

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-08/0381 of 4 July 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

Henkel Injection System CF 920 or TQ 900 for concrete

Bonded Anchor with Anchor rod for use in concrete

Henkel KGaA Henkelstraße 67 40191 Düsseldorf DEUTSCHLAND

Henkel KGaA, Plant1 Germany

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-08/0381 issued on 20 June 2013

European Technical Assessment ETA-08/0381

Page 2 of 27 | 4 July 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z40597.14 8.06.01-174/14

European Technical Assessment ETA-08/0381

Page 3 of 27 | 4 July 2014

Specific Part

1 Technical description of the product

The "Henkel Injection system CF920 or TQ900 for concrete" is a bonded anchor consisting of a cartridge with injection mortar CF920 or TQ900 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for tension loads in non-cracked concrete	See Annex C 1 / C 4 / C 7 / C 10		
Characteristic resistance for tension loads in cracked concrete	See Annex C 2 / C 5 / C 8 / C 11		
Characteristic resistance for shear loads in cracked and non-cracked concrete	See Annex C 3 / C 6 / C 9 / C 12		
Displacements under tension and shear loads	See Annex C 13 / C 14		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance		
Reaction to fire	Anchorages satisfy requirements for Class A1		
Resistance to fire	No performance determined (NPD)		

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z40597.14 8.06.01-174/14

European Technical Assessment ETA-08/0381

Page 4 of 27 | 4 July 2014

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

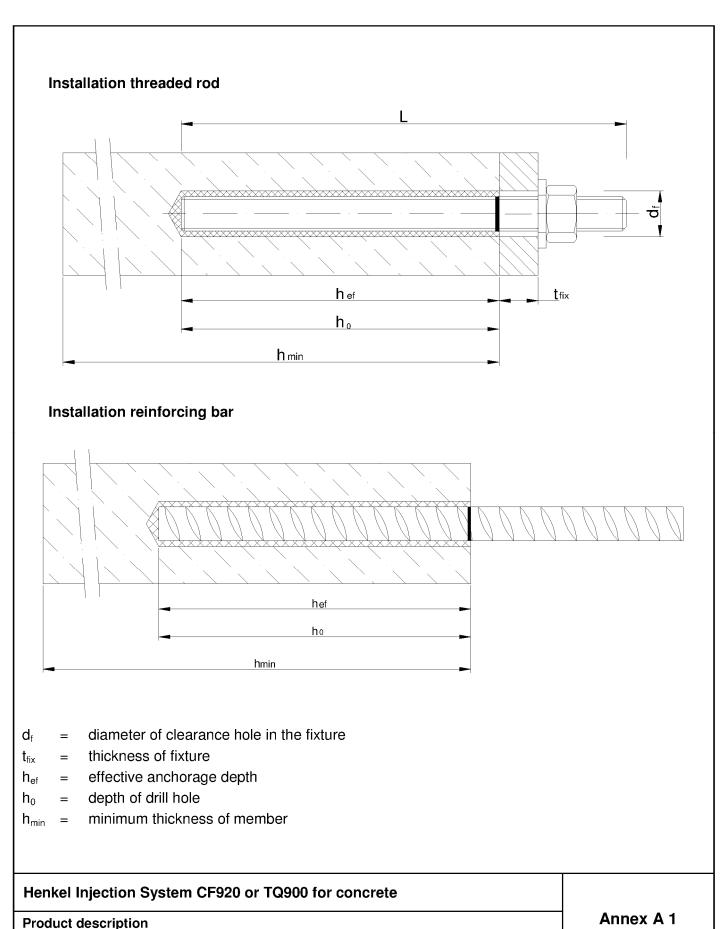
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

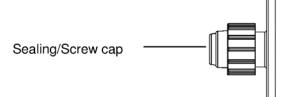
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

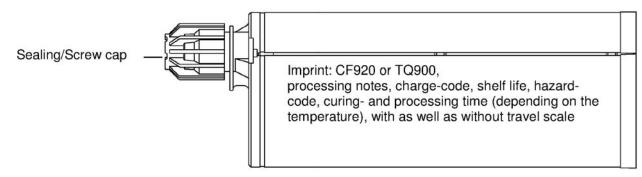

Issued in Berlin on 4 July 2014 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department Beglaubigt: Baderschneider

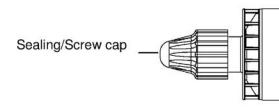
Z40597.14 8.06.01-174/14

Installed condition



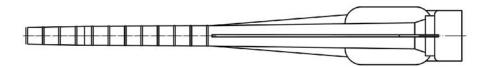

Cartridge: CF920 or TQ900

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)



Imprint: CF920 or TQ900, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

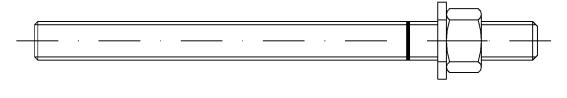
235 ml, 345 ml and 825 ml cartridge (Type: "side-by-side")

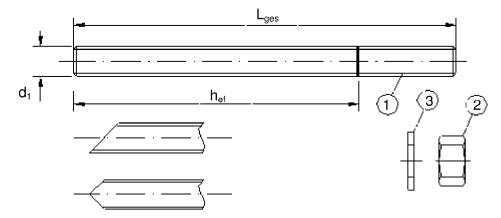

165 ml and 300 ml cartridge (Type: "foil tube")

Imprint: CF920 or TQ900, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static Mixer

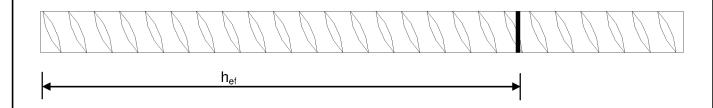
Electronic copy of the ETA by DIBt: ETA-08/0381


Henkel Injection System CF920 or TQ900 for concrete


Product description
Injection system

Annex A 2

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
 (d: Nominal diameter of the bar; h: Rip height of the bar)

Henkel Injection System CF920 or TQ900 for concrete	
Product description Threaded rod and reinforcing bar	Annex A 3

8.06.01-174/14

Z41117.14

Steel, 1 2 3 Stainle	zinc plated ≥ 5 µm acc. to EN ISO 4042:19 hot-dip galvanised ≥ 40 µm acc. to EN ISO Anchor rod Hexagon nut, EN ISO 4032:2012 Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000 ess steel		3:2005+AC:2009 63:2001 60 898-2:2012, 60 898-2:2012,		
2 3 Stainle	Hexagon nut, EN ISO 4032:2012 Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Property class 4.6, 5.8, 8.8, EN 1993-1-8 Steel acc. to EN 10087:1998 or EN 102 Property class 4 (for class 4.6 rod) EN IS Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	3:2005+AC:2009 63:2001 6O 898-2:2012, 6O 898-2:2012,		
3 Stainle	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Property class 4 (for class 4.6 rod) EN IS Property class 5 (for class 5.8 rod) EN IS Property class 8 (for class 8.8 rod) EN IS	SO 898-2:2012, SO 898-2:2012,		
3 Stainle	EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised			
	ess steel				
1					
-	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506- ≤ M24: Property class 70 EN ISO 3506-	1:2009 1:2009		
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10 > M24: Property class 50 (for class 50 rd ≤ M24: Property class 70 (for class 70 rd	od) EN ISO 3506-2:2009		
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 1	,		
High o	corrosion resistance steel				
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, rod > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009			
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009			
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:20	•		
	orcing bars				
7 1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	l 1992-1-1/NA:2013		
Henk	kel Injection System CF920 or TQ900 f	or concrete			

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The
 position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to
 reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Henkel Injection System CF920 or TQ900 for concrete	
Intended Use Specifications	Annex B 1

Z41117.14 8.06.01-174/14

Electronic copy of the ETA by DIBt: ETA-08/038

Table B1: Installation parameters for threaded rod									
Anchor size		М 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anabarage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
This is a second fixture	t _{fix,min} [mm] >	0							
Thickness of fixture	t _{fix,max} [mm] <	1500							
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d ₀			
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	160	200	240	280	320	400	480	540	640
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm				•	h _{ef} + 2d ₀)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Henkel Injection System CF920 or TQ900 for concrete	
Intended Use	Annex B 2
Installation parameters	

Steel brush

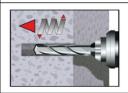
Table B3: Parameter cleaning and setting tools

Threaded Rebar		d₀ Drill bit - Ø	d₅ Brush - Ø	d _{b,min} min. Brush - Ø	Piston plug
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)
M8		10	12	10,5	
M10	8	12	14	12,5	
M12	10	14	16	14,5	No nieton plus
	12	16	18	16,5	piston plug required
M16	14	18	20	18,5	'
	16	20	22	20,5	
M20	20	24	26	24,5	# 24
M24		28	30	28,5	# 28
M27	25	32	34	32,5	# 32
M30	28	35	37	35,5	# 35
	32	40	41,5	40,5	# 38

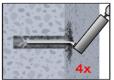
Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

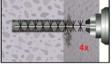
Recommended compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm


Piston plug for overhead or horizontal installation

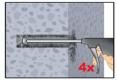
Drill bit diameter (d₀): 24 mm to 40 mm

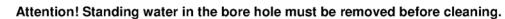

Henkel Injection System CF920 or TQ900 for concrete	
Intended Use Cleaning and setting tools	Annex B 3

Installation instructions


1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar



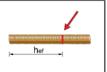


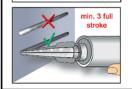


or

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.


For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.


- 2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d_{b.min} (Table B3) a minimum of four times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).
- 2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

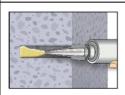
The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

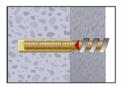
After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

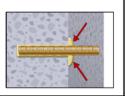
- Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use. For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.

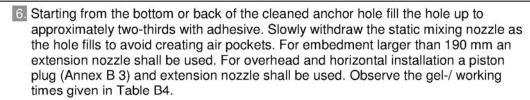
Henkel Injection System CF920 or TQ900 for concrete

Intended Use

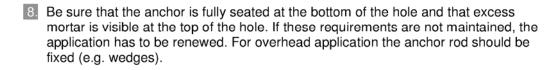

Installation instructions

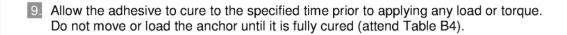

Annex B 4

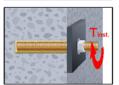

741117 14 8.06.01-174/14



Installation instructions (continuation)






7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

Concrete temperature	Gelling- / working time	Minimum curing time in dry concrete ²⁾
≥ -10 °C ¹⁾	90 min	24 h
≥ -5 °C	90 min	14 h
≥ 0 °C	45 min	7 h
≥ + 5 °C	25 min	2 h
≥ +10 °C	15 min	80 min
≥ +20 °C	6 min	45 min
≥ +30 °C	4 min	25 min
≥ +35 °C	2 min	20 min
≥ +40 °C	1,5 min	15 min

¹⁾ Cartridge temperature must be at min. +15°C

²⁾ In wet concrete the curing time **must** be doubled

Henkel Injection System CF920 or TQ900 for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 5

nchor size threaded rod					M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure											1	
Characteristic tension resi Steel, property class 4.6	stance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Characteristic tension resi Steel, property class 5.8	,	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280	
Characteristic tension resistance, Steel, property class 8.8		$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449	
Characteristic tension resi Stainless steel A4 and HC property class 50 (>M24) a	R,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281	
Combined pull-out and o	concrete cone failure											
Characteristic bond resista	ance in non-cracked con	crete C20/2	25									
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	11	10	9	
40°C/24°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5		not adr	nissible		
Temperature range II: 2	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5	
	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	not admissible				
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0	
120°C/72°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	4,0	5,0	5,0	5,0		not adr	nissible		
Increasing factors for con-	proto	C30/37		1,04								
Increasing factors for cond ψ_c	rete	C40/50					1,	80				
		C50/60					1,	10				
Splitting failure		Т		I								
Edge distance		C _{cr,sp}	[mm]	1,0 · h _{ef} \leq 2 · h _{ef} $\left(2,5 - \frac{h}{h_{ef}}\right) \leq 2,4 \cdot h_{ef}$					n _{ef}			
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp				
Install safety factor (dry ar	nd wet concrete)	γ2		1,0				1,2				
			1,4 not a									

Henkel Injection System CF920 or TQ900 for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)	Annex C 1

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30	
Steel failure										
Characteristic tension re Steel, property class 4.6	*	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	34	63	98	141	184	224	
Characteristic tension re Steel, property class 5.8		N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	42	78	122	176	230	280	
Characteristic tension re Steel, property class 8.8	esistance,	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	67	125	196	282	368	449	
Characteristic tension re Stainless steel A4 and F property class 50 (>M24	esistance, ICR,	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	59	110	171	247	230	281	
Combined pull-out and		-1			•	'	•	•		
Characteristic bond resis	stance in cracked concret	e C20/25								
		$ au_{Rk,\mathrm{cr}}$	[N/mm²]	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	3,7	3,7	3,7	3,8	4,5	4,5	
40°C/24°C		$ au_{ m Rk,cr}$	[N/mm²]	5,5	5,5		not adr	missible		
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm²]	3,7	3,7		not adr	missible		
		τ _{Rk,cr}	[N/mm²]	4,0	4,0	4,0	4,0	4,5	4,5	
	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	2,7	2,7	2,7	2,8	3,1	3,1	
Temperature range II: 80°C/50°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	·	not adr	missible		
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm²]	2,7	2,7			missible		
			[N/mm²]	3,0	3,0	3,0	3.0	3.5	3,5	
Temperature range III: 120°C/72°C	dry and wet concrete	τ _{Rk,cr}	, ,	<u> </u>	,	,	<u> </u>		<u> </u>	
		τ ⁰ _{Rk,seis}	[N/mm²]	2,0	2,0	2,0	2,1	2,4	2,4	
	perature range III:	τ _{Rk,or}	[N/mm²]	3,0	3,0	not admissible				
		τ ⁰ _{Rk,seis}	[N/mm ²]	2,0	2,0		not adr	missible		
Increasing factors for co		C30/37		1,04						
(only static or quasi-stat ψ_c	ic actions)	C40/50 C50/60		1,08						
Splitting failure		C30/60				1,	10			
Edge distance		C _{cr,sp}	[mm]		1,0 · h _{ef} :	≤ 2 · h _{ef} (2	$\frac{h}{\sqrt{5-\frac{h}{h_{ef}}}}$	≤ 2,4 · h _{ef}		
Axial distance		S _{cr,sp}	[mm]			2 (or,sp			
Installation safety factor	(dry and wet concrete)	γ ₂				1	,2			
Installation safety factor (flooded bore hole)		γ2					not admissible			
, , , , , , , , , , , , , , , , , , ,	,	11-			,4					
Henkel Injection	n System CF920 o	or TQ900 for a	concrete				<u> </u>			

Installation safety factor

English translation prepared by DIBt

1,0

Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm			l					l		
Characteristic shear resistance.	$V_{\rm Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Steel, property class 4.6	V ⁰ _{Rk,s,seis}	[kN]	-	-	12	22	34	50	65	78
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Steel, property class 5.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	15	27	43	62	81	98
Characteristic shear resistance,	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel, property class 8.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	24	44	69	99	129	157
Characteristic shear resistance, Stainless steel A4 and HCR,	$V_{\rm Rk,s}$	[kN]	13	20	30	55	86	124	115	140
property class 50 (>M24) and 70 (≤ M24)	V ⁰ _{Rk,s,seis}	[kN]	-	-	21	39	60	87	81	98
Steel failure with lever arm						•				
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
	M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)							
Characteristic bending moment,	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123
Steel, property class 5.8	M ⁰ _{Rk,s,seis}	[Nm]			No Perf	ormance I	Determine	d (NPD)		
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Steel, property class 8.8	M ⁰ _{Rk,s,seis}	[Nm]			No Perf	ormance I	Determine	d (NPD)		
Characteristic bending moment, Stainless steel A4 and HCR.	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis}	[Nm]			No Perf	ormance I	Determine	d (NPD)		
Concrete pry-out failure		•								
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors	k	[-]				2	,0			
Installation safety factor	γ ₂		1,0							

Henkel Injection System CF920 or TQ900 for concrete	
Performances Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to TR 029 or TR 045)	Annex C 3

γ2

Electronic copy of the ETA by DIBt: ETA-08/0381

	acteristic val							nsion	load	ls in		
Anchor size reinforcing ba	r			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure					•							
Characteristic tension resista	ance	N _{Rk,s}	[kN]	_				$A_s \cdot f_{uk}$				
Combined pull-out and cor	ncrete cone failure											
Characteristic bond resistand	ce in uncracked conc	rete C20/25										
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	12	11	10	8,5
40°C/24°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0
80°C/50°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5				
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5
120°C/72°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0		not admissible		
		C30/37		1,04								
Increasing factors for concre ψ_c	te	C40/50						1,08				
		C50/60		1,10								
Splitting failure												
Edge distance c _{cr,sp} [mm]		$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$										
Axial distance		S _{cr,sp}	[mm]	2 C _{cr,sp}								
Installation safety factor (dry	and wet concrete)	γ2	1	1,0 1,2								
Installation safety factor (floo	oded bore hole)	γ2				1,4				not adr	nissible	

Henkel Injection System CF920 or TQ900 for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029)	Annex C 4

Deutsches Institut für Bautechnik

Steel failure				Ø 12	Ø 14	Ø 16	Ø 20		'	Ø 32	
				•	•	1				•	
Characteristic tension res	istance	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]				$A_s \cdot f_{uk}$				
Combined pull-out and o	concrete cone failure										
Characteristic bond resist	ance in cracked concret	e C20/25									
	din d	τ _{Rk,cr}	[N/mm²]	5,5	5,5	5,5	5,5	5,5	6,5	6,5	
Temperature range I:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	3,7	3,7	3,7	3,7	3,8	4,5	4,5	
10°C/24°C		$ au_{ m Rk,cr}$	[N/mm²]	5,5	5,5	5,5		not admissible			
	flooded bore hole	τ ⁰ Rk,seis	[N/mm²]	3,7	3,7	3,7		not admissible			
		$ au_{ m Rk,cr}$	[N/mm²]	4,0	4,0	4,0	4,0	4,0	4,5	4,5	
Temperature range II:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	2,7	2,7	2,7	2,7	2,8	3,1	3,1	
30°C/50°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	4,0		not adn	nissible	<u> </u>	
	flooded bore hole	$ au^0_{ m Rk,seis}$	[N/mm²]	2,7	2,7	2,7		not adn	nissible		
		τ _{Rk,cr}	[N/mm²]	3,0	3,0	3,0	3,0	3,0	3,5	3,5	
Temperature range III: 120°C/72°C	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	2,0	2,0	2,0	2,0	2,1	2,4	2,4	
		$ au_{ m Rk,cr}$	[N/mm²]	3,0	3,0	3,0	not admissible			I	
	flooded bore hole	$ au^0_{ m Rk,seis}$	[N/mm²]	2,0	2,0	2,0	not admissible				
		C30/37			1		1,04	1,04			
ncreasing factors for conc only static or quasi-static		C40/50		1,08							
$\mathcal{Y}_{\mathbf{c}}$		C50/60		1,10							
Splitting failure											
Edge distance		C _{cr,sp}	[mm]		1,0 · h _e	ef ≤2·h	ef (2,5 -	$\frac{h}{h_{ef}}$ ≤ 2	,4 · h _{ef}		
Axial distance		S _{cr,sp}	[mm]				2 c _{cr,sp}				
nstallation safety factor (d	dry and wet concrete)	γ2	•				1,2				
nstallation safety factor (f	flooded bore hole)	γ ₂			1,4			not adn	nissible		
Henkel Injection	System CF920 o	r TQ900 for c	oncrete								

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm									'		
Characteristic shear resistance	$V_{Rk,s}$ [kN] $0,50 \cdot A_s \cdot f_{uk}$										
Characteristic shear resistance	V ⁰ _{Rk,s,seis}	[kN]				0,	35 • A _s •	f_{uk}			
Steel failure with lever arm		•									
	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis} [Nm] No Performance Determined (NPD)										
Concrete pry-out failure	I		<u> </u>								
Factor k in equation (5.7) of Technical Report TR 029 for the design of bonded anchors	k	2,0									
Installation safety factor	γ2		1,0								
Concrete edge failure											
Installation safety factor	γ2						1,0				

Henkel Injection System CF920 or TQ900 for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to TR 029 or TR 045)	Annex C 6

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure]	
Characteristic tension resist Steel, property class 4.6	tance,	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Characteristic tension resist	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
Steel, property class 5.8 Characteristic tension resist Steel, property class 8.8	tance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
Characteristic tension resist Stainless steel A4 and HCR property class 50 (>M24) ar	ξ ,	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281	
Combined pull-out and co	oncrete failure	•	•		•	•				•		
Characteristic bond resistar	nce in non-cracked concrete	e C20/25										
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	10	12	12	12	12	11	10	9	
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,5	8,5	8,5	8,5		not adr	missible		
Temperature range II:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	8,5	7,5	6,5	
80°C/50°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm ²]	5,5	6,5	6,5	6,5		not adr	nissible		
Temperature range III:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	5,5	5,0	
120°C/72°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm ²]	4,0	5,0	5,0	5,0		not admissible			
		C30/37		1,04								
Increasing factors for concre ψ_c	ete	C40/50		1,08								
		C50/60					1,	10				
Factor according to CEN/TS 1992-4-5 Section 6	3.2.2.3	k ₈	[-]	10,1								
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	5.2.3.1	k _{ucr}	[-]				10),1				
Edge distance		C _{cr,N}	[mm]				1,5	h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}				
Splitting failure												
Edge distance		C _{cr,sp}	[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$								
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp				
Installation safety factor (dry	y and wet concrete)	γ2		1,0 1,2								
Installation safety factor (flo	oded bore hole)	γ2		1,4 not admissib					missible			

Henkel Injection System CF920 or TQ900 for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)	Annex C 7

Anchor size threaded roo	t			M 12	M 16	M 20	M24	M27	M30
Steel failure				1					
Characteristic tension resis	stance,	$N_{Rk,s} = N_{Rk,s,seis}^0$	[kN]	34	63	98	141	184	224
Steel, property class 4.6 Characteristic tension resis	stance,		+	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resis	stance	$N_{Rk,s} = N_{Rk,s,seis}^0$	[kN]						
Steel, property class 8.8	,	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	67	125	196	282	368	449
Characteristic tension resis Stainless steel A4 and HC property class 50 (>M24) a	R,	$N_{Rk,s} = N^0_{Rk,s,seis}$	[kN]	59	110	171	247	230	281
Combined pull-out and c	oncrete failure				•				
Characteristic bond resista	ance in cracked concrete C2	20/25							
	d d d	$ au_{Rk,cr}$	[N/mm ²]	5,5	5,5	5,5	5,5	6,5	6,5
Temperature range I:	dry and wet concrete	$ au^0_{ m Rk,seis}$	[N/mm²]	3,7	3,7	3,7	3,8	4,5	4,5
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	5,5	5,5		not adr	nissible	
	llooded bore note	τ ⁰ _{Rk,seis}	[N/mm ²]	3,7	3,7	not admissible			
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0	4,0	4,0	4,5	4,5
Temperature range II:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm ²]	2,7	2,7	2,7	2,8	3,1	3,1
80°C/50°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	4,0	4,0		not adr	nissible	
	nooded bore note	τ ⁰ _{Rk,seis}	[N/mm ²]	2,7	2,7		not adr	nissible	
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm ²]	3,0	3,0	3,0	3,0	3,5	3,5
Temperature range III: 120°C/72°C	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	2,0	2,0	2,0	2,1	2,4	2,4
	flooded bore hole	$ au_{Rk,cr}$	[N/mm ²]	3,0	3,0		not adr	nissible	
	llooded bore flole	τ ⁰ _{Rk,seis}	[N/mm ²]	2,0 2,0 not admissible					
Increasing factors for conc	rata	C30/37		1,04					
only static or quasi-static		C40/50				1,0	08		
Ψ_{c}		C50/60				1,	10		
Factor according to CEN/TS 1992-4-5 Section	6.2.2.3	k ₈	[-]			7.	2		
Concrete cone failure		•	•						
Factor according to CEN/TS 1992-4-5 Section	6.2.3.1	k _{cr}	[-]			7,	2		
Edge distance		C _{cr,N}	[mm]			1,5	h _{ef}		
Axial distance		S _{cr,N}	[mm]			3,0	h _{ef}		
Splitting failure		•	-1	•					
Edge distance		C _{cr,sp}	[mm]		1,0 · h _{ef} :	≤ 2 · h _{ef} (2,	$5 - \frac{h}{h_{of}} $	≤ 2,4 · h _{ef}	
Axial distance		S _{cr,sp}	[mm]			2 c	/		
Installation safety factor (d	ry and wet concrete)	γ ₂	1 -				2		
Installation safety factor (fl	ooded bore hole)	γ ₂	<u> </u>				not adr	missible	
		•							

Table C9:	Characteristic values of resistance for threaded rods under shear loads in cracked
	and non-cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
	'		'	•					•
$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
$V^0_{Rk,s,seis}$	[kN]	-	-	12	22	34	50	65	78
$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
$V^0_{Rk,s,seis}$	[kN]	-	-	15	27	43	62	81	98
$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
$V^0_{Rk,s,seis}$	[kN]	-	-	24	44	69	99	129	157
$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
V ⁰ _{Rk,s,seis}	[kN]	-	-	21	39	60	87	81	98
k ₂					0,8				
	•								
M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined ((NPD)		
M ⁰ _{Rk,s}	[Nm]	19 37 65 166 324 560				833	1123		
M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)							
M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined ((NPD)		
M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
M ⁰ _{Rk,s,seis}	[Nm]		No	Performa	ance Det	ermined ((NPD)		
k ₃					2,0				
γ ₂					1,0				
•									
If	[mm]			I _f =	min(h _{ef} ; 8	3 d _{nom})			
d _{nom}	[mm]	8	10	12	16	20	24	27	30
d _{nom} [mm] 8 10 12 16 20 24									
	V° _{Rk,s,seis} V _{Rk,s} V° _{Rk,s,seis} M° _{Rk,s,seis}	V° Rk,s,seis KN V Rk,s KN V Rk,s KN V Rk,s KN V Rk,s,seis KN V Rk,s,seis KN V Rk,s,seis KN V Rk,s,seis KN R R R R R R R R R	V _{Rk,s}	V _{RK,S} [kN] 7 12 V ⁰ _{Rk,S,Seis} [kN] - - V _{Rk,S} [kN] 9 15 V ⁰ _{Rk,S,Seis} [kN] - - V _{Rk,S} [kN] 15 23 V ⁰ _{Rk,S,Seis} [kN] - - V _{Pk,S} [kN] - - k ₂ - - - M ⁰ _{Rk,S,Seis} [Nm] 15 30 M ⁰ _{Rk,S,Seis} [Nm] No M ⁰ _{Rk,S,Seis} [Nm] 19 37 M ⁰ _{Rk,S,Seis} [Nm] No k ₃ γ ₂	V _{Rk,s} [kN] 7 12 17 V ⁰ _{Rk,s,seis} [kN] - - 12 V _{Rk,s} [kN] - - 15 V _{Rk,s} [kN] - - 15 V _{Rk,s} [kN] - - 24 V _{Rk,s} [kN] - - 24 V _{Rk,s} [kN] - - 21 k ₂ M ⁰ _{Rk,s,seis} [Nm] 15 30 52 M ⁰ _{Rk,s,seis} [Nm] 19 37 65 M ⁰ _{Rk,s,seis} [Nm] No Performation M ⁰ _{Rk,s,seis} [Nm] No Performation M ⁰ _{Rk,s,seis} [Nm] No Performation k ₃ γ ₂	V _{Rk,s} [kN] 7 12 17 31 V° _{Rk,s,seis} [kN] - - 12 22 V _{Rk,s} [kN] 9 15 21 39 V° _{Rk,s,seis} [kN] - - 15 27 V _{Rk,s} [kN] - - 24 44 V° _{Rk,s,seis} [kN] - - 24 44 V° _{Rk,s,seis} [kN] - - 21 39 k ₂ 0,8 M° _{Rk,s,seis} [Nm] 15 30 52 133 M° _{Rk,s,seis} [Nm] No Performance Detector M° _{Rk,s,seis} [Nm] No Performance Detector M° _{Rk,s,seis} [Nm] No Performance Detector k ₃ 2,0 γ ₂ 1,0	V _{Rk,s} [kN] 7 12 17 31 49 V ⁰ _{Rk,s,sois} [kN] - - 12 22 34 V _{Rk,s} [kN] 9 15 21 39 61 V ⁰ _{Rk,s,sois} [kN] - - 15 27 43 V _{Rk,s} [kN] 15 23 34 63 98 V ⁰ _{Rk,s,sois} [kN] - - 24 44 69 V _{Rk,s} [kN] 13 20 30 55 86 V ⁰ _{Rk,s,sois} [kN] - - 21 39 60 k ₂ 0,8 M ⁰ _{Rk,s,sois} [Nm] No Performance Determined (N) No Performance Determined (N) M ⁰ _{Rk,s,sois} [Nm] No Performance Determined (N) No Performance Det	VFR.s. [kN] 7	V _{Fik,s} [kN] 7 12 17 31 49 71 92

Henkel Injection System	CF920 or	TQ900 for	concrete
-------------------------	----------	-----------	----------

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 or TR 045)

Annex C 9

Table C10: Char non-	racteristic value cracked concre									ls in				
Anchor size reinforcing ba	ar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure				•		•						•		
Characteristic tension resista	ance	N _{Rk,s}	[kN]	$A_s \cdot f_{uk}$										
Combined pull-out and co	ncrete failure		1											
Characteristic bond resistan	ce in non-cracked concre	te C20/2	5											
Temperature range I:	dry and wet concrete	$ au_{ m Rk,ucr}$	[N/mm²]	10	12	12	12	12	12	11	10	8,5		
40°C/24°C	flooded bore hole	$ au_{Rk,ucr}$	[N/mm²]	7,5	8,5	8,5	8,5	8,5		not adr	nissible			
Temperature range II:	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	7,5	9	9	9	9	9	8,0	7,0	6,0		
80°C/50°C	flooded bore hole	τ _{Rk,ucr} [N/mm²] 5,5 6,5 6		6,5	6,5	6,5	not admissible							
Temperature range III:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	5,5	6,5	6,5	6,5	6,5	6,5	6,0	5,0	4,5		
120°C/72°C	flooded bore hole	$ au_{ m Rk,ucr}$	[N/mm²]	4,0	5,0	5,0	5,0	5,0	not admissible					
		C30/37	C30/37				1,04							
Increasing factors for concre ψ_c	ete	C40/50		1,08										
·		C50/60						1,10						
Factor according to CEN/TS 1992-4-5 Section 6	.2.2.3	k ₈	[-]					10,1						
Concrete cone failure														
Factor according to CEN/TS 1992-4-5 Section 6	.2.3.1	k _{ucr}	[-]					10,1						
Edge distance		C _{cr,N}	[mm]					1,5 h _{ef}						
Axial distance		S _{cr,N}	[mm]					3,0 h _{ef}						
Splitting failure														
Edge distance		C _{cr,sp}	[mm]			1,0 · h	_{ef} ≤ 2 · h _e	ef (2,5 -	$\frac{h}{h_{ef}}$ ≤ 2	,4 ⋅ h _{ef}				
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}						
Installation safety factor (dry	and wet concrete)	γ ₂	•	1.0				1	,2					
Installation safety factor (floo	oded bore hole)	γ ₂			•	1,4				not adr	nissible			

Henkel Injection System CF920 or TQ900 for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)	Annex C 10

Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										
Characteristic tension res	istance	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]							
Combined pull-out and	concrete failure		•							
Characteristic bond resist	ance in cracked concrete	C20/25								
		τ _{Rk,cr}	[N/mm²]	5,5	5,5	5,5	5,5	5,5	6,5	6,5
Гетрегаture range I:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	3,7	3,7	3,7	3,7	3,8	4,5	4,5
10°C/24°C		$ au_{Rk,cr}$	[N/mm²]	5,5	5,5	5,5		not adr	nissible	
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm²]	3,7	3,7	3,7		not adr	nissible	
		τ _{Rk,cr}	[N/mm²]	4,0	4,0	4,0	4,0	4,0	4,5	4,5
Femperature range II:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm ²]	2,7	2,7	2,7	2,7	2,8	3,1	3,1
30°C/50°C		τ _{Rk,cr}	[N/mm²]	4,0	4,0	4,0		not adr	nissible	<u> </u>
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm ²]	2,7	2,7	2,7		not adr	nissible	
		$ au_{Rk,cr}$	[N/mm ²]	3,0	3,0	3,0	3,0	3,0	3,5	3,5
Гетрегаture range III:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm ²]	2,0	2,0	2,0	2,0	2,1	2,4	2,4
120°C/72°C		τ _{Rk,cr}	[N/mm²]	3,0	3,0	3,0	not admissible			
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm²]	2,0	2,0	2,0		not adr	nissible	
ncreasing factors for concrete		C30/37		1,04						
only static or quasi-static		C40/50		1,08						
Ψ _c		C50/60	1	1,10						
Factor according to CEN/TS 1992-4-5 Section	n 6.2.2.3	k ₈	[-]				7,2			
Concrete cone failure										
Factor according to CEN/TS 1992-4-5 Section	26231	k _{cr}	[-]				7,2			
Edge distance	10.2.0.1	C _{cr,N}	[mm]				1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}			
Splitting failure										
Edge distance		C _{cr,sp}	[mm]		1,0 ·	h _{ef} ≤2·h	$n_{\rm ef} \left(2,5 - \frac{1}{h} \right)$	$\frac{h}{n_{\rm ef}}$ $\leq 2,4$	· h _{ef}	
Axial distance		S _{cr,sp}	[mm]				2 c _{cr,sp}			
nstallation safety factor (dry and wet concrete)	γ ₂					1,2			
nstallation safety factor (flooded bore hole)	γ ₂		1,4 not admissible					nissible	
Installation safety factor (dry and wet concrete) Installation safety factor (flooded bore hole)		γ2	[mm]		1,4			not adr	nissible	

Installation safety factor

1,0

Table C12: Characteristic value and non-cracked co											
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm								I			
	V _{Rk,s}	[kN]	0,50 • A _s • f _{uk}								
Characteristic shear resistance	V ⁰ _{Rk,s,seis}	[kN]	0,35 • A _s • f _{uk}								
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂	0,8									
Steel failure with lever arm			•								
Observatoristis bandina massault	M ⁰ _{Rk,s}	[Nm]	1.2 · W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure		•									
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃		2,0								
Installation safety factor	γ ₂		1,0								
Concrete edge failure											
Effective length of anchor	I _f	[mm]				$I_f = r$	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30

γ2

Henkel Injection System CF920 or TQ900 for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 or TR 045)	Annex C 12

Anchor size thread	led rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked conc	rete C20/25	j									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,031	0,036	0,041	0,045	0,049	
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,045	0,052	0,060	0,065	0,071	
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,075	0,088	0,100	0,110	0,119	
120°C/72°C	peratere range in		0,072	0,081	0,090	0,108	0,127	0,145	0,159	0,172	
Cracked concrete	C20/25										
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]					0,0	70			
40°C/24°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]		-	0,105						
Temperature range II:	δ_{N0} -factor	[mm/(N/mm²)]					0,1	70			
80°C/50°C	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,245				245				
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]					0,1	70			
120°C/72°C	δ _{N∞} -factor	[mm/(N/mm²)]		-			0,2	245			

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

Table C14: Displacements under shear load¹⁾ (threaded rod)

Anchor size thread	ded rod		М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
For non-cracked c										
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05
For cracked concr	ete C20/25									
All temperature ranges	δ_{V0} -factor	[mm/(kN)]			0,11	0,10	0,09	0,08	0,08	0,07
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	•	=	0,17	0,15	0,14	0,13	0,12	0,10

¹⁾ Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor} \cdot \text{V};$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor } \cdot V;$

Henkel Injection System CF920 or TQ900 for concrete	
Performances	Annex C 13
Displacements (threaded rods)	

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked cond	crete C20/2	25									
Temperature range I: 40°C/24°C	δ_{N0} -factor	[mm/(N/mm²)]	0,021	0,023	0,026	0,028	0,031	0,036	0,043	0,047	0,052
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,030	0,033	0,037	0,041	0,045	0,052	0,061	0,071	0,075
Temperature range II: 80°C/50°C	δ_{No} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Temperature range III: 120°C/72°C	δ_{No} -factor	[mm/(N/mm²)]	0,050	0,056	0,063	0,069	0,075	0,088	0,104	0,113	0,126
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,072	0,081	0,090	0,099	0,108	0,127	0,149	0,163	0,181
Cracked concrete	C20/25		•		•						
Temperature range I: 40°C/24°C	δ_{No} -factor	[mm/(N/mm²)]	0,070								
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	1	-				0,105			
Temperature range II: 80°C/50°C	δ_{No} -factor	[mm/(N/mm²)]	0,170								
	$\delta_{N_{\infty}}$ -factor	[mm/(N/mm²)]	0,245								
Temperature range III: 120°C/72°C	δ_{No} -factor	[mm/(N/mm²)]						0,170			
	δ _{N∞} -factor	[mm/(N/mm²)]]	-				0,245			

⁾ Calculation of the displacement $\delta_{N0}=\delta_{N0}\text{-factor}\ \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$

Table C16: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
Cracked concrete C20/25											
All temperature ranges	δ_{V0} -factor	[mm/(kN)]		_	0,11	0,11	0,10	0,09	0,08	0,07	0,06
	$\delta_{V_{\infty}}$ -factor	[mm/(kN)]		·	0,17	0,16	0,15	0,14	0,12	0,11	0,10

 $[\]begin{array}{l} ^{1)} \mbox{ Calculation of the displacement} \\ \delta_{V0} = \delta_{V0} \mbox{-factor } \cdot \mbox{ V}; \\ \delta_{V\infty} = \delta_{V\infty} \mbox{-factor } \cdot \mbox{ V}; \end{array}$

Henkel Injection System CF920 or TQ900 for concrete	
Performances	Annex C 14
Displacements (rebar)	