

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0307 of 29 April 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Hilti screw anchor HUS

Concrete screw of sizes 6, 8, 10 and 14 for use in concrete

Hilti Aktiengesellschaft 9494 SCHAAN FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

15 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 3: "Undercut anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-08/0307

Page 2 of 15 | 29 April 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z26071.14 8.06.01-114/14

European Technical Assessment ETA-08/0307

Page 3 of 15 | 29 April 2014

Specific Part

1 Technical description of the product

The Hilti screw anchor HUS is made of galvanised steel (HUS-A; -H; -I; -P) of sizes 6, 8 and 10 or made of stainless steel (HUS-HR; -CR) of sizes 6, 8, 10 and 14. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

The illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic values for resistance to tension and shear load, bending moment, edge distance and spacing, minimum thickness of member and displacements	See Annex C

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z26071.14 8.06.01-114/14

European Technical Assessment ETA-08/0307

Page 4 of 15 | 29 April 2014

3.4 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was investigated for this product.

3.8 General aspects

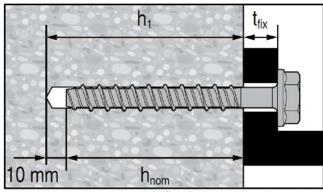
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

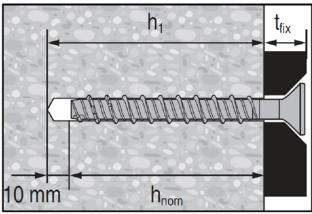
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

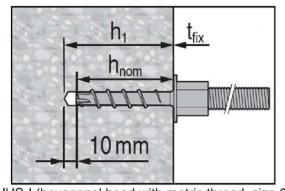
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

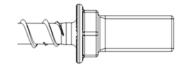
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Dcoument


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Gerhard Breitschaft	beglaubigt:
President	Lange


Z26071.14 8.06.01-114/14


Product and installed condition


HUS-H (hexagonal head, sizes 8 and 10); HUS-HR (hexagonal head, sizes 6, 8, 10 and 14)

HUS-CR (countersunk head, size 10)

HUS-I (hexagonal head with metric thread, size 6)

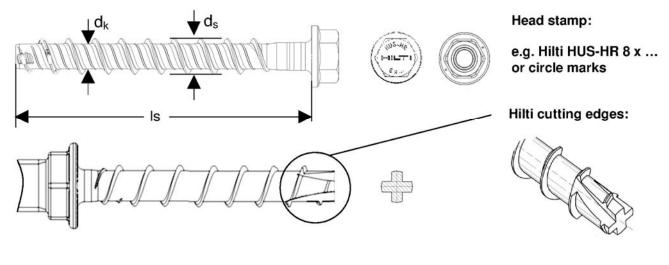
HUS-A, external thread, size 6

HUS hexagonal head, size 6

HUS-P pan head, size 6

Hilti screw anchor HUS

Product description


Installed condition Example

Annex A1

Table A1: Material and screw types

Part	Designation	f _{yk}	f _{uk}	d _s	d _k	A _s	Material				
	HUS-A 6			7,85							
	HUS-H 6	745	930		E 0E						
	HUS-I 6	745	930		5,85	5,65	26,9	Carbon Steel,			
	HUS-P 6										galvanized (≥ 5 μm)
	HUS-H 8	815	950	10,1	7,05	39,0					
Screw anchor	HUS-H 10	860	1000	12,3	8,4	55,4					
	HUS-HR 6	900	1050	7,6	5,4	22,9					
	HUS-HR 8	745	870	10,1	7,05	39,0					
	HUS-HR 10	815	950	12,3	8,40	55,4	Stainless Steel (A4 grade)				
	HUS-CR 10	815	950	12,3	8.40	55,4	, 3 ,				
	HUS-HR 14	590	690	16,6	12,6	143,1					

HILTI

Hilti cutting edges

HUS

e.g. "H" resp. circle marks

R

8

...

...Manufacturer

... Hilti Universal Screw anchor, anchor diameter/ drill bit diameter 6 mm

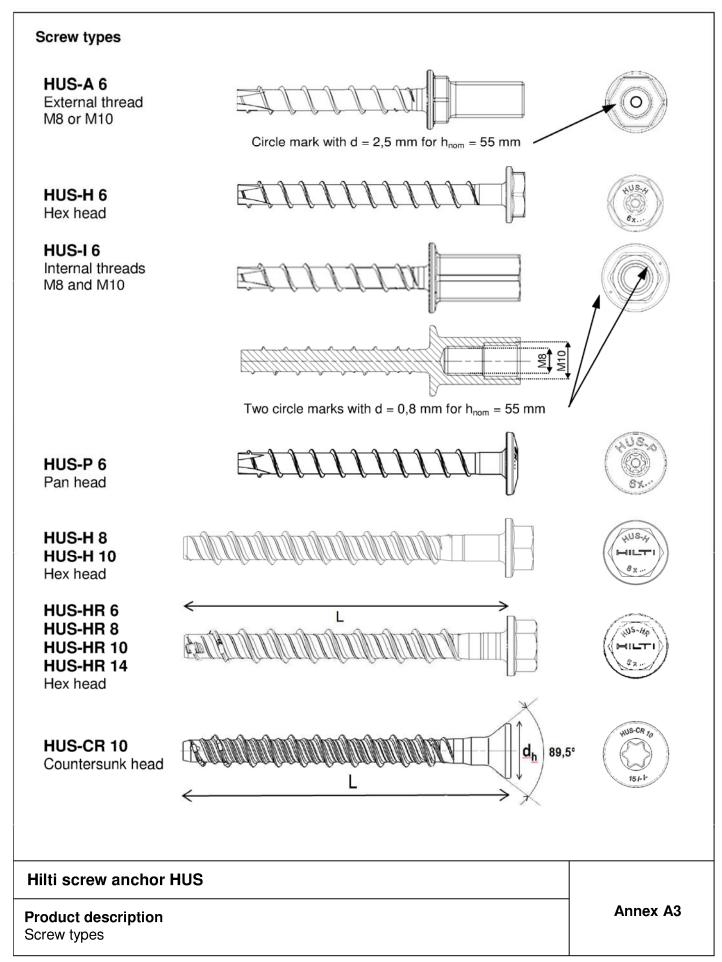
...Hilti Universal Screw anchor

...Head configuration (A, H, I, P, C, R)

Corrosion Resistance (stainless steel, grade A4)

...Nominal anchor diameter/ drill bit diameter (6...14)

...Nominal anchor length (ls)/ under head length


Hilti screw anchor HUS

Product description

Material and screw types

Annex A2

English translation prepared by DIBt

Specifications of the intended use

Anchorages subject to:

- Static and quasi-static loads: all sizes and all embedment depths.
- Seismic action for Performance Category C1: sizes 8, 10 and 14 for maximum embedment depth only.
- Fire exposure: sizes 8, 10 and 14 only HUS-H (hex head); Size 6 all head configuration.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked and cracked concrete: all sizes and all embedment depths.

Use conditions (Environmental conditions)

- The anchors may only be used in dry internal conditions: All screw types
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition if no particular aggressive conditions exits: screw types made of stainless steel with marking "R"

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions and under fire exposure are designed for design method A in accordance with:
 - Either ETAG 001, Annex C, Edition August 2010
 - Or CEN/TS 1992-4:2009,
 - Anchorages under seismic action are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013 (Seismic performance category C1).
 - Anchorages shall be positions outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.
- In case of requirements to resistance to fire local spalling of the concrete cover must be avoided.

Installation:

Electronic copy of the ETA by DIBt: ETA-08/0307

- Hammer drilling only: all sizes and all embedment depths.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- After installation further turning of the anchor is not possible. The head of the anchor is supported on the fixture and is not damaged.

Hilti screw anchor HUS	
Intended use Specifications	Annex B1

Table B1: Installation parameters

Nominal anchor diameter				6				8			10				14			
Туре		HUS-	A	н	-	Р	HR	ŀ	H HR		н		HR – CR ¹⁾		HR			
Nominal anchorage depth	h _{nom}	[mm]			55			60	75	60	80	70	85	70	90	70	110	
Nominal diameter of drill bit	d ₀	[mm]			6				8	3			1	0		1	4	
Cutting diameter of drill bit	d _{cut} ≤	[mm]		6,4 8,45					10	,45	14,50							
Clearance hole diameter	df	[mm]			9				1	2		14			18			
Wrench size	SW	[mm]	13	13	13	-	13		1	3			1	5		21		
TORX (H, P and CR typ	es)		-	T30	-	T30	-				T.	50		-				
Diameter of countersunk head (CR)	d _h	[mm]					-	-	-	-	-	-	-	2	:1	-	-	
Installation torque	T_{inst}	[Nm]		2	5		- ¹⁾	35	45	- 1)	- ¹⁾	45	55	45	5 ³⁾	65	35	
Setting tool			Impact screw driver,e.g. Impact screw driver, e.g. Hilti SIW 14-A or 22-A 2) e.g. Hilti SIW 22T-A 2)				; 2)	•										
Depth of drill hole in floor/ wall position	h ₁ ≥	[mm]		h _{nor}	n+10	mm							h .	10 mm				
Depth of drill hole in ceiling position	h₁ ≥	[mm]		h _{no}	_m +3 r	nm			nom+	10 11111	'	h _{nom} +10 mm				I Inom+	h _{nom} +10 mm	

Minimum thickness of concrete member, minimum edge distance and spacing Table B2:

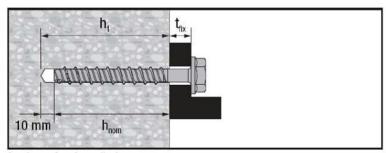
Nominal anchor diameter				6			8				10				14		
		HUS-	Α	A H I P HR		H HR		н		HR CR		HR					
Nominal anchora		h _{nom}	[mm]			55		60	75	60	80	70	85	70	90	70	110
Minimum thickness	member	h _{min}	[mm]			100		110	120	100	120	110	130	120	140	140	160
Cracked	Minimum edge distance	C _{min}	[mm]		35		5	0	45	50	50		50		50	60	
concrete	Minimum spacing	S _{min}	[mm]		00		4	40									
Non- cracked	Minimum edge distance	C _{min}	[mm]		35		5	55		50	65		50		50	60	
concrete	Minimum spacing	S _{min}	[mm]														

Hilti screw anchor HUS	
Intended use	Annex B2
Installation parameters	

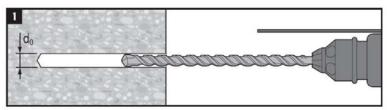
¹⁾ Hand setting in concrete base material not allowed (machine setting only)
2) Hilti recommended electrical impact screw drivers are listed in the instruction for use included in the sales box.
3) Installation torque refer to HUS-HR only

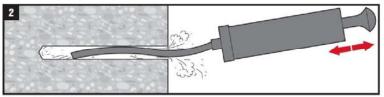
Table B3: Screw length and maximum thickness of fixture for HUS size 6

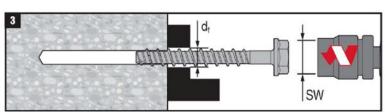
Anchor size	6									
	Α	н	1	Р	HR					
embedment depth [mm]			h _{nom} 55							
Length of screw		Thicknes	ss of fixt	ure [mm]]					
[mm]										
55	0		0							
60		5		5	5					
70					15					
80		25		25						
100		45								
120		65								

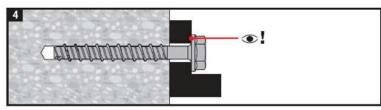

Table B4: Screw length and maximum thickness of fixture for HUS sizes 8, 10, 14

Anchor size		8	8					1	4				
type		Н	н	R	ŀ	H HR			C	R	HR		
embedment depth [mm]	~~	h _{nom2} 75	h _{nom1} 60	h _{nom2} 80	h _{nom1} 70	h _{nom2} 85	h _{nom1} 70	h _{nom2} 90	h _{nom1} 70	h _{nom2} 90	h _{nom1} 70	h _{nom2} 110	
Length of screw					Thic	kness of	fixture	[mm]					
[mm]	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	t _{fix1}	t _{fix2}	
65	5		5										
75			15		5		5				10		
80	20	5											
85			25	5			15		15				
90	30	15			20	5							
95			35	15			25	5					
100					30	15							
105			45	25			35	15	35	15			
110	50	35											
115							45	25					
120					50	35					50	10	
130	70	55											
135											65	25	
140					70	55	60	40					
150	90	75											
160					90	75							
200					130	115							
240					170	155							
280					210	195							


Hilti screw anchor HUS	
Intended use	Annex B3
Installation parameters	


Installation instruction


Anchor after installation


Make a cylindrical hole

Clean the hole

Install the screw anchor by torque wrench or impact screw driver according to Annex B2, Table B1

Ensure that the fixture is caught

Hilti screw anchor HUS	
Intended use Installation instruction	Annex B4

Table C1:	Product performance for static and quasi-static action
-----------	--

Nominal ar	nchor diamete	r			6			8	3			1	14			
Туре			HUS-	4 H -	Р	HR	ŀ	1	н	R	ŀ	1	HR CR		Н	R
Nominal anchorage h _{nom} [mm]			[mm]	,	55		60	75	60	80	70	85	70	90	70	110
Steel failure	for tension and	d shear lo	ad													
		N _{Rk,s}	[kN]	2	25	24	37	7 ,1	34	l,0	55	i,4	52	2,6	102	2,2
Characteristi	c resistance	$V_{Rk,s}$	[kN]	12	2,5	17	15	5,9	2	6	23	3,8	3	3	55	77
		M ⁰ _{Rk,s}	[Nm]	2	21	19	3	9	3	6	7	0	6	66	19	93
Pull-out fail	ure															
Characteristi cracked cond C20/25	c resistance in crete	$N_{Rk,p}$	[kN]		6	5	6	9	6	12	7,5	16	9	16	12	25
Characteristic resistance in non-cracked concrete C20/25		N _{Rk,p}	[kN]	9	7,5	9	12	16	12	16	12	20	16	25	_ 1)	- 1)
Increasing factors for N _{Rk,p} in cracked and non-cracked			C30/37		1,2	2		1,	22		1,17		1,22		1,22	
		ψc	C40/50	1,41				1,	41		1,32	1,41			1,41	
concrete			C50/60		1,5	5		1,	55		1,42	1,42 1,55			1,	55
Concrete co	one and splitting	gfailure														
Effective and	chorage depth	h _{ef}	[mm]	42		45	47	60	47	64	54	67	54	71	52	86
Factor for	Cracked	k _{cr} ²⁾	[-]							7,2	2					
ractor for	Non-cracked	k _{ucr} ²⁾	[-]							10,	1					
Concrete	Edge distance	C _{cr,N}	[mm]		1,5 h	1 _{ef}	1,5 h _{ef}					1,5	h _{ef}		1,5	h _{ef}
cone failure	Spacing	S _{cr,N}	[mm]		3 h	ef		3	h _{ef}			3	h _{ef}		3 1	h _{ef}
Splitting	Edge distance	C _{cr,sp}	[mm]		1,5 h	1 _{ef}		1,5	h _{ef}		1,5	h _{ef}	1,8	h _{ef}	1,8	h _{ef}
failure	Spacing	S _{cr,sp}	[mm]		3 h	ef		3	h _{ef}		31	h _{ef}	3,6	h _{ef}	3,6	h _{ef}
Installation s	afety factor	$\gamma_2^{(3)} = \gamma_{inst}^2$?)	1	,2	1,4		1	,2		1,2	1,4	1	,2	1,	,2
Concrete pr	y-out failure															
k factor $k^{3)} = k_3^{2}$ [mm]				1,5			2					2	2			
Concrete ed	lge failure															
Effective leng	gth of anchor	l _f	[mm]	4	2	45	47	60	47	64	54	67	54	71	52	86
Effective dia	meter of anchor	d	[mm]		6			8	3			1	0		1	4

Hilti screw anchor HUS Annex C1 **Product performance** For static and quasi-static action

¹⁾ Pull-out is not decisive
2) Parameter relevant only for design according to CEN/TS 1992-4: 2009.
3) Parameter relevant only for design according to ETAG 001 Annex C.

Table C2: Product performance for seismic category C1

Nominal diameter				1	8	1	0	14		
Туре			HUS-	н	HR	н	HR CR	HR		
Nominal anchorage h _{nom}			[mm]	75	80	85	90	110		
Steel failu	re									
Characteri	atia rasiatanaa	N _{Rk,s,seis}	[kN]	37,1	34,0	55,4	52,6	102,2		
Characteristic resistance ${V_{Rk,s,seis}}$			[kN]	11	1,1	17	7,9	53,9		
Pull-out fa	ilure				,					
Characteri cracked co	stic resistance in oncrete	$N_{Rk,p,seis}$	[kN]	7	,7	12	2,5	17,5		
Concrete	cone failure									
Effective e	mbedment depth			60	64	67 71		86		
Concrete	Edge distance	C _{cr,N}	[mm]			1,5	h _{ef}			
cone failure	Spacing	S _{cr,N}	[mm]			3,0	h _{ef}			
Installation	safety factor	γ2	[-]	1	,2	1,4	1,2	1,2		
Concrete	pry-out failure									
k factor		k	[-]			2,0	0			
Concrete	edge failure									
Effective le	ength of anchor	I _f	[mm]	60	64	67	71	86		
Effective d	iameter of anchor	d	[mm]		8	1	0	14		

Hilti screw anchor HUS	
Product performance For seismic category C1	Annex C2

Table C3:	Product performance	for resistance to fire
-----------	---------------------	------------------------

Nominal anchor	-	-		6 8						1	^		14		
diameter				'				· 			'	·		14	
Туре			HUS-	A HR		н		н	HR		н		R	HR	
Nominal anchorage depth	- h		[mm]	5	55	60	75	60	80	70	85	70	90	70	110
Steel Failure for tension	n and sh	ear load (F _{R,k,s,fi} =	N _{R,k,s,fi}	= V _{R,k,s}	fi)									
	R30	F _{Rk,s,fi}	[kN]	1,6	4,9	3,	,1	9	,3	5,	0	18	3,5	41	,7
	R60	$F_{Rk,s,fi}$	[kN]	1,2	3,3	2,	,2	6	,3	3,	6	12	2,0	26	5,9
	R90	$F_{Rk,s,fi}$	[kN]	0,8	1,8	1,	,3	3	,2	2,	2	5,	,4	12,2	
Characteristic	R120	$F_{Rk,s,fi}$	[kN]	0,7	1,0	0,8		1,7		1,5		2,4		5,4	
resistance	R30	${\sf M}^0_{\sf Rk,s,fi}$	[Nm]	1,4	4,0	3,	3,3		,2	6,3		19,4		65	5,6
	R60	${\sf M}^0_{\sf Rk,s,fi}$	[Nm]	1,1	2,7	2,3		5,5		4,6		12,6		42	2,4
	R90	${\sf M}^0_{\sf Rk,s,fi}$	[Nm]	0,7	1,4	4 1,4		2,8		2,8		5,7		19),2
	R120	M ⁰ _{Rk,s,fi}	[Nm]	0,6	0,8	0,8 0,9		1,5		1,9		2,5		8,5	
Concrete pull-out failu	re														
Characteristic resistance	R30 R60 R90	$N_{Rk,p,fi}$	[kN]	1,5	1,3	1,5	2,3	1,5	3,0	1,9	4,0	2,3	4,0	3,0	6,3
	R120	$N_{Rk,p,fi}$	[kN]	1,2	1,0	1,2	1,8	1,2	2,4	1,5	3,2	1,8	3,2	2,4	5,0
Edge distance															
R30	to R120	C _{cr,N}	[mm]						2 h	1 _{ef}					
Anchor spacing															
R30	to R120	S _{cr,N}	[mm]						4 ł	1 _{ef}					
Concrete pry-out failui	e														
R30	to R120	k	[-]	1	,5		2	2			2	2		2	2

Hilti screw anchor HUS	
Product performance For resistance to fire	Annex C3

Table C4: Displacement under tension load

Nominal anch diameter	lominal anchor liameter					6			В			1	14			
Туре	Туре		HUS-	A H P		HR	ł	1	HR		н		HR CR		HR	
Nominal anchorage depth		h _{nom}	[mm]	55			60	75	60	80	70	85	70	90	70	110
	Tension load	N	[kN]	2	2,4		2,4	3,6	2,4	4,8	3,0	4,1	3,6	6,3	4,8	9,9
Cracked concrete	Displacement	δ_{N0}	[mm]	0	,1	0,4	0,1	0,1	0,5	0,7	0,2	0,3	0,3	0,6	0,9	1,4
C20/25 to C50/60		δ_{N_∞}	[mm]	0	,6	0,5	0,5	0,4	0,7	1,1	0,3	0,7	0,6	1,1	1,1	1,4
		$\delta_{\text{N,seis}}$	[mm]		-	-	-	1,2	-	1,2	-	1,2	-	1,2	-	0,4
Non-cracked	Tension load	N	[kN]	3,6	3,0	3,1	3,6	4,8	4,8	6,3	4,8	6,8	6,3	9,9	7,5	16,0
concrete C20/25 to	Displacement	δ_{N0}	[mm]	0	0,2		0,1	0,2	0,7	1,6	0,2	0,3	0,3	1,3	0,7	1,0
C50/60		δ_{N_∞}	[mm]	0	,3	0,8	0,5	0,4	0,7	1,6	0,3	0,7	0,3	1,3	0,7	1,0

Table C5: Displacement under shear load

Nominal anchor diameter					6			8				10				4
Туре			HUS-	A H P HR		н		HR		н		HR CR		HR		
Nominal anchorage depth		h _{nom}	[mm]	55			60 75		60	80	70	85	70	90	70	110
	Shear load	٧	[kN]	6,0		7,8	6,9	6,9	11,0	12,4	10,3	10,3	13,6	15,7	12,9	27,3
Cracked and Non-		δ_{V0}	[mm]	1	,9	0,4	1,5	1,5	2,0	2,3	1,5	1,5	1,1	1,7	3,5	3,9
cracked concrete C20/25 to C50/60	Displacement	δ_{V_∞}	[mm]	2	,8	0,5	2,3	2,3	2,4	2,9	2,3	2,3	1,5	2,4	3,9	4,3
		$\delta_{\text{V,seis}}$	[mm]		-	-	-	4,8	-	4,8	-	5,3	-	5,3	-	7,6

Hilti screw anchor HUS	
Performances Displacements	Annex C4