Abschnitt 4 angeordnet werden.

Die in der Platte auftretenden Beanspruchungen werden über die Zug- und Druckglieder in der Fuge lokal übertragen und über einen Krafteinleitungsbereich in die angeschlossenen Platten weitergeleitet. Der statische Nachweis für die Weiterleitung der übertragenen Kräfte ist zu führen. Der Nachweis der Krafteinleitung zwischen Druckschublager und angrenzendem Beton ist nach Anlage 5 zu führen.

Nr. Z-15.7-293

Seite 8 von 13 | 11. Juni 2013

Die Abweichungen vom Dehnungszustand einer baugleichen Platte ohne Dämmfuge sind durch Einhaltung der Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung auf den Fugenbereich sowie die anschließenden Ränder begrenzt.

Der maximale Abstand der Zugbewehrung nach DIN 1045-1, Abschnitt 13.3.2 (4) bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 9.3.1.1 (3) ist einzuhalten. Es sind mindestens vier Zugstäbe und mindestens vier Druckschublager je Meter Element HIT-HP/SP anzuordnen. Der lichte Abstand der Druckschublager sollte 25 cm nicht überschreiten. In Einzelfällen darf der Abstand der Zugstäbe und Druckschublager auch bei dünneren Decken bis zu 30 cm betragen, wenn sichergestellt ist, dass pro Meter Element je vier Druckschublager und vier Zugstäbe angeordnet sind. Im Abstand h vom Fugenrand darf dann der ungestörte Dehnungszustand angenommen werden.

Veränderliche Momente und Querkräfte entlang eines angeschlossenen Randes sind bei der Bemessung zu berücksichtigen.

Die Plattenanschlüsse sind zur lokal begrenzten Aufnahme von Torsionsmomenten, die zur Herstellung des Gleichgewichts erforderlich sind, nicht geeignet.

Kleine Normalkräfte aus Zwang in den Gurtstäben, wie sie am Ende der Linienlager z. B. neben freien Rändern oder Dehnfugen auftreten, dürfen rechnerisch vernachlässigt werden. Zwangsnormalkräfte in Richtung der Stäbe der Plattenanschlüsse müssen ausgeschlossen werden (Beispiel siehe Anlage 7).

Werden die an die Plattenanschlüsse anschließenden Deckenplatten als Elementdeckenplatten ausgeführt, ist ein Ortbetonstreifen von mindestens 10 cm Breite, gemäß Anlage 8, zwischen Plattenanschluss und Elementdecke auszubilden.

3.3 Bemessung

3.3.1 Allgemeines

Der statische Nachweis ist für jeden Einzelfall zu erbringen. Dabei dürfen auch typengeprüfte Bemessungstabellen verwendet werden.

Bei der Ermittlung der Schnittgrößen und der Anordnung der Bewehrung sind die Fachwerkmodelle nach Anlage 5 zugrunde zu legen. Zur Bemessung des Halfen-Iso-ElemenTes HIT-HP/SP sind die Schnittgrößen M_{Ed} und V_{Ed} im Bemessungsschnitt nach Anlage 5 anzusetzen.

Die Berechnung der Schnittgrößen darf nur durch linear-elastische Verfahren erfolgen. Verfahren der Umlagerung, der Plastizitätstheorie und nichtlineare Verfahren dürfen nicht verwendet werden.

Im Einleitungsbereich der Zugstäbe in den Beton beidseitig der Dämmschicht und in dem daran anschließenden Stahlbetonbereich gilt DIN 1045-1 bzw. DIN EN 1992-1-1, ergänzt durch die in dieser allgemeinen bauaufsichtlichen Zulassung enthaltenen Festlegungen.

Die Druckschublager und Zugstäbe oder Querkraftstäbe sind für die nach dem Bemessungsmodell für HIT-HP/SP berechneten Kräfte gemäß Anlage 5 zu bemessen.

Die vereinfachte Annahme einer starren Auflagerung des stützenden Bauteils ist nur zulässig, wenn die Steifigkeitsverhältnisse von angeschlossenem und stützendem Bauteil durch diese Annahme ausreichend genau beschrieben werden. Ansonsten sind die linear veränderlichen Momente und Querkräfte entlang des Plattenrandes zu berücksichtigen (siehe Abschnitt 3.2).

Die Bemessung der angeschlossenen Stahlbetonplatten erfolgt gemäß DIN 1045-1 bzw. DIN EN 1992-1-1 für die vorhandenen Schnittgrößen M_{Ed} und V_{Ed} .

An den Stirnflächen, die der Dämmung der anzubindenden Bauteile zugewandt sind, ist eine Randeinfassung nach Abschnitt 4.2 anzuordnen. Liegt der Bemessungsschnitt außerhalb der Auflagerfläche, ist eine Aufhängebewehrung anzuordnen, die für die gesamte einwirkende Querkraft V_{Ed} zu bemessen ist, wobei die Randeinfassung nach Abschnitt 4.2 angerechnet werden darf.

Nr. Z-15.7-293

Seite 9 von 13 | 11. Juni 2013

3.3.2 Besondere Festlegungen im Bereich der Dämmfuge und im Einleitungsbereich für die Nachweise im Grenzzustand der Tragfähigkeit

3.3.2.1 Nachweis der Druckschublager

Der Nachweis der aufnehmbaren Druckkraft der Druckschublager sowie der Einleitung der Druckspannungen in den angrenzenden Beton erfolgt innerhalb des Bemessungsmodells für HIT-HP/SP, gemäß Anlage 5.

Für die Druckschublager darf ohne weitere Nachweise ein Bemessungswert der aufnehmbaren Querkraft von maximal 16 kN pro Druckschublager angesetzt werden.

Die auftretenden Spaltzugkräfte im Lasteinleitungsbereich der angrenzenden Platten sind gemäß Anlage 5 nachzuweisen und eine entsprechende Bewehrung ist zu bemessen. Hierfür darf die Randeinfassung nach Abschnitt 4.2 rechnerisch angesetzt werden.

3.3.2.2 Nachweis der Zugstäbe und Querkraftstäbe

Der Nachweis ist entsprechend DIN 1045-1 bzw. DIN EN 1992-1-1, ergänzt durch die allgemeine bauaufsichtliche Zulassung Z-30.3-6 zu führen. Dabei sind bei der Bemessung die Festigkeiten und Teilsicherheitsbeiwerte nach Tabelle 1 zugrunde zu legen. Höhere Werte dürfen - auch bei Verwendung höherer Festigkeitsklassen - nicht in Rechnung gestellt werden.

Der statische Nachweis der Tragfähigkeit der Schweißverbindung zwischen Betonstahl und nichtrostendem Betonstahl bzw. Rundstahl muss nicht gesondert erbracht werden. Dies gilt auch für die Ausführung mit den Durchmesserkombinationen nach Anlage 3.

Tabelle 1: Streckgrenzen und Teilsicherheitsbeiwerte für die verwendeten Stäbe

Stab aus:	Rechenwert der charakteristischen Streckgrenze in [N/mm²]	Teilsicherheitsbeiwert
B500B	500	1,15
B500 NR	500	1,15
Nichtrostender Rundstahl gemäß Datenblatt (S460)	500	1,10
Nichtrostender Rundstahl gemäß Z-30.3-6 bzw. Datenblatt (S690)	690	1,10

3.3.2.3 Begrenzung der Querkrafttragfähigkeit im Bereich der Dämmfuge

Die Bemessung für die vorhandene Querkraft beim Halfen-Iso-ElemenT HIT-HP/SP ZV erfolgt gemäß Anlage 5.

3.3.2.4 Nachweis gegen Betonkantenbruch

Der Nachweis gegen Betonkantenbruch ist beim Halfen-Iso-ElemenT HIT-HP/SP MV entsprechend Anlage 5, Seite 3 und beim Halfen-Iso-ElemenT HIT-HP/SP ZV gemäß Anlage 5, Seite 6 dieser allgemeinen bauaufsichtlichen Zulassung zu führen.

3.3.2.5 Nachweis der Ermüdung infolge Temperaturdifferenz

Spannungsnachweise und Betriebsfestigkeitsnachweise (Ermüdung) für Normalkräfte und Stabbiegung infolge Verformung durch Temperaturdifferenzen der zu verbindenden Bauteile im Sinne von Abschnitt 3.3.11 der allgemeinen bauaufsichtlichen Zulassung Nr. Z-30.3-6 brauchen nicht geführt zu werden.

Diese Nachweise gelten als im Rahmen des Zulassungsverfahrens erbracht, indem die Fugenabstände in den außenliegenden Bauteilen nach Abschnitt 4.1 begrenzt werden.

Nr. Z-15.7-293

Seite 10 von 13 | 11. Juni 2013

3.3.2.6 Festlegungen für die Nachweise im Krafteinleitungsbereich der Betonbauteile

Für den Nachweis der Querkrafttragfähigkeit der ungestörten Platten gilt DIN 1045-1, Abschnitt 10.3 bzw. DIN EN 1992-1-1, Abschnitt 4. Insbesondere für den Bemessungswert der Querkrafttragfähigkeit der Platten ohne Querkraftbewehrung V_{Rd,ct} wird eine gleichmäßig über die Betondruckzone verteilte Querkraft zugrunde gelegt. Daher sind die Elemente mit möglichst gleichmäßigem Abstand einzubauen.

Pro Meter Element HIT-HP/SP dürfen nicht weniger als vier Zugstäbe bzw. Querkraftstäbe und Druckschublager angeordnet werden und einzelne Abstände 300 mm nicht überschreiten.

3.3.2.7 Verankerungslängen und Übergreifungsstöße der durch die Dämmfuge führenden Stäbe Die Zugstäbe des Plattenanschlusses HIT-HP/SP sind mit der Zugbewehrung der angrenzenden Platten zu stoßen.

Die Querkraftstäbe des Plattenanschlusses HIT-HP/SP ZV sind mit ihren geraden Schenkeln in den Platten zu verankern. Alternativ ist die Ausführung in abgebogener Form nach Anlage 1, Bild 12 oder 13 möglich.

In der Zugzone sind die Querkraftstäbe mit I_S = 1,3 $I_{b,net} \ge 1,3$ $I_{b,min}$ nach Gleichung (141) von DIN 1045-1 bzw. mit I_0 = 1,3 $I_{bd} \ge 1,3$ $I_{b,min}$ nach DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Gleichung (8.4) mit der Zugbewehrung der anzuschließenden Platte zu übergreifen, sofern sich nicht nach Gleichung (144) von DIN 1045-1 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Gleichung (8.10) höhere Werte ergeben. Die Querkraftstäbe sind in der Druckzone mindestens mit I_S = $I_{b,net}$ nach DIN 1045-1 bzw. I_{bd} nach DIN EN 1992-1-1 zu verankern. In den Fällen, in denen Querkraftstäbe und Druckglieder nicht in einer Ebene verlegt werden, ist die Verankerungslänge für Querkraftstäbe auch in der Druckzone wie in der Zugzone zu bestimmen.

Bei Plattenanschlüssen HIT-HP/SP ZV ist die Zugbewehrung der anzuschließenden Platte an der Stirnseite mittels Haken in der Druckzone zu verankern. Alternativ können an jedem Querkraftstab Steckbügel oder allgemein bauaufsichtlich zugelassene Gitterträger angeordnet werden.

Zur Aufnahme der entstehenden Querzugkräfte ist zusätzlich zur Querbewehrung gemäß DIN 1045-1, Abschnitt 12.6.3 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 8.7.4 im Übergreifungsbereich der Stäbe eine Querbewehrung gemäß DIN 1045-1, Abschnitt 12.8.3 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 8.7.4 anzuordnen und am Querschnittsrand zu verankern.

Im Bereich der HIT-Elemente ist eine Staffelung der bauseitigen Zugbewehrung nicht zulässig.

- 3.3.3 Besondere Festlegungen im Bereich der Dämmfuge und Einleitungsbereich für die Nachweise im Grenzzustand der Gebrauchstauglichkeit
- 3.3.3.1 Begrenzung der Rissbreiten

Es gilt DIN 1045-1, Abschnitt 11.2.1 bzw. DIN EN 1992-1-1 und DIN EN 1992-1-1/NA, Abschnitt 7.3.1. An der Stirnseite der Fugen sowie im Krafteinleitungsbereich braucht ein zusätzlicher Nachweis nicht geführt zu werden, wenn die Regelungen dieser allgemeinen bauaufsichtlichen Zulassung eingehalten werden.

Nr. Z-15.7-293

Seite 11 von 13 | 11. Juni 2013

3.3.3.2 Begrenzung der Verformungen

Bei der Berechnung der Durchbiegung sind die elastischen Verformungen des Plattenanschlusses und des angrenzenden Plattenbetons sowie die Temperaturdehnungen zu berücksichtigen. Der Nachweis der Verformungen erfolgt unter der quasi-ständigen Einwirkungskombination, gemäß Anlage 7.

4 Bestimmungen für die Ausführung

4.1 Achs- und Fugenabstände

Der Achsabstand der Zugstäbe bzw. Druckschublager vom freien Rand bzw. der Dehnungsfuge muss mindestens 5 cm (Zugstäbe) bzw. 8 cm (Druckschublager), darf aber nicht größer als die Hälfte des zulässigen Maximalabstandes sein.

In den außenliegenden Betonbauteilen sind rechtwinklig zur Dämmschicht Dehnfugen zur Begrenzung der Beanspruchung aus Temperatur einzubauen. Der Fugenabstand ist der nachfolgenden Tabelle zu entnehmen.

Tabelle 2: Zulässige Fugenabstände in [m]

Dicke der Dämmfuge	Zugstabdurchmesser d _s in der Dämmfuge [mm]			
[mm]	≤ 12	14	16	20
80 (HIT-HP) 120 (HIT-SP)	11,3 m	10,1 m	9,2 m	8,0 m

4.2 Bauliche Durchbildung

Die Mindestbetondeckung nach DIN 1045-1 bzw. DIN EN 1992-1-1 ist einzuhalten. Dies gilt für die Zugstäbe oder eine vorhandene Montagebewehrung. Die Bewehrung der an die Plattenanschlüsse anschließenden Betonkonstruktionen ist unter Berücksichtigung der erforderlichen Betondeckung nach DIN 1045-1 bzw. DIN EN 1992-1-1 bis an die Dämmschicht heranzuführen.

Die Querstäbe der oberen Anschlussbewehrung müssen in der Regel auf den Längsstäben der Plattenanschlüsse liegen. Hiervon darf bei Stäben mit Nenndurchmesser kleiner 16 mm abgewichen werden, wenn der Einbau der Querstäbe unter den jeweils vorliegenden Baustellenbedingungen auch direkt unter den Längsstäben der Plattenanschlüsse möglich ist und kontrolliert wird, z. B. durch den Fachbauleiter. Die erforderlichen Montageschritte hierzu müssen in der Einbauanleitung beschrieben sein.

Die Stirnflächen der anzubindenden Bauteile müssen eine Randeinfassung nach DIN 1045-1 bzw. DIN EN 1992-1-1 erhalten. An den Stirnflächen der angeschlossenen Platten parallel zur Dämmfuge sind mindestens Steckbügel $d_S \ge 6$ mm, $s \le 25$ cm und je 2 Längsstäbe $d_S \ge 8$ mm anzuordnen.

Die Steckbügel der Randeinfassung an den parallel zu den Plattenanschlüssen verlaufenden Bauteilseiten müssen die Zugstäbe übergreifen.

Auf den ausreichenden Abstand zwischen Plattenanschluss und Elementdecken ist zu achten (siehe Abschnitt 3.2 und Anlage 8). Die Betonzusammensetzung der Ortbetonfuge (Größtkorn der Gesteinskörnung d_{α}) ist auf diesen Abstand abzustimmen.

Das nachträgliche Abbiegen der Stäbe des Plattenanschlusses ist nicht zulässig.

4.3 Hinweise zur Verwendung bei Anforderungen an den Brandschutz

Bei Verwendung der Elemente zur Verbindung von Stahlbetonbauteilen (Platten), an die brandschutztechnische Anforderungen gestellt werden, sind die Bestimmungen von Abschnitt 2.1.3 einzuhalten.

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-293

Seite 12 von 13 | 11. Juni 2013

4.4 Hinweise zur Ausführung

Verwahrkästen, die nach Abschnitt 2.2.1 zum Schutz der Dämmstoffschicht dienen, sollten zum Einbau nicht gekürzt werden. Verwahrkästen, die beschädigt wurden oder zum Einbau ein Kürzen unvermeidlich war, sind so zu verschließen, dass Feuchtigkeit nicht zur Mineralwolle dringen kann. Diese Arbeit ist durch den Bauleiter zu kontrollieren.

Folgende Normen, Zulassungen und Verweise werden in dieser allgemeinen bauaufsichtlichen Zulassung in Bezug genommen:

- DIN 488-1:2009-08	Betonstahl - Teil 1: Stahlsorten, Eigenschaften, Kennzeichnung
- DIN 1045-1:2008-08	Tragwerke aus Beton, Stahlbeton und Spannbeton - Teil 1: Bemessung und Konstruktion
- DIN 4102-1:1998-05	Brandverhalten von Baustoffen und Bauteilen - Teil 1: Baustoffe, Begriffe, Anforderungen und Prüfungen + Berichtigung 1:1998-08
- DIN 4102-2:1977-09	Brandverhalten von Baustoffen und Bauteilen; Bauteile, Begriffe, Anforderungen und Prüfungen
- DIN 4102-22:2004-11	Anwendungsnorm zu DIN 4102-4 auf der Bemessungsbasis von Teilsicherheitsbeiwerten
- DIN 4108-2:2007-03	Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 2: Mindestanforderungen an den Wärmeschutz
- DIN 4108 Bbl. 2:2004-01	Wärmeschutz und Energie-Einsparung in Gebäuden - Wärmebrücken - Planungs- und Ausführungsbeispiele
- DIN V 4108-4:2008-06	Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte
- DIN V 4108-6:2003-06	Wärmeschutz und Energie-Einsparung in Gebäuden - Teil 6: Berechnung des Jahresheizwärme- und des Jahresheizenergiebedarfs + Berichtigung 1:2004-03
- DIN EN 1992-1-1:2011-01	Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; Deutsche Fassung EN 1992-1-1:2004+AC:2010 und
DIN EN 1992-1-1/NA:2011-01	Nationaler Anhang - National festgelegte Parameter - Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbeton- tragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau
- DIN EN 13501-1:2010-01	Klassifizierung von Bauprodukten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten; Deutsche Fassung EN 13501-1:2007
- DIN EN 13501-2:2003-12	Klassifizierung von Bauprodukten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Feuerwiderstandsprüfungen, mit Ausnahme von Lüftungsanlagen; Deutsche Fassung EN 13501-1:2003
- DIN EN ISO 10211:2008-04	Wärmebrücken im Hochbau - Wärmeströme und Oberflächentemperaturen - Detaillierte Berechnungen (ISO 10211:2007); Deutsche Fassung EN ISO 10211:2007
- DIN EN ISO 17660-1:2006-12	Schweißen - Schweißen von Betonstahl - Teil 1: Tragende Schweißverbindungen (ISO 15660-1:2006), Deutsche Fassung EN ISO 17660-1:2006

Allgemeine bauaufsichtliche Zulassung Nr. Z-15.7-293

Seite 13 von 13 | 11. Juni 2013

- Zulassung Nr. Z-30.3-6

Erzeugnisse, Verbindungsmittel und Bauteile aus nichtrostenden Stählen vom 20. April 2009, geändert durch Bescheid vom 2. Mai 2011

- Das Datenblatt ist beim Deutschen Institut für Bautechnik und der für die Fremdüberwachung eingeschalteten Stelle hinterlegt.
- Der Prüfplan ist beim Deutschen Institut für Bautechnik und der für die Fremdüberwachung eingeschalteten Stelle hinterlegt.

Andreas Kummerow Referatsleiter

Beglaubigt

Typ HIT-HP/SP MV

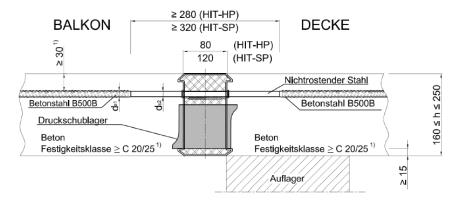


Bild 1: Halfen-Iso-ElemenT HIT-HP/SP MV F 120-AB/REI 120 im eingebauten Zustand

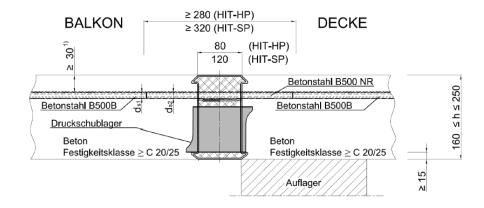
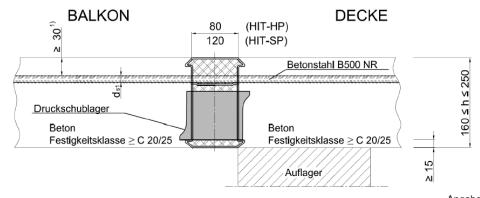



Bild 2: Halfen-Iso-ElemenT HIT-HP/SP MV F 120-AB /REI 120 im eingebauten Zustand

Angaben in mm

Bild 3: Halfen-Iso-ElemenT HIT-HP/SP MV F 120-AB /REI 120 im eingebauten Zustand

Für die Mindestbetonfestigkeitsklasse und die Mindestbetondeckung gilt außerdem DIN 1045-1, Abschnitt 6 bzw. DIN EN 1992-1-1, Abschnitt 4

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 1
Einbauzustand	Seite 1/6

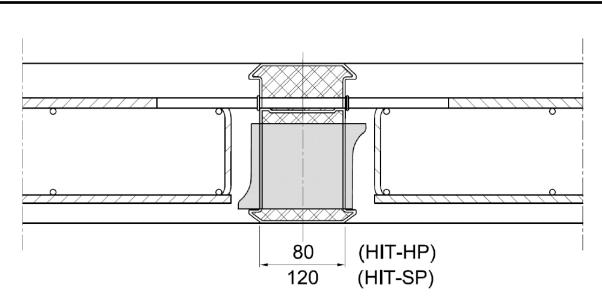


Bild 4: Halfen-Iso-ElemenT **HIT-HP/SP MV** F 120-AB /REI 120 im eingebauten Zustand (Beispiel indirekte Lagerung)

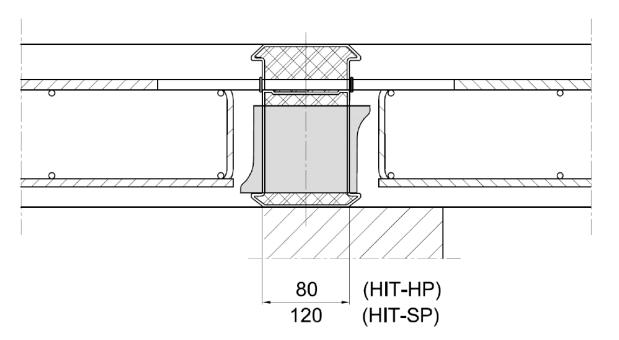


Bild 5: Halfen-Iso-ElemenT **HIT-HP/SP MV** F 120-AB / REI120 im eingebauten Zustand (Beispiel direkte Lagerung)

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 1
Einbauzustand	Seite 2/6

Typen HIT-HP/SP MV-...-OD/ -OU/ -WD/ -WU

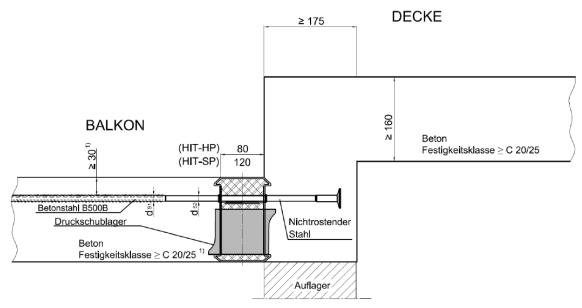


Bild 6: Halfen-Iso-ElemenT HIT-HP/SP MV-...-OD F 120-AB /REI 120 im eingebauten Zustand

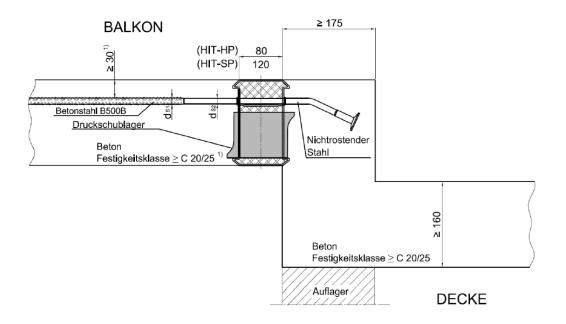


Bild 7: Halfen-Iso-ElemenT HIT-HP/SP MV-...-OU F 120-AB /REI 120 im eingebauten Zustand

Für die Mindestbetonfestigkeitsklasse und die Mindestbetondeckung gilt außerdem DIN 1045-1, Abschnitt 6 bzw. DIN EN 1992-1-1, Abschnitt 4

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 1
Einbauzustand	Seite 3/6

Typen HIT-HP/SP MV-...-OD/ -OU/ -WD/ -WU

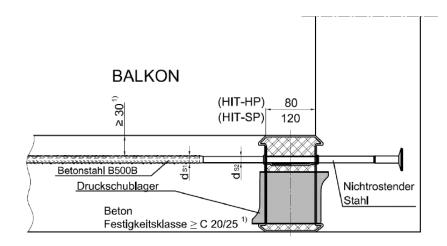


Bild 8: Halfen-Iso-ElemenT HIT-HP/SP MV-...-WD F 120-AB /REI 120 im eingebauten Zustand

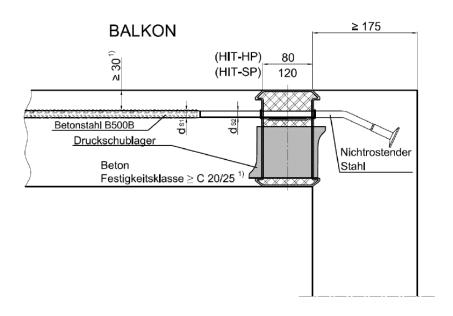


Bild 9: Halfen-Iso-ElemenT HIT-HP/SP MV-...-WU F 120-AB /REI 120 im eingebauten Zustand

Für die Mindestbetonfestigkeitsklasse und die Mindestbetondeckung gilt außerdem DIN 1045-1, Abschnitt 6 bzw. DIN EN 1992-1-1, Abschnitt 4

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 1
Einbauzustand	Seite 4/6

Typ HIT-HP/SP ZV

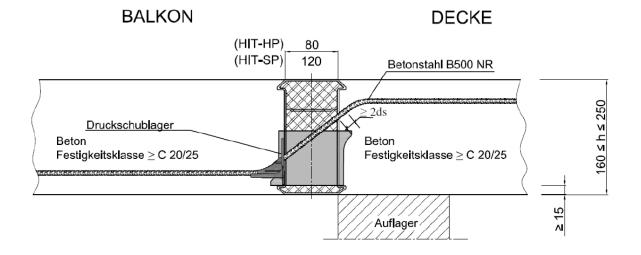


Bild 10: Halfen-Iso-ElemenT HIT-HP/SP ZV F 120-AB /REI 120 im eingebauten Zustand

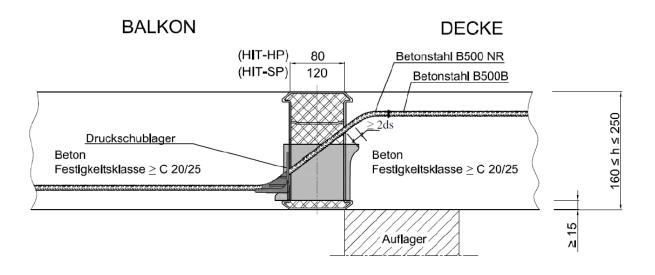


Bild 11: Halfen-Iso-ElemenT HIT-HP/SP ZV F 120-AB /REI 120 im eingebauten Zustand

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 1
Einbauzustand	Seite 5/6

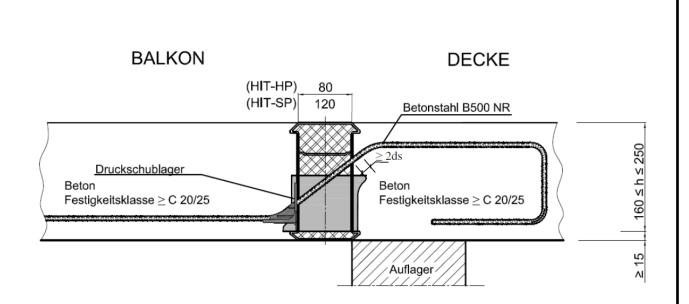


Bild 12: Halfen-Iso-ElemenT **HIT-HP/SP ZV** F 120-AB /REI 120 im eingebauten Zustand oberer Querkraftstabschenkel als Schlaufe nach DIN EN 1992-1-1

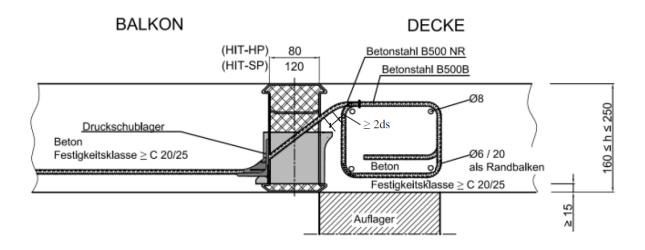


Bild 13: Halfen-Iso-ElemenT **HIT-HP/SP ZV** F 120-AB /REI 120 im eingebauten Zustand oberer Querkraftstabschenkel als verkürzte Schlaufe mit Randbalken

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 1
Einbauzustand	Seite 6/6

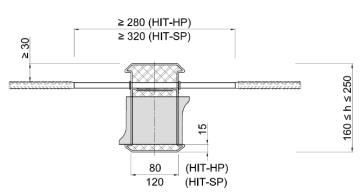


Bild 14: Halfen-Iso-ElemenT HIT-HP/SP MV F 120-AB/REI 120 Ausführungsvariante komplettiert

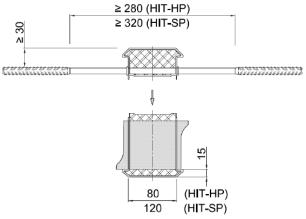
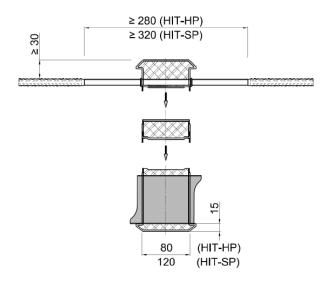
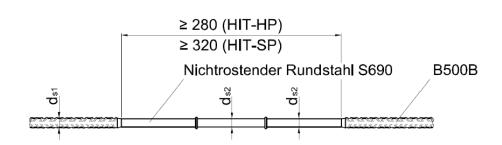
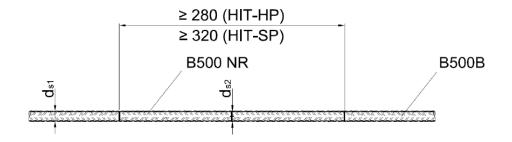


Bild 15: Halfen-Iso-ElemenT HIT-HP/SP MV F 120-AB/REI 120 Ausführungsvariante getrennt


Bild 16: Halfen-Iso-ElemenT HIT-HP/SP MV F 120-AB/REI 120 Ausführungsvariante mehrteilig

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 2
Liefervarianten	Seite 1/1

a) Ausführung nichtrostender Rundstahl S 460 ²⁾ oder S690 ²⁾ mit B500B

b) Ausführung nichtrostender Betonstahl B500 NR mit B500B

c) Ausführung nichtrostender Betonstahl B500 NR
 Bild 17: Zugstabvarianten Halfen-Iso-ElemenT HIT-HP/SP F 120/REI 120

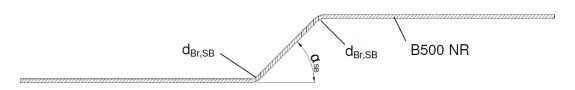
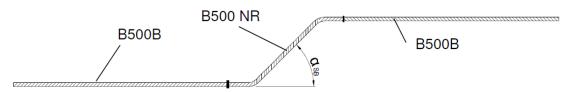
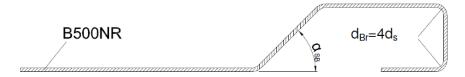

d _{s1} (B500B, B500 NR)	d _{s2} (nichtrostender Rundstahl S 690 ²⁾)	d _{s2} (nichtrostender Rundstahl S 460 ²⁾ , B500 NR)
6 mm	-	6 mm
8 mm	≥ 7 mm	8 mm
10 mm	≥ 8,5 mm	10 mm
12 mm	≥ 10,5 mm	12 mm
14 mm	-	14 mm
16 mm	-	16 mm
20 mm	-	20 mm

Tabelle A1: Durchmesserkombinationen HIT-HP/SP-Zugstäbe


²⁾ Festigkeitseigenschaften gemäß 3.2.2.2, Tabelle 1

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 3
Zugstabvarianten	Seite 1/2

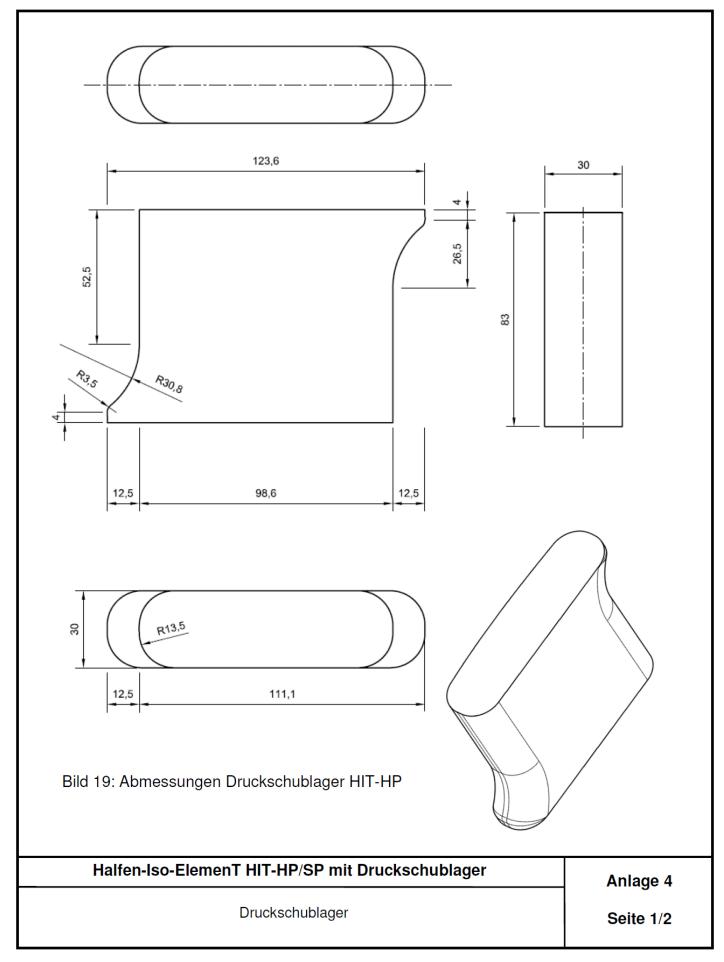


a) Ausführung nichtrostender Betonstahl B500 NR

b) Ausführung nichtrostender Betonstahl B500 NR mit B500B

c) Ausführung nichtrostender Betonstahl B500 NR, oberer Querkraftstabschenkels als Schlaufe

d) Ausführung nichtrostender Betonstahl B500 NR, oberer Querkraftstabschenkels als Schlaufe aus B500B


Bild 18: Querkraftstabvarianten Halfen-Iso-ElemenT HIT-HP/SP

d _{SB} (B500B, B500 NR)	d _{Br,SB} Biegerollendurchmesser	α _{SB} [°]
6 mm		
8 mm	6 d _s	30 - 60
10 mm	o u _s	30 - 00
12 mm		

Tabelle A2: Ausführungsvarianten HIT-HP/SP-Querkraftstäbe


Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 3
Querkraftstabvarianten	Seite 2/2
	1

Z47997.13

Fachwerkmodell Halfen-Iso-Element HIT-HP/SP MV (allgemein)

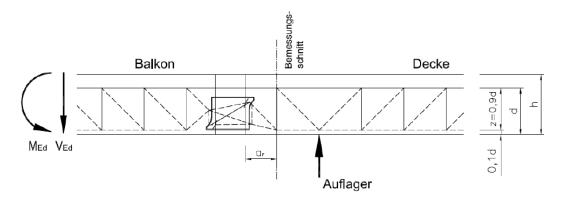
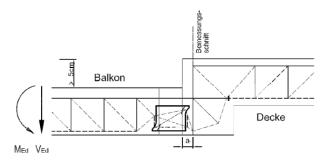



Bild 21: Fachwerkmodell und Bemessungsschnitt HIT-HP/SP MV mit Druckschublager

Fachwerkmodell Halfen-Iso-Element HIT-HP/SP MV-...-OD / -WD/ -OU/ -WU (Höhenversatz)



Bild 22: Fachwerkmodell **HIT-HP/SP MV-...-OD**

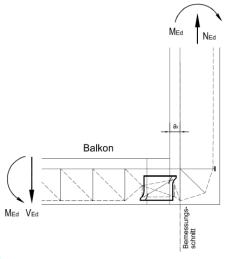


Bild 24: Fachwerkmodell **HIT-HP/SP MV-...-WD**

Bild 23: Fachwerkmodell **HIT-HP/SP MV-...-OU**

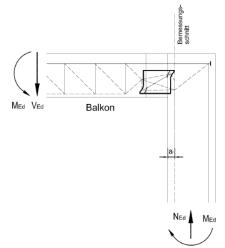


Bild 25: Fachwerkmodell **HIT-HP/SP MV-...-WU**

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager

Anlage 5

Berechnungsmodelle

Seite 1/7

Abstand Bemessungsschnitt vom Bauteilrand HIT-HP/SP MV

$$a_r = 96 \text{ mm} - 0.1 \cdot d$$
 $(a_r \approx 80 \text{ mm})$

$$d = h - c_{nom} - d_{s1,HIT}/2$$
 statische Nutzhöhe HIT-HP/SP MV in [mm]

Es ist im Grenzzustand der Tragfähigkeit mindestens ein Verhältnis zwischen Biegemoment M_{Ed} und Querkraft V_{Ed} einzuhalten von:

$$\frac{M_{Ed}}{V_{Ed}} \ge 0.15$$

Ermittlung der Einwirkungen HIT-HP/SP MV

$$E_d = \gamma_G \cdot E_{Gk} + \gamma_O \cdot E_{Ok}$$

Ermittlung der inneren Kräfte aus Moment-Querkraft-Interaktion

Betondruckzonenhöhe der Druckschublager [Einheiten in N und mm]:

$$x_{c} = Max \begin{cases} (d-15) - \sqrt{(d-15)^{2} - \frac{\mid M_{Ed} \mid}{\beta_{c1,M} \cdot n_{CSB}}} \\ 41,5 - \sqrt{41,5^{2} - \frac{\mid V_{Ed} \mid}{\beta_{c2,V} \cdot n_{CSB}}} \end{cases} \leq 83 \text{ [mm]}$$

Betondruckkraft F_{cd} (negativ) und Stahlzugkraft F_{sd} (positiv):

$$\text{-}F_{cd} = F_{sd} = 2 \cdot x_c \cdot n_{CSB} \cdot \beta_{c1,M}$$

[Einheiten in N und mm]

mit: n_{CSB}

Anzahl der Druckschublager

 $\beta_{c1,M}$ und $\beta_{c2,V}$ nach Tabelle A3

Element HIT	HIT-HP/SP	HIT-HP	HIT-SP
Betonfestigkeitsklasse	$\beta_{c1,M}$ [N/mm]	$\beta_{c2,V}$ [N/mm ²]	$\beta_{c2,V}$ [N/mm ²]
C 20/25	680	12,5	9,1
≥ C 25/30	797	14,5	10,6

Tabelle A3: Faktoren zur Bemessung HIT-HP/SP MV mit Druckschublager

Maximal aufnehmbare Querkraft V_{Rd} im Bemessungsschnitt:

$$V_{Rd} = Min \begin{cases} n_{CSB} \cdot 16 \text{ [kN]} \\ |F_{cd}| \cdot \frac{(83 \text{ mm} - x_c)}{a_{CSB}} \end{cases}$$

mit: n_{CSB} Anzahl der Druckschublager

 $a_{CSB} = 110 \text{ mm für HIT-HP}$ = 150 mm für HIT-SP

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 5
Berechnungsmodelle	Seite 2/7

Nachweise im Grenzzustand der Tragfähigkeit HIT-HP/SP MV

Querkraftbeanspruchung: $|V_{Ed}| \le V_{Rd}$

Momentenbeanspruchung: $M_{Ed} \le M_{Rd}$

Ermittlung der erforderlichen Zugstabbewehrung:

$$A_{s,erf} = \frac{F_{sd}}{f_{yd}}$$

Nachweis gegen Betonkantenbruch HIT-HP/SP MV

Einwirkungen im Bemessungsschnitt:

$$F_{c,Ed} = 0.25 \cdot |F_{cd}| + |V_{Ed}|$$

Tragwiderstand:

$$F_{c,Rd} = a_{Rd} \cdot \left(f_{ck}\right)^{\frac{1}{4}} \cdot b_{eff} \cdot \psi_{BK}$$

mit:

$$b_{eff} = n_{CSB} \cdot (137 \text{ mm}) \le b_{Element}$$

$$a_{Rd} = 132 \text{ für HIT-HP}$$

= 120 für HIT-SP

n_{CSB} Anzahl der Druckschublager je Element

b_{Element} Breite des Halfen-Iso-Elementes HIT-HP/SP MV in [mm]

f_{ck} charakteristische Zylinderdruckfestigkeit des Betons in [N/mm²] ψ_{BK} = 1,0 (für HIT-HP/SP MV (allgemein) und für HIT-HP/SP MV-...-OU/-WU,

Höhenversatz, Balkon oben, siehe Anlage 1, Seite 3-4, Bild 7 und 9)

ψ_{BK} = 0,7 (für HIT-HP/SP MV-...-OD/ -WD, Höhenversatz, Balkon unten,

siehe Anlage 1, Seite 3-4, Bild 6 und 8)

Nachweis:

 $F_{c,Ed} \leq F_{c,Rd}$

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 5
]
Berechnungsmodelle	Seite 3/7

Z47997.13

Bemessungsschnittgrößen der angrenzenden Platten HIT-HP/SP MV

Deckenplatte:
$$M_{Ed,Decke} = Max \begin{cases} M_{Ed} \\ F_{cd} \cdot z_1 \end{cases}$$
 im Bemessungsschnitt

mit
$$z_1 = d - \frac{1}{2} \cdot x_c - 15 \text{ mm}$$

M_{Ed} im Bemessungsschnitt

Balkonplatte:
$$M_{Ed,Balkon} = M_{Ed,Decke} - |V_{Ed}| \cdot a_{CSB}$$

mit

 $a_{CSB} = 110 \text{ mm für HIT-HP}$

= 150 mm für HIT-SP

V_{Ed} im Bemessungsschnitt

Bemessung der Spaltzugbewehrung

- horizontale Spaltzugbewehrung (je 2 Längsstäbe, d_s ≥ 8 mm oder alternativ Gitterträger)

$$F_{Sp,h} = \frac{|F_{cd}|}{4 \cdot n_{CSR}} \cdot \left(1 - \frac{30 \text{ mm}}{e}\right)$$

mit:

$$e = \begin{cases} e_{max,CSB} & Achsabstand der Druckschublager in [mm] \\ 2 \cdot e_{CSB,Rand} & Abstand der Druckschublager zum Bauteilrand in [mm] \end{cases} \leq 120 \text{ mm}$$

 vertikale Spaltzugbewehrung ³⁾ (Steckbügel d_s ≥ 6 mm, s ≤ 25 cm oder alternativ Gitterträger)

$$F_{Sp,v} = \frac{|F_{cd}|}{4} \cdot \left(1 - \frac{X_c}{X_c + 30 \text{ mm}}\right)$$

Erforderliche Spaltzugbewehrung

$$A_s = \frac{F_{Sp;h,v}}{f_{yd}} \qquad \text{mit } f_{yd} \leq 435 \text{ N/mm}^2$$

Liegt der Bemessungsschnitt außerhalb der Auflagerfläche (indirekte Lagerung), ist eine zusätzliche vertikale Aufhängebewehrung nach 3.2.1 anzuordnen.

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 5
Berechnungsmodelle	Seite 4/7

Fachwerkmodell Halfen-Iso-Element HIT-HP/SP ZV

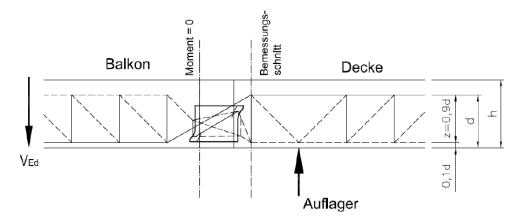


Bild 26: Fachwerkmodell und Bemessungsschnitt HIT-HP/SP ZV mit Druckschublager

Die maßgebende Schnittgröße V_{Ed} wird in der definierten Gelenkposition (Moment = 0) ermittelt, wobei die Nachweise im Bemessungsschnitt geführt werden.

Ermittlung der Einwirkungen HIT-HP/SP ZV

$$\boldsymbol{E}_{\text{d}} = \boldsymbol{\gamma}_{\text{G}} \cdot \boldsymbol{E}_{\text{Gk}} + \boldsymbol{\gamma}_{\text{Q}} \cdot \boldsymbol{E}_{\text{Qk}}$$

Betondruckzonenhöhe der Druckschublager [Einheiten in N und mm]

$$x_{c} = (41.5 + \frac{a_{CSB}}{2} \cdot tan\alpha_{SB}) - \sqrt{(41.5 + \frac{a_{CSB}}{2} \cdot tan\alpha_{SB})^{2} - \frac{\left|V_{Ed}\right|}{\beta_{c2,V} \cdot n_{CSB}}} \leq 83 \qquad \text{[mm]}$$

Betondruckkraft F_{cd} (negativ) und horizontale Komponente Stahlzugkraft $F_{SB,Hd}$ (positiv):

$$-F_{cd} = F_{SB,Hd} = 2 \cdot x_c \cdot n_{CSB} \cdot \beta_{c1,M}$$
 [Einheiten in N und mm]

mit: a_{CSB} = 110 mm für HIT-HP = 150 mm für HIT-SP

> α_{SB} Winkel der Querkraftstäbe n_{CSB} Anzahl der Druckschublager

 $\beta_{c1,M}$ und $\beta_{c2,V}$ nach Tabelle A3 (Anlage 5, Seite 2)

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 5
Berechnungsmodelle	Seite 5/7

Nachweis im Grenzzustand der Tragfähigkeit HIT-HP/SP ZV

$$V_{\text{CSB}} = min \begin{cases} n_{\text{CSB}} \cdot 16 [kN] \\ \left| F_{\text{cd}} \right| \cdot \frac{\left(83mm - x_{c} \right)}{a_{\text{CSB}}} \end{cases}$$

$$V_{SB,Ed} = V_{Ed} - V_{CSB}$$

mit: V_{SB,Ed} vertikale Komponente der Stahlzugkraft

Ermittlung der erforderlichen Schubbewehrung:

$$A_{s,\text{SB,erf}} = \frac{F_{\text{SB,d}}}{f_{\text{y,d}}} \qquad \qquad \text{mit } F_{\text{SB,d}} = \frac{V_{\text{SB,Ed}}}{\text{sin}\alpha_{\text{SB}}}$$

Nachweis gegen Betonkantenbruch HIT-HP/SP ZV

Einwirkungen im Bemessungsschnitt:

$$F_{c,Ed} = 0.25 \cdot |F_{cd}| + |V_{Ed,CSB}|$$

$$mit: \ V_{Ed,CSB} = \left| F_{cd} \right| \cdot \frac{max(41,5mm;83mm - x_c)}{a_{CSB}}$$

Tragwiderstand:

$$F_{c,Rd} = a_{R,d} \cdot (f_{ck})^{\frac{1}{4}} \cdot b_{eff}$$

mit:

$$b_{eff} = n_{CSB} \cdot (137 \text{ mm}) \le b_{Element}$$

$$a_{R,d}$$
 = 132 für HIT-HP
= 120 für HIT-SP

n_{CSB} Anzahl der Druckschublager je Element

b_{Element} Breite des Halfen-Iso-Elementes HIT-HP/SP ZV in [mm]

charakteristische Zylinderdruckfestigkeit des Betons in [N/mm²]

Nachweis:

$$F_{c,Ed} \leq F_{c,Rd}$$

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 5
Berechnungsmodelle	Seite 6/7

Zusätzliche Bemessungsschnittgröße für die Bemessung der Deckenplatte (Versatzmoment) HIT-HP/SP ZV

$$M_{\text{Ed,Decke}} = V_{\text{Ed}} \cdot t_{\text{fuge}}$$

mit: t_{fuge} = Breite der Dämmfuge

Betondruckstrebentragfähigkeit der angeschlossenen Platten

$$V_{\text{SB.Ed}} \leq 0.3 \cdot V_{\text{Rd.max}}$$

mit: $V_{Rd,max}$ nach DIN 1045-1:2008-08, Gleichung 76 mit $\Theta = 45^{\circ}$

bzw. DIN EN 1992-1-1, Absatz 6.2.3 mit $\Theta = 45^{\circ}$

Bemessung der Spaltzugbewehrung

siehe Anlage 5, Seite 4

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 5
Berechnungsmodelle	Seite 7/7

HIT HP/SP MV (allgemein)

Anzahl der Druckschublager je Meter: $n_{CSB} \ge 4$

Betondeckung der Druckschublager: $c_{nom.CSB} \ge 15 \text{ mm}$

Achsabstand der Druckschublager vom Bauteilrand: ≥ 80 mm
Achsabstand der Druckschublager: ≥ 75 mm
Randabstand der Zugstäbe: ≥ 50 mm

HIT HP/SP MV (-OD, -WD, -OU, -WU)

Einbindetiefe der Ankerköpfe: ≥ 145 mm,

(Abstand Hinterkante der Ankerköpfe zum Bauteilrand), Ankerköpfe sind stets im Bereich der hinteren vertikalen

Randbalkenbewehrung (i. A. Bügel) anzuordnen.

Betondeckung der Ankerköpfe: ≥ 60 mm (gemessen zum Schwerpunkt der Anker),

Dabei ist ein Abbiegen der Zugstäbe mit einem Biegerollendurchmesser von 4 d_{s,1} zulässig. Die Abbiegung der Zugstäbe muss im Bereich des Randbalkens liegen, wobei ein Mindestabstand von HIT-Element zum Beginn der Abbiegung von 2 d_{s,1}

einzuhalten ist.

Mindestquerbewehrung: Unmittelbar an den Ankerköpfen ist mindestens ein

Bewehrungsstab Ø 12 mm an der zum Bauteilrand

zugewandten Seite anzuordnen.

Mindestbügelbewehrung: $n_{B0gel} \ge n_{TB} + 1$, mit $A_w \ge \frac{\pi}{4} \cdot d_{s,1}^2 \cdot (n_{TB} + 1)$

Im Randbalken ist stets zwischen zwei Zugstäben sowie an den Außenkanten mindestens ein Bügel anzuordnen.

Die Bügel dürfen für die statischen Nachweise des

Randbalkens herangezogen werden.

Biegerollendurchmesser: Die Bügel im Randbalken dürfen mit einem

Biegerollendurchmesser von d_{br} ≥ 4 d_s (bis Bügeldurchmesser 12 mm) ausgeführt werden.

Größe der Ankerköpfe: $d_K \ge 3 d_{s,1}$

Durchmesser der Zugstäbe: d_{s,1} ≤ 12 mm (siehe Anlage 3)

Anzahl der Zugstäbe pro Meter: $4 \le n_{TB} \le 12$

Seitliche Betondeckung: ≥ 60 mm (gemessen zum Schaft der Anker)

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 6
Konstruktive Regeln	Seite 1/3

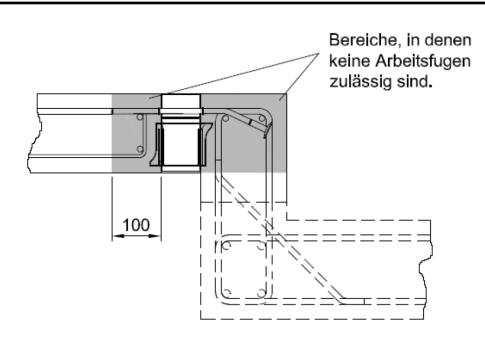


Bild 27a: Bewehrungsführung für HIT HP/SP MV -OU, -WU, Bewehrung der sich anschließenden Deckenplatte bzw. Wand nach DIN 1045-1 bzw. DIN EN 1992-1-1, Lage der Arbeitsfugen

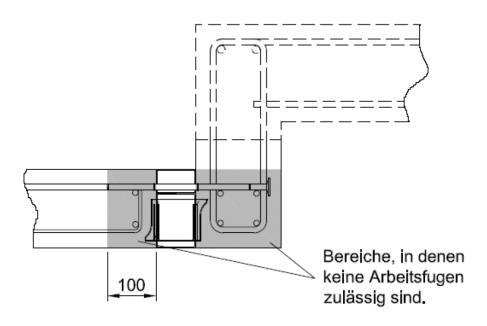


Bild 27b: Bewehrungsführung für HIT HP/SP MV -OD, -WD, Bewehrung der sich anschließenden Deckenplatte bzw. Wand nach DIN 1045-1 bzw. DIN EN 1992-1-1, Lage der Arbeitsfugen

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 6
Konstruktive Regeln	Seite 2/3

HIT HP/SP ZV

Anzahl der CSB je Meter: $4 \le n_{CSB} \le 12$

Betondeckung der CSB: $c_{nom,CSB} \ge 15 \text{ mm}$

Achsabstand der CSB vom Bauteilrand: ≥ 80 mm Achsabstand der CSB: ≥ 75 mm

Durchmesser der Querkraftstäbe: d_{SB} ≤ 12 mm

Anzahl der Querkraftstäbe je Meter: $n_{SB} \ge 4$

Biegerollendurchmesser: $d_{Br,SB} \ge 6 d_{SB}$

Randabstand der Querkraftstäbe: ≥ 6 · d_{SB}

Achsabstand der Querkraftstäbe: $\geq 6 \cdot d_{SB}$ (im Mittel) und $\geq 4 \cdot d_{SB}$ (Minimum)

Winkel der Querkraftstäbe: $30^{\circ} \le \alpha_{SB} \le 60^{\circ}$

vertikaler Versatz zwischen

Querkraftstäben und Längsbewehrung: s_{SB} ≤ 100 mm

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 6
Konstruktive Regeln	Seite 3/3

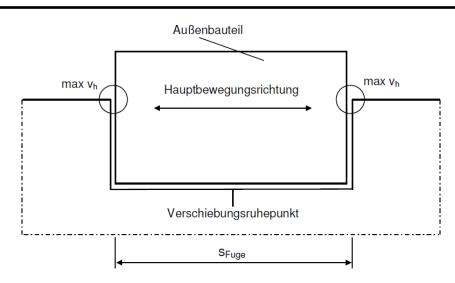


Bild 28: Einbausituation mit Lagerung an gegenüberliegenden Platten

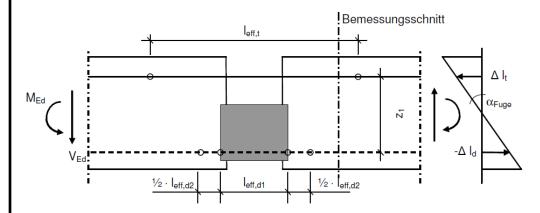


Bild 29: Modell für die Ermittlung der Biegeverformungen in der Fuge

Drehwinkel in der Fuge: $\tan \alpha_{\text{Fuge}} = \frac{\Delta I_{\text{t}} - \Delta I_{\text{d1}} - \Delta I_{\text{d2}}}{Z_{\text{1}}} = \frac{\Delta I_{\text{t}} - \Delta I_{\text{d}}}{Z_{\text{1}}}$

Innerer Hebelarm HIT-HP/SP: $z_1 = d - \frac{x_c}{2} - 15 \text{ mm}$

Zugstabdehnung für $d_{s1} = d_{s2}$: $\Delta I_t = \epsilon_t \cdot I_{eff,t} = \frac{\sigma_{s,t}}{E_s} \cdot I_{eff,t}$

$$\begin{split} \text{Zugstabdehnung für $d_{s1} > d_{s2}$:} & \Delta I_t = \epsilon_{t,ds1} \cdot I_{eff,t,ds1} + \epsilon_{t,ds2} \cdot I_{eff,t,ds2} \\ & = \frac{\sigma_{s,t,ds1}}{E_{s,ds1}} \cdot I_{eff,t,ds1} + \frac{\sigma_{s,t,ds2}}{E_{s,ds2}} \cdot I_{eff,t,ds2} \end{split}$$

mit: $l_{eff,t,ds1} = 20 \cdot d_{s1}$ und $l_{eff,t,ds2} = 280$ mm für HIT-HP $l_{eff,t,ds1} = 20 \cdot d_{s1}$ und $l_{eff,t,ds2} = 320$ mm für HIT-SP

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 7
Verformungsnachweis	Seite 1/2

Druckschublagerstauchung: $\Delta I_{d1} = -\epsilon_{d1} \cdot I_{eff,d1}$

Stauchung des angrenzenden Plattenbetons: $\Delta I_{d2} = -\epsilon_{d2} \cdot I_{eff,d2} = \frac{-\alpha_{l,d2}}{E_{cm}}$

 ΔI_d nach Tabelle A4, E_{cm} nach DIN 1045-1 bzw. DIN EN 1992-1-1

Betonfestigkeitsklasse	C20/25	C25/30	C30/37
Δl _d [mm] für HIT-HP	0,228	0,258	0,251
Δl _d [mm] für HIT-SP	0,276	0,315	0,308

Tabelle A4: Beiwerte Δl_d zur Verformungsberechnung HIT-HP/SP mit Druckschublager

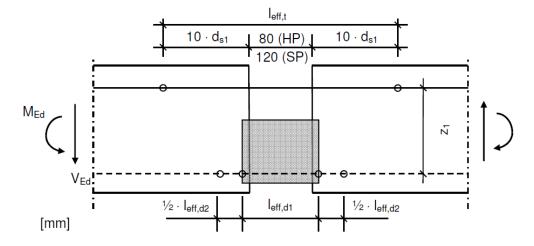


Bild 30: leff für Betonstahl B500 NR

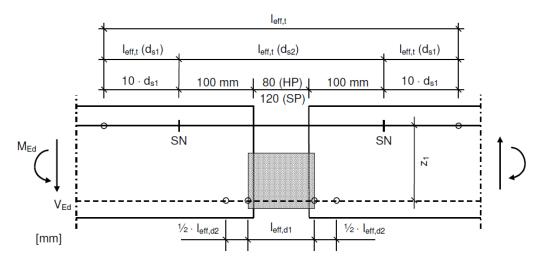


Bild 31: leff für nichtrostenden Rundstahl S 460 und S 690 nach Datenblatt

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 7
Verformungsnachweis	Seite 2/2

Bild 32: Beispiel für den Anschluss HIT-HP/SP MV F 120-AB/REI 120 an Elementplatten mit statisch - wirksamer Ortbetonschicht

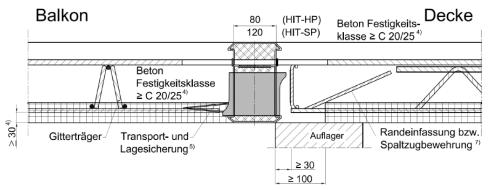


Bild 33: Beispiel für den Anschluss HIT-HP/SP MV F 120-AB/REI 120 an Elementplatten mit statisch - wirksamer Ortbetonschicht

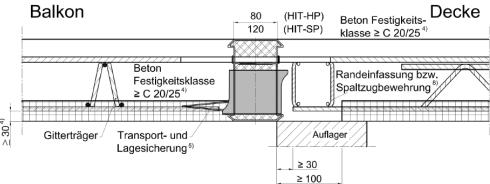


Bild 34: Beispiel für den Anschluss HIT-HP/SP MV F 120-AB/REI 120 an Elementplatten mit statisch - wirksamer Ortbetonschicht

- Für die Mindestbetonfestigkeitsklasse und -deckung gilt außerdem DIN 1045-1, Abschnitt 6 bzw. DIN EN 1992-1-1, Abschnitt 4
- ⁵⁾ Transport- und Lagesicherung für den Montagezustand in Form einer U-förmigen Halteklammer Ø 2 mm der Länge von ca. 100 mm und der Breite von ca. 40 mm bestehend aus Blankstahl S235. Die Halteklammer ist mit der Kunststoffhülle des Druckschublagers verbunden,
- Die Steckbügel der Randeinfassung nach Abschnitt 4.2 bzw. der vertikalen Spaltzugbewehrung nach Abschnitt 3.2.2.1 sind entweder auf die Elementdecken direkt aufzulegen oder vorzugsweise in die Elementdecken in Höhe der Hauptbewehung der Elementdecke einzubinden
- ⁷⁾ zu ⁶⁾ alternative Ausbildung durch Aufbiegen des unteren Steckbügelschenkels
- ⁸⁾ zu ⁶⁾ alternative Ausbildung durch Anordnung eines Randbalkens anstelle der Steckbügel

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 8
Beispiele für den Anschluss an Elementplatten	Seite 1/3

Z47997.13 1.15.7-1/13

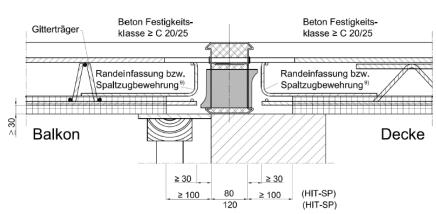


Bild 35: Beispiel für den Anschluss HIT-HP/SP MV F 120-AB/REI 120 an Elementplatten mit statisch - wirksamer Ortbetonschicht

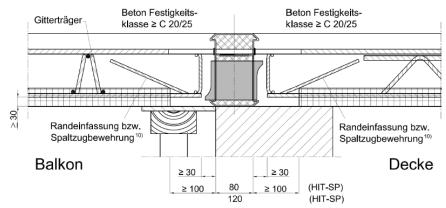


Bild 36: Beispiel für den Anschluss HIT-HP/SP MV F 120-AB/REI 120 an Elementplatten mit statisch - wirksamer Ortbetonschicht

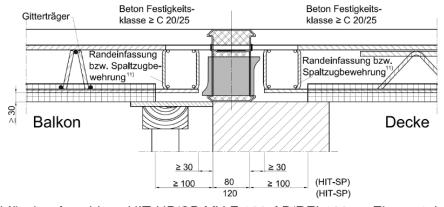


Bild 37: Beispiel für den Anschluss HIT-HP/SP MV F 120-AB/REI 120 an Elementplatten mit statisch - wirksamer Ortbetonschicht

zu 6) alternative Ausbildung durch Anordnung eines Randbalkens anstelle der Steckbügel

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 8
Beispiele für den Anschluss an Elementplatten	Seite 2/3

Z47997.13 1.15.7-1/13

Die Steckbügel der Randeinfassung nach Abschnitt 4.2 bzw. der vertikalen Spaltzugbewehrung nach Abschnitt 3.2.2.1 sind entweder auf die Elementdecken direkt aufzulegen oder vorzugsweise in die Elementdecken in Höhe der Hauptbewehung der Elementdecke einzubinden

zu ⁶⁾ alternative Ausbildung durch Aufbiegen des unteren Steckbügelschenkels

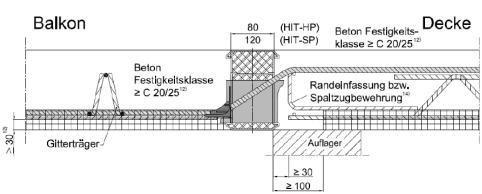


Bild 38: Beispiel für den Anschluss HIT-HP/SP ZV an Elementplatten mit statisch - wirksamer Ortbetonschicht

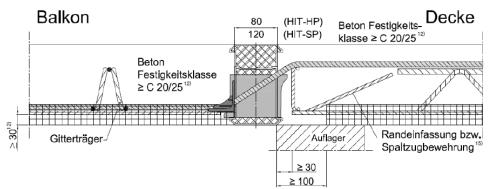


Bild 39: Beispiel für den Anschluss HIT-HP/SP ZV an Elementplatten mit statisch - wirksamer Ortbetonschicht

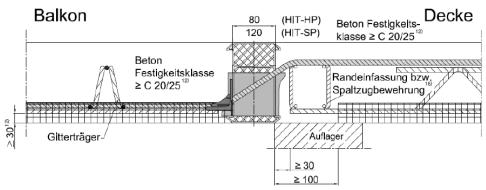


Bild 40: Beispiel für den Anschluss HIT-HP/SP ZV an Elementplatten mit statisch - wirksamer Ortbetonschicht

- Für die Mindestbetonfestigkeitsklasse und -deckung gilt außerdem DIN 1045-1, Abschnitt 6 bzw. DIN EN 1992-1-1, Abschnitt 4
- Transport- und Lagesicherung für den Montagezustand in Form einer U-förmigen Halteklammer Ø 2 mm der Länge von ca. 100 mm und der Breite von ca. 40 mm bestehend aus Blankstahl S235. Die Halteklammer ist mit der Kunststoffhülle des Druckschublagers verbunden.
- Die Steckbügel der Randeinfassung nach Abschnitt 4.2 bzw. der vertikalen Spaltzugbewehrung nach Abschnitt 3.2.2.1 sind entweder auf die Elementdecken direkt aufzulegen oder vorzugsweise in die Elementdecken in H\u00f6he der Hauptbewehung der Elementdecke einzubinden
- zu 14) alternative Ausbildung durch Aufbiegen des unteren Steckbügelschenkels
- zu 14) alternative Ausbildung durch Anordnung eines Randbalkens anstelle der Steckbügel

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 8
Beispiele für den Anschluss an Elementplatten	Seite 3/3

Z47997.13 1.15.7-1/13

Grundlagen der thermischen Kennwerte

In den Tabellen A5 bis A10 sind für eine Einbausituation eines außen gedämmten Mauerwerkes in Form eines Wärmedämmverbundsystems (WDVS) sowie in den Tabellen A11 bis A16 für eine Einbausituation in Form von monolithischem Mauerwerk unter Verwendung des Halfen-Iso-ElemenTes HIT-HP/SP MV und in den Tabellen A17 bis A19 für eine Einbausituation eines außen gedämmten Mauerwerkes in Form eines Wärmedämmverbundsystems (WDVS) unter Verwendung des Halfen-Iso-ElemenTes HIT-HP/SP ZV der längenbezogene Wärmedurchgangskoeffizient Ψ nach DIN 4108 Bbl. 2, die minimale Temperatur $\theta_{\text{si,min}}$ auf der inneren Oberfläche des Bauteilanschlusses und der zugehörige Temperaturfaktor f_{Rsi} nach DIN 4108-2 aufgeführt.

Diese Werte gelten für die in Bild 41 (HIT-HP/SP MV) bzw. in Bild 42 (HIT-HP/SP ZV) dargestellten Einbausituationen mit den angeführten Schichtdicken und Wärmeleitfähigkeiten der Baustoffe (Wärmedurchgangskoeffizient Regelquerschnitt "Außenwand").

Die Tabellenwerte wurden nach DIN EN ISO 10211 auf Grundlage folgender Beziehungen und Randbedingungen ermittelt:

• Längenbezogener Wärmedurchgangskoeffizient Ψ : $\Psi = \frac{\Phi - A(\theta_i - \theta_e)U}{(\theta_i - \theta_e) \cdot I}$

• Temperaturfaktor f_{Rsi} : $f_{Rsi} = \frac{\theta_{si,min} - \theta_e}{\theta_i - \theta_e}$

Randbedingungen zur Berechnung des längenbezogenen
 Wärmedurchgangskoeffizienten Ψ gemäß DIN 4108 Bbl. 2:

○ Innentemperatur $\theta_i = 20 \, ^{\circ}$ C

o innerer Wärmeübergangswiderstand R_{si} = 0,13 m² K/W

○ Außentemperatur $\theta_e = 0$ °C

o äußerer Wärmeübergangswiderstand $R_{se} = 0.04 \text{ m}^2 \text{ K/W}$

 Randbedingungen zur Berechnung der minimalen Oberflächentemperatur auf der inneren Oberfläche θ_{si,min} und des Temperaturfaktors f_{Rsi} gemäß DIN 4108 Bbl. 2:

o Innentemperatur $\theta_i = 20 \, ^{\circ}\text{C}$

 \circ innerer Wärmeübergangswiderstand $R_{si} = 0.25 \text{ m}^2 \text{ K/W}$

○ Außentemperatur $\theta_e = -5$ °C

o äußerer Wärmeübergangswiderstand R_{se} = 0,04 m² K/W

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte Grundlagen	Seite 1/18

Einbausituation für Mauerwerk mit WDVS und HIT-HP/SP MV (Bild 41a)

Wärmedurchgangskoeffizient Regelquerschnitt "Außenwand"

- U = 0,227 W/(m² K) für Dämmstoffdicke t₁ des WDVS von 14 cm
- U = 0,149 W/(m² K) für Dämmstoffdicke t₁ des WDVS von 22 cm
- U = 0,111 W/(m² K) für Dämmstoffdicke t₁ des WDVS von 30 cm

o Dämmung der Außenwand: Dicke t_1 = 14, 22 oder 30 cm (λ = 0,035 W/(mK))

o Außenwand (Kalksandstein): Dicke $t_2 = 24$ cm ($\lambda = 0.99$ W/(mK))

o Fußbodenaufbau (innen): a) Stahlbetondecke 18 cm ($\lambda = 2.3 \text{ W/(mK)}$)

b) Trittschalldämmung 3 cm ($\lambda = 0.035 \text{ W/(mK)}$)

c) Zementestrich 5 cm ($\lambda = 1.35 \text{ W/(mK)}$)

d) Randdämmstreifen 1 cm ($\lambda = 0.14 \text{ W/(mK)}$)

Einbausituation für monolithisches Mauerwerk und HIT-HP/SP MV (Bild 41b)

Wärmedurchgangskoeffizient Regelquerschnitt "Außenwand"

- U = 0,455 W/(m² K) für Wärmeleitfähigkeit λ=0,18 W/(mK)
- U = 0.311 W/(m² K) für Wärmeleitfähigkeit λ =0.12 W/(mK)
- U = 0,211 W/(m² K) für Wärmeleitfähigkeit λ =0,08 W/(mK)
 - Außenwand (monolithisch):

Dicke t = 36,5 cm

- Fußbodenaufbau (innen):
- a) Stahlbetondecke 18 cm ($\lambda = 2.3 \text{ W/(mK)}$)
- b) Trittschalldämmung 3 cm ($\lambda = 0.035 \text{ W/(mK)}$)
- c) Zementestrich 5 cm ($\lambda = 1.35 \text{ W/(mK)}$)
- d) Randdämmstreifen 1 cm ($\lambda = 0.14 \text{ W/(mK)}$)
- a) Mauerwerk mit WDVS

b) Monolithisches Mauerwerk

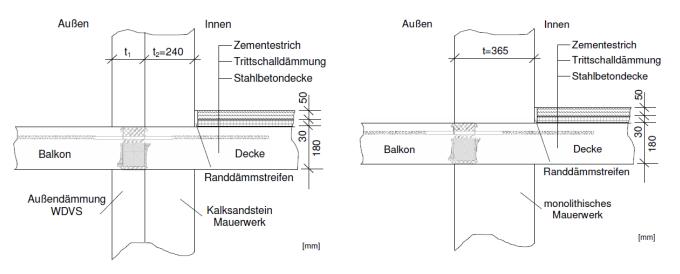


Bild 41: Einbausituation HIT-HP/SP MV Mauerwerk mit WDVS und monolithisches Mauerwerk

Die thermischen Kennwerte nach Tabelle A5 bis A16 gelten ausschließlich für die in Bild 41 aufgeführten Einbausituationen, Schichtdicken und angegebenen Wärmeleitfähigkeiten der Baustoffe (Wärmedurchgangskoeffizient Regelquerschnitt "Außenwand"). Bei hiervon abweichenden Einbausituationen, Schichtdicken oder Wärmeleitfähigkeiten der Baustoffe sind die aufgeführten thermischen Kennwerte nicht gültig.

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte Grundlagen	Seite 2/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 140 \text{ mm}$), HIT-HP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [℃]	f _{Rsi} [-]
HIT-HP MV- 0404-18-100-35	0,168	17,80	0,912
HIT-HP MV- 0504-18-100-35	0,175	17,76	0,910
HIT-HP MV- 0604-18-100-35	0,181	17,73	0,909
HIT-HP MV- 0804-18-100-35	0,194	17,66	0,906
HIT-HP MV- 0505-18-100-35	0,194	17,64	0,906
HIT-HP MV- 0705-18-100-35	0,207	17,57	0,903
HIT-HP MV- 0805-18-100-35	0,213	17,54	0,902
HIT-HP MV- 0506-18-100-35	0,212	17,53	0,901
HIT-HP MV- 0606-18-100-35	0,219	17,49	0,900
HIT-HP MV- 0706-18-100-35	0,225	17,46	0,898
HIT-HP MV- 0906-18-100-35	0,238	17,39	0,896
HIT-HP MV- 1006-18-100-35	0,244	17,36	0,894
HIT-HP MV- 1106-18-100-35	0,249	17,33	0,893
HIT-HP MV- 0607-18-100-35	0,236	17,38	0,895
HIT-HP MV- 0707-18-100-35	0,243	17,35	0,894
HIT-HP MV- 0907-18-100-35	0,255	17,29	0,891
HIT-HP MV- 1007-18-100-35	0,261	17,26	0,890
HIT-HP MV- 1107-18-100-35	0,267	17,23	0,889
HIT-HP MV- 1207-18-100-35	0,272	17,20	0,888
HIT-HP MV- 1407-18-100-35	0,283	17,14	0,886
HIT-HP MV- 0408-18-100-35	0,239	17,35	0,894
HIT-HP MV- 0708-18-100-35	0,259	17,25	0,890
HIT-HP MV- 0808-18-100-35	0,265	17,22	0,889
HIT-HP MV- 1008-18-100-35	0,277	17,16	0,886
HIT-HP MV- 1208-18-100-35	0,289	17,10	0,884
HIT-HP MV- 1308-18-100-35	0,294	17,07	0,883
HIT-HP MV- 1309-18-100-35	0,309	16,98	0,879
HIT-HP MV- 0610-18-100-35	0,283	17,09	0,884
HIT-HP MV- 0910-18-100-35	0,301	17,00	0,880
HIT-HP MV- 1010-18-100-35	0,307	16,97	0,879
HIT-HP MV- 1210-18-100-35	0,318	16,92	0,877
HIT-HP MV- 1412-18-100-35	0,356	16,70	0,868

Tabelle A5: Thermische Kennwerte für HIT-HP MV bei Einbausituation WDVS (t_1 = 140mm) nach Bild 41a, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{si,min}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t₁ = 140 mm	Seite 3/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 140 \text{ mm}$), HIT-SP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP MV- 0404-18-100-35	0,115	18,12	0,925
HIT-SP MV- 0504-18-100-35	0,121	18,09	0,924
HIT-SP MV- 0604-18-100-35	0,126	18,06	0,922
HIT-SP MV- 0804-18-100-35	0,137	18,00	0,920
HIT-SP MV- 0505-18-100-35	0,137	17,99	0,919
HIT-SP MV- 0705-18-100-35	0,148	17,92	0,917
HIT-SP MV- 0805-18-100-35	0,154	17,89	0,916
HIT-SP MV- 0506-18-100-35	0,153	17,89	0,916
HIT-SP MV- 0606-18-100-35	0,158	17,86	0,914
HIT-SP MV- 0706-18-100-35	0,164	17,83	0,913
HIT-SP MV- 0906-18-100-35	0,175	17,77	0,911
HIT-SP MV- 1006-18-100-35	0,180	17,74	0,910
HIT-SP MV- 1106-18-100-35	0,186	17,71	0,908
HIT-SP MV- 0607-18-100-35	0,174	17,76	0,910
HIT-SP MV- 0707-18-100-35	0,179	17,73	0,909
HIT-SP MV- 0907-18-100-35	0,190	17,67	0,907
HIT-SP MV- 1007-18-100-35	0,196	17,65	0,906
HIT-SP MV- 1107-18-100-35	0,201	17,62	0,905
HIT-SP MV- 1207-18-100-35	0,206	17,59	0,904
HIT-SP MV- 1407-18-100-35	0,216	17,54	0,902
HIT-SP MV- 0408-18-100-35	0,177	17,73	0,909
HIT-SP MV- 0708-18-100-35	0,194	17,64	0,906
HIT-SP MV- 0808-18-100-35	0,199	17,61	0,905
HIT-SP MV- 1008-18-100-35	0,210	17,56	0,902
HIT-SP MV- 1208-18-100-35	0,220	17,50	0,900
HIT-SP MV- 1308-18-100-35	0,226	17,48	0,899
HIT-SP MV- 1309-18-100-35	0,239	17,39	0,896
HIT-SP MV- 0610-18-100-35	0,216	17,50	0,900
HIT-SP MV- 0910-18-100-35	0,232	17,42	0,897
HIT-SP MV- 1010-18-100-35	0,237	17,39	0,896
HIT-SP MV- 1210-18-100-35	0,248	17,34	0,893
HIT-SP MV- 1412-18-100-35	0,283	17,13	0,885

Tabelle A6: Thermische Kennwerte für HIT-SP MV bei Einbausituation WDVS (t_1 = 140mm) nach Bild 41a, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t ₁ = 140 mm	Seite 4/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 220 \text{ mm}$), HIT-HP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-HP MV- 0404-18-100-35	0,187	18,08	0,923
HIT-HP MV- 0504-18-100-35	0,193	18,05	0,922
HIT-HP MV- 0604-18-100-35	0,199	18,02	0,921
HIT-HP MV- 0804-18-100-35	0,211	17,95	0,918
HIT-HP MV- 0505-18-100-35	0,211	17,94	0,918
HIT-HP MV- 0705-18-100-35	0,223	17,87	0,915
HIT-HP MV- 0805-18-100-35	0,229	17,84	0,914
HIT-HP MV- 0506-18-100-35	0,228	17,83	0,913
HIT-HP MV- 0606-18-100-35	0,234	17,80	0,912
HIT-HP MV- 0706-18-100-35	0,240	17,77	0,911
HIT-HP MV- 0906-18-100-35	0,251	17,71	0,908
HIT-HP MV- 1006-18-100-35	0,257	17,68	0,907
HIT-HP MV- 1106-18-100-35	0,262	17,65	0,906
HIT-HP MV- 0607-18-100-35	0,249	17,70	0,908
HIT-HP MV- 0707-18-100-35	0,255	17,67	0,907
HIT-HP MV- 0907-18-100-35	0,267	17,61	0,904
HIT-HP MV- 1007-18-100-35	0,272	17,58	0,903
HIT-HP MV- 1107-18-100-35	0,278	17,56	0,902
HIT-HP MV- 1207-18-100-35	0,283	17,53	0,901
HIT-HP MV- 1407-18-100-35	0,293	17,48	0,899
HIT-HP MV- 0408-18-100-35	0,252	17,68	0,907
HIT-HP MV- 0708-18-100-35	0,270	17,58	0,903
HIT-HP MV- 0808-18-100-35	0,276	17,55	0,902
HIT-HP MV- 1008-18-100-35	0,287	17,49	0,900
HIT-HP MV- 1208-18-100-35	0,297	17,44	0,898
HIT-HP MV- 1308-18-100-35	0,302	17,41	0,897
HIT-HP MV- 1309-18-100-35	0,316	17,33	0,893
HIT-HP MV- 0610-18-100-35	0,292	17,44	0,898
HIT-HP MV- 0910-18-100-35	0,308	17,35	0,894
HIT-HP MV- 1010-18-100-35	0,314	17,33	0,893
HIT-HP MV- 1210-18-100-35	0,324	17,28	0,891
HIT-HP MV- 1412-18-100-35	0,357	17,08	0,883

Tabelle A7: Thermische Kennwerte für HIT-HP MV bei Einbausituation WDVS (t_1 = 220mm) nach Bild 41a, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{si,min}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t₁ = 220 mm	Seite 5/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 220 \text{ mm}$), HIT-SP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP MV- 0404-18-100-35	0,134	18,40	0,936
HIT-SP MV- 0504-18-100-35	0,140	18,37	0,935
HIT-SP MV- 0604-18-100-35	0,145	18,34	0,934
HIT-SP MV- 0804-18-100-35	0,156	18,28	0,931
HIT-SP MV- 0505-18-100-35	0,155	18,27	0,931
HIT-SP MV- 0705-18-100-35	0,166	18,21	0,929
HIT-SP MV- 0805-18-100-35	0,171	18,19	0,927
HIT-SP MV- 0506-18-100-35	0,170	18,18	0,927
HIT-SP MV- 0606-18-100-35	0,176	18,15	0,926
HIT-SP MV- 0706-18-100-35	0,181	18,12	0,925
HIT-SP MV- 0906-18-100-35	0,191	18,07	0,923
HIT-SP MV- 1006-18-100-35	0,196	18,04	0,922
HIT-SP MV- 1106-18-100-35	0,201	18,01	0,921
HIT-SP MV- 0607-18-100-35	0,190	18,06	0,922
HIT-SP MV- 0707-18-100-35	0,195	18,03	0,921
HIT-SP MV- 0907-18-100-35	0,205	17,98	0,919
HIT-SP MV- 1007-18-100-35	0,210	17,95	0,918
HIT-SP MV- 1107-18-100-35	0,215	17,93	0,917
HIT-SP MV- 1207-18-100-35	0,220	17,90	0,916
HIT-SP MV- 1407-18-100-35	0,229	17,85	0,914
HIT-SP MV- 0408-18-100-35	0,192	18,04	0,921
HIT-SP MV- 0708-18-100-35	0,208	17,95	0,918
HIT-SP MV- 0808-18-100-35	0,214	17,92	0,917
HIT-SP MV- 1008-18-100-35	0,224	17,87	0,915
HIT-SP MV- 1208-18-100-35	0,233	17,82	0,913
HIT-SP MV- 1308-18-100-35	0,238	17,79	0,912
HIT-SP MV- 1309-18-100-35	0,251	17,72	0,909
HIT-SP MV- 0610-18-100-35	0,229	17,82	0,913
HIT-SP MV- 0910-18-100-35	0,244	17,74	0,910
HIT-SP MV- 1010-18-100-35	0,249	17,71	0,909
HIT-SP MV- 1210-18-100-35	0,258	17,67	0,907
HIT-SP MV- 1412-18-100-35	0,290	17,48	0,899

Tabelle A8: Thermische Kennwerte für HIT-SP MV bei Einbausituation WDVS (t_1 = 220mm) nach Bild 41a, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{si,min}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t ₁ = 220 mm	Seite 6/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 300 \text{ mm}$), HIT-HP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-HP MV- 0404-18-100-35	0,194	18,25	0,930
HIT-HP MV- 0504-18-100-35	0,200	18,21	0,929
HIT-HP MV- 0604-18-100-35	0,206	18,18	0,927
HIT-HP MV- 0804-18-100-35	0,217	18,12	0,925
HIT-HP MV- 0505-18-100-35	0,216	18,11	0,924
HIT-HP MV- 0705-18-100-35	0,228	18,05	0,922
HIT-HP MV- 0805-18-100-35	0,233	18,02	0,921
HIT-HP MV- 0506-18-100-35	0,231	18,02	0,921
HIT-HP MV- 0606-18-100-35	0,237	17,99	0,919
HIT-HP MV- 0706-18-100-35	0,243	17,96	0,918
HIT-HP MV- 0906-18-100-35	0,253	17,90	0,916
HIT-HP MV- 1006-18-100-35	0,258	17,87	0,915
HIT-HP MV- 1106-18-100-35	0,263	17,85	0,914
HIT-HP MV- 0607-18-100-35	0,251	17,90	0,916
HIT-HP MV- 0707-18-100-35	0,257	17,87	0,915
HIT-HP MV- 0907-18-100-35	0,267	17,81	0,912
HIT-HP MV- 1007-18-100-35	0,272	17,79	0,911
HIT-HP MV- 1107-18-100-35	0,277	17,76	0,910
HIT-HP MV- 1207-18-100-35	0,282	17,73	0,909
HIT-HP MV- 1407-18-100-35	0,292	17,68	0,907
HIT-HP MV- 0408-18-100-35	0,253	17,87	0,915
HIT-HP MV- 0708-18-100-35	0,270	17,79	0,911
HIT-HP MV- 0808-18-100-35	0,275	17,76	0,910
HIT-HP MV- 1008-18-100-35	0,285	17,70	0,908
HIT-HP MV- 1208-18-100-35	0,295	17,65	0,906
HIT-HP MV- 1308-18-100-35	0,300	17,63	0,905
HIT-HP MV- 1309-18-100-35	0,312	17,55	0,902
HIT-HP MV- 0610-18-100-35	0,289	17,66	0,906
HIT-HP MV- 0910-18-100-35	0,304	17,58	0,903
HIT-HP MV- 1010-18-100-35	0,309	17,56	0,902
HIT-HP MV- 1210-18-100-35	0,319	17,51	0,900
HIT-HP MV- 1412-18-100-35	0,349	17,33	0,893

Tabelle A9: Thermische Kennwerte für HIT-HP MV bei Einbausituation WDVS (t_1 = 300mm) nach Bild 41a, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{si,min}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t ₁ = 300 mm	Seite 7/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 300 \text{ mm}$), HIT-SP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP MV- 0404-18-100-35	0,145	18,54	0,942
HIT-SP MV- 0504-18-100-35	0,150	18,51	0,941
HIT-SP MV- 0604-18-100-35	0,155	18,48	0,939
HIT-SP MV- 0804-18-100-35	0,165	18,43	0,937
HIT-SP MV- 0505-18-100-35	0,164	18,42	0,937
HIT-SP MV- 0705-18-100-35	0,175	18,37	0,935
HIT-SP MV- 0805-18-100-35	0,179	18,34	0,934
HIT-SP MV- 0506-18-100-35	0,178	18,34	0,933
HIT-SP MV- 0606-18-100-35	0,183	18,31	0,932
HIT-SP MV- 0706-18-100-35	0,188	18,28	0,931
HIT-SP MV- 0906-18-100-35	0,198	18,23	0,929
HIT-SP MV- 1006-18-100-35	0,203	18,20	0,928
HIT-SP MV- 1106-18-100-35	0,207	18,18	0,927
HIT-SP MV- 0607-18-100-35	0,196	18,23	0,929
HIT-SP MV- 0707-18-100-35	0,201	18,20	0,928
HIT-SP MV- 0907-18-100-35	0,211	18,15	0,926
HIT-SP MV- 1007-18-100-35	0,215	18,12	0,925
HIT-SP MV- 1107-18-100-35	0,220	18,10	0,924
HIT-SP MV- 1207-18-100-35	0,225	18,08	0,923
HIT-SP MV- 1407-18-100-35	0,233	18,03	0,921
HIT-SP MV- 0408-18-100-35	0,198	18,21	0,928
HIT-SP MV- 0708-18-100-35	0,213	18,12	0,925
HIT-SP MV- 0808-18-100-35	0,218	18,10	0,924
HIT-SP MV- 1008-18-100-35	0,228	18,05	0,922
HIT-SP MV- 1208-18-100-35	0,237	18,00	0,920
HIT-SP MV- 1308-18-100-35	0,241	17,98	0,919
HIT-SP MV- 1309-18-100-35	0,253	17,90	0,916
HIT-SP MV- 0610-18-100-35	0,232	18,00	0,920
HIT-SP MV- 0910-18-100-35	0,246	17,93	0,917
HIT-SP MV- 1010-18-100-35	0,250	17,91	0,916
HIT-SP MV- 1210-18-100-35	0,259	17,86	0,914
HIT-SP MV- 1412-18-100-35	0,288	17,69	0,908

Tabelle A10: Thermische Kennwerte für HIT-SP MV bei Einbausituation WDVS ($t_1 = 300$ mm) nach Bild 41a, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t ₁ = 300 mm	Seite 8/18

Thermische Kennwerte für monolithisches Mauerwerk (λ = 0,18 W/mK) HIT-HP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-HP MV- 0404-18-100-35	0,168	15,49	0,819
HIT-HP MV- 0504-18-100-35	0,173	15,45	0,818
HIT-HP MV- 0604-18-100-35	0,178	15,41	0,817
HIT-HP MV- 0804-18-100-35	0,188	15,35	0,814
HIT-HP MV- 0505-18-100-35	0,186	15,31	0,813
HIT-HP MV- 0705-18-100-35	0,196	15,25	0,810
HIT-HP MV- 0805-18-100-35	0,201	15,21	0,809
HIT-HP MV- 0506-18-100-35	0,198	15,19	0,807
HIT-HP MV- 0606-18-100-35	0,203	15,15	0,806
HIT-HP MV- 0706-18-100-35	0,208	15,12	0,805
HIT-HP MV- 0906-18-100-35	0,217	15,06	0,802
HIT-HP MV- 1006-18-100-35	0,222	15,03	0,801
HIT-HP MV- 1106-18-100-35	0,226	15,00	0,800
HIT-HP MV- 0607-18-100-35	0,214	15,03	0,801
HIT-HP MV- 0707-18-100-35	0,219	15,00	0,800
HIT-HP MV- 0907-18-100-35	0,228	14,94	0,797
HIT-HP MV- 1007-18-100-35	0,233	14,91	0,796
HIT-HP MV- 1107-18-100-35	0,237	14,88	0,795
HIT-HP MV- 1207-18-100-35	0,242	14,85	0,794
HIT-HP MV- 1407-18-100-35	0,250	14,80	0,792
HIT-HP MV- 0408-18-100-35	0,215	14,99	0,799
HIT-HP MV- 0708-18-100-35	0,230	14,89	0,795
HIT-HP MV- 0808-18-100-35	0,234	14,85	0,794
HIT-HP MV- 1008-18-100-35	0,243	14,80	0,792
HIT-HP MV- 1208-18-100-35	0,252	14,74	0,790
HIT-HP MV- 1308-18-100-35	0,256	14,72	0,789
HIT-HP MV- 1309-18-100-35	0,266	14,61	0,784
HIT-HP MV- 0610-18-100-35	0,245	14,71	0,788
HIT-HP MV- 0910-18-100-35	0,259	14,62	0,785
HIT-HP MV- 1010-18-100-35	0,263	14,59	0,784
HIT-HP MV- 1210-18-100-35	0,272	14,54	0,782
HIT-HP MV- 1412-18-100-35	0,297	14,32	0,773

Tabelle A11: Thermische Kennwerte für HIT-HP MV bei Einbausituation monolithisches Mauerwerk, λ = 0,18 W/(mK) nach Bild 41b, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für monolithisches Mauerwerk; $\lambda = 0.18 \text{ W/(mK)}$	Seite 9/18

Thermische Kennwerte für monolithisches Mauerwerk ($\lambda = 0.18 \text{ W/(mK)}$) HIT-SP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP MV- 0404-18-100-35	0,132	15,86	0,835
HIT-SP MV- 0504-18-100-35	0,136	15,83	0,833
HIT-SP MV- 0604-18-100-35	0,141	15,80	0,832
HIT-SP MV- 0804-18-100-35	0,149	15,74	0,830
HIT-SP MV- 0505-18-100-35	0,148	15,71	0,828
HIT-SP MV- 0705-18-100-35	0,156	15,65	0,826
HIT-SP MV- 0805-18-100-35	0,161	15,62	0,825
HIT-SP MV- 0506-18-100-35	0,158	15,59	0,824
HIT-SP MV- 0606-18-100-35	0,163	15,56	0,823
HIT-SP MV- 0706-18-100-35	0,167	15,53	0,821
HIT-SP MV- 0906-18-100-35	0,175	15,48	0,819
HIT-SP MV- 1006-18-100-35	0,180	15,45	0,818
HIT-SP MV- 1106-18-100-35	0,184	15,42	0,817
HIT-SP MV- 0607-18-100-35	0,173	15,45	0,818
HIT-SP MV- 0707-18-100-35	0,177	15,42	0,817
HIT-SP MV- 0907-18-100-35	0,186	15,37	0,815
HIT-SP MV- 1007-18-100-35	0,190	15,34	0,814
HIT-SP MV- 1107-18-100-35	0,194	15,32	0,813
HIT-SP MV- 1207-18-100-35	0,198	15,29	0,812
HIT-SP MV- 1407-18-100-35	0,206	15,24	0,810
HIT-SP MV- 0408-18-100-35	0,174	15,41	0,816
HIT-SP MV- 0708-18-100-35	0,187	15,32	0,813
HIT-SP MV- 0808-18-100-35	0,191	15,29	0,812
HIT-SP MV- 1008-18-100-35	0,200	15,24	0,810
HIT-SP MV- 1208-18-100-35	0,208	15,19	0,807
HIT-SP MV- 1308-18-100-35	0,212	15,16	0,807
HIT-SP MV- 1309-18-100-35	0,221	15,07	0,803
HIT-SP MV- 0610-18-100-35	0,201	15,15	0,806
HIT-SP MV- 0910-18-100-35	0,214	15,07	0,803
HIT-SP MV- 1010-18-100-35	0,218	15,05	0,802
HIT-SP MV- 1210-18-100-35	0,226	15,00	0,800
HIT-SP MV- 1412-18-100-35	0,250	14,78	0,791

Tabelle A12: Thermische Kennwerte für HIT-SP MV bei Einbausituation monolithisches Mauerwerk, λ = 0,18 W/(mK) nach Bild 41b, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für monolithisches $\label{eq:mauerwerk} \text{Mauerwerk; } \lambda = 0,18 \text{ W/(mK)}$	Seite 10/18

Thermische Kennwerte für monolithisches Mauerwerk (λ = 0,12 W/mK) HIT-HP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-HP MV- 0404-18-100-35	0,180	15,91	0,836
HIT-HP MV- 0504-18-100-35	0,185	15,86	0,834
HIT-HP MV- 0604-18-100-35	0,190	15,82	0,833
HIT-HP MV- 0804-18-100-35	0,200	15,74	0,829
HIT-HP MV- 0505-18-100-35	0,199	15,70	0,828
HIT-HP MV- 0705-18-100-35	0,209	15,62	0,825
HIT-HP MV- 0805-18-100-35	0,214	15,58	0,823
HIT-HP MV- 0506-18-100-35	0,212	15,55	0,822
HIT-HP MV- 0606-18-100-35	0,217	15,50	0,820
HIT-HP MV- 0706-18-100-35	0,222	15,46	0,819
HIT-HP MV- 0906-18-100-35	0,232	15,39	0,816
HIT-HP MV- 1006-18-100-35	0,236	15,35	0,814
HIT-HP MV- 1106-18-100-35	0,241	15,32	0,813
HIT-HP MV- 0607-18-100-35	0,229	15,36	0,814
HIT-HP MV- 0707-18-100-35	0,234	15,33	0,813
HIT-HP MV- 0907-18-100-35	0,244	15,25	0,810
HIT-HP MV- 1007-18-100-35	0,249	15,22	0,809
HIT-HP MV- 1107-18-100-35	0,253	15,18	0,807
HIT-HP MV- 1207-18-100-35	0,258	15,15	0,806
HIT-HP MV- 1407-18-100-35	0,266	15,09	0,803
HIT-HP MV- 0408-18-100-35	0,230	15,31	0,812
HIT-HP MV- 0708-18-100-35	0,246	15,19	0,808
HIT-HP MV- 0808-18-100-35	0,251	15,16	0,806
HIT-HP MV- 1008-18-100-35	0,260	15,09	0,803
HIT-HP MV- 1208-18-100-35	0,269	15,02	0,801
HIT-HP MV- 1308-18-100-35	0,273	14,99	0,800
HIT-HP MV- 1309-18-100-35	0,284	14,87	0,795
HIT-HP MV- 0610-18-100-35	0,262	14,98	0,799
HIT-HP MV- 0910-18-100-35	0,276	14,88	0,795
HIT-HP MV- 1010-18-100-35	0,281	14,85	0,794
HIT-HP MV- 1210-18-100-35	0,290	14,79	0,792
HIT-HP MV- 1412-18-100-35	0,316	14,53	0,781

Tabelle A13: Thermische Kennwerte für HIT-HP MV bei Einbausituation monolithisches Mauerwerk, $\lambda = 0.12 \, \text{W/(mK)}$ nach Bild 41b, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für monolithisches $Mauerwerk; \lambda = 0,12 \text{ W/(mK)}$	Seite 11/18
Mauerwerk; $\lambda = 0.12 \text{ W/(mK)}$	Seite 11/18

Thermische Kennwerte für monolithisches Mauerwerk ($\lambda = 0,12 \text{ W/mK}$) HIT-SP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP MV- 0404-18-100-35	0,142	16,33	0,853
HIT-SP MV- 0504-18-100-35	0,147	16,30	0,852
HIT-SP MV- 0604-18-100-35	0,151	16,26	0,850
HIT-SP MV- 0804-18-100-35	0,160	16,18	0,847
HIT-SP MV- 0505-18-100-35	0,159	16,15	0,846
HIT-SP MV- 0705-18-100-35	0,168	16,08	0,843
HIT-SP MV- 0805-18-100-35	0,172	16,04	0,842
HIT-SP MV- 0506-18-100-35	0,170	16,02	0,841
HIT-SP MV- 0606-18-100-35	0,175	15,98	0,839
HIT-SP MV- 0706-18-100-35	0,180	15,94	0,838
HIT-SP MV- 0906-18-100-35	0,188	15,87	0,835
HIT-SP MV- 1006-18-100-35	0,193	15,84	0,834
HIT-SP MV- 1106-18-100-35	0,197	15,81	0,832
HIT-SP MV- 0607-18-100-35	0,186	15,85	0,834
HIT-SP MV- 0707-18-100-35	0,191	15,81	0,833
HIT-SP MV- 0907-18-100-35	0,199	15,75	0,830
HIT-SP MV- 1007-18-100-35	0,204	15,71	0,829
HIT-SP MV- 1107-18-100-35	0,208	15,68	0,827
HIT-SP MV- 1207-18-100-35	0,212	15,65	0,826
HIT-SP MV- 1407-18-100-35	0,220	15,59	0,824
HIT-SP MV- 0408-18-100-35	0,187	15,80	0,832
HIT-SP MV- 0708-18-100-35	0,201	15,69	0,828
HIT-SP MV- 0808-18-100-35	0,206	15,66	0,826
HIT-SP MV- 1008-18-100-35	0,214	15,60	0,824
HIT-SP MV- 1208-18-100-35	0,222	15,53	0,821
HIT-SP MV- 1308-18-100-35	0,226	15,50	0,820
HIT-SP MV- 1309-18-100-35	0,236	15,39	0,816
HIT-SP MV- 0610-18-100-35	0,216	15,50	0,820
HIT-SP MV- 0910-18-100-35	0,229	15,40	0,816
HIT-SP MV- 1010-18-100-35	0,234	15,37	0,815
HIT-SP MV- 1210-18-100-35	0,242	15,31	0,813
HIT-SP MV- 1412-18-100-35	0,267	15,06	0,802

Tabelle A14: Thermische Kennwerte für HIT-SP MV bei Einbausituation monolithisches Mauerwerk, λ = 0,12 W/(mK) nach Bild 41b, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für monolithisches Mauerwerk; $\lambda = 0.12 \text{ W/(mK)}$	Seite 12/18

Thermische Kennwerte für monolithisches Mauerwerk ($\lambda = 0.08 \text{ W/mK}$) HIT-HP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [℃]	f _{Rsi} [-]
HIT-HP MV- 0404-18-100-35	0,186	16,21	0,848
HIT-HP MV- 0504-18-100-35	0,192	16,15	0,846
HIT-HP MV- 0604-18-100-35	0,197	16,10	0,844
HIT-HP MV- 0804-18-100-35	0,207	16,01	0,840
HIT-HP MV- 0505-18-100-35	0,207	15,97	0,839
HIT-HP MV- 0705-18-100-35	0,217	15,88	0,835
HIT-HP MV- 0805-18-100-35	0,222	15,83	0,833
HIT-HP MV- 0506-18-100-35	0,220	15,80	0,832
HIT-HP MV- 0606-18-100-35	0,226	15,75	0,830
HIT-HP MV- 0706-18-100-35	0,231	15,70	0,828
HIT-HP MV- 0906-18-100-35	0,241	15,62	0,825
HIT-HP MV- 1006-18-100-35	0,246	15,58	0,823
HIT-HP MV- 1106-18-100-35	0,251	15,54	0,821
HIT-HP MV- 0607-18-100-35	0,239	15,59	0,824
HIT-HP MV- 0707-18-100-35	0,244	15,55	0,822
HIT-HP MV- 0907-18-100-35	0,254	15,46	0,818
HIT-HP MV- 1007-18-100-35	0,259	15,42	0,817
HIT-HP MV- 1107-18-100-35	0,263	15,38	0,815
HIT-HP MV- 1207-18-100-35	0,268	15,35	0,814
HIT-HP MV- 1407-18-100-35	0,277	15,27	0,811
HIT-HP MV- 0408-18-100-35	0,240	15,53	0,821
HIT-HP MV- 0708-18-100-35	0,256	15,40	0,816
HIT-HP MV- 0808-18-100-35	0,261	15,35	0,814
HIT-HP MV- 1008-18-100-35	0,271	15,28	0,811
HIT-HP MV- 1208-18-100-35	0,280	15,20	0,808
HIT-HP MV- 1308-18-100-35	0,284	15,17	0,807
HIT-HP MV- 1309-18-100-35	0,295	15,04	0,801
HIT-HP MV- 0610-18-100-35	0,273	15,16	0,807
HIT-HP MV- 0910-18-100-35	0,288	15,05	0,802
HIT-HP MV- 1010-18-100-35	0,292	15,01	0,801
HIT-HP MV- 1210-18-100-35	0,301	14,94	0,798
HIT-HP MV- 1412-18-100-35	0,329	14,66	0,786

Tabelle A15: Thermische Kennwerte für HIT-HP MV bei Einbausituation monolithisches Mauerwerk, λ = 0,08 W/(mK) nach Bild41, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für monolithisches Mauerwerk; $\lambda = 0.08 \text{ W/(mK)}$	Seite 13/18

Thermische Kennwerte für monolithisches Mauerwerk (λ = 0,08 W/mK) HIT-SP MV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP MV- 0404-18-100-35	0,147	16,69	0,868
HIT-SP MV- 0504-18-100-35	0,152	16,64	0,866
HIT-SP MV- 0604-18-100-35	0,157	16,60	0,864
HIT-SP MV- 0804-18-100-35	0,166	16,51	0,860
HIT-SP MV- 0505-18-100-35	0,165	16,48	0,859
HIT-SP MV- 0705-18-100-35	0,175	16,39	0,856
HIT-SP MV- 0805-18-100-35	0,179	16,35	0,854
HIT-SP MV- 0506-18-100-35	0,178	16,32	0,853
HIT-SP MV- 0606-18-100-35	0,182	16,28	0,851
HIT-SP MV- 0706-18-100-35	0,187	16,24	0,849
HIT-SP MV- 0906-18-100-35	0,196	16,16	0,846
HIT-SP MV- 1006-18-100-35	0,201	16,12	0,845
HIT-SP MV- 1106-18-100-35	0,205	16,08	0,843
HIT-SP MV- 0607-18-100-35	0,194	16,13	0,845
HIT-SP MV- 0707-18-100-35	0,199	16,09	0,844
HIT-SP MV- 0907-18-100-35	0,208	16,01	0,841
HIT-SP MV- 1007-18-100-35	0,212	15,98	0,839
HIT-SP MV- 1107-18-100-35	0,216	15,94	0,838
HIT-SP MV- 1207-18-100-35	0,221	15,90	0,836
HIT-SP MV- 1407-18-100-35	0,229	15,84	0,833
HIT-SP MV- 0408-18-100-35	0,196	16,08	0,843
HIT-SP MV- 0708-18-100-35	0,210	15,96	0,838
HIT-SP MV- 0808-18-100-35	0,214	15,92	0,837
HIT-SP MV- 1008-18-100-35	0,223	15,84	0,834
HIT-SP MV- 1208-18-100-35	0,232	15,77	0,831
HIT-SP MV- 1308-18-100-35	0,236	15,74	0,830
HIT-SP MV- 1309-18-100-35	0,246	15,61	0,825
HIT-SP MV- 0610-18-100-35	0,226	15,73	0,829
HIT-SP MV- 0910-18-100-35	0,239	15,63	0,825
HIT-SP MV- 1010-18-100-35	0,244	15,59	0,824
HIT-SP MV- 1210-18-100-35	0,252	15,53	0,821
HIT-SP MV- 1412-18-100-35	0,279	15,24	0,810

Tabelle A16: Thermische Kennwerte für HIT-SP MV bei Einbausituation monolithisches Mauerwerk, λ = 0,08 W/(mK) nach Bild 41b, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für monolithisches $Mauerwerk; \lambda=0,08\;W/(mK)$	Seite 14/18

Einbausituation für Mauerwerk mit WDVS und HIT-HP/SP ZV (Bild 42)

Wärmedurchgangskoeffizient Regelquerschnitt "Außenwand"

- U = 0,227 W/(m² K) für Dämmstoffdicke t₁ des WDVS von 14 cm
- U = 0,149 W/(m² K) für Dämmstoffdicke t₁ des WDVS von 22 cm
- U = 0,111 W/(m² K) für Dämmstoffdicke t₁ des WDVS von 30 cm
 - o Dämmung der Außenwand: Dicke $t_1 = 14$, 22 oder 30 cm ($\lambda = 0.035 \text{ W/(mK)}$)
 - o Außenwand (Kalksandstein): Dicke $t_2 = 24$ cm ($\lambda = 0.99$ W/(mK))
 - o Fußbodenaufbau (innen):
 - a) Stahlbetondecke h = 16 cm (λ = 2,3 W/(mK)) für Querkraftstab Ø6 und Ø8 mm, Stahlbetondecke h = 18 cm (λ = 2,3 W/(mK)) für Querkraftstab Ø10 und Ø12 mm
 - b) Trittschalldämmung 3 cm ($\lambda = 0.035 \text{ W/(mK)}$)
 - c) Zementestrich 5 cm ($\lambda = 1.35 \text{ W/(mK)}$)
 - d) Randdämmstreifen 1 cm ($\lambda = 0.14 \text{ W/(mK)}$)

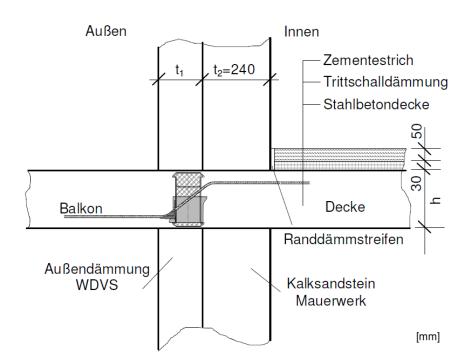


Bild 42: Einbausituation HIT-HP/SP ZV Mauerwerk mit WDVS

Die thermischen Kennwerte nach Tabelle A17 bis A19 gelten ausschließlich für die in Bild 42 aufgeführte Einbausituation, Schichtdicken und angegebenen Wärmeleitfähigkeiten der Baustoffe (Wärmedurchgangskoeffizient Regelquerschnitt "Außenwand"). Bei hiervon abweichenden Einbausituationen, Schichtdicken oder Wärmeleitfähigkeiten der Baustoffe sind die aufgeführten thermischen Kennwerte nicht gültig.

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte Grundlagen	Seite 15/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 140 \text{ mm}$), HIT-HP/SP ZV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP ZV- 0404-16-100-30-06	0,095	18,229	0,929
HIT-SP ZV- 0604-16-100-30-06	0,099	18,183	0,927
HIT-SP ZV- 0804-16-100-30-06	0,103	18,183	0,927
HIT-SP ZV- 0404-16-100-30-08	0,101	18,191	0,928
HIT-SP ZV- 0604-16-100-30-08	0,108	18,110	0,924
HIT-SP ZV- 0804-16-100-30-08	0,115	18,110	0,924
HIT-SP ZV- 0404-18-100-30-10	0,109	18,143	0,926
HIT-SP ZV- 0604-18-100-30-10	0,119	18,021	0,921
HIT-SP ZV- 0804-18-100-30-10	0,129	18,021	0,921
HIT-SP ZV- 0404-18-100-30-12	0,117	18,101	0,924
HIT-SP ZV- 0604-18-100-30-12	0,132	17,939	0,918
HIT-SP ZV- 0804-18-100-30-12	0,147	17,939	0,918
HIT-HP ZV- 0404-16-100-30-06	0,148	17,906	0,916
HIT-HP ZV- 0604-16-100-30-06	0,152	17,849	0,914
HIT-HP ZV- 0804-16-100-30-06	0,157	17,849	0,914
HIT-HP ZV- 0404-16-100-30-08	0,155	17,860	0,914
HIT-HP ZV- 0604-16-100-30-08	0,163	17,761	0,910
HIT-HP ZV- 0804-16-100-30-08	0,171	17,761	0,910
HIT-HP ZV- 0404-18-100-30-10	0,161	17,823	0,913
HIT-HP ZV- 0604-18-100-30-10	0,175	17,651	0,906
HIT-HP ZV- 0804-18-100-30-10	0,190	17,651	0,906
HIT-HP ZV- 0404-18-100-30-12	0,171	17,774	0,911
HIT-HP ZV- 0604-18-100-30-12	0,190	17,562	0,902
HIT-HP ZV- 0804-18-100-30-12	0,209	17,562	0,902

Tabelle A17: Thermische Kennwerte für HIT-HP/SP ZV bei Einbausituation WDVS (t_1 =140mm) nach Bild 42, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t ₁ = 140 mm	Seite 16/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 220 \text{ mm}$), HIT-HP/SP ZV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [℃]	f _{Rsi} [-]
HIT-SP ZV- 0404-16-100-30-06	0,120	18,473	0,939
HIT-SP ZV- 0604-16-100-30-06	0,124	18,424	0,937
HIT-SP ZV- 0804-16-100-30-06	0,128	18,424	0,937
HIT-SP ZV- 0404-16-100-30-08	0,127	18,433	0,937
HIT-SP ZV- 0604-16-100-30-08	0,134	18,348	0,934
HIT-SP ZV- 0804-16-100-30-08	0,141	18,348	0,934
HIT-SP ZV- 0404-18-100-30-10	0,136	18,377	0,935
HIT-SP ZV- 0604-18-100-30-10	0,142	18,307	0,932
HIT-SP ZV- 0804-18-100-30-10	0,148	18,307	0,932
HIT-SP ZV- 0404-18-100-30-12	0,145	18,331	0,933
HIT-SP ZV- 0604-18-100-30-12	0,155	18,227	0,929
HIT-SP ZV- 0804-18-100-30-12	0,165	18,227	0,929
HIT-HP ZV- 0404-16-100-30-06	0,161	18,223	0,929
HIT-HP ZV- 0604-16-100-30-06	0,172	18,090	0,924
HIT-HP ZV- 0804-16-100-30-06	0,183	18,090	0,924
HIT-HP ZV- 0404-16-100-30-08	0,168	18,181	0,927
HIT-HP ZV- 0604-16-100-30-08	0,182	18,005	0,920
HIT-HP ZV- 0804-16-100-30-08	0,197	18,005	0,920
HIT-HP ZV- 0404-18-100-30-10	0,180	18,109	0,924
HIT-HP ZV- 0604-18-100-30-10	0,201	17,861	0,914
HIT-HP ZV- 0804-18-100-30-10	0,222	17,861	0,914
HIT-HP ZV- 0404-18-100-30-12	0,189	18,061	0,922
HIT-HP ZV- 0604-18-100-30-12	0,215	17,775	0,911
HIT-HP ZV- 0804-18-100-30-12	0,240	17,775	0,911

Tabelle A18: Thermische Kennwerte für HIT-HP/SP ZV bei Einbausituation WDVS (t_1 =220mm) nach Bild 42, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{\text{si,min}}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS $t_1 = 220 \text{ mm}$	Seite 17/18

Thermische Kennwerte für Mauerwerk mit WDVS ($t_1 = 300 \text{ mm}$), HIT-HP/SP ZV

Bezeichnung	Ψ [W/(mK)]	θ _{si,min} [°C]	f _{Rsi} [-]
HIT-SP ZV- 0404-16-100-30-06	0,137	18,576	0,943
HIT-SP ZV- 0604-16-100-30-06	0,143	18,507	0,940
HIT-SP ZV- 0804-16-100-30-06	0,149	18,507	0,940
HIT-SP ZV- 0404-16-100-30-08	0,144	18,536	0,941
HIT-SP ZV- 0604-16-100-30-08	0,153	18,428	0,937
HIT-SP ZV- 0804-16-100-30-08	0,162	18,428	0,937
HIT-SP ZV- 0404-18-100-30-10	0,153	18,482	0,939
HIT-SP ZV- 0604-18-100-30-10	0,165	18,339	0,934
HIT-SP ZV- 0804-18-100-30-10	0,177	18,339	0,934
HIT-SP ZV- 0404-18-100-30-12	0,163	18,430	0,937
HIT-SP ZV- 0604-18-100-30-12	0,180	18,245	0,930
HIT-SP ZV- 0804-18-100-30-12	0,196	18,245	0,930
HIT-HP ZV- 0404-16-100-30-06	0,168	18,384	0,935
HIT-HP ZV- 0604-16-100-30-06	0,185	18,187	0,927
HIT-HP ZV- 0804-16-100-30-06	0,201	18,187	0,927
HIT-HP ZV- 0404-16-100-30-08	0,174	18,346	0,934
HIT-HP ZV- 0604-16-100-30-08	0,195	18,102	0,924
HIT-HP ZV- 0804-16-100-30-08	0,215	18,102	0,924
HIT-HP ZV- 0404-18-100-30-10	0,187	18,272	0,931
HIT-HP ZV- 0604-18-100-30-10	0,211	17,993	0,920
HIT-HP ZV- 0804-18-100-30-10	0,235	17,993	0,920
HIT-HP ZV- 0404-18-100-30-12	0,196	18,230	0,929
HIT-HP ZV- 0604-18-100-30-12	0,224	17,907	0,916
HIT-HP ZV- 0804-18-100-30-12	0,253	17,907	0,916

Tabelle A19: Thermische Kennwerte für HIT-HP/SP ZV bei Einbausituation WDVS (t_1 =300mm) nach Bild 42, längenbezogener Wärmedurchgangskoeffizient Ψ , minimale Oberflächentemperatur auf der Raumseite $\theta_{si,min}$, Temperaturfaktor f_{Rsi}

Halfen-Iso-ElemenT HIT-HP/SP mit Druckschublager	Anlage 9
Thermische Kennwerte für Mauerwerk mit WDVS t₁ = 300 mm	Seite 18/18