

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

of 8 August 2014

ETA-08/0314

Insulation support - metal screw TSBD, TSBDL, TSBD WS and TSBD WSG

Screwed-in plastic anchor for fixing of external thermal insulation composite systems with rendering in concrete and masonry

KEW Kunststofferzeugnisse GmbH Wilthen Dresdener Straße 19 02681 Wilthen DEUTSCHLAND

KEW Kunststofferzeugnisse GmbH Wilthen Dresdener Straße 19 02681 Wilthen DEUTSCHLAND

21 pages including 17 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic anchors for fixing of external thermal insulation composite systems with rendering", ETAG 014, Edition February 2011, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-08/0314 issued on 23 February 2009

Deutsches Institut für Bautechnik

Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-08/0314

Page 2 of 21 | 8 August 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-08/0314

Specific part

1 Technical description of the product

The insulation support metal screw TSBD, TSBDL, TSBD WS und TSBD WSG is a screwed-in anchor which consists of a plastic part made of polypropylene and an accompanying specific screw of galvanised steel or stainless steel and an anchor cap made of polystyrene (for mounting the anchor TSBDL on the surface of the insulating material) or an insulation cover made of polystyrene or mineral wool (for deep mounting of the anchor in the insulating material). The anchor types TSBD und TSBDL may in addition be combined with the insulation discs

DSB 90, DSB 110 and DSB 140.

The head of the screw for anchor type TSBD has an additional plastic coating. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchors is used in compliance with the specifications and conditions given in Annex B.

The verification and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 25 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Not applicable.

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

Essential characteristic	Performance
Characteristic resistance	See Annex C 1
Anchor distances and dimensions of members	See Annex B 2
Plate stiffness	See Annex C 2
Displacements	See Annex C 3

European Technical Assessment ETA-08/0314

Page 4 of 21 | 8 August 2014

- 3.5 Protection against noise (BWR 5) Not applicable.
- **3.6 Energy economy and heat retention (BWR 6)** Not applicable.
- 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

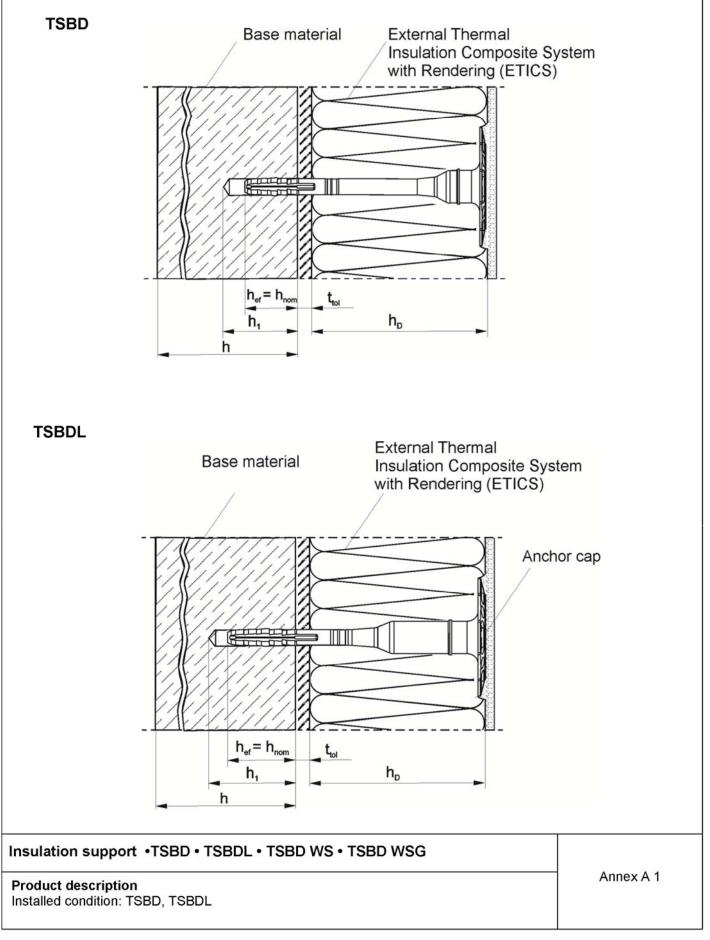
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

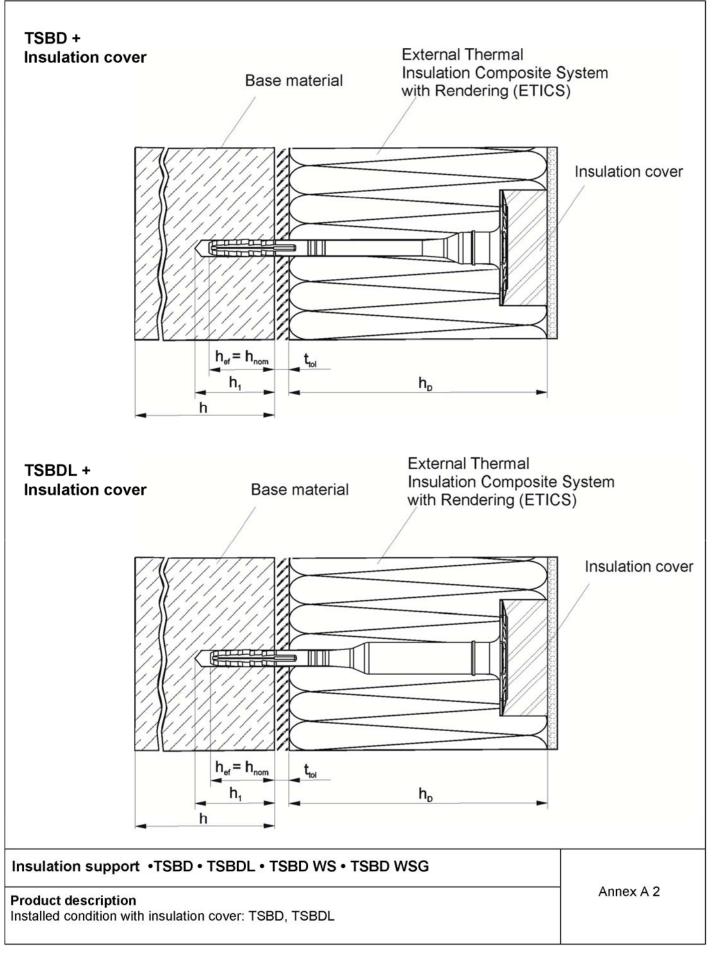
According to Decision 97/463/EC of the Commission of 27 June 1997 (Official Journal of the European Communities L 198 of 25.07.1997, p. 31–32) the system of assessment and verification of constancy of performance (AVCP) (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

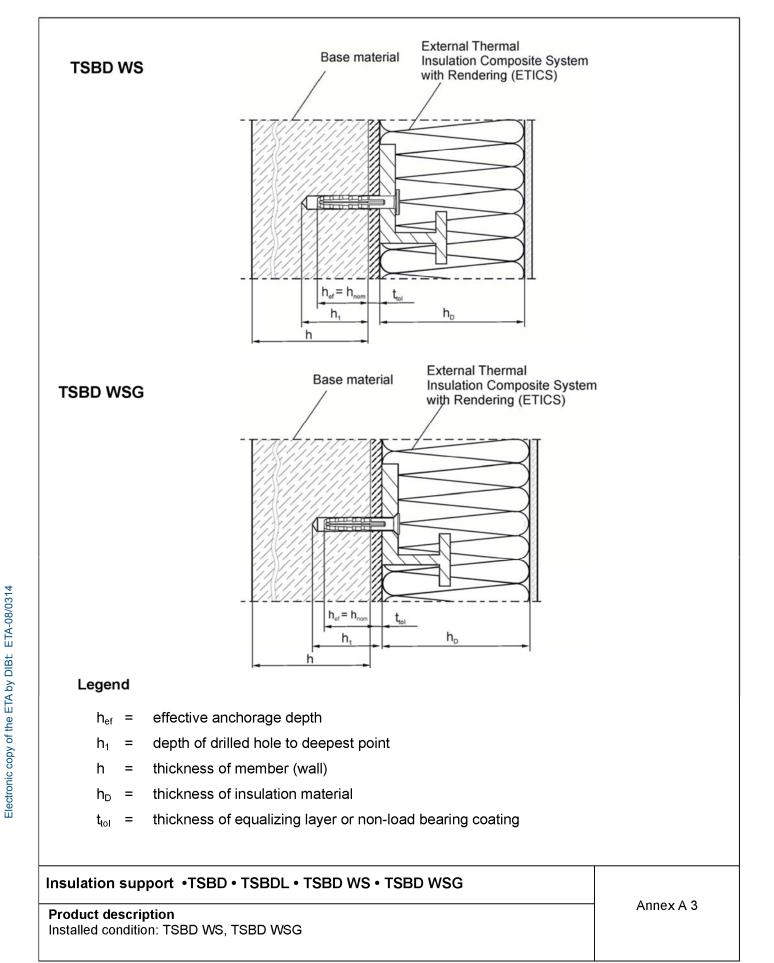
Product	Intended use	Level or class	System
Plastic anchors for use in concrete and masonry	For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems	_	2+

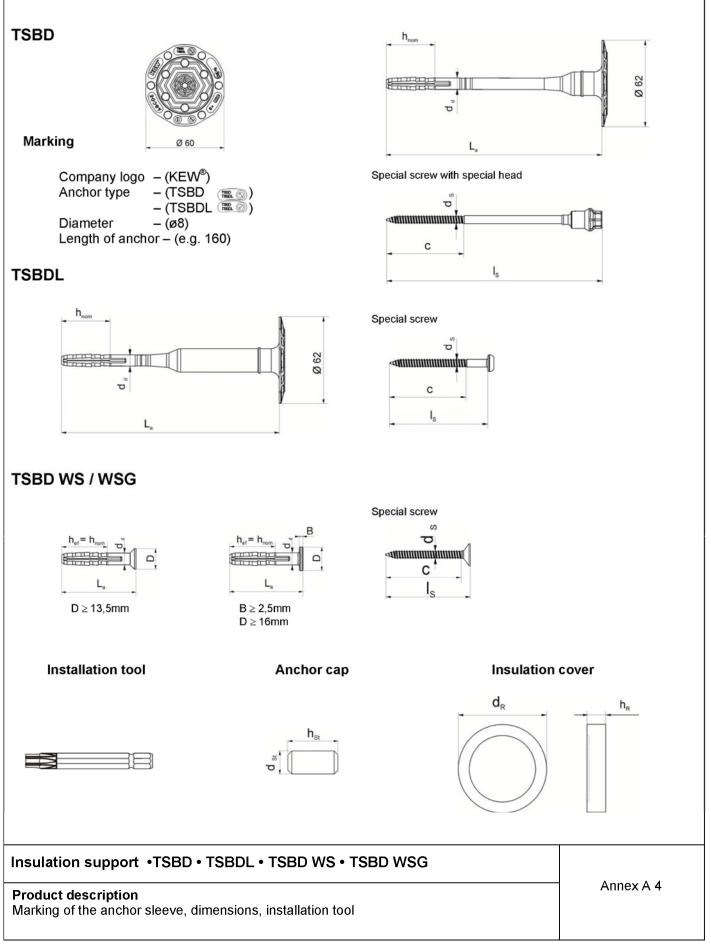

5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 8 August 2014 by Deutsches Institut für Bautechnik


Uwe Bender Head of Department *beglaubigt:* Ziegler


Page 6 of European Technical Assessment ETA-08/0314 of 8 August 2014


Page 7 of European Technical Assessment ETA-08/0314 of 8 August 2014

Page 8 of European Technical Assessment ETA-08/0314 of 8 August 2014

Table A1: Dimensions TSBD

		Ancho	r sleeve			Special screw			
Anchor type	L _a min	L _a max	d _d	h _{ef}		ds	С	l _s	
	[mm]	[mm]	[mm]	[m	m]	[mm]	[mm]	[mm]	
TSBD Use category (A-B-C)	100	440	8	3	0	5,5	52	L _a + 5mm	
TSBD Use category (D)	100	440	8	30	50	5,5	52	L _a + 5mm	
Determination of max. thic	Determination of max. thickness of insulation h_D [mm]: $h_D = L_a - h_{nom} - t_{tol}$								
e.g.:	L _a = 160			h _{ef} = 30			t _{tol} = 10		
TSBD 8x160	thickness of insulation material h _{D max} = 120								
e.g.:	L _a = 160 h _{ef} = 50				50 t _{tol} = 10				
TSBD 8x160	thickness of insulation material h _{D max.} = 100								
Determination of max. thic	kness of	insulatior	1 h _D [mm]:	h	= L _a	– h _{nom} – t _{to}	+ Insulati	on cover	
e.g.: TSBD 8x160		L _a = 160			h _{ef} = 3	30	t	ol= 10	
With Insulation cover 20mm		thickness of insulation material h _{D max} = 140					_{ax.} = 140		
e.g.: TSBD 8x160		L _a = 160 h _{ef} = 50			50	t	ol= 10		
With Insulation cover 20mm		1	thickness of	insulat	ion ma	aterial h _{D m}	_{ax.} = 120		

Table A2: Dimensions TSBDL

		Anchor sleeve					Special screw			
Anchor type	L _a min	L _a max	d _d	h	ef	ds	С	I _{s min}	I _{s max}	
	[mm]	[mm]	[mm]	[m	m]	[mm]	[mm]	[mm]	[mm]	
TSBDL Use category (A-B-C)	100	440	8	3	0	5,5	52	70	310	
TSBDL Use category (D)	100	440	8	30	50	5,5	52	70	310	
Determination of max. thic	kness of	insulation	ı h _D [mm]:	h₀	= L _a	– h _{nom} – t _{to}	I			
e.g.:	L _a = 160			h _{ef} = 30			t _{tol} = 10			
TSBDL 8x160	thickness of insulation material h _{D max} = 120									
e.g.:	L _a = 160 h _{ef} = 5				50 t _{tol} = 10					
TSBDL 8x160	thickness of insulation material h _{D max} = 100									
Determination of max. thic	kness of	insulation	ı h _D [mm]:	h₀	= L _a	- h _{nom} - t _{to}	ı + Insulati	on cov	er	
e.g.: TSBDL 8x160		L _a = 160			h _{ef} = :	30	t	_{ol} = 10		
With Insulation cover 20mm		1	thickness of	insulat	ion ma	aterial h _{D m}	_{ax.} = 140			
e.g.:		L _a = 160 h _{ef}			h _{ef} = \$	50	t	_{ol} = 10		
TSBDL 8x160 With Insulation cover 20mm		1	thickness of	insulat	ion ma	aterial h _{D m}	_{ax.} = 120			

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Product description Dimensions: TSBD, TSBDL Annex A 5

	Anchor sleeve				Special screw			
Anchor type	L _a min	L _a max	d _d	h _{ef}		ds	С	l _s
	[mm]	[mm]	[mm]	[mm] [mm]		[mm]	[mm]	[mm]
TSBD WS / WSG Use category (A-B-C)	50	250	8	30		30 5,5		L _a + 5mm
TSBD WS / WSG Use category (D)	70	250	8	30 50		5,5	52	L _a + 5mm

Table A3: Dimensions TSBD WS / WSG

Table A4:Dimensions Insulation cover and Anchor cap

	Insulatio	on cover	Anchor cap		
Anchor type	d _R	h _R	d _{st}	h _{St}	
	[mm]	[mm]	[mm]	[mm]	
TSBD	66	20	-	-	
TSBDL	66	20	13	30	

Table A5: Materials

Member	Material
Anchor sleeve	Polypropylen, colour: papyrus white
	Steel, galvanized A2L or A2K according to EN ISO 4042:2001-01
Special screw	Stainless steel; mat.No. 1.4401 – 1.4571 according to EN ISO 3506-01:2010-04
Special head on Special screw	PA GF
Anchor cap	Polystyrene
Insulation cover	Polystyrene
	Mineral wool

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Product description Dimensions: TSBD WS, TSBD WSG, anchor cap, insulation cover, materials

Annex A 6

Page 11 of European Technical Assessment ETA-08/0314 of 8 August 2014

English translation prepared by DIBt

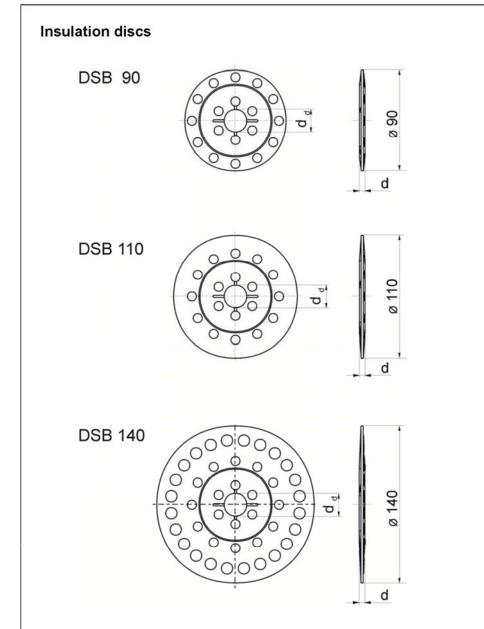


Table A6: Insulation discs, diameters and material

Insulation discs	Ø D [mm]	Ø d_d [mm]	d [mm]	Material
DSB 90	90	20	5	PA 6, PP
DSB 110	110	20	5	PA 6, PP
DSB 140	140	20	5	PA 6, PP

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Product description Additional plates in combination with TSBD , TSBDL

Annex A 7

Electronic copy of the ETA by DIBt: ETA-08/0314

Specifications of intended use

Anchorages subject to:

- The anchor may only be used for transmission of wind suction loads and shall not be used for the transmission of dead loads of the thermal insulation composite system.

Base materials:

- Normal weight concrete (use category A) according to Annex C1.
- · Solid masonry (use category B), according to Annex C1.
- · Hollow or perforated masonry (use category C), according to Annex C1 and C4.
- · Lightweight aggregate concrete (use category D), according to Annex C1 and C4.
- For other base materials of the use categories A, B, C or D the characteristic resistance of the anchor may be determined by job site tests according to ETAG 014 Edition February 2011, Annex D.

Temperature Range:

• 0°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C)

Design:

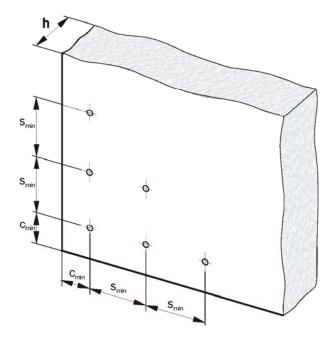
- The anchorages are designed in accordance with the ETAG 014 Edition February 2011 under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple fixings of thermal insulation composite systems.

Installation:

- Hole drilling by the drill modes according to Annex C 1.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from 0°C to +40°C
- Exposure to UV due to solar radiation of the anchor not protected by rendering \leq 6 weeks

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Intended Use Specifications Annex B 1

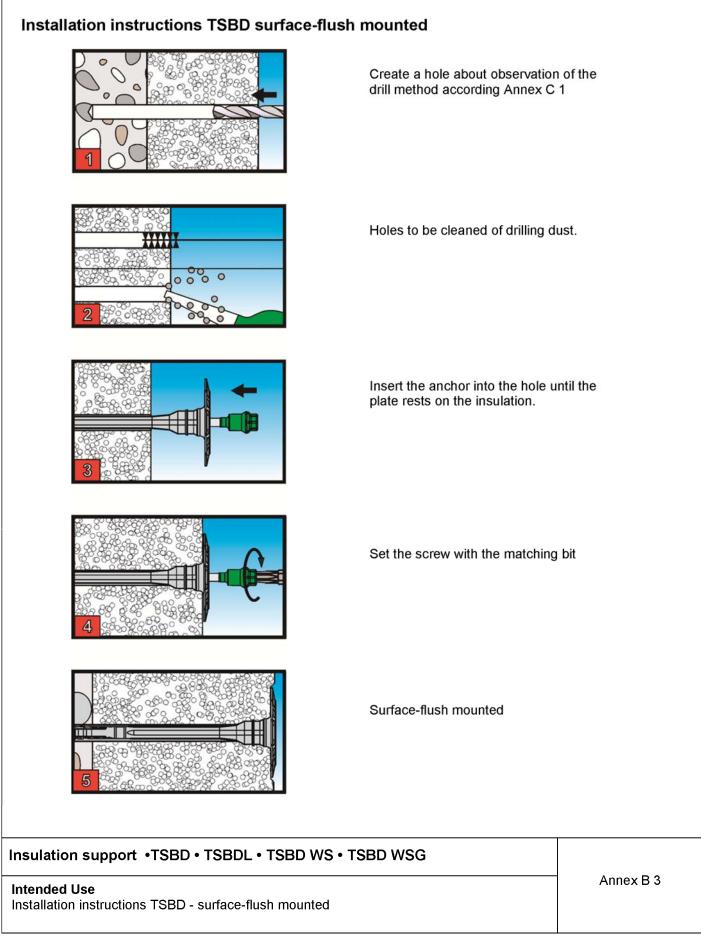

Table B1: Installation parameters

Anchor type			TSBD, TSBDL		
Use category			A-B-C	D)
Drill hole diameter	d ₀ =	[mm]	8	8	
Cutting diameter of drill bit	$d_{cut} \leq$	[mm]	8,45	8,45	
Depth of drilled hole to deepest point	$h_1 \geq$	[mm]	40	40	60
Effective anchorage depth	h _{ef} =	[mm]	30	30	50

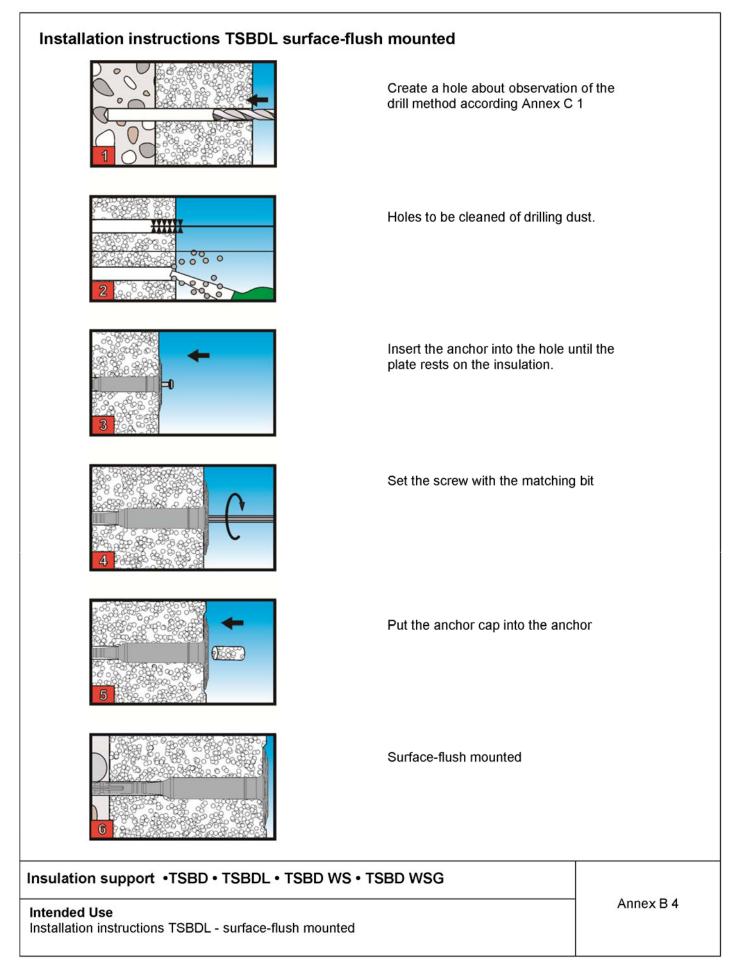
Table B2: Minimum distances and dimensions

			TSBD, TSBDL
Thickness of member	h ≥	[mm]	100
Minimum allowable spacing	s _{min} =	[mm]	100
Minimum allowable edge distance	c _{min} =	[mm]	100

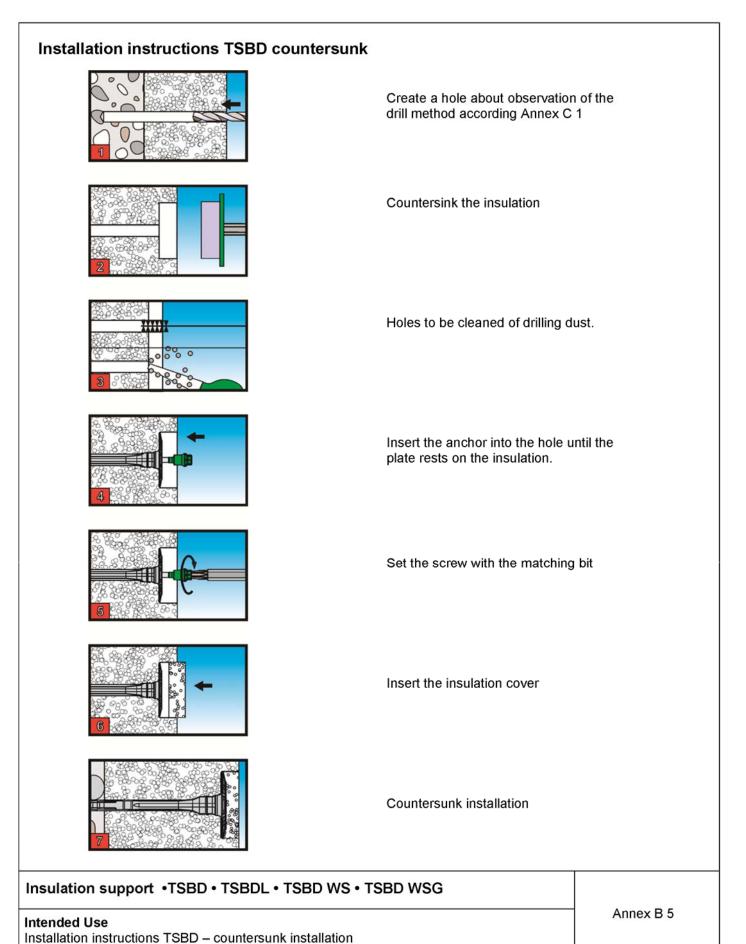
Edge and spacing distances



Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG


Intended Use Installation parameters, Edge distances and spacing

Annex B 2



hole about observation of the od according Annex C 1
ink the insulation
be cleaned of drilling dust.
e anchor into the hole until the ts on the insulation.
crew with the matching bit
e insulation cover
sunk installation
Annex B 6
)

Installation instructions TSBDL – countersunk installation

Base material	Bulk density- class	Minimum Com- pressive strength	Remarks	Drill method	N _{Rk}
	p [kg/dm³]	f _k [N/mm²]			[kN]
Concrete C12/15		[IN/IIIII]	EN 206-1		1,5
Concrete C16/20 – C50/60			EN 206-1		1,5
Sand-lime solid bricks , KS e.g. acc. to DIN V106:2005-10 / EN 771-2:2011	≥1.8	12	Vertically perforation up to 15%	Hammer drilling	1,5
Mauerziegel, Mz e.g. acc. to DIN 105-100:2012-01 / EN 771-1:2011	≥1.7	12	Vertically perforation up to 15%		1,5
Lightweight concrete solid blocks, Vbl 2 e.g. acc. to DIN V 18152-100:2005-10 / EN 771-3:2011	≥0.8	2	according to Annex C 4		0,75
Lightweight concrete solid blocks, Vbl 4 e.g. acc. to DIN V 18152-100:2005-10 / EN 771-3:2011	≥0.8	4	according to Annex C 4		1,2
Vertically perforated clay bricks, HLz e.g. acc. to DIN 105-100:2012-01 / EN 771-1:2011 with outer web thickness ≥ 12 mm	≥1.0	12	Vertically perforation more than 15% and less than 50%		0,9
Vertically perforated sand-lime bricks KS L, e.g. acc. to DIN V 106:2005-10 / EN 771-2:2011 with outer web thickness ≥ 20 mm	≥1.4	12	Vertically perforation up to 15%		1,5
Lightweight concrete hollow blocks 4K Hbl e.g. acc. to DIN V 18151-100:2005-10 / EN 771-3:2011	≥0.9	2	according to Annex C 4	Rotary drilling	0,75
Lightweight concrete hollow blocks 1K Hbl e.g. acc. to DIN V 18151-100:2005-10 / EN 771-3:2011	≥0.8	2	according to Annex C 4		0,9
Vertically perforated clay bricks HIz 250x380x235	≥1.0	6	according to Annex C 4		0,5
Lightweight aggregate concrete , LAC 4		4	h _{ef} ≥ 30mm		0,4
e.g. acc. to EN 1520	≥1.0	4	h _{ef} ≥ 50mm	Hammer	0,9
Lightweight aggregate concrete , LAC 6	>10	6	h _{ef} ≥ 30mm	drilling	0,5
e.g. acc. to EN 1520	≥1.0	0	h _{ef} ≥ 50mm		1,2

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Performances Characteristic resistance of the anchor

Table C2: Plate stiffness according to EOTA Technical Report TR 026:2007-06				
Anchor type	Diameter of anchor plates	Load resistance of anchor plates	Plate stiffness	
	[mm]	[kN]	[kN/mm]	
TSBD	60	2,22	1,6	
TSBDL	60	2,22	1,6	

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Performances Plate stiffness

Page 20 of European Technical Assessment ETA-08/0314 of 8 August 2014

English translation prepared by DIBt

Table C3: Displacements

Base material	Bulk- density- class	Minimum compressive strength	Tension load	Displacements
	ρ	f _k	N	δ _m (N)
Concrete C12/15-C50/60 (EN 206-1)	[kg/dm³]	[N/mm²]	[kN] 0,50	[mm] 0,2
Sand-lime solid bricks , KS DIN V106:2005-10 / EN 771-2:2011	≥1.8	12	0,50	0,3
Mauerziegel, Mz DIN 105-100:2012-01 / EN 771-1:2011	≥1.7	12	0,50	0,3
Lightweight concrete solid blocks, Vbl 2 DIN V 18152-100:2005-10 / EN 771-3:2011	≥0.8	2	0,25	0,3
Lightweight concrete solid blocks, Vbl 4 DIN V 18152-100:2005-10 / EN 771-3:2011	≥0.8	4	0,40	0,4
Vertically perforated clay bricks, HLz DIN 105-100:2012-01 / EN 771-1:2011	≥1.0	12	0,30	0,1
Vertically perforated sand-lime bricks KS L DIN V 106:2005-10 / EN 771-2:2011	≥1.4	12	0,50	0,3
Lightweight concrete hollow blocks 4K Hbl DIN V 18151-100:2005-10 / EN 771-3:2011	≥0.9	2	0,25	0,1
Lightweight concrete hollow blocks 1K Hbl DIN V 18151-100:2005-10 / EN 771-3:2011	≥0.8	2	0,30	0,2
Vertically perforated clay bricks Hlz 250x380x235	≥1.0	6	0,15	0,1
Lightweight aggregate concrete, LAC 4	≥1.0	4	h _{ef} > 30 mm: 0,15	0,1
(EN 1520)			h _{ef} ≥ 50 mm: 0,30	0,2
Lightweight aggregate concrete, LAC 6 (EN 1520)	≥1.0	6	h _{ef} > 30 mm: 0,15 h _{ef} ≥ 50 mm: 0,40	0,1 0,2

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Performances Displacements

Table C4: Geometry of anchor for lightweight concrete hollow blocks according to DIN V 18151-100:2005-10 / EN 771-3:2011

Geometry	Thinkness of brick	Outer web in longitudinal direction
	d	а
	[mm]	[mm]
	175	50
	240 300 365	30

The anchor shall be placed in the brick in such way, that the spreading part of the expansion sleeve is located in the outer web.

Table C5: Geometry of Vbl according to DIN V 18152-100:2005-10 / EN 771-3:2011

Geometry	Thinkness of brick	Outer web in longitudinal direction
	d [mm]	a [mm]
	248 300 370	≥ 43

Table C6: Geometry of Vertically perforated clay brick Hlz 250x380x235

Geometry	Thinkness of brick	Outer web in longitudinal direction
	d [mm]	a [mm]
	250	≥16

Insulation support •TSBD • TSBDL • TSBD WS • TSBD WSG

Performances

Geometry of lightweight concrete hollow and solid blocks, vertically perforated clay brick 250x380x235