

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-13/1036 vom 15. Dezember 2014

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von Deutsches Institut für Bautechnik

Injektionssystem Hilti HIT-HY 270

Injektionssystem zur Verankerung im Mauerwerk

Hilti AG
Feldkircherstraße 100
9494 Schaan
FÜRSTENTUM LIECHTENSTEIN

Hilti Werke

40 Seiten, davon 36 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Injektionsdübel aus Metall zur Verankerung im Mauerwerk" ETAG 029, April 2013, verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-13/1036

Seite 2 von 40 | 15. Dezember 2014

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z89109.14 8.06.04-678/13

Europäische Technische Bewertung ETA-13/1036

Seite 3 von 40 | 15. Dezember 2014

Besonderer Teil

1 Technische Beschreibung des Produkts

Das Injektionssystem Hilti HIT-HY 270 für ist ein Verbunddübel (Injektionstyp), der aus einem Foliengebinde mit Injektionsmörtel Hilti HIT-HY 270, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe in den Größen M8 bis M16 oder einer Innengewindehülse in den Größen M8 bis M12 besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Tragfähigkeit der Stahlelemente	Siehe Anhang C2
Charakteristische Tragfähigkeit der Dübel im Mauerwerk	Siehe Anhang C4 – C19
Verformungen unter Querlast und Zuglast	Siehe Anhang C4 – C19
Reduktionsfaktor für Baustellenversuche (β-Faktor)	Siehe Anhang C1
Rand- und Achsabstände	Siehe Anhang C3 – C18
Gruppenfaktor für Gruppenbefestigungen	Siehe Anhang C3 – C18

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1.
Feuerwiderstand	Keine Leistung festgestellt (KLF)

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Nicht zutreffend.

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

Z89109.14 8.06.04-678/13

Europäische Technische Bewertung ETA-13/1036

Seite 4 von 40 | 15. Dezember 2014

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

3.8 Allgemeine Aspekte

Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß Entscheidung 97/177/EG der Kommission vom 17. Februar 1997 (ABI L 073 vom 14.03.1997 S. 24–25) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

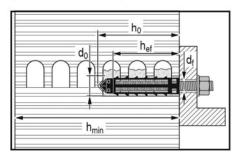
Produkt	Eigenschaften	Stufe oder Klasse	System
Injektionsdübel aus Metall zur Verwendung im Mauerwerk	zur Befestigung und/oder Verankerung von Tragwerksteilen (die zur Standsicherheit des Bauwerks beitragen) oder schweren Elementen, z.B. Bekleidungen, sowie von Installationen am bzw. im Mauerwerk.	_	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind im Prüfplan angegeben, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 15. Dezember 2014 vom Deutschen Institut für Bautechnik

Uwe Bender
Abteilungsleiter


Beglaubigt:

Z89109.14 8.06.04-678/13

Einbauzustand

Bild A1: Lochstein und Vollstein mit Gewindestange HIT-V-... und einer Siebhülse HIT-SC (siehe Tabelle B5), oder mit Innengewindehülse HIT-IC und einer Siebhülse HIT-SC (siehe Tabelle B7)

<u>Bild A2:</u> Lochstein und Vollstein mit Gewindestange HIT-V-... und zwei Siebhülsen HIT-SC für große Verankerungstiefe (siehe Tabelle B6)

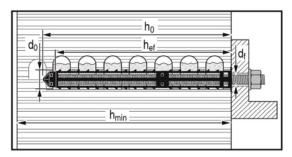
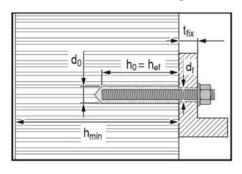



Bild A3: Vollstein mit Gewindestange HIT-V-...(siehe Tabelle B8)

Hilti HIT-HY 270

Produktbeschreibung
Einbauzustand

Anhang A1

Bild A4: Vollstein mit Innengewindehülse HIT-IC (siehe Tabelle B9)

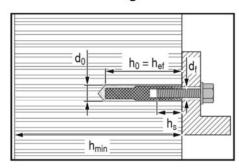
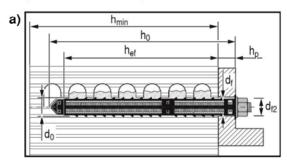
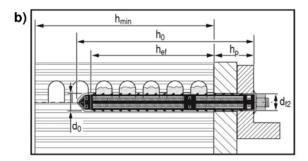
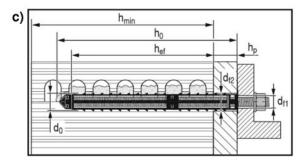
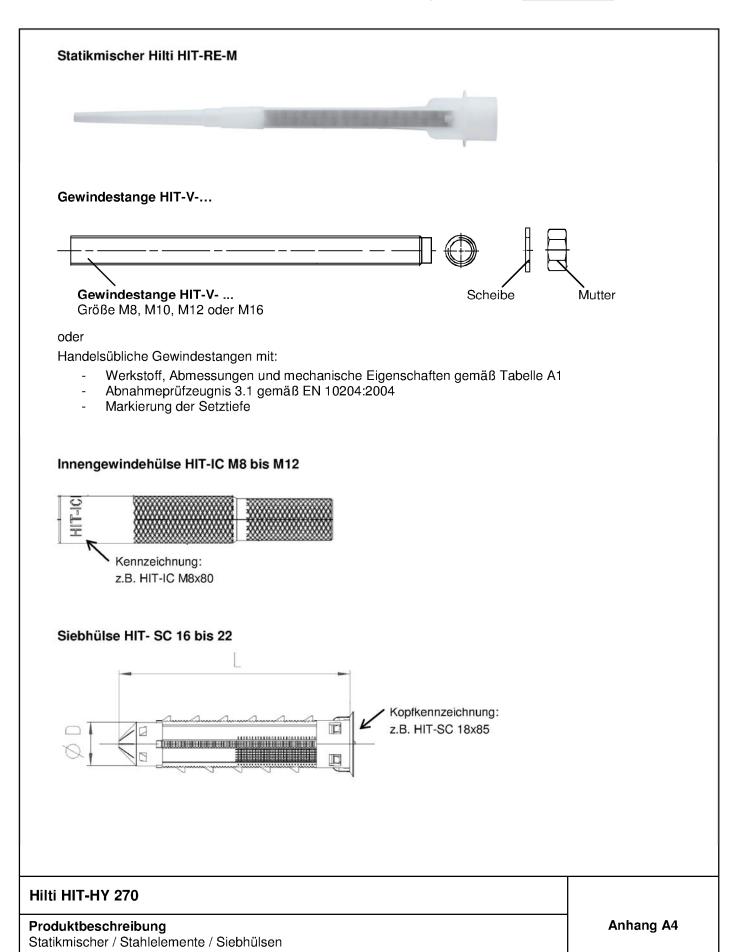





Bild A5: Lochstein und Vollstein mit Gewindestange HIT-V-... mit zwei Siebhülsen HIT-SC zur Montage durch das Anbauteil und/oder durch eine nichttragende Schicht (siehe Tabelle B10)


Hilti HIT-HY 270

Produktbeschreibung
Einbauzustand


Anhang A2

Injektionsmörtel / Auspressgerät

Tabelle A1: Werkstoffe

Bezeichnung	Werkstoff				
Stahlteile aus verzir	Stahlteile aus verzinktem Stahl				
Gewindestange HIT-V-5.8(F)	Festigkeitsklasse 5.8, $f_{uk}=500$ N/mm², $f_{yk}=400$ N/mm², Bruchdehnung (I_0 =5d) > 8% duktil Galvanisch verzinkt \geq 5 μ m, (F) Feuerverzinkt \geq 45 μ m				
Gewindestange HIT-V-8.8(F)	Festigkeitsklasse 8.8, $f_{uk}=800$ N/mm², $f_{yk}=640$ N/mm², Bruchdehnung ($I_0=5d$) > 8% duktil Galvanisch verzinkt ≥ 5 μm , (F) Feuerverzinkt ≥ 45 μm				
Scheibe	Galvanisch verzinkt ≥ 5 μm Feuerverzinkt ≥ 45 μm				
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange Galvanisch verzinkt \geq 5 $\mu m,$ Feuerverzinkt \geq 45 μm				
Innengewindehülse HIT-IC					
Stahlteile aus nichti	ostendem Stahl				
Gewindestange HIT-V-R	Festigkeitsklasse 70, f_{uk} = 700 N/mm², f_{yk} = 450 N/mm², Bruchdehnung (I_0 =5d) > 8% duktil Werkstoff 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1: 2014				
Scheibe	Werkstoff 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1: 2014				
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange Werkstoff 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1: 2014				
Stahlteile aus hochl	korrosionsbeständigem Stahl				
Gewindestange HIT-V-HCR	$f_{uk} = 800 \text{ N/mm}^2$, $f_{yk} = 640 \text{ N/mm}^2$, Bruchdehnung (I_0 =5d) > 8% duktil Werkstoff 1.4529, 1.4565 EN 10088-1: 2014				
Scheibe	Werkstoff 1.4529, 1.4565 EN 10088-1: 2014				
Mutter	Festigkeit der Sechskantmutter abgestimmt auf Festigkeit der Gewindestange Werkstoff 1.4529, 1.4565 EN 10088-1: 2014				
Plastikteile					
Siebhülse HIT-SC	Rahmen: FPP 20T Netz: PA6.6 N500/200				

Hilti HIT-HY 270	
Produktbeschreibung Werkstoffe	Anhang A5

Angaben zum Verwendungszweck

Verankerungsgrund:

- Vollsteinmauerwerk (Nutzungskategorie b), entsprechend Anhang B3.
 Bemerkung: Die charakteristischen Widerstände gelten ebenfalls für größere Steinabmessungen und höhere Steindruckfestigkeiten.
- Lochsteinmauerwerk (Nutzungskategorie c), entsprechend Anhang B3 und B5.
- Festigkeitsklasse des Mauermörtel: M2,5 Minimum entsprechend EN 998-2: 2010.
- Für Mauerwerk aus anderen Vollsteinen oder Lochsteinen darf der charakteristische Widerstand mittels Baustellenversuchen ermittelt werden. Dies geschieht gemäß ETAG 029, Anhang B, unter Berücksichtigung des im Anhang C1, Tabelle C1 genannten β-Faktors.

Tabelle B1: Übersicht der Nutzungskategorien

Befestigungen unter:		HIT-HY 270 mit HIT-V oder HIT-IC		
		in Vollstein	in Lochstein	
Bohren		Hammerbohren	Drehbohren	
Statische und d Belastung	quasi statische	Anhang : C2 (Stahl), C5, C7, C9, C11	Anhang : C2 (Stahl), C 13, C 15, C17, C19	
Nutzungskateg trockenes oder Mauerwerk		Kategorie d/d – Montage und Verwendung in Bauteilen unter den Bedingungen trockener Innenräume. Kategorie w/d – Montage unter trockenen oder feuchten Bedingungen und Verwendung unter den Bedingungen trockener Innenräume (ausgenommen Kalksandsteine). Kategorie w/w - Montage und Verwendung in Bauteilen unter trockenen oder feuchten Bedingungen (ausgenommen Kalksandsteine).		
Montagerichtur Mauerwerk	ng	ho	rizontal	
Nutzungskategorie		b (Mauerwerk aus Vollstein)	c (Mauerwerk aus Lochstein)	
Temperatur im grund beim Ein	Verankerungs- bau	+5° C bis +40° C (Tabelle B11) -5° C bis +40° C (Tabelle		
Gebrauchs-	Temperatur- bereich Ta:		nax. Langzeittemperatur +24 °C und nax. Kurzzeittemperatur +40 °C)	
temperatur	-40 °C hie ±80 °C		(max. Langzeittemperatur +50 °C und max. Kurzzeittemperatur +80 °C)	

Hilti HIT-HY 270	
Verwendungszweck Spezifikationen	Anhang B1

Anwendungsbedingungen (Umweltbedingungen):

- In Bauteilen unter den Bedingungen trockener Innenräume (verzinkter Stahl, nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostender Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).
 Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Meerwasser oder der Bereich der Spritzzone von Meerwasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit

extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Die Befestigungen müssen unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs bemessen werden.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zu den Auflagern usw.) anzugeben.
- Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit: ETAG 029, Anhang C, Bemessungsverfahren A

Einbau:

• Der Einbau erfolgt durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Hilti HIT-HY 270	
Verwendungszweck Spezifikationen	Anhang B2

Tabelle B2: Übersicht der Mauersteine und Eigenschaften

Art des Mauersteins	Foto	Stein- abmessungen [mm]	Druck- festigkeit [N/mm²]	Roh- dichte [kg/dm³]	Anhang
Vollziegel EN 771-1		≥ 240x115x113	12	2,0	C4/C5
Kalksandvollstein EN 771-2		≥ 240x115x113	12 / 28	2,0	C6/C7
Leichtbetonvollstein EN 771-3		≥ 240x115x113	4 / 6	0,9	C8/C9
Normalbetonvollstein EN 771-3		≥ 240x115x113	6 / 16	2,0	C10/C11
Lochziegel EN 771-1		300x240x238	12 / 20	1,4	C12/C13
Kalksandlochstein EN 771-2		248x240x248	12 / 20	1,4	C14/C15
Leichtbeton Hohlblockstein EN 771-3		495x240X238	2/6	0,7	C16/C17
Normalbeton Lochstein EN 771-3	****	500x200x200	4 / 10	0,9	C18/C19

Hilti HIT-HY 270	
Verwendungszweck Steintypen und Eigenschaften	Anhang B3

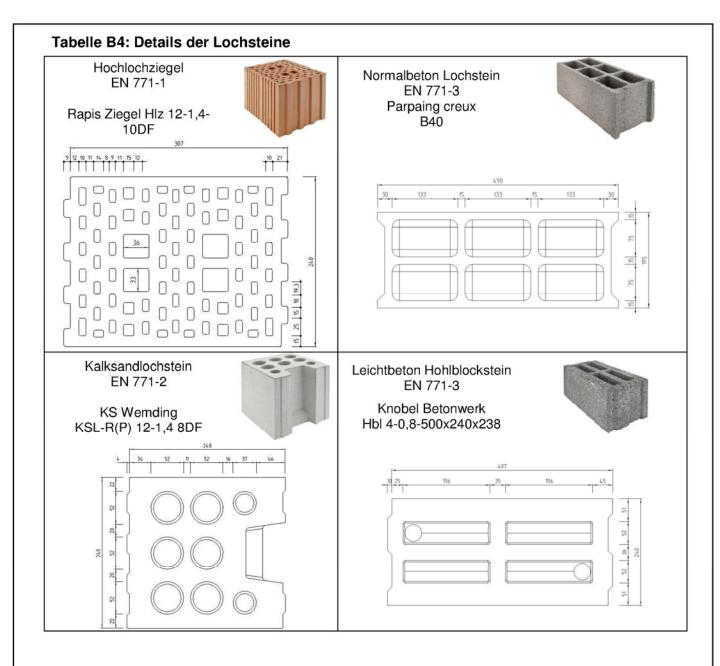


Tabelle B3: Übersicht Befestigungselemente (inkl. Größen und Verankerungstiefen) und zugehörende Mauersteine

Art des Mauersteins	Foto	Gewinde- stange HIT-V	HIT-IC	Gewindestange HIT-V mit HIT-SC	HIT-IC mit HIT-SC	Anhang
Vollziegel EN 771-1		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M12	M8 bis M16 h _{ef} = 80 mm bis 160 mm	M8 bis M12	C4/C5
Kalksandvollstein EN 771-2		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M12	M8 bis M16 h _{ef} = 80 mm bis 160 mm	M8 bis M12	C6/C7
Leichtbeton- vollstein EN 771-3		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M12	M8 bis M16 h _{ef} = 80 mm bis 160 mm	M8 bis M12	C8/C9
Normalbeton- vollstein EN 771-3		M8 bis M16 h _{ef} = 50 mm bis 300 mm	M8 bis M12	M8 bis M16 h _{ef} = 80 mm bis 160 mm	M8 bis M12	C10/C11
Lochziegel EN 771-1		-	-	M8 bis M16 h _{ef} = 80 mm bis 160 mm	M8 bis M12	C12/C13
Kalksandlochstein EN 771-2	11.11	-	-	M8 bis M16 h _{ef} = 80 mm bis 160 mm	M8 bis M12	C14/C15
Leichtbeton Hohlblockstein EN 771-3		-	-	M8 bis M16 h _{ef} = 80 mm bis 160 mm	M8 bis M12	C16/C17
Normalbeton Lochstein EN 771-3	· Colif	-	-	M8 bis M16 h _{ef} = 50 mm bis 160 mm	M8 bis M12	C18/C19

Hilti HIT-HY 270	
Verwendungszweck Befestigungselemente und entsprechende Steintypen	Anhang B4

Hilti HIT-HY 270	
Verwendungszweck Details der Lochsteine	Anhang B5

Tabelle B5: Montagekennwerte Gewindestange HIT-V-... mit einer Siebhülse HIT-SC für Lochstein und Vollstein (Bild A1)

HIT-V	mananam()m		M8		M10		M12		M16	
mit HIT-SC	€	⇒(16x50	16x85	16x50	16x85	18x50	18x85	22x50	22x85
Bohrernenndurchmesser	d_0	[mm]	16	16	16	16	18	18	22	22
Bohrlochtiefe	h ₀	[mm]	60	95	60	95	60	95	60	95
Effektive Verankerungstiefe	h _{ef}	[mm]	50	80	50	80	50	80	50	80
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	9	12	12	14	14	18	18
Minimale Wanddicke	h_{\min}	[mm]	80	115	80	115	80	115	80	115
Bürste HIT-RB	-	[-]	16	16	16	16	18	18	22	22
Anzahl Hübe HDM	-	[-]	4	6	4	6	4	8	6	10
Anzahl Hübe HDE 500-A	-	[-]	3	5	3	5	3	6	5	8
Maximales Anzugsdrehmoment für alle Steine ausser "parpaing creux"	T_{max}	[Nm]	3	თ	4	4	6	6	8	8
Maximales Anzugsdrehmoment für "parpaing creux"	T _{max}	[Nm]	2	2	2	2	3	3	6	6

Tabelle B6: Montagekennwerte Gewindestange HIT-V-... mit zwei Siebhülsen HIT-SC für Lochstein und Vollstein für größere Verankerungstiefen (Bild A2)

HIT-V	SHEETHARD	m()m	M	18	M10	
mit HIT-SC	•	•	16x50+16x85	16x85+16x85	16x50+16x85	16x85+16x85
Bohrernenndurchmesser	d_0	[mm]	16	16	16	16
Bohrlochtiefe	h_0	[mm]	145	180	145	180
Effektive Verankerungstiefe	h _{ef}	[mm]	130	160	130	160
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	9	12	12
Minimale Wanddicke	h _{min}	[mm]	195	230	195	230
Bürste HIT-RB	-	[-]	16	16	16	16
Anzahl Hübe HDM	-	[-]	4+6	6+6	4+6	6+6
Anzahl Hübe HDE 500-A	-	[-]	3+5	5+5	3+5	5+5
Maximales Anzugsdrehmoment	T _{max}	[Nm]	3	3	4	4

Tabelle B6: Fortsetzung

HIT-V	SHIDWIN	m()m	M12		M16	
mit HIT-SC	•	•	18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85
Bohrernenndurchmesser	d_0	[mm]	18	18	22	22
Bohrlochtiefe	h ₀	[mm]	145	180	145	180
Effektive Verankerungstiefe	h _{ef}	[mm]	130	160	130	160
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	14	14	18	18
Minimale Wanddicke	h _{min}	[mm]	195	230	195	230
Bürste HIT-RB	-	[-]	18	18	22	22
Anzahl Hübe HDM	-	[-]	4+8	8+8	6+10	10+10
Anzahl Hübe HDE 500-A	-	[-]	3+6	6+6	5+8	8+8
Maximales Anzugsdrehmoment	T_{max}	[Nm]	6	6	8	8

Hilti HIT-HY 270	
Verwendungszweck Montagekennwerte	Anhang B6

Tabelle B7: Montagekennwerte Innengewindehülse HIT-IC... mit Siebhülse HIT-SC für Lochstein und Vollstein (Bild A1)

HIT-IC			M8x80	M10x80	M12x80
mit HIT-SC	€	===	16x85	18x85	22x85
Bohrernenndurchmesser	d_0	[mm]	16	18	22
Bohrlochtiefe	h_0	[mm]	95	95	95
Effektive Verankerungstiefe	h _{ef}	[mm]	80	80	80
Einschraubtiefe	h_s	[mm]	875	1075	1275
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	12	14
Minimale Wanddicke	h _{min}	[mm]	115	115	115
Bürste HIT-RB	-	[-]	16	18	22
Anzahl Hübe HDM	-	[-]	6	8	10
Anzahl Hübe HDE 500-A	-	[-]	5	6	8
Maximales Anzugsdrehmoment	T_{max}	[Nm]	3	4	6

Tabelle B8: Montagekennwerte Gewindestange HIT-V-... in Vollstein (Bild A3)

HIT-V	1,4217440	mm(j)m	М8	M10	M12	M16
Bohrernenndurchmesser	d_0	[mm]	10	12	14	18
Bohrlochtiefe = Effektive Verankerungstiefe	h ₀ = h _{ef}	[mm]	50300	50300	50300	50300
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	12	14	18
Minimale Wanddicke	h _{min}	[mm]	h ₀ +30	h ₀ +30	h ₀ +30	h ₀ +36
Bürste HIT-RB	-	[-]	10	12	14	18
Maximales Anzugsdrehmoment	T _{max}	[Nm]	5	8	10	10

Tabelle B9: Montagekennwerte Innengewindehülse HIT-IC... in Vollstein (Bild A4)

HIT-IC		3333	M8x80	M10x80	M12x80
Bohrernenndurchmesser	d_0	[mm]	14	16	18
Bohrlochtiefe = Effektive Verankerungstiefe	h ₀ = h _{ef}	[mm]	80	80	80
Einschraubtiefe	h_s	[mm]	875	1075	1275
Maximaler Durchmesser des Durchgangslochs im Anbauteil	d _f	[mm]	9	12	14
Minimale Wanddicke	h _{min}	[mm]	115	115	115
Bürste HIT-RB	-	[-]	14	16	18
Maximales Anzugsdrehmoment	T_{max}	[Nm]	5	8	10

Hilti HIT-HY 270	
Verwendungszweck Montagekennwerte	Anhang B7

Tabelle B10: Montagekennwerte Gewindestange HIT-V-... mit zwei Siebhülsen HIT-SC für die Montage durch das Anbauteil und/oder durch eine nichttragende Schicht für Lochstein und Vollstein (Bild A5)

HIT-V	Manyany	m()m	М8		М	10
mit HIT-SC	•	•	16x50+16x85	16x85+16x85	16x50+16x85	16x85+16x85
Bohrernenndurchmesser	d_0	[mm]	16	16	16	16
Bohrlochtiefe	h_0	[mm]	145	180	145	180
Min. effektive Verankerungstiefe	$h_{\text{ef,min}}$	[mm]	80	80	80	80
Max. Dicke der nichttragenden Schicht und Anbauteildicke (Durchsteckmontage)	$h_p,_{max}$	[mm]	50	80	50	80
Max. Durchmesser des Durchgangslochs im Anbauteil (Vorsteckmontage)	d _{f1}	[mm]	9	9	12	12
Max. Durchmesser des Durchgangslochs im Anbauteil (Durchsteckmontage)	d _{f2}	[mm	17	17	17	17
Minimale Wanddicke	h _{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Bürste HIT-RB	-	[-]	16	16	16	16
Anzahl Hübe HDM	-	[-]	4+6	6+6	4+6	6+6
Anzahl Hübe HDE 500-A	-	[-]	3+5	5+5	3+5	5+5
Maximales Anzugsdrehmoment für alle Steine außer "parpaing creux"	T_{max}	[Nm]	3	3	4	4
Maximales Anzugsdrehmoment für "parpaing creux"	T _{max}	[Nm]	2	2	2	2

Tabelle B10 Fortsetzung

HIT-V	HARMARIN	m(j)m	M12		M.	16
mit HIT-SC	•	-	18x50+18x85	18x85+18x85	22x50+22x85	22x85+22x85
Bohrernenndurchmesser	d_0	[mm]	18	18	22	22
Bohrlochtiefe	h ₀	[mm]	145	180	145	180
Min. effektive Verankerungstiefe	h _{ef,min}	[mm]	80	80	80	80
Max. Dicke der nichttragenden Schicht und Anbauteildicke (Durchsteckmontage)	h _{p,max}	[mm]	50	80	50	80
Max. Durchmesser des Durchgangslochs im Anbauteil (Vorsteckmontage)	d _{f1}	[mm]	14	14	18	18
Max. Durchmesser des Durchgangslochs im Anbauteil (Durchsteckmontage)	d _{f2}	[mm	19	19	23	23
Minimale Wanddicke	h _{min}	[mm]	h _{ef} +65	h _{ef} +70	h _{ef} +65	h _{ef} +70
Bürste HIT-RB	-	[-]	18	18	22	22
Anzahl Hübe HDM	-	[-]	4+8	8+8	6+10	10+10
Anzahl Hübe HDE 500-A	-	[-]	5+8	8+8	5+8	8+8
Maximales Anzugsdrehmoment für alle Steine außer "parpaing creux"	T_{max}	[Nm]	6	6	8	8
Maximales Anzugsdrehmoment für "parpaing creux"	T_{max}	[Nm]	3	3	6	6

Hilti HIT-HY 270	
Verwendungszweck Montagekennwerte	Anhang B8

Tabelle B11: Maximale Verarbeitungszeit und minimale Aushärtezeit für Vollsteine 1)

Temperatur im Verankerungsgrund T	Maximale Verarbeitungszeit twork	Minimale Aushärtezeit t _{cure}
5 °C bis 9 °C	10 min	2,5 h
10 °C bis 19 °C	7 min	1,5 h
20 °C bis 29 °C	4 min	30 min
30 °C bis 40 °C	1 min	20 min

Die Aushärtezeiten gelten nur für trockenen Verankerungsgrund.
 In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Tabelle B12: Maximale Verarbeitungszeit und minimale Aushärtezeit¹⁾ für Lochsteine

Temperatur im Verankerungsgrund T	Maximale Verarbeitungszeit twork	Minimale Aushärtezeit t _{cure}
-5 °C bis -1 °C	10 min	6 h
0 °C bis 4 °C	10 min	4 h
5 °C bis 9 °C	10 min	2,5 h
10 °C bis 19 °C	7 min	1,5 h
20 °C bis 29 °C	4 min	30 min
30 °C bis 40 °C	1 min	20 min

Die Aushärtezeiten gelten nur für trockenen Verankerungsgrund. In feuchtem Verankerungsgrund müssen die Aushärtezeiten verdoppelt werden.

Tabelle B13: Reinigungsalternativen

Handreinigung (MC):

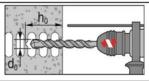
zum Ausblasen von Bohrlöchern bis zu einem Durchmesser von $d_0 \le 18$ mm und einer Bohrlochtiefe von $h_0 \le 100$ mm wird die Hilti-Handausblaspumpe empfohlen

Druckluftreinigung (CAC):

zum Ausblasen von Bohrlöchern bis zu einer Bohrlochtiefe von $h_0 \le 300$ mm wird eine Ausblasdüse mit einem Durchmesser von mindestens 3,5 mm empfohlen.

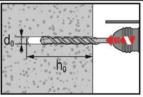
Stahlbürste gemäß Tabelle B5 bis B10 in Abhängigkeit vom Bohrlochdurchmesser für MC und CAC

Hilti HIT-HY 270	
Verwendungszweck	Anhang B9
Montagekennwerte Reinigungswerkzeuge	



Montageanweisung

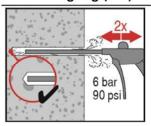
Bohrlocherstellung


Wenn beim Bohren über die gesamte Bohrlochtiefe (z.B. in nicht verfüllten Stoßfugen) kein nennenswerter Bohrwiederstand spürbar ist, so ist diese Setzposition zu verwerfen.

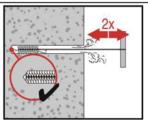
Bohrverfahren

Im Hohlstein (Nutzungskategorie c): Drehbohren

Bohrloch mit Bohrhammer im Drehmodus, unter Verwendung des passenden Bohrerdurchmessers, auf die richtige Bohrtiefe erstellen.

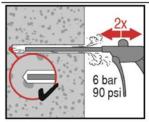

Im Vollstein (Nutzungskategorie b): Hammerbohren

Bohrloch mit Bohrhammer drehschlagend, unter Verwendung des passenden Bohrerdurchmessers, auf die richtige Bohrtiefe erstellen.


Bohrlochreinigung

Unmittelbar vor dem Setzen des Dübels muss das Bohrloch frei von Bohrmehl und Verunreinigungen sein. Schlechte Bohrlochreinigung = geringe Traglasten.

Handreinigung (MC) oder Druckluftreinigung (CAC) für Lochsteine und Vollsteine



Bohrloch 2-mal vom Bohrlochgrund über die gesamte Länge mit der Handpumpe (Bohrlochdurchmesser $d_0 \le 18$ mm und Bohrlochtiefe bis $h_0 = 100$ mm) oder ölfreier Druckluft (min. 6 bar bei 6 m³/h; Bohrlochtiefe bis $h_0 = 300$ mm) ausblasen, bis die rückströmende Luft staubfrei ist. Falls notwendig Verlängerung verwenden.

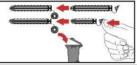
2-mal mit Stahlbürste in passender Größe (siehe Tabelle B5 bis B10) bürsten. Stahlbürste Hilti HIT-RB mit einer Drehbewegung in das Bohrloch bis zum Bohrlochgrund einführen und wieder herausziehen (falls notwendig mit Verlängerung).

Die Bürste muss beim Einführen einen Widerstand erzeugen (Bürste $\emptyset \ge$ Bohrloch \emptyset) – falls nicht, ist die Bürste zu klein und muss durch eine geeignete Bürste ersetzt werden.

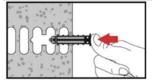


Bohrloch erneut mit der Handpumpe oder Druckluft 2-mal ausblasen, bis die rückströmende Luft staubfrei ist.

Hilti HIT-HY 270 Verwendungszweck Montageanweisung Anhang B10



Injektionsvorbereitung bei Mauerwerk mit Lochanteil und Hohlräumen: Montage mit Siebhülse HIT-SC


Einzelsiebhülse HIT-SC

Kappe aufstecken

Zwei Siebhülsen HIT-SC

Siebhülsen zusammenstecken und überflüssige Kappe entsorgen. Beachten, dass im Falle von unterschiedlichen Siebhülsenlängen die kurze Siebhülse in die lange Siebhülse gesteckt wird.

Siebhülse manuell einschieben.

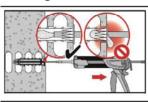
Bei der Verwendung von zwei Siebhülsen muss die Längere zuerst eingeschoben werden.

Für alle Anwendungen

Statikmischer HIT-RE-M fest auf Foliengebinde aufschrauben. Den Mischer unter keinen Umständen verändern.

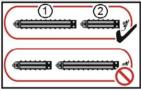
Bedienungsanleitung des Auspressgerätes und des Mörtels befolgen. Prüfen der Kassette und des Foliengebindes auf einwandfreie Funktion. Kein beschädigtes Gebinde verwenden.

Foliengebinde in die Kassette einführen und Kassette in Auspressgerät einsetzen.

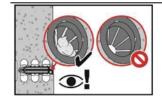


Das Öffnen der Foliengebinde erfolgt automatisch bei Auspressbeginn. Der am Anfang aus dem Mischer austretende Mörtelvorlauf darf nicht für Befestigungen verwendet werden. Die Menge des Mörtelvorlaufes ist abhängig von der Gebindegröße:

2 Hübe bei 330 ml Foliengebinde, 3 Hübe bei 500 ml Foliengebinde.


Injektion des Mörtels ohne Luftblasen zu bilden

Montage mit Siebhülse HIT-SC


Einzelsiebhülse HIT-SC

Den Mischer ca. 1 cm in die Kappe einschieben. Die gemäß Tabelle B5 bis B10 angegebene Mörtelmenge injizieren. Mörtel muss aus der Kappe austreten.

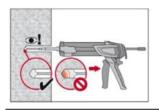
Zwei Siebhülsen HIT-SC

Mischerverlängerung bei der Montage von zwei Siebhülsen verwenden. Den Mischer ca. 1 cm durch die Spitze der Siebhülse "2" einschieben. Die gemäß Tabelle B5 bis B10 angegebene Mörtelmenge in die Siebhülse "1" injizieren. Mischer zurückziehen, bis er 1 cm in der Kappe der Siebhülse "2" steckt und Mörtel, wie vorher beschrieben, in die Siebhülse "2" injizieren.

Kontrolle der injizierten Mörtelmenge. Der Mörtel muss aus der Kappe ausgetreten sein.

Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.

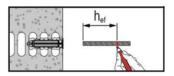
Hilti HIT-HY 270


Verwendungszweck

Montageanweisung

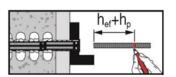
Anhang B11

Vollsteine: Montage ohne Siebhülse


Injizieren des Mörtels vom Bohrlochgrund und während jedes Hubes den Mischer zurückziehen.

Das Bohrloch zu ca. 2/3 verfüllen. Nach dem Einsetzen des Befestigungselementes muss der Ringspalt zwischen Dübel und Untergrund, über die gesamte Verankerungstiefe, vollständig mit Mörtel ausgefüllt sein.

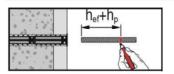
Nach der Mörtelinjektion die Entriegelungstaste am Auspressgerät betätigen, um Mörtelnachlauf zu vermeiden.


Setzen des Befestigungselementes:

Vor der Montage sicherstellen, dass das Element trocken und frei von Öl und anderen Verunreinigungen ist.

HIT-V-...oder HIT-IC in Lochstein und Vollstein: Vorsteckmontage (Bild A1 bis Bild A4)

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit t_{work} abgelaufen ist. Verarbeitungszeit t_{work} siehe Tabelle B11 und Tabelle B12.

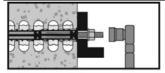


HIT-V-... in Lochstein und Vollstein:

Montage durch das Anbauteil (Bild A5a)

oder durch die nichttragende Schicht und das Anbauteil (Bild A5b)

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit t_{work} abgelaufen ist. Verarbeitungszeit t_{work} siehe Tabelle B11 und Tabelle B12.



HIT-V-... in Lochstein und Vollstein:

Montage durch die nichttragende Schicht (Bild A5c)

Befestigungselement markieren und bis zur gewünschten Verankerungstiefe einführen, noch bevor die Verarbeitungszeit t_{work} abgelaufen ist. Verarbeitungszeit t_{work} siehe Tabelle B11 und Tabelle B12.

Belasten des Dübels

Last bzw. Drehmoment aufbringen: Nach Ablauf der Aushärtezeit t_{cure} (siehe Tabelle B11 und Tabelle B12) kann der Dübel belastet werden.

Das aufzubringende Drehmoment darf die angegebenen Werte T_{max} gemäß Tabelle B5 bis B10 nicht überschreiten.

Hilti HIT-HY 270	
Verwendungszweck	Anhang B12
Montageanweisung	

Tabelle C1: β-Faktor für Baustellenversuche unter Zugbelastung

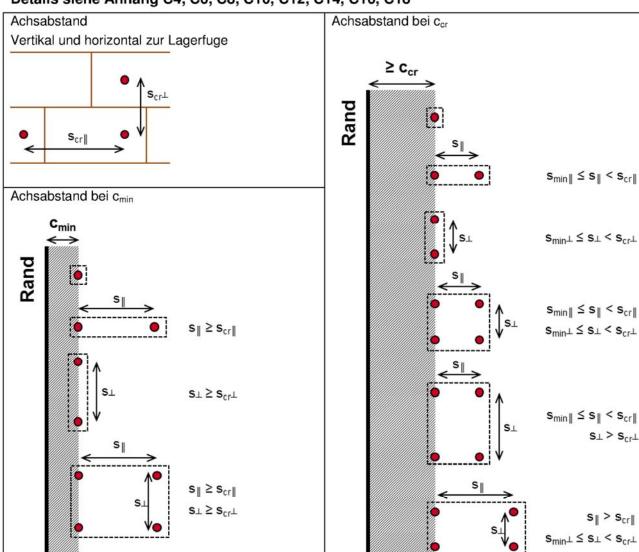
Nutzungskategorien		w/w u	nd w/d	d/d		
Temperatur Bereich		Ta*	Tb*	Ta*	Tb*	
Art des Mauersteins	Reinigung					
Vollziegel	CAC	0,96	0,96	0,96	0,96	
EN 771-1	MC	0,84	0,84	0,84	0,84	
Kalksandvollstein EN 771-2	CAC/MC	-	-	0,96	0,80	
Leichtbetonvollstein	CAC	0,82	0,68	0,96	0,80	
EN 771-3	MC	0,81	0,67	0,90	0,75	
Normalbetonvollstein EN 771-3	CAC/MC	0,96	0,80	0,96	0,80	
Lochziegel	CAC	0,81	0,81	0,81	0,81	
N 771-1 MC		0,71	0,71	0,71	0,71	
Kalksandlochstein EN 771-2	CAC/MC	-	-	0,96	0,80	
Leichtbeton Hohlblockstein EN 771-3	CAC	0,69	0,57	0,81	0,67	
	MC	0,68	0,56	0,76	0,63	
Normalbeton Lochstein EN 771-3	CAC/MC	0,96	0,80	0,96	0,80	

^{*} Temperaturbereich Ta / Tb siehe Anlage B1

Hilti HIT-HY 270	
Leistung β-Faktor für Baustellenversuche unter Zugbelastung	Anhang C1

Tabelle C2: Charakteristische Werte der Stahltragfähigkeit für Gewindestangen HIT-V unter Zuglast und Querlast in Mauerwerk

Stahlversagen Zuglast			М8	M10	M12	M16
HIT-V-5.8(F)	$N_{Rk,s}$	[kN]	18	29	42	79
HIT-V-8.8(F)	$N_{Rk,s}$	[kN]	29	46	67	126
HIT-V-R	$N_{Rk,s}$	[kN]	26	41	59	110
HIT-V-HCR	$N_{Rk,s}$	[kN]	29	46	67	126
Stahlversagen Querlast ohne Hebelarm						
HIT-V-5.8(F)	$V_{Rk,s}$	[kN]	9	15	21	39
HIT-V-8.8(F)	$V_{Rk,s}$	[kN]	15	23	34	63
HIT-V-R	$V_{Rk,s}$	[kN]	13	20	30	55
HIT-V-HCR	$V_{Rk,s}$	[kN]	15	23	34	63
Stahlversagen Querlast mit Hebelarm						
HIT-V-5.8(F)	$M_{Rk,s}$	[Nm]	19	37	66	167
HIT-V-8.8(F)	$M_{Rk,s}$	[Nm]	30	60	105	266
HIT-V-R	$M_{Rk,s}$	[Nm]	26	52	92	233
HIT-V-HCR	$M_{Rk,s}$	[Nm]	30	60	105	266


Tabelle C3: Charakteristische Werte der Stahltragfähigkeit für Innengewindehülse HIT-IC unter Zuglast und Querlast in Mauerwerk

Stahlversagen Zuglast			М8	M10	M12
HIT-IC	N _{Rk,s}	[kN]	5,9	7,3	13,8
Stahlversagen Querlast ohne Hebelarm					
HIT-V 5.8	$V_{Rk,s}$	[kN]	9	15	21
screw 8.8	$V_{Rk,s}$	[kN]	15	23	34
Stahlversagen Querlast mit Hebelarm					
HIT-V 5.8	$M_{Rk,s}$	[Nm]	19	37	66
screw 8.8	$M_{Rk,s}$	[Nm]	30	60	105

Hilti HIT-HY 270	
Leistung Charakteristische Werte unter Zuglast und Querlast – Stahlversagen	Anhang C2

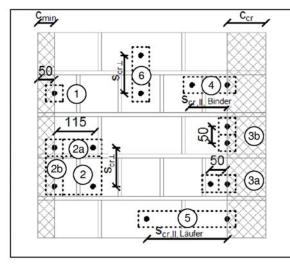
Achsabstand in Abhängigkeit vom Randabstand für alle Dübelkombinationen: Details siehe Anhang C4, C6, C8, C10, C12, C14, C16, C18

Die charakteristischen Widerstände einer Dübelgruppe werden unter Verwendung von Gruppenfaktoren α_g gemäß Anhang C4 bis C20, berechnet

 $\text{Gruppe mit zwei D\"{u}beln: } N_{Rk}^g = \alpha_{g,N} \cdot N_{Rk} \ \ \text{und} \quad V_{Rk}^g = \alpha_{g,V} \cdot V_{Rk} \ \ (\text{mit den relevanten } \alpha_g)$

 $\text{Gruppe mit vier D\"ubeln: } N_{Rk}^g = \alpha_{g,N \mid I} \cdot \alpha_{g,N} \bot \cdot N_{Rk} \ \text{ und } \ V_{Rk}^g = \alpha_{g,V \mid I} \cdot \alpha_{g,V} \bot \cdot V_{Rk}$

Hilti HIT-HY 270	
Leistung Dübel Achsabstand	Anhang C3



Art des Mauersteins: Vollziegel Mz, 2DF

Tabelle C4: Beschreibung des Mauersteins

Steintyp			Mz, 2DF
Rohdichte	ρ	[kg/dm ³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm ²]	≥ 12
Norm		3	EN 771 - 1
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

- Einzelbefestigung
 4 Dübel bei min. Randabstand
 2 Dübel horizontal bei min. Randabstand
 2 Dübel vertikal bei min. Randabstand
- 3a 2 Dübel horizontal bei charakt. Randabstand
- (3b) 2 Dübel vertikal bei charakt. Randabstand
- 4 Charakt. Achsabstand horizontal im Binder
- (5) Charakt. Achsabstand horizontal im Läufer
- 6 Charakt. Achsabstand vertikal in Binder und L\u00e4ufer

Tabelle C5: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		siehe Tabelle B3
Randabstand	c _{min} [mm]	50
	c _{cr} [mm]	115
Achsabstand	s _{min II} [mm]	50 bei c _{cr} und 115 bei c _{min}
	s _{min} ⊥[mm]	50 bei c _{cr} und 115 bei c _{min}
Binder	s _{cr II} [mm]	115
Läufer	s _{cr II} [mm]	240
Läufer und Binder	s _{cr} ⊥ [mm]	115

Tabelle C6: Gruppenfaktor für Gruppenbefestigungen ($\alpha_g \le 2$ pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{q,VII}\alpha_{q,V}{\scriptscriptstyle\perp}[-]$	0,3 für Position 2a, 3a, 3b
Gruppenfaktor	$\alpha_{g,N \; \text{II}} \; \alpha_{g,N} \perp [-]$	1,0 für Position 2a, 3a, 3b

i .	
Hilti HIT-HY 270	
Leistung Vollziegel Mz, 2DF	Anhang C4
Montageparameter und Gruppenfaktor	

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C7: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie			w/w = w/d		d	d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]		$N_{Rk,p} = N$	I _{Rk,b} [kN]		
	≥ 50	12	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)	
Alle Dübel	≥ 80	12	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)	
	≥ 100	12	6,0 (7,0*)	6,0 (7,0*)	6,0 (7,0*)	6,0 (7,0*)	

^{*} nur CAC Reinigung

Tabelle C8: Zugtragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie	w/w = w/d			/d		
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
Alle Dübel	alle	12	1,5 (2,0*)	1,5 (2,0*)	1,5 (2,0*)	1,5 (2,0*)

^{*} nur CAC Reinigung

Tabelle C9: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

Nutzungskategorie			w/w = w/d d/d			/d
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]			
Alle Dübel	alle	12	2,0			

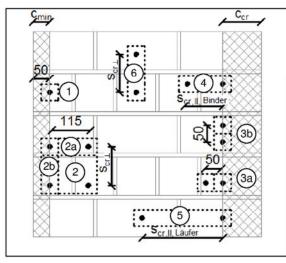
Tabelle C10: Quertragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie	w/w = w/d		d/d			
Gebrauchstemperaturbereich			Ta	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,c} [kN]			
Alle Dübel	alle	12	Bemessung gemäß ETAG029 Anhang C, Formel C5.6			

Tabelle C11: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	٧	δ_{V0}	$\delta_{V_{\infty}}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
50	0,86	0,1	0,2	0,6	0,5	0,8
80	1,3	0,2	0,4	0,6	0,5	0,8
100	1,7	0,3	0,6	0,6	0,5	0,8

Hilti HIT-HY 270	
Leistung Vollziegel Mz, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C5



Art des Mauersteins: Kalksandvollstein KS, 2DF

Tabelle C12: Beschreibung des Mauersteins

Steintyp			KS, 2DF
Rohdichte	ρ	[kg/dm ³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm ²]	≥ 12 oder ≥ 28
Norm			EN 771 - 2
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

- 1 Einzelbefestigung
- (2) 4 Dübel bei min. Randabstand
- (2a) 2 Dübel horizontal bei min. Randabstand
- (2b) 2 Dübel vertikal bei min. Randabstand
- (3a) 2 Dübel horizontal bei charakt. Randabstand
- (3b) 2 Dübel vertikal bei charakt. Randabstand
- (4) Charakt. Achsabstand horizontal im Binder
- (5) Charakt. Achsabstand horizontal im Läufer
- (6) Charakt. Achsabstand vertikal in Binder und Läufer

Tabelle C13: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		siehe Tabelle B3
Randabstand	c _{min} [mm]	50
	c _{cr} [mm]	115
Achsabstand	s _{min II} [mm]	50 bei c _{cr} und 115 bei c _{min}
	s _{min} ⊥[mm]	50 bei c _{cr} und 115 bei c _{min}
Binder	s _{cr II} [mm]	115
Läufer	s _{cr II} [mm]	240
Läufer und Binder	s _{cr} ⊥ [mm]	115

Tabelle C14: Gruppenfaktor für Gruppenbefestigungen ($\alpha_g \le 2$ pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{q,VII}\alpha_{q,V\perp}$ [-]	0,5 für Position 2a, 3a, 3b
Gruppenfaktor	$\alpha_{a,N} \parallel \alpha_{a,N} \perp [-]$	1 für Position 2a, 3a, 3b

Hilti HIT-HY 270	
Leistung Kalksandvollstein KS, 2DF Montageparameter und Gruppenfaktor	Anhang C6

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C15: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie			w/w :	w/w = w/d d/d			
Gebrauchstemperaturbereich			Та	Tb	Та	Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$				
Alle Dübel	alle	12	-	-	6,0	5,0	
Alle Dubei	ane	28	=	-	9,0	7,5	

Tabelle C16: Zugtragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w = w/d d/d			/d	
Gebrauchstemperaturbereich			Та	Tb	Ta	Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$				
Alle Dübel	alla	12	-		4,0	3,5	
Alle Dubei	alle	28	-		6,5	5,5	

Tabelle C17: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

Nutzungskategorie			w/w = w/d d/d			/d
Gebrauchstemperaturbereich			Ta Tb Ta T			Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]			
Alla Dübal	alla	12	-		6,0	
Alle Dübel	alle	28	-		9,0	

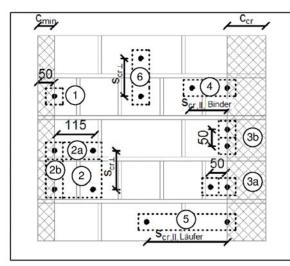
Tabelle C18: Quertragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w = w/d d/d			/d
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,c} [kN]			
					Bemessung g	
Alle Dübel	alle	alle	-		ETAG029	
					Anhang C,	Formel C5.6

Tabelle C19: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ_{V_∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
alle	2,5	0,3	0,6	2,5	1,0	1,5

Hilti HIT-HY 270	
Leistung Kalksandvollstein KS, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C7



Art des Mauersteins: Leichtbetonvollstein Vbl, 2DF

Tabelle C20: Beschreibung des Mauersteins

Steintyp			Vbl, 2DF
Rohdichte	ρ	[kg/dm³]	≥ 0,9
Druckfestigkeit	f _b	[N/mm ²]	≥ 4 oder ≥ 6
Norm			EN 771-3
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

1 Einzelbefestigung
2 4 Dübel bei min. Randabstand
2a 2 Dübel horizontal bei min. Randabstand
2b 2 Dübel vertikal bei min. Randabstand
3a 2 Dübel horizontal bei charakt. Randabstand
3b 2 Dübel vertikal bei charakt. Randabstand
4 Charakt. Achsabstand horizontal im Binder
5 Charakt. Achsabstand horizontal im Läufer
6 Charakt. Achsabstand vertikal in Binder und Läufer

Tabelle C21: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		siehe Tabelle B3
Randabstand	c _{min} [mm]	50
	c _{cr} [mm]	115
Achsabstand	s _{min II} [mm]	50 bei c _{cr} und 115 bei c _{min}
	s _{min} ⊥[mm]	50 bei c _{cr} und 115 bei c _{min}
Binder	s _{cr II} [mm]	115
Läufer	s _{cr II} [mm]	240
Läufer und Binder	s _{cr} ⊥ [mm]	115

Tabelle C22: Gruppenfaktor für Gruppenbefestigungen ($\alpha_g \le 2$ pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N \perp} \alpha_{g,V \perp} [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	1 für Position 2a, 3a, 3b

Hilti HIT-HY 270	
Leistung Leichtbetonvollstein Vbl, 2DF Montageparameter und Gruppenfaktor	Anhang C8

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C23: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie			w/w :	w/w = w/d		d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb	
Dübelgröße h _{ef} [mm] f _b [N/mm²]		$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$					
Alle Dübel	≥ 50	4	3,0	2,0	3,0 (3,5*)	2,5	
		6	3,5	3,0	4,0	3,0 (3,5*)	
	≥ 80	4	4,5	3,5	5,0	4,0 (4,5*)	
		6	5,5	4,5	6,0 (6,5*)	5,0 (5,5*)	
	> 100	4	6,0	5,0	6,5 (7,0*)	5,5 (6,0*)	
	≥ 100	6	7,5	6,0	8,0 (8,5*)	6,5 (7,0*)	

^{*} nur CAC Reinigung

Tabelle C24: Zugtragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w :	w/w = w/d d/d			
Gebrauchstemperaturbereich			Та	Tb	Та	Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$				
Alle Dübel	alle	4	1,5	1,5	2,0	1,5	
	alle	6	2,0	1,5	2,5	2,0	

Tabelle C25: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

Nutzungskategorie			w/w :	= w/d	d/d		
Gebrauchstemperaturbereich			Та	Tb	Та	Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]				
M8	alle	4	2,0				
IVIO	alle	6	2,5				
M10 to M16	alle	4	2,5				
M10 to M16		6	3,0				

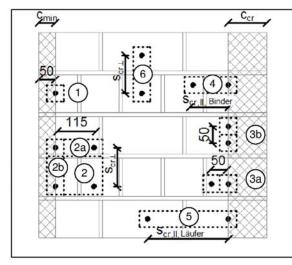
Tabelle C26: Quertragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w :	= w/d	d/d			
Gebrauchstemperaturbereich			Та	Tb				
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,c} [kN]					
Alle Dübel	alle	alle	Bemessung gemäß ETAG029 Anhang C, Formel C5.6					

Tabelle C27: Verschiebungen

h_{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ_{V_∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
alle	2,5	0,3	0,6	1,8	2,0	3,0

Hilti HIT-HY 270	
Leistung Leichtbetonvollstein Vbl, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C9



Art des Mauersteins: Normalbetonvollstein Vbn, 2DF

Tabelle C28: Beschreibung des Mauersteins

Steintyp			Vbn, 2DF
Rohdichte	ρ	[kg/dm ³]	≥ 2,0
Druckfestigkeit	f _b	[N/mm ²]	≥ 6 oder ≥ 16
Norm		7	EN 771-3
Hersteller			
Steinabmessungen		[mm]	≥ 240 x 115 x 113
Minimale Wanddicke	h _{min}	[mm]	≥ 115

1 Einzelbefestigung
2 4 Dübel bei min. Randabstand
2a 2 Dübel horizontal bei min. Randabstand
2b 2 Dübel vertikal bei min. Randabstand
3a 2 Dübel horizontal bei charakt. Randabstand
3b 2 Dübel vertikal bei charakt. Randabstand
4 Charakt. Achsabstand horizontal im Binder
5 Charakt. Achsabstand horizontal im Läufer
6 Charakt. Achsabstand vertikal in Binder und Läufer

Tabelle C29: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		siehe Tabelle B3
Randabstand	c _{min} [mm]	50
Haridabstaria	c _{cr} [mm]	115
Achsabstand	s _{min II} [mm]	50 bei c _{cr} und 115 bei c _{min}
	s _{min} ⊥[mm]	50 bei c _{cr} und 115 bei c _{min}
Binder	$s_{cr l} = s_{cr} \perp [mm]$	115
Läufer	s _{cr II} [mm]	240

Tabelle C30: Gruppenfaktor für Gruppenbefestigungen (α_g ≤ 2 pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	1 für Position 2a, 3a, 3b

Hilti HIT-HY 270	
Leistung Normalbetonvollstein Vbn, 2DF Montageparameter und Gruppenfaktor	Anhang C10

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C31: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie			w/w = w/d		d/d		
Gebrauchstemperaturbereich			Ta Tb Ta Tb			Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$				
Alla Dübal	alle	6	3,0	2,5	3,0	2,5	
Alle Dübel		16	5,5	4,5	5,5	4,5	

Tabelle C32: Zugtragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w = w/d		d/d		
Gebrauchstemperaturbereich			Ta Tb Ta Tb			Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$				
Alle Dübel	alle	6	1,5	1,2	1,5	1,2	
Alle Dubel		16	2,5	2,0	2,5	2,0	

Tabelle C33: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

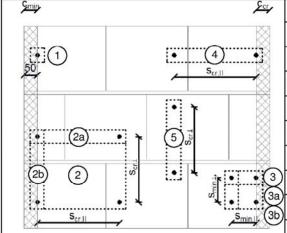
Nutzungskategorie			w/w :	= w/d	d/d		
Gebrauchstemperaturbereich			Ta Tb Ta T			Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]				
Alle Dübel	Alle Dübel alle 6			4,0			
Alle Dubei	ano	16	6,5				

Tabelle C34: Quertragfähigkeit bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w = w/d		d/d		
Gebrauchstemperaturbereich			Та	Tb	Ta	Tb	
Dübelgröße	h _{ef} [mm]	f _b [N/mm ²]	V _{Rk.c} [kN]				
Alle Dübel	alle	alle	Bemessung gemäß ETAG029 Anhang C, Formel C5.6				

Tabelle C35: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	٧	δ_{V0}	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
alle	1,5	0,3	0,6	1,8	2,0	3,0


Hilti HIT-HY 270	
Leistung Normalbetonvollstein Vbn, 2DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C11

Art des Mauersteins: Lochziegel Hlz, 10DF Tabelle C36: Beschreibung des Mauersteins

Steintyp			Hlz12-1,4-10 DF
Rohdichte	ρ	[kg/dm ³]	≥ 1,4
Druckfestigkeit	f _b	[N/mm ²]	≥ 12 oder ≥ 20
Norm			EN 771 - 1
Hersteller			Rapis
Steinabmessungen		[mm]	300 x 240 x 238
Minimale Wanddicke	h _{min}	[mm]	≥ 240

- 1) Einzelbefestigung
- (2) 4 Dübel bei min. Randabstand
- (2a) 2 Dübel horizontal bei min. Randabstand
- (2b) 2 Dübel vertikal bei min. Randabstand
- (3) 4 Dübel bei charakt. Randabstand
- (3a) 2 Dübel horizontal bei charakt. Randabstand
- (3b) 2 Dübel vertikal bei charakt. Randabstand
- (4) Charakteristischer Achsabstand horizontal
- (5) Charakteristischer Achsabstand vertikal

Tabelle C37: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

	37. 33					
Befestigungselement			siehe Tabelle B3			
Randabstand	c _{min} [mm]	50				
	c _{cr} [mm]	50 bei Zuglast und 150 bei Querlast				
Achsabstand	$s_{min I} = s_{min} \perp [mm]$	80 (HIT-SC 16x85)	90 (HIT-SC 18x85)	110 (HIT-SC 22x85)		
	s _{min} [mm]	$S_{min } = S_{cr } S_{min} \perp = S_{cr} \perp \text{ for } h_{ef} > 80$				
	s _{cr II} [mm]	300				
	s _{cr} ⊥ [mm]					

Tabelle C38: Gruppenfaktor für Gruppenbefestigungen (α_g ≤ 2 pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{g,N \parallel} \alpha_{g,V \parallel} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	1 für Position 3, 3a, 3b

Hilti HIT-HY 270	
Leistung Lochziegel Hlz, 10DF Montageparameter und Gruppenfaktor	Anhang C12

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C39: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie	Nutzungskategorie				d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
	≥ 80	12	1,5	1,5	1,5	1,5
Gewindestange	≥ 80	20	2,0	2,0	2,0	2,0
HIT-V M8 bis M16	≥ 130	12	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)	2,5 (3,0*)
	≥ 130	20	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)	3,5 (4,0*)
Innengewindehülse	90	12	1,5	1,5	1,5	1,5
HIT-IC M8, M10, M12	80	20	2,0	2,0	2,0	2,0

^{*} nur CAC Reinigung

Tabelle C40: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

Nutzungskategorie	w/w = w/d		d/d			
Gebrauchstemperaturbereich			Ta Tb Ta Tb			
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]			
HIT-V M8, M10, M12	> 00	12	2,0			
HIT-IC M8	≥ 80	20	3,0			
HIT-V M16	≥ 80	12	2 3,5			
HIT-IC M10, M12	≥ 00	20	4,5			

Tabelle C41: Quertragfähigkeit vertikal zum freien Rand bei Randabstand $c_{min} \le c < c_{cr}$

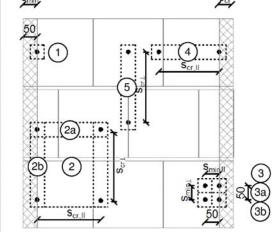
Nutzungskategorie			w/w	= w/d	d/d	
Gebrauchstemperat	urbereich		Ta Tb		Та	Tb
Dübelgröße	h _{ef} [mm]	c [mm]	V _{Rk,c} [kN]			
Alle Dübel	alla	≥ 50	1,25			
Alle Dubei	alle	≥ 250	siehe Tabelle C40			

Tabelle C42: Quertragfähigkeit parallel zum freien Rand bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w = w/d			d/d	
Gebrauchstemperati	ırbereich	Ta Tb			Та	Tb	
Dübelgröße	h _{ef} [mm]	c [mm]	V _{Rk.e} [kN]			•	
Alla Dübal	alla	≥ 50	1,25				
Alle Dübel	alle	≥ 250	siehe Tabelle C40; ≤ 2,5 kN			N	

Tabelle C43: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ_{V_∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	0,7	0,1	0,2	1,7	1,0	1,5
130	1,4	0,3	0,6	1,7	1,0	1,5


Hilti HIT-HY 270	
Leistung Lochziegel Hlz, 10DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C13

Art des Mauersteins: Kalksandlochstein KSL, 8DF Tabelle C44: Beschreibung des Mauersteins

Steintyp			KSL-12-1,4-8 DF
Rohdichte	ρ	[kg/dm³]	≥ 1,4
Druckfestigkeit	f _b	[N/mm ²]	≥ 12 oder ≥ 20
Norm			EN 771 – 2
Hersteller			KS Wemding
Steinabmessungen		[mm]	248 x 240 x 238
Minimale Wanddicke	h _{min}	[mm]	≥ 240

1 Einzelbefestigung
2 4 Dübel bei min. Randabstand
2a 2 Dübel horizontal bei min. Randabstand
2b 2 Dübel vertikal bei min. Randabstand
3 4 Dübel bei charakt. Randabstand
3a 2 Dübel horizontal bei charakt. Randabstand
3b 2 Dübel vertikal bei charakt. Randabstand
4 Charakteristischer Achsabstand horizontal
5 Charakteristischer Achsabstand vertikal

Tabelle C45: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		siehe Tabelle B3
Randabstand	c _{min} [mm]	50
	c _{cr} [mm	50 bei Zuglast und 125 bei Querlast
Achsabstand	s _{min II} [mm]	50
	s _{min} ⊥[mm]	50
	s _{cr II} [mm]	250
	s _{cr} ⊥ [mm]	240

Tabelle C46: Gruppenfaktor für Gruppenbefestigungen (α_g ≤ 2 pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{g,N\;II}\alpha_{g,V\;II}\alpha_{g,N}{\scriptstyle\perp}\alpha_{g,V}{\scriptstyle\perp}[\text{-}]$	1 für Position 3, 3a, 3b

Hilti HIT-HY 270	
Leistung Kalksandlochstein KSL, 8DF Montageparameter und Gruppenfaktor	Anhang C14

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C47: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie			w/w = w/d		d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm ²]		$N_{Rk,p} = N$	I _{Rk,b} [kN]	
	≥ 80	12	-	-	4,0	3,0
Gewindestange HIT-V M8 bis M16	≥ 80	20	-	-	5,5	4,5
	≥ 130	12	1	-	5,0	4,0
	≥ 130	20	-	-	7,5	6,0
HIT-IC M8, M10, M12 80	00	12	-	-	4,0	3,0
	00	20	-	-	5,5	4,5

Tabelle C48: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

Nutzungskategorie			w/w :	= w/d	d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm ²]		$V_{Rk,b}$	[kN]	
HIT-V M8 ≥ 80		12	-		6,0	
HIT-V M8	≥ 60	20	-		9,0	
HIT-V M10	,	12	-		9,0	
	IT-V M10 ≥ 80		-		12,0	
HIT-V M12, M16	≥ 80	12	•	=	10	,0
HIT-IC M8, M10, M12	≥ 00	20		-	12	,0

Tabelle C49: Quertragfähigkeit vertikal zum freien Rand bei Randabstand c_{min} ≤ c < c_{cr}

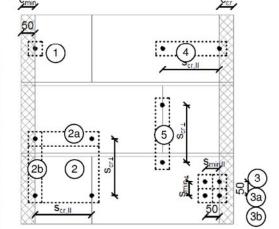
Nutzungskategorie			w/w = w/d		/d	
Gebrauchstemperaturbereich			Ta Tb Ta Tb			Tb
Dübelgröße	h _{ef} [mm]	c [mm]		$V_{\rm Rk,c}$	[kN]	
Alle Dübel	alle	≥ 50	1,25			
Alle Dubei alle		≥ 250	siehe Tabelle C48			

Tabelle C50: Quertragfähigkeit vertikal zum freien Rand bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w = w/d d/d			/d
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	c [mm]	V _{Rk,c} [kN]			
Alle Dübel alle -		≥ 50		1,25		
		≥ 100	9	siehe Tabelle C48; ≤ 2,5 kN		N

Tabelle C51: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	$\delta_{ m V0}$	δ_{V_∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	1,0	0,3	0,6	4,3	2,0	3,0
130	2,1	0,3	0,6	4,3	2,0	3,0


Hilti HIT-HY 270	
Leistung Kalksandlochstein KSL, 8DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C15

Art des Mauersteins: Leichtbeton Hohlblockstein Hbl, 16DF Tabelle C52: Beschreibung des Mauersteins

Steintyp			Hbl-4-0,7
Rohdichte	ρ	[kg/dm ³]	≥ 0,7
Druckfestigkeit	f _b	[N/mm ²]	≥ 2 oder ≥ 6
Norm			EN 771-3
Hersteller			Knobel
Steinabmessungen		[mm]	495 x 240 x 238
Minimale Wanddicke	h _{min}	[mm]	≥ 240

1 Einzelbefestigung
2 4 Dübel bei min. Randabstand
2a 2 Dübel horizontal bei min. Randabstand
2b 2 Dübel vertikal bei min. Randabstand
3 4 Dübel bei charakt. Randabstand
3a 2 Dübel horizontal bei charakt. Randabstand
3b 2 Dübel vertikal bei charakt. Randabstand
4 Charakteristischer Achsabstand horizontal
5 Charakteristischer Achsabstand vertikal

Tabelle C53: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		siehe Tabelle B3
Randabstand	c _{min} [mm]	50
	c _{cr} [mm	50 bei Zuglast und 250 bei Querlast
Achsabstand	s _{min II} [mm]	50
	s _{min} ⊥[mm]	50
	s _{cr II} [mm]	240
	s _{cr} ⊥ [mm]	240

Tabelle C54: Gruppenfaktor für Gruppenbefestigungen ($\alpha_g \le 2$ pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{g,N \mid \mid} \alpha_{g,V \mid \mid} \alpha_{g,N} \perp \alpha_{g,V} \perp \text{[-]} $	1 für Position 3, 3a, 3b

Hilti HIT-HY 270	
Leistung Leichtbeton Hohlblockstein Hbl, 16DF Montageparameter und Gruppenfaktor	Anhang C16

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C55: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie	w/w :	w/w = w/d		d/d		
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$N_{Rk,p} = N_{Rk,b} [kN]$			
	≥ 80	2	1,2	0,9	1,5	1,2
Gewindestange	≥ 80	6	2,0	1,5	2,5	2,0
HIT-V M8 bis M16	≥ 160	2	1,5	1,2	1,5 (2,0*)	1,5
	≥ 160	6	2,5 (3,0*)	2,0	3,0 (4,0*)	2,5
HIT-IC M8, M10, M12	90	2	1,2	0,9	1,5	1,2
	80	6	2,0	1,5	2,5	2,0

^{*} nur CAC Reinigung

Tabelle C56: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

Nutzungskategorie	w/w = w/d d/d		/d			
Gebrauchstemperaturbereich			Ta Tb Ta Tb			
Dübelgröße	h _{ef} [mm]	f _b [N/mm ²]	V _{Rk,b} [kN]			
HIT-V M8, M10	≥ 80	> 00 2		3,5		
HII-V 1016, 10110	≥ 00	6	6,0			
HIT-V M12, M16	≥ 80	2		4	,5	
HIT-IC M8, M10, M12	≥ 00	6	8,0			

Tabelle C57: Quertragfähigkeit vertikal zum freien Rand bei Randabstand c_{min} ≤ c < c_{cr}

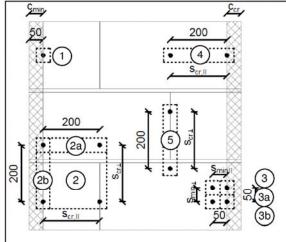
Nutzungskategorie			w/w = w/d d/d			/ d
Gebrauchstemperat	turbereich		Ta Tb Ta		Tb	
Dübelgröße	h _{ef} [mm]	c [mm]	V _{Rk,c} [kN]			•
Alle Dübel	alle	≥ 50	1,25			
Alle Dubei	alic	≥ 250		siehe Ta	belle C56	

Tabelle C58: Quertragfähigkeit vertikal zum freien Rand bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie			w/w = w/d d/d			/ d
Gebrauchstemperaturb	reich T		Ta Tb Ta Tb		Tb	
Dübelgröße	h _{ef} [mm]	c [mm]	V _{Rk,c} [kN]			
Alle Dübel	alle	≥ 50	1,25			
Alle Dubei	ano	≥ 100	siehe Tabelle C56; ≤ 2,5 kN			Ν

Tabelle C59: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δ_{V0}	δ_{V_∞}
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
80	0,86	0,2	0,4	2,3	1,0	1,5
160	1,14	0,25	0,5	2,3	1,0	1,5


Hilti HIT-HY 270	
Leistung Leichtbeton Hohlblockstein Hbl, 16DF Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C17

Art des Mauersteins: Normalbeton Lochstein - parpaing creux Tabelle C60: Beschreibung des Mauersteins

Steintyp			B40
Rohdichte	ρ	[kg/dm ³]	≥ 0,9
Druckfestigkeit	f _b	[N/mm ²]	≥ 4 oder ≥ 10
Norm			EN 771-3
Hersteller			Fabemi (F)
Steinabmessungen		[mm]	500 x 200 x 200
Minimale Wanddicke	h _{min}	[mm]	≥ 200

1 Einzelbefestigung
2 4 Dübel bei min. Randabstand
2a 2 Dübel horizontal bei min. Randabstand
2b 2 Dübel vertikal bei min. Randabstand
3 4 Dübel bei charakt. Randabstand
3a 2 Dübel horizontal bei charakt. Randabstand
3b 2 Dübel vertikal bei charakt. Randabstand
4 Charakteristischer Achsabstand horizontal
5 Charakteristischer Achsabstand vertikal

Tabelle C61: Montageparameter für alle Dübelkombinationen (siehe Tabelle B3)

Befestigungselement		siehe Tabelle B3
Randabstand	c _{min} [mm]	50
	c _{cr} [mm	50 bei Zuglast und 200 bei Querlast
Achsabstand	s _{min II} [mm]	50
	s _{min} ⊥[mm]	50
	s _{cr II} [mm]	200
	s _{cr} ⊥ [mm]	200

Tabelle C62: Gruppenfaktor für Gruppenbefestigungen ($\alpha_g \le 2$ pro Gruppenbefestigungen)

Gruppenfaktor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	2 bei c _{cr} und s _{cr}
Gruppenfaktor	$\alpha_{g,N \mid I} \alpha_{g,V \mid I} \alpha_{g,N} \perp \alpha_{g,V} \perp [-]$	1 für Position 3, 3a, 3b

Hilti HIT-HY 270	
Leistung Normalbeton Lochstein - parpaing creux Montageparameter und Gruppenfaktor	Anhang C18

Charakteristische Werte der Tragfähigkeit für alle Dübelkombinationen (siehe Tabelle B3) Tabelle C63: Zugtragfähigkeit bei Randabstand $c \ge c_{cr}$

Nutzungskategorie			w/w	= w/d	d/d	
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	$\mathbf{N}_{Rk,p} = \mathbf{N}_{Rk,b} [kN]$			
Alle Dübel	≥ 50	4	0,9	0,9	0,9	0,9
	2 50	10	2,0	1,5	2,0	1,5
Alle Dübel	> 100	4	1,5	1,2	1,5	1,2
	≥ 130	10	2,5	2,0	2,5	2,0

Tabelle C64: Quertragfähigkeit bei Randabstand c ≥ c_{cr}

Nutzungskategorie	w/w = w/d		d/d			
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	f _b [N/mm²]	V _{Rk,b} [kN]			
Alle Dübel	alle	4	3,5			
Alle Dubei	alle	10	6,0			

Tabelle C65: Quertragfähigkeit vertikal zum freien Rand bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie	w/w = w/d d/d			/d		
Gebrauchstemperaturbereich			Та	Ta Tb Ta		
Dübelgröße	h _{ef} [mm]	c [mm]	V _{Rk,c} [kN]			
Alle Dübel	alle	≥ 50	1,25			
Alle Dubei	allo	≥ 250	siehe Tabelle C64			

Tabelle C66: Quertragfähigkeit vertikal zum freien Rand bei Randabstand c_{min} ≤ c < c_{cr}

Nutzungskategorie	w/w = w/d d/d			/d		
Gebrauchstemperaturbereich			Та	Tb	Та	Tb
Dübelgröße	h _{ef} [mm]	c [mm]	V _{Rk,c} [KN]			
Alle Dübel	alle	≥ 50		1,;	25	
Alle Dubei	ano	≥ 100	siehe Tabelle C64; ≤ 2,5 kN			Z

Tabelle C67: Verschiebungen

h _{ef}	N	δ_{N0}	δ _{N∞}	V	δ_{V0}	$\delta_{V\infty}$
[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
all	0,7	0,5	1,0	1,7	1,0	1,5

Hilti HIT-HY 270	
Leistung Normalbeton Lochstein - parpaing creux Charakteristische Werte der Tragfähigkeit unter Zuglast und Querlast Verschiebungen	Anhang C19