

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

ETA-11/0072

of 4 April 2014

VINKRAFT SF, VINKRAFT SF Winter Edition

Bonded anchor for use in non-cracked concrete

Top Kraft Polska sp. z o.o. ul Glówna 60 51-180 Psary POLEN

TopKraft Handels GmbH Plant1, Spain

14 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-11/0072 issued on 30 November 2012

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-11/0072

Page 2 of 14 | 4 April 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-11/0072

Page 3 of 14 | 4 April 2014

Specific Part

1 Technical description of the product

The "VINKRAFT SF" is a bonded anchor consisting of a cartridge with injection mortar "VINKRAFT SF" or "VINKRAFT SF Winter Edition" and a steel element. The steel elements are threaded rods with washer and hexagon nut according to Annex A 3 in the range of M8 to M30 or reinforcing bar according to Annex A 3 in the range of Ø 16 to Ø 32.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The Illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension loads	See Annex C 1 / C 2
Characteristic resistance for shear loads	See Annex C 3
Displacements under tension loads	See Annex C 1 / C 2
Displacements under shear loads	See Annex C 3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of the EU-Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-11/0072

Page 4 of 14 | 4 April 2014

3.4 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was investigated for this product.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

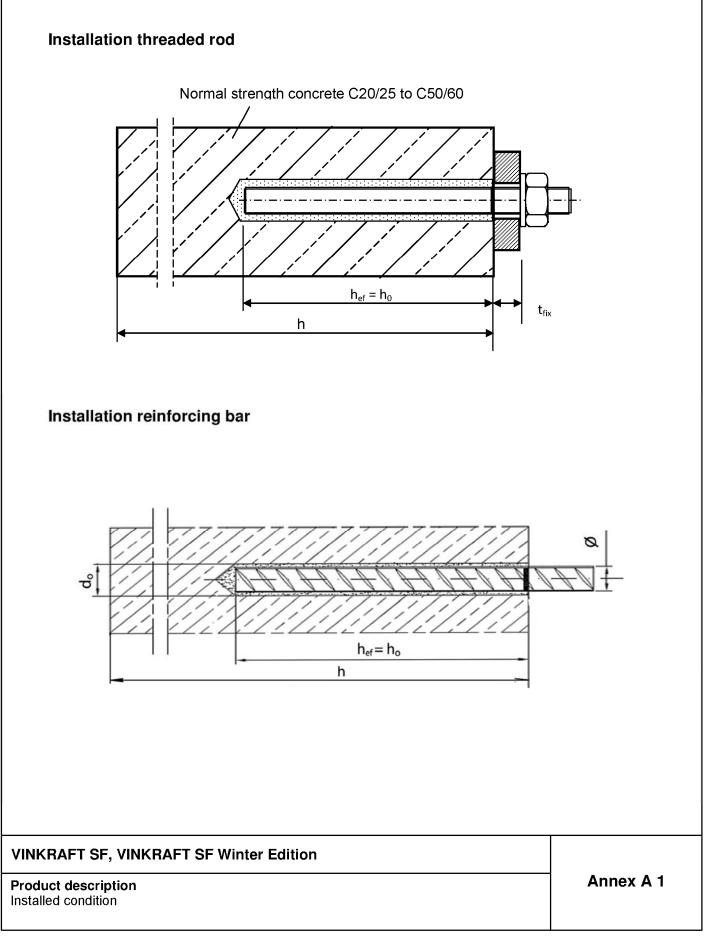
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

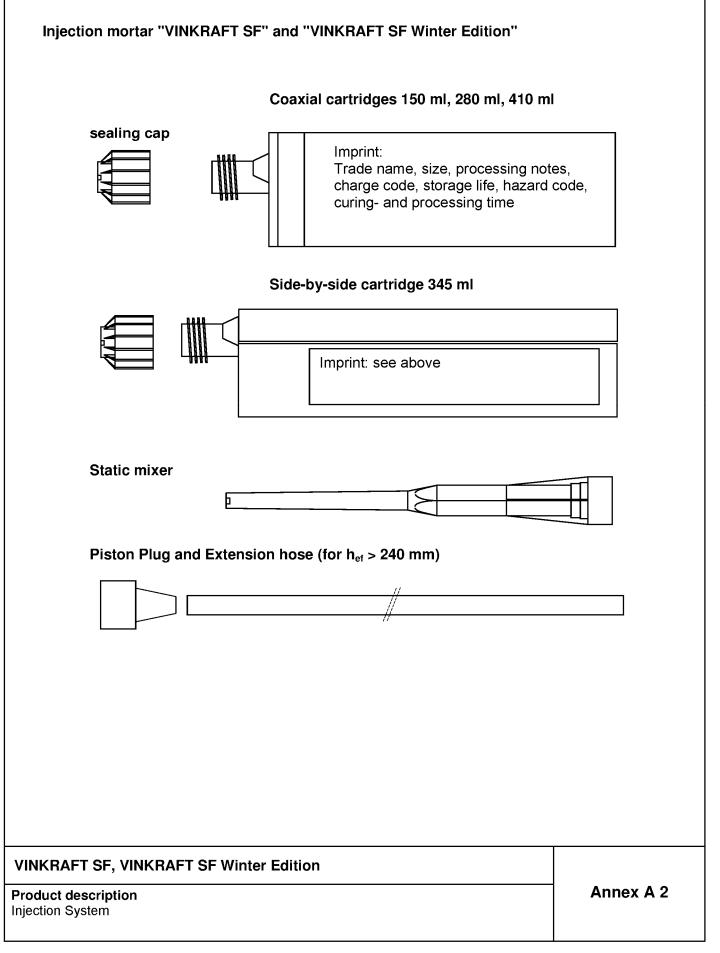
Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European assessment Dcoument

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

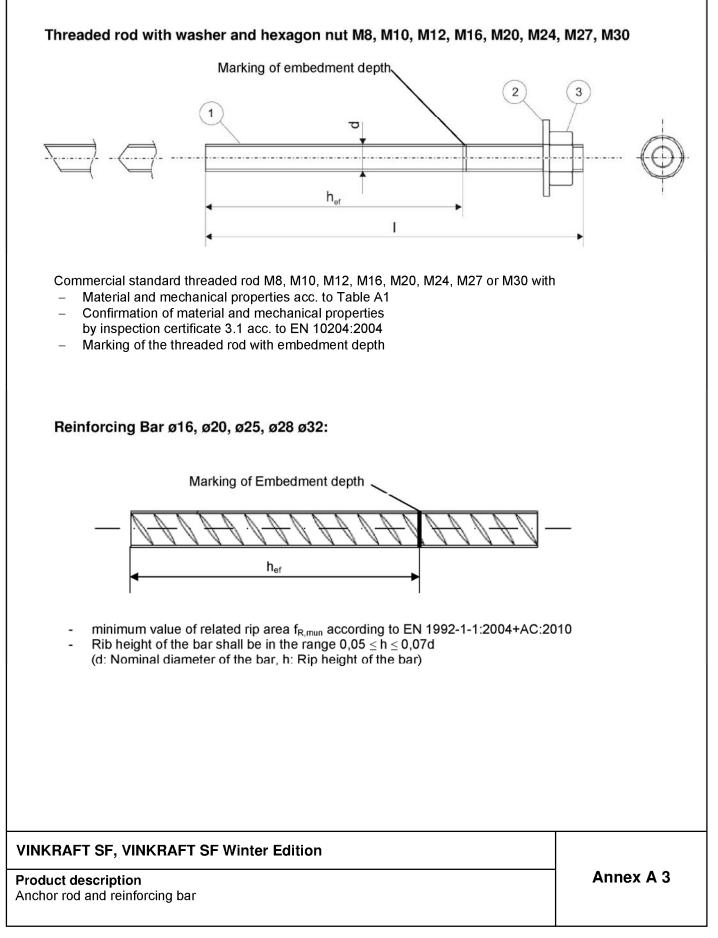
Issued in Berlin on 4 April 2014 by Deutsches Institut für Bautechnik


Dr.-Ing- Karsten Kathage Vice President *Beglaubigt:* Baderschneider

5


Page 5 of European Technical Assessment ETA-11/0072 of 4 April 2014

English translation prepared by DIBt



English translation prepared by DIBt

Page 8 of European Technical Assessment ETA-11/0072 of 4 April 2014

English translation prepared by DIBt

Table A1: Materials

Part	Designation	Material
Steel	elements made of zinc coated stee	I
1	Threaded rod	Steel, galvanised ≥ 5 μm acc. to EN ISO 4042:1999 property class 5.8 or 8.8 acc. to EN 1993-1-8:2005+AC:2009
2	Washer EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7094:2000	Steel, galvanised ≥ 5 μ m acc. to EN ISO 4042:1999
3	Hexagon nut EN ISO 4032:2012	Steel, galvanised ≥ 5 μm acc. to EN ISO 4042:1999 property class 5 or 8 acc. to EN ISO 898-2:2012
Steel	elements made of stainless steel	
1	Threaded rod	
2	Washer EN ISO 887:20006 EN ISO 7089:2000, EN ISO 7094:2000	Stainless steel 1.4401, 1.4404 or 1.4571 property class 70 or 80 acc. to EN ISO 3506-1:2009
3	Hexagon nut EN ISO 4032:2012	
Reinfo	orcing bars	
1	Rebar according to EN 1992-1-1:2004+AC:201, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

VINKRAFT SF, VINKRAFT SF Winter Edition

Product description Materials Annex A 4

Page 9 of European Technical Assessment ETA-11/0072 of 4 April 2014

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads: all sizes.

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- · Non-cracked concrete only: all sizes.

Temperature Range:

• -40°C to +80°C (max. short term temperature +80°C max. long term temperature +72°C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
 permanently damp internal condition, if no particular aggressive conditions exist
 (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages are designed in accordance with EOTA Technical Report TR 029, Edition September 2010.

Installation:

- · Dry or wet concrete: all sizes.
- The anchor must not be installed in water filled bore holes.
- · Hole drilling by hammer-drilling only.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Overhead installation only for $d_0 \le 35$ mm and $h_0 \le 210$ mm.

VINKRAFT SF, VINKRAFT SF Winter Edition

Intended Use Specifications Annex B 1

English translation prepared by DIBt

Table B1: Installation Para	meter for Th	reade	d Rod	S					
Thread diameter		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter d ₀ [mm] =		10	12	14	18	24	28	32	35
Embedment depth = depth of drill hole	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Concrete Temperature > 0°C	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Concrete Temperature < 0°C	h _{ef,max} [mm] =	80	100	120	160	200	240	270	300
Diameter of clearance hole in the fixture	d _r [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≤	12	13,3	14,9	19,35	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Minimum thickness of member h _{min} [mm]		h _{ef} + 30 mm ≥ 100mm h _{ef} + 2d₀)			
Minimum spacing	s _{min} [mm] =				056.	< 25 m	m		
Minimum edge distance	c _{min} [mm] =				U,S II _{ef} ,	≥ 35 mr	11		

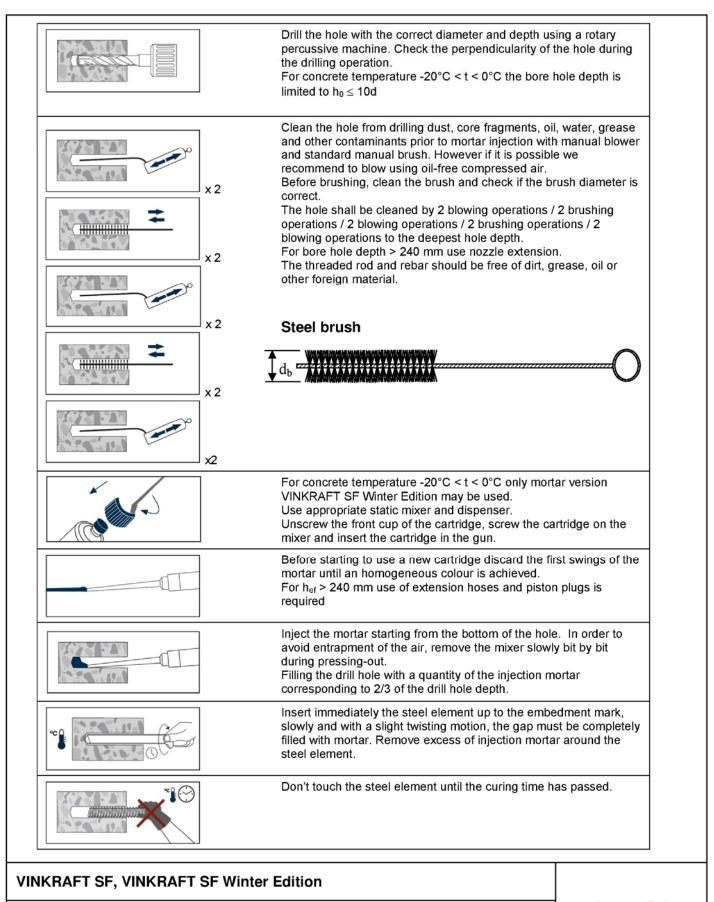
Table B2: Installation Parameter for Reinforcing Bars

Diameter of reinforcing bar		Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	20	25	30	35	40
Embedment depth = depth of drill hole	h _{ef,min} [mm] =	80	90	100	112	128
Concrete Temperature > 0°C	h _{ef,max} [mm] =	320	400	500	560	640
Concrete Temperature < 0°C	h _{ef,max} [mm] =	160	200	250	280	300
Diameter of steel brush	d _b [mm] ≤	22	26	32	37	44
Minimum thickness of member	h _{min} [mm] =			h_{ef} + 2 d_{o}		
Minimum spacing	s _{min} [mm] =	0,5 h _{ef}				
Minimum edge distance	c _{min} [mm] =	= 0,5 h _{ef}				

Table B3: Maximum processing time and minimum curing time

VII	NKRAFT SF Winte	r Edition		VINKRAFT S	F
Concrete	Maximum	Minimum curing	Concrete	Maximum	Minimum curing
Temperature	processing time	time in dry concrete	temperature	processing time	time in dry concrete
[°C]	[minutes]	[hours]	[°C]	[minutes]	[hours]
-20	60	24h			
-15	40	12h			
-10	25	8h			
-5	16	4h			
0	11	3h	0	45	12h
5	7	2h	5	30	8h
10	5	1h30'	10	20	5h
15	3	1h15'	15	12	3h
20	2	1h	20	7	2h
			25	4	1h30'
			30	3	1h15'
			35	2	1h

If the anchor is set in wet concrete, the curing time shall be doubled


VINKRAFT SF, VINKRAFT SF Winter Edition

Intended Use Installation parameters Maximum processing time and minimum curing time Annex B 2

Page 11 of European Technical Assessment ETA-11/0072 of 4 April 2014

English translation prepared by DIBt

Intended Use Installation instructions Annex B 3

Thread size			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Steel failure										
Characteristic resistance	N _{Rk,s}	[kN]				$A_s imes$	f _{uk} 1)			
Combined pullout and concrete	e cone f	ailure								
VINKRAFt SF and VINKRAFT SI > 0 °C	F Winte	r Edition:	Temp	erature	of con	crete at	installa	ition an	d curin	g
Characteristic bond resistance in non-cracked concrete C20/25	$\tau_{Rk,uncr}$	[N/mm ²]	11	10	10	9	8,5	7	7	7
Only VINKRAFT SF Winter Editi	on for ⁻	Femperat	ure of	concre	te at ins	stallatio	n and c	uring >	- 20 °C	
Characteristic bond resistance in non-cracked concrete C20/25	$\tau_{Rk,uncr}$	[N/mm ²]	9	8,5	8,5	7,5	7	6	6	6
Installation safety factor	γ2			1	,0		1,2		1,4	
	C30/37	7				1,	04			
Increasing factors for non- cracked concrete $\Psi_{ m c}$	C40/50)				1,	08			
	C50/60)	1,10							
Splitting failure										
Edge distance	C _{cr,sp}	[mm]		1	,0 h _{ef} ≤	2 h _{ef} (2	,5 - h/h _{ef}	_ſ) <u><</u> 2,4 ł	າ _{ef}	
Spacing	S _{cr,sp}	[mm]				2 0	cr,sp			
Installation safety factor	γ ₂		1,0 1,2 1,4							

The values f_{uk} and f_{yk} are given in the Technical Specification for the relevant material

Table C2: Displacements under tension loads (threaded rod)

Thread size			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Displacement	δ_{N0}	$[mm/(N/mm^2)]$	0,39	0,33	0,32	0,33	0,36	0,32	0,52	0,41
Displacement	δ _{N∞.}	$[mm/(N/mm^2)]$	0,78	0,66	0,64	0,66	0,72	0,64	1,04	0,82

VINKRAFT SF, VINKRAFT SF Winter Edition

Performances Characteristic values of resistance for threaded rods under tension loads Displacements under tension loads (threaded rod)

Annex C 1

Table C3: Characteristic values for reinforcing bars under tension loads

Nominal diameter			Ø 16	Ø 20	Ø 25	Ø 28	Ø 32			
Steel failure										
Characteristic resistance	N _{Rk,s}	[kN]			$A_{s} imes f_{uk}$	1)				
Combined pullout and concrete	cone f	ailure								
VINKRAFT SF and VINKRAFT S installation and curing > 0 °C	F Winte	er Edition	: Temp	erature	of cond	crete at				
Characteristic bond resistance in non-cracked concrete C20/25	$\tau_{Rk,uncr}$	[N/mm ²]	9	8,5	7	7	6,5			
Only VINKRAFT SF Winter Edition for Temperature of concrete at installation and curing > -20 °C										
Characteristic bond resistance in non-cracked concrete C20/25	$\tau_{Rk,uncr}$	[N/mm ²]	7,5	7	6	6	5,5			
Installation safety factor	γ2		1,0	1,0 1,2 1,4						
	C30/37	7	1,04							
Increasing factors for non- cracked concrete Ψ_c	C40/50)	1,08							
	C50/60)	1,10							
Splitting failure										
Edge distance	C _{cr,sp} [mm]		$1,0 h_{ef} \le 2 h_{ef} (2,5 - h/h_{ef}) \le 2,4 hef$							
Spacing	S _{cr,sp}	[mm]			2 c _{cr,sp}					
Installation safety factor	γ2		1,0	1,2		1,4				

 $^{1)}$ The values f_{uk} and f_{yk} are given in the Technical Specification for the relevant material

Table C4: Displacements under tension loads (reinforcing bar)

Nominal diameter		Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Displacement δ_{N0}	[mm/(N/mm ²)]	0,33	0,36	0,32	0,52	0,41
Displacement $\delta_{N\infty}$.	[mm/(N/mm ²)]	0,66	0,72	0,64	1,04	0,82

VINKRAFT SF, VINKRAFT SF Winter Edition

Performances

Characteristic values of resistance for reinforcing bars under tension loads Displacements under tension loads (reinforcing bar) Annex C 2

English translation prepared by DIBt

Table C5: Characteristic values of resistance for threaded rods and reinforcing bars under shear loads

Thread size			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Diameter of reinforcing bar						Ø16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										
Characteristic resistance	$V_{Rk,s} \qquad [kN] \qquad \qquad 0,5 \times A_s \times f_{uk}^{(1)}$									
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm]	1,2 × W_{el} × f_{uk} ¹⁾							
Concrete pry-out failure										
Factor k in section 5.2.3.3 of TR 029	k	[-]				2	2,0			
Installation safety factor	γ2	[-]	1,0							
Concrete edge failure										
Characteristic resistance	V _{Rk,c}	[kN]	See TR 029 Section 5.2.3.4							
Installation safety factor	γ2	[-]	1,0							

¹⁾ The values f_{uk} and f_{yk} are given in the Technical Specification for the relevant material,

Table C6: Displacements under shear loads (threaded rods)

Diameter of threaded rod			M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Displacement	δ _{vo}	[mm/(kN)]	1,0							
Displacement	δ _{V∞.}	[mm/(kN)]	1,5							

Table C7: Displacements under shear loads (reinforcing bar)

Diameter of reinforcing bar			Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Displacement	δ_{V0}	[mm/(N/mm ²)]	1,0					
Displacement $\delta_{V_{\infty}}$ [mm/(N/mm ²)]		1,5						

Performances

Characteristic values of resistance for threaded rods and reinforcing bars under shear loads Displacements under shear loads (threaded rod and reinforcing bar)

Annex C 3