

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

of 25 March 2014

ETA-14/0022

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system UNIKA PE for concrete

Bonded anchor with anchor rod for use in concrete

UNIKA CO. LTD Iwamotocho 2-10-6 Chiyoda-ku TOKYO 101-0032 JAPAN

JAPAN 1

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-14/0022

Page 2 of 27 | 25 March 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Specific Part

1 Technical description of the product

The "Injection system UNIKA PE for concrete" is a bonded anchor consisting of a cartridge with injection mortar UNIKA PE and a steel element. The steel elements are commercial threaded rods according to Annex A 3 in the range of M8 to M30 or reinforcing bar according to Annex A 3 in the range of M8 to M30 or reinforcing bar according to Annex A 3 in the range of M8 to M30 or reinforcing bar according to Annex A 3 in the range of M8 to M30 or reinforcing bar according to Annex A 3 in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The Illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead the assumption of working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance					
Characteristic resistance for tension loads in non-cracked concrete	See Annex C 1 / C 4 / C 7 / C 10					
Characteristic resistance for tension loads in cracked concrete	See Annex C 2 / C 5 / C 8 / C 11					
Characteristic resistance for shear loads in cracked and non-cracked concrete	See Annex C 3 / C 6 / C 9 / C 12					
Displacements under tension and shear loads	See Annex C 13 / C 14					

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the EU-Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

European Technical Assessment ETA-14/0022

Page 4 of 27 | 25 March 2014

3.4 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was investigated for this product.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

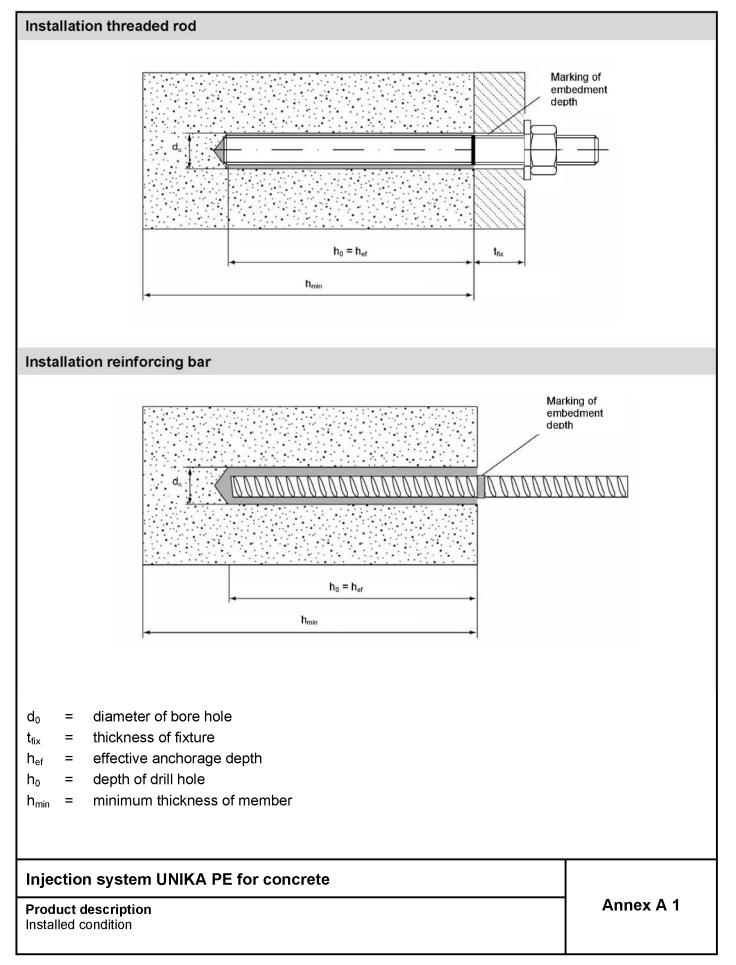
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

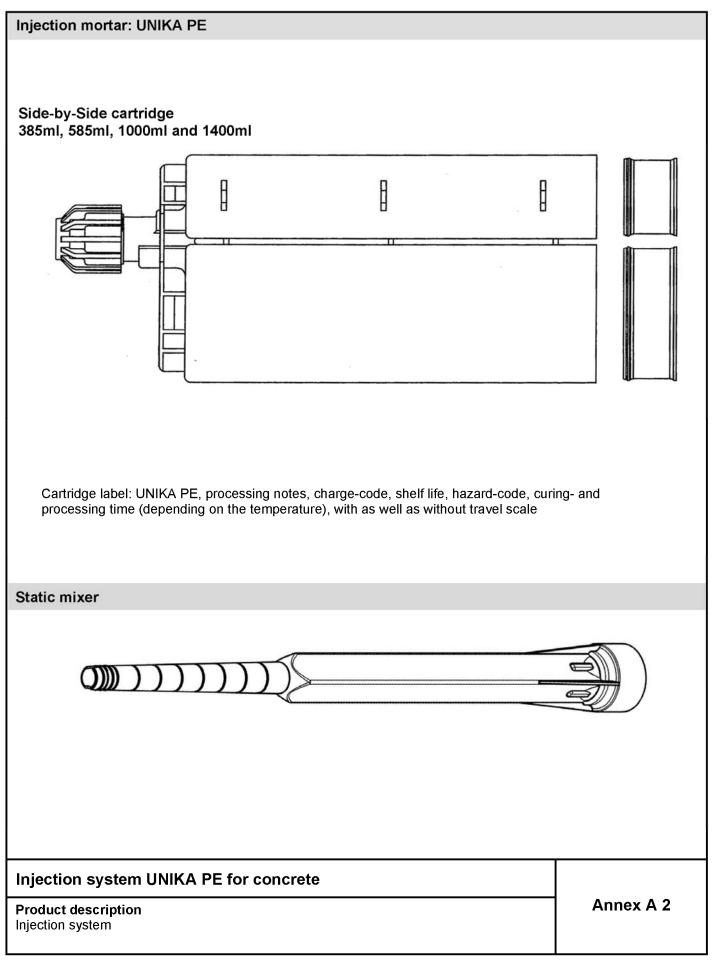
Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European assessment Dcoument

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 25 March 2014 by Deutsches Institut für Bautechnik


Gerhard Breitschaft President

5


Beglaubigt: Baderschneider

Page 5 of European Technical Assessment ETA-14/0022 of 25 March 2014

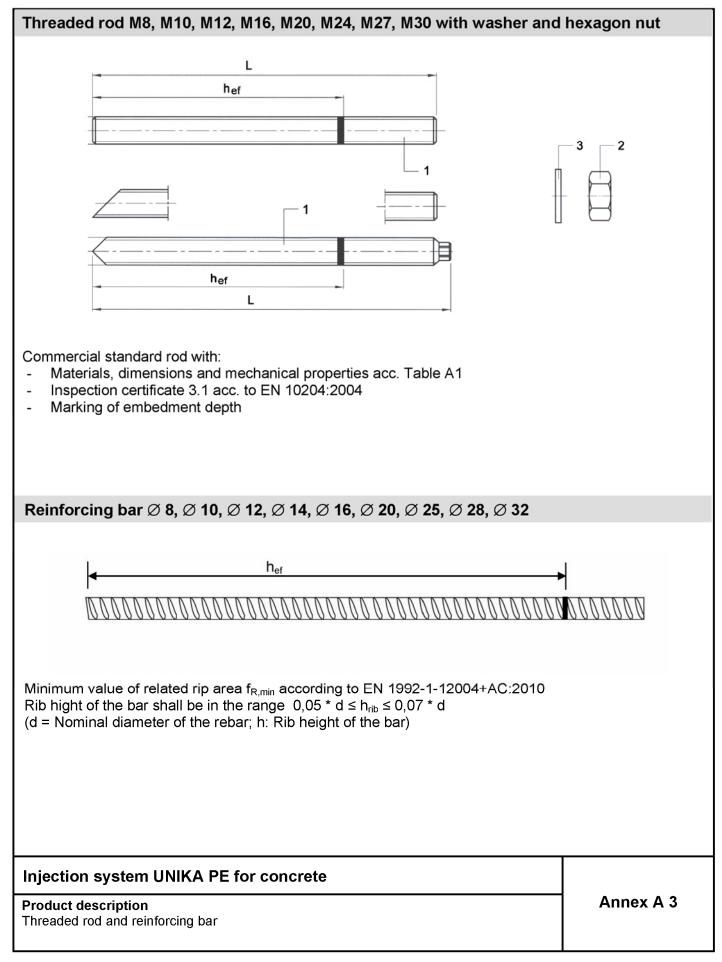


Table A1: Materials

Part		Material
	, zinc plated \ge 5 µm acc. to EN ISO 404	
not-d	lip galvanised ≥ 40 µm acc. to EN ISO 1	461:2009 and EN ISO 10684:2004+AC:2009
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised
Stain	less steel	
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005
High	corrosion resistance steel	
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005
Reinf	forcing bars	
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

Injection system UNIKA PE for concrete

Product description Materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- · Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject external atmospheric exposure and to permanently damp internal condition, if other
 particular aggressive conditions exist
 - (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
- EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
- CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
- Conditions for anchorages under seismic actions:
- Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
- Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system UNIKA PE for concrete

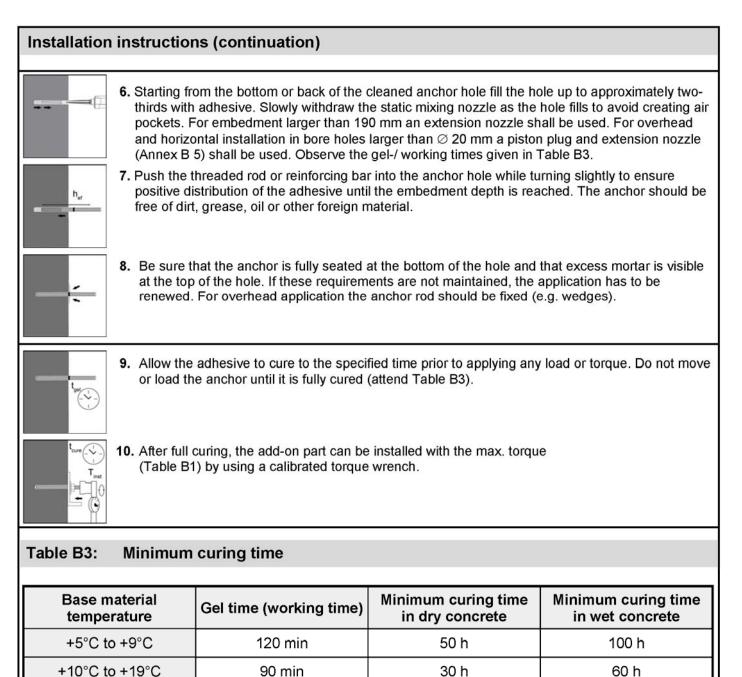
Intended Use Specifications Annex B 1

Deutsches Institut für Bautechnik

Table B1: Installation	parameters fo	or threa	aded ro	d								
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30			
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35			
Effective encharage depth	h _{ef,min} [mm] =	64	80	96	128	160	192	216	240			
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360			
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33			
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37			
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200			
Thickness of future	t _{fix,min} [mm] >	[mm] > 0										
Thickness of fixture	t _{fix,max} [mm] <				15	00						
Minimum thickness of member	h _{min} [mm]	m] h _{ef} + 30 mm h _{ef} + 2d₀ 2100 mm										
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150			
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150			

Table B2: Installation parameters for rebar

			-	-	-		-	-		
Rebar size		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d _o [mm] =	12	14	16	18	20	24	32	35	40
Effective encharage depth	h _{ef,min} [mm] =	64	80	96	112	128	160	200	224	256
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _⊳ [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀								
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160


Injection system UNIKA PE for concrete

Intended Use Installation parameters Annex B 2

Installation	instructions	
	 Drill with hammer drill a hole into the base material to the size and ember by the selected anchor (Table B1 or Table B2). 	edment depth required
++	Attention! Standing water in the bore hole must be removed before c	leaning.
⊢₀ 2x	2a. Starting from the bottom or back of the bore hole, blow the hole clean w (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the reached an extension shall be used.	
or ++	The hand-pump can be used for anchor sizes up to bore hole diameter	20 mm.
• 8ar H	For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	min. 6 bar) <u>must</u> be
	2b. Check brush diameter (Table 5) and attach the brush to a drilling machi screwdriver. Brush the hole with an appropriate sized wire brush > $d_{b,mir}$ of two times. If the bore hole ground is not reached with the brush, a brushall be used (Table 5).	(Table B4) a minimum
2x	2c. Finally blow the hole clean again with compressed air or a hand pump (of two times. If the bore hole ground is not reached an extension shall b The hand-pump can be used for anchor sizes up to bore hole diameter For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	e used. 20 mm.
or ••• ••• 2x	After cleaning, the bore hole has to be protected against re-contan appropriate way, until dispensing the mortar in the bore hole. If ne repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.	
•	 Attach a supplied static-mixing nozzle to the cartridge and load the cartridispensing tool. For every working interruption longer than the recommended working till as for new cartridges, a new static-mixer shall be used. 	-
	 Prior to inserting the anchor rod into the filled bore hole, the position of t shall be marked on the anchor rods. 	the embedment depth
×	5. Prior to dispensing into the anchor hole, squeeze out separately a minim and discard non-uniformly mixed adhesive components until the mortar colour.	
Injection sy	stem UNIKA PE for concrete	
Intended Use	ructions	Annex B 3

10 h

6 h

4 h

Injection system UNIKA PE for concrete

30 min

20 min

12 min

Intended Use Installation instructions (continuation) Curing time

+20°C to +29°C

+30°C to +39°C

+40 °C

Annex B 4

20 h

12 h

8 h

Table B4: Param	neter clear	ning and se	etting tools		
Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
		8	a mil		
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not pocossan/
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
Rebar	Ø12	16,0	18,0	16,5	Not necessary
	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
99999999999999999999999999999999999999	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d_0): 10 mm to 40 mm

Injection system UNIKA PE for concrete

Intended Use Cleaning and setting tools

Annex B 5

Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resist Steel, property class 4.6	ance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resist Steel, property class 5.8		N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resist Steel, property class 8.8	·	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resist Stainless steel A4 and HCR property class 50 (>M24) ar	,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and co	ncrete cone failure										
Characteristic bond resistan	ce in non-cracked co	ncrete C2	0/25								
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	13	13	12	12	11	10	10	10
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	13	12	11	9,0	8,0	7,0	6,5	6,0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,5	6,0	6,0
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,0	5,5	5,0
	•	C30/37					1,	04			
Increasing factors for concre Ψ_c	ete	C40/50					1,	08			
		C50/60					1,	10			
Splitting failure											
			h / h _{ef} ≥ 2,0	1	,0 h _{ef}		h _{ef} a				
Edge distance	-	2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1,8 h			3				
	-	h / h _{ef} ≤ 1,3		2,26 h _{ef}				101			C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]			1 hard lar	2 0	1,0 h	ef Z,	26 h _{ef}	20100191
Installation safety factor (dr	v and wet concrete)		[]		1	,2		2 c _{cr,sp}			
Installation safety factor (flo	-	γ2				,2	4			,4	
Installation salety lactor tho	bueu bore noie)	Y2					1	,4			

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to TR 029 $\,$

Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	M 30	
Steel failure										
Characteristic tension re Steel, property class 4.6		$N_{Rk,s} = N_{Rk,s,seis}^{0}$	[kN]	34	63	98	141	184	224	
Characteristic tension re Steel, property class 5.8	3	$N_{Rk,s} = N_{Rk,s,seis}^{0}$	[kN]	42	78	122	176	230	280	
Characteristic tension re Steel, property class 8.8	3	$N_{Rk,s} = N_{Rk,s,seis}^{0}$	[kN]	67	125	196	282	368	449	
Characteristic tension re Stainless steel A4 and I property class 50 (>M24	HCR,	$N_{Rk,s} = N_{Rk,s,seis}^{0}$	[kN]	59	110	171	247	230	281	
Combined pull-out an	d concrete cone failure	•								
Characteristic bond resi	istance in cracked concr	ete C20/25								
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	6,5	5,5	5,0	4,5	4,5	4,5	
Temperature range I:	dry and wet concrete	$\tau^0_{Rk,seis}$	[N/mm²]	4,5	3,8	3,5	3,3	3,3	3,3	
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	6,5	5,0	4,0	3,5	3,5	3,5	
		$\tau^0_{Rk,seis}$	[N/mm²]	4,4	3,5	3,0	2,6	2,5	2,4	
Temperature range II: 60°C/43°C flooded bore hole	dry and wet concrete	τ _{Rk,cr}	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5	
	$\tau^0_{Rk,seis}$	[N/mm²]	2,7	2,3	2,1	2,0	2,0	2,0		
	flooded bore hole	τ _{Rk,cr}	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5	
		$\tau^0_{Rk,seis}$	[N/mm²]	3,6	2,9			2,0		
ncreasing factors for co		C30/37	1,04							
(only static or quasi-stat ⊬₀	tic actions)	C40/50	1,08							
Splitting failure		C50/60				1,1	0			
					h	l∕h _{ef}]		1		
h / h _{ef} ≥ 2,0				1,0 h	ef	2,0 -		(1))))))))))))))))))))))))))))))))))))		
Edge distance	2,0 > h /	4,6 h _{ef} - 1	1,8 h .	1,3 -		\searrow				
$h / h_{ef} \leq 1$,			/ h _{ef} ≤ 1,3	2,26 h _{ef}			1,0 ⋅h _{ef}	h _{ef} 2,26·h _{ef} c _{cr,sp}		
Axial distance		S _{cr,sp}	[mm]			2 c _o	r,sp			
Installation safety factor	(dry and wet concrete)	γ ₂		1,	2		1	,4		
Installation safety factor	(flooded bore hole)	γ ₂				1,4	4			

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 or TR 045

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm											
Characteristic shear resistance,	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112	
Steel, property class 4.6	$V^0_{Rk,s,seis}$	[kN]	-	-	12	22	34	50	64	78	
Characteristic shear resistance,	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140	
Steel, property class 5.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	15	27	43	62	81	98	
Characteristic shear resistance,	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Steel, property class 8.8	$V^0_{Rk,s,seis}$	[kN]	-	-	24	44	69	99	129	157	
Characteristic shear resistance, Stainless steel A4 and HCR,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140	
property class 50 (>M24) and 70 (\leq M24)	$V^0_{Rk,s,seis}$	[kN]	-	-	21	39	60	87	81	98	
Steel failure with lever arm	·										
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
Steel, property class 4.6	M ⁰ _{Rk,s,seis}	[Nm]			Keine l	eistung	bestimm	nt (NPD)			
Characteristic bending moment,	$\mathbf{M}^{0}_{\mathrm{Rk},\mathrm{s}}$	[Nm]	19	37	65	166	324	560	833	1123	
Steel, property class 5.8	$M^0_{Rk,s,seis}$	[Nm]	Keine Leistung bestimmt (NPD)								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Steel, property class 8.8	$M^0_{Rk,s,seis}$	[Nm]			Keine l	eistung	bestimm	nt (NPD)			
Characteristic bending moment, Stainless steel A4 and HCR.	$\mathbf{M}^{0}_{\mathrm{Rk},\mathrm{s}}$	[Nm]	26	52	92	232	454	784	832	1125	
property class 50 (>M24) and 70 (\leq M24)	4) M ⁰ _{Rk,s,seis} [Nm] Keine Leistung bestimmt (NPD)										
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors						2	,0				
Installation safety factor	γ2			1,0							
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR 02	29 for the desig	n of Bond	ed Ancho	ors							
Installation safety factor	γ2					1	,0				

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to TR 029 or TR 045

Steel failure Steel failure Nex.s [KN] I <	Anchor size reinforcing ba	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Add of the pull-out and concrete cone failureAdd of the pull-out and concrete cone failureCombined pull-out and concrete cone failureConcrete cone failureTekkor 1^{10} 10 9.5 9.0 9.0 Tekkor 1^{10} 11 11 10 9.5 9.0 9.0 Tekkor 1^{10} 10 9.5 9.0	Steel failure												L
$ \begin{split} \label{eq:constraints} \mbox{Characteristic bond resistance} U = U = U = U = U = U = U = U = U = U $	Characteristic tension resist	ance	N _{Rk,s}	[kN]					$A_{s} x f_{uk}$				
$\begin{tabular}{ \begin{tabular}{ \begin{tabular} \begin{tabular} tabua$	Combined pull-out and co	oncrete cone failure											
$\frac{\text{remperature range i:}}{40^{\circ}\text{C/24}^{\circ}\text{C}} \frac{\text{concrete}}{\text{fooded bore hole}} \frac{\text{tek.orr}}{\text{tek.orr}} \left[N/\text{mm}^{-1} 12 \\ 12 \\ 11 \\ 9.5 \\ 9.0 \\ 9.0 \\ 8.0 \\ 7.0 \\ 8.0 \\ 7.0 \\ 6.5 \\ 6.0 \\ 5.5 \\ 6.0 \\ 5.5 \\$	Characteristic bond resistar	nce in uncracked cond	crete C20/25	;									
$\begin{tabular}{ c c c c c } \hline I fooded bore hole $$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			T _{Rk,ucr}	[N/mm²]	12	12	11	11	10	10	9,5	9,0	9,0
$\begin{tabular}{ c c c c } \hline Tense and the set of the$	40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	12	11	9,5	9,0	8,0	7,0	6,0	6,0	5,5
$\begin{tabular}{ c c c c c } \hline flooded bore hole & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$			τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,5	5,5	5,5
$ \begin{array}{c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c } \hline \b$	60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,0	4,5	4,5
$\frac{ C40/50 }{ C50/60 } = 1,0$ $\frac{ C40/50 }{ C50/60 } = 1,0$ $\frac{ C50/60 }{ C50/60 } = 1,0$ $\frac{ C40/50 }{ C50/60 } = 1,0$			C30/37						1,04				
C50/601,10Splitting failureEdge distance $1,0 h_{ef} \ge 2,0$ $1,0 h_{ef}$ $1,0 h_{ef}$ $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $1,3 + 1,0 h_{ef}$ $1,3 + 1,0 h_{ef}$ $1,0 h_{ef}$ $2,26 h_{ef}$ $2,0 > h / h_{ef} < 1,3$ $2,26 h_{ef}$ $1,0 h_{ef}$ $2,26 h_{ef}$ $1,0 h_{ef}$ $2,26 h_{ef}$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) $\gamma_2 = 1,2$ $1,4$	Ψο C40		C40/50						1,08				
Edge distanceh / h_{ef} \geq 2,01,0 h_{ef} $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $1,3 = 2,26 h_{ef}$ $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $1,3 = 1,0 h_{ef}$ $h / h_{ef} \leq 1,3$ $2,26 h_{ef}$ $1,0 h_{ef}$ $2,26 h_{ef}$ Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$ Installation safety factor (dry and wet concrete) γ_2 $1,2$ $1,4$			C50/60						1,10				
Edge distance $h / h_{ef} \ge 2,0$ $1,0 h_{ef}$ $2,0 + / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $2,0 + / h_{ef} > 1,3$ $2,26 h_{ef}$ $1,3 + / h_{ef} < 2,26 h_{ef}$ $1,0 h_{ef} - 2,26 h_{ef}$ $c_{cr.sp}$ Axial distance $s_{cr.sp}$ [mm] $2,26 h_{ef}$ $2 c_{cr.sp}$ Installation safety factor (dry and wet concrete) γ_2 $1,2$ $1,4$	Splitting failure		1					33					
1,01,0·h _{ef} \leq 1,32,26 h _{ef} Axial distances _{cr,sp} [mm]2,26 h _{ef} Installation safety factor (dry and wet concrete) γ_2 1,21,4		_	h	/ h _{ef} ≥ 2,0		1,0 h _{ef}				L			
Axial distance $s_{cr,sp}$ [mm] $1,0 \cdot h_{ef}$ $2,26 \cdot h_{ef}$ cr,sp Installation safety factor (dry and wet concrete) γ_2 1,21,4	Edge distance		2,0 > h / h _{ef} > 1,3		4,6 h _{ef} - 1,8 h		h	1,3 -	*****		\searrow		
Installation safety factor (dry and wet concrete) γ_2 1,2 1,4			h	i / h _{ef} ≤ 1,3	2	2,26 h _{ef}		1,0 · h _{ef} 2,26 · h _{ef} c _{cr.sp}			C _{cr.sp}		
	Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Installation safety factor (flooded bore hole) γ_2 1,4			γ ₂		1,2					1,4			
	Installation safety factor (flo	oded bore hole)	γ2		1,4								

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029 $\,$

Annex C 4

Electronic copy of the ETA by DIBt: ETA-14/0022

Steel failure Steel failure N ^{Box =} N ^{Box,seen} [KN] $A_a \times f_a$. Characteristic tension resistance N ^{Box =} N ^{Box,seen} [KN] $A_a \times f_a$. Combined pull-out and concrete cone failure Characteristic bond resistance in cracked concrete C20/25 Temperature range I: dry and wet concrete Tm _{R,cr} [N/mm7] 6.5 5.5 5.0 4.5 4.5 d0°C/24°C dry and wet concrete Tm _{R,cr} [N/mm7] 4.4 3.9 3.5 3.0 2.6 2.5 Temperature range I: d0°C/24°C dry and wet concrete Tm _{R,cr} [N/mm7] 4.4 3.9 3.5 3.0 2.6 2.5 Temperature range I: d0°C/43°C dry and wet concrete Tm _{R,cr} [N/mm7] 4.0 3.5 3.0 2.6 2.5		racteristic valu cked concrete							oads i	n			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
$\frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} }{ \mathbf{r} } = \frac{ \mathbf{r} $	Steel failure												
$ \frac{\text{Characteristic bond resistance in cracked concrete C20/25 } {} \\ \begin{tabular}{ c c c c c c } \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked concrete C20/25 \\ \hline Characteristic bond resistance in cracked resistanc$	Characteristic tension res	istance	N _{Rk,s} = N ⁰ _{Rk,s,seis}	[kN]				$A_{s} x f_{uk}$					
$ \begin{array}{c c c c c c } \label{eq:harmonic} Here $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	Combined pull-out and	concrete cone failure											
$ \begin{array}{c c c c c c c } Term e range i: \ \ \ \ \ \ \ \ \ \ \ \ \ $	Characteristic bond resist	ance in cracked concre	ete C20/25										
$\frac{1}{40^{\circ}\text{C/24^{\circ}\text{C}}} = \frac{1}{100\text{cled bore hole}} + \frac{1}{100cle$		dry and wet	τ _{Rk,cr}	[N/mm²]	6,5	5,5	5,5	5,0	4,5	4,5	4,5		
$\frac{1}{100 \text{ ded bore hole}} = \frac{1}{100 \text{ ded bore hole}} = \frac{1}{100 \text{ Rx.sets}} = \frac{1}{100 Rx.s$	Temperature range I:	concrete	$\tau^0_{Rk,seis}$	[N/mm²]	4,5	4,0	3,8	3,5	3,3	3,3	3,3		
$ \frac{1}{10 \text{ def}} = \frac{1}{10 \text{ def}} + \frac{1}{9}_{\text{Rk,aeis}} + \frac{1}$		final address hale	τ _{Rk,cr}	[N/mm²]	6,5	5,5	5,0	4,0	3,5	3,5	3,5		
$\begin{array}{c c c c c c c } \mbox{fright rescale} & \begin{tabular}{ c c c c c } \hline triangle & tr$		nooded bore noie	$\tau^0_{Rk,seis}$	[N/mm²]	4,4	3,9	3,5	3,0	2,6	2,5	2,4		
$ \begin{array}{c c c c c c c } Temperature range II: & concrete & v_{Rkseis} & [N/mm^2] & 2,7 & 2,4 & 2,3 & 2,1 & 2,0 & 2,0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$		dry and wet	$\tau_{Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Temperature range II:	,	$\tau^0_{Rk,seis}$	[N/mm²]	2,7	2,4	2,3	2,1	2,0	2,0	2,0		
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$			τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5		
Increasing factors for concrete (only static or quasi-static actions) $ \frac{V_c}{V_c}$ C40/50 1,08 1,00 1,10 Splitting failure $ \frac{h / h_{ef} \ge 2,0 \\ 2,0 > h / h_{ef} > 1,3 \\ 4,6 h_{ef} - 1,8 h \\ h / h_{ef} \le 1,3 \\ 2,26 h_{ef}$ 1,0 h_{ef} 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 1,0 h_{ef} 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,0 $h / h_{ef} \ge 2,0 \\ 1,0 h_{ef}$ 2,26 h_{ef}		flooded bore hole	$\tau^0_{Rk,seis}$	[N/mm²]	3,6	3,2	2,9	2,5	2,2	2,1	2,0		
C40/50 1,08 ψ_c C50/60 1,10 Splitting failure $h / h_{ef} \ge 2,0$ $1,0 h_{ef}$ $L / h_{ef} \ge 2,0$ $1,0 h_{ef}$ $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ Edge distance $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $1,3 - \frac{1}{1,0 h_{ef}}$			C30/37	•				1,04					
C50/60 1,10 Splitting failure $h / h_{ef} \ge 2,0$ $1,0 h_{ef}$ $h / h_{ef} \ge 2,0$ $1,0 h_{ef}$ h/h_{ef}^{-1} Edge distance $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $1,3 \rightarrow 1,0 h_{ef}$ $h / h_{ef} \le 1,3$ $2,26 h_{ef}$ $1,0 \cdot h_{ef} - 2,26 \cdot h_{ef}$	(only static or quasi-static		C40/50		1,08								
Edge distance $\frac{h / h_{ef} \ge 2,0}{2,0 > h / h_{ef} > 1,3} \frac{1,0 h_{ef}}{4,6 h_{ef} - 1,8 h} = \frac{h / h_{ef}}{1,3} \frac{2,26 h_{ef}}{1,0 \cdot h_{ef} - 2,26 \cdot h_{ef}} c$	Ψc		C50/60					1,10					
Edge distance $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Splitting failure		•										
Edge distance $2,0 > h / h_{ef} > 1,3$ $4,6 h_{ef} - 1,8 h$ $h / h_{ef} \le 1,3$ $2,26 h_{ef}$ $1,3$ $1,3$ $1,3$ $1,0 h_{ef}$ $2,26 h_{ef}$ $1,0 h_{ef}$ $2,26 h_{ef}$				h / h _{ef} ≥ 2,0	1,0	h _{ef}							
1,0 h _{ef} 2,26 h _{ef}	Edge distance		2,0 >	h / h _{ef} > 1,3	4,6 h _{ef} -	- 1,8 h				\			
	h / h _{ef} ≤ 1,					i h _{ef}		1.0)∙h _{ef}	2,26 [.] h _{ef}	• c _{cr,sp}		
	Axial distance s _{cr,sp} [mm]												
Installation safety factor (dry and wet concrete) γ_2 1,2 1,4	Installation safety factor (dry and wet concrete)	γ2		1,2 1,4								
Installation safety factor (flooded bore hole) γ_2 1,4	Installation safety factor (flooded bore hole)	γ2					1,4					

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 or TR 045

Table C6: Characteristic and non-crack										racke	ed		
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure without lever arm		_					•						
Characteristic shear resistance	V _{Rk,s}	[kN]				0,	50 x A _s x	f _{uk}					
	$V^0_{\rm Rk,s,seis}$	[kN]	$0,35 \times A_s \times f_{uk}$										
Steel failure with lever arm	•												
Characteristic bending moment	[Nm]				1	.2 ·W _{el} · f	fuk						
	$\mathbf{M}^{0}_{Rk,s,seis}$	[Nm]	No Performance Determined (NPD)										
Concrete pry-out failure													
Factor k in equation (5.7) of Technical Rep TR 029 for the design of bonded anchors	ort		2,0										
Installation safety factor						1,0							
Concrete edge failure													
See section 5.2.3.4 of Technical Report TF	029 for the d	esign of E	Bonded A	nchors									
Installation safety factor		1,0											

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to TR 029 or TR 045

				M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resista	ance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel, property class 4.6 Characteristic tension resista	ance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resista	ance.										
Steel, property class 8.8 Characteristic tension resista		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Stainless steel A4 and HCR, property class 50 (>M24) and		N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and co	ncrete failure										
Characteristic bond resistand	ce in non-cracked concrete	C20/25									
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	13	13	12	12	11	10	10	10
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm ²]	13	12	11	9,0	8,0	7,0	6,5	6,0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm ²]	8,0	8,0	7,5	7,0	6,5	6,5	6,0	6,0
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,0	5,5	5,0
Increasing factors for concre	to	C30/37	Į				1,	04			
	le	C40/50					1,				
	1000 1 5 0 100 0 0 0 0	C50/60					1,				
Factor according to CEN/TS Concrete cone failure	1992-4-5 Section 6.2.2.3	k ₈	[-]				10),1			
Factor according to CEN/TS	1992-4-5 Section 6.2.3.1	kucr	[-]	ĺ			10).1			
Edge distance		C _{cr.N}	[mm]				1,5				
Axial distance		S _{cr,N}	[mm]				3,0	h _{ef}			
Splitting failure											
		h	n / h _{ef} ≥ 2,0	1,0) h _{ef}	۲ ۲	/h _{ef}				
						-	2,0 -	~	<		
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6 h _e	_f - 1,8 h	1	1,3 -				
		h	n / h _{ef} ≤ 1,3	2,2	6 h _{ef}					c.	r.sp
Axial distance	1	S _{cr,sp}	[mm]	·			2 c	1,0 h _e	1 2,26	o∙h _{ef}	2 94.16
Installation safety factor (dry	and wet concrete)	γ2	1		1	2		u,sp	1	,4	
	ded bore hole)	γ2					1	4			

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

				M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resistan	nce,	$N_{Rk,s} = N_{Rk,seis}^{0}$	[kN]	34	63	98	141	184	224
Steel, property class 4.6 Characteristic tension resistar	ice,	N _{Rk,s} = N ⁰ _{Rk,seis}	[kN]	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resistar Steel, property class 8.8	ice,	$N_{Rk,s} = N_{Rk,seis}^{0}$	[kN]	67	125	196	282	368	449
Characteristic tension resistan Stainless steel A4 and HCR, property class 50 (>M24) and	,	N _{Rk,s} = N ⁰ _{Rk,seis}	[kN]	59	110	171	247	230	281
Combined pull-out and cond						1			
Characteristic bond resistance	e in cracked concrete C	20/25							
		τ _{Rk.cr}	[N/mm²]	6,5	5,5	5,0	4,5	4,5	4,5
Femperature range I:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm ²]	4,5	3,8	3,5	3,3	3,3	3,3
40°C/24°C		τ _{Rk,cr}	[N/mm ²]	6,5	5,0	4,0	3,5	3,5	3,5
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm²]	4,4	3,5	3,0	2,6	2,5	2,4
		τ _{Rk,cr}	[N/mm ²]	4,0	3,0	3,0	2,5	2,5	2,5
Temperature range II:	dry and wet concrete	$\tau^0_{Rk,seis}$	[N/mm²]	2,7	2,3	2,1	2,0	2,0	2,0
50°C/43°C	for a dard have hade	τ _{Rk,cr}	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5
	flooded bore hole	$\tau^0_{Rk,seis}$	[N/mm²]	3,6	2,9	2,5	2,2	2,1	2,0
ncreasing factors for concrete		C30/37				1,	04		
only static or quasi-static acti		C40/50				1,	08		
Ψc		C50/60				1,	10		
Factor according to CEN/TS 1 5.2.2.3	992-4-5 Section	k ₈	[-]			7	,2		
Concrete cone failure									
Factor according to CEN/TS 1 5.2.3.1	992-4-5 Section	k _{or}	[-]			7	,2		
Edge distance		C _{cr,N}	[mm]			1,5	i h _{ef}		
Axial distance		S _{cr,N}	[mm]			3,0) h _{ef}		
Splitting failure							424		
)	h / h _{ef} ≥ 2,0	1,0 h	ef	h/h _{ef}			
Edge distance	_	2,0 >	h / h _{ef} > 1,3	4,6 h _{ef} -	1,8 h	1,3 -	_		
			h / h _{ef} ≤ 1,3	2,26	n _{ef}	1	1,0 [.] h _{ef}	2,26 ⋅h _{ef}	+ C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]			2 0	cr,sp		
nstallation safety factor (dry a	ind wet concrete)	γ2		1	,2		1,	4	
nstallation safety factor (flood	ed bore hole)	γ ₂				1	,4		

I

(Design accordin		10 199	2-4 01	11. 0.	, ,						
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure without lever arm										-	
Characteristic shear resistance,	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112	
Steel, property class 4.6	$V^0_{\ Rk,s,seis}$	[kN]	-	-	12	22	34	50	64	78	
Characteristic shear resistance,	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140	
Steel, property class 5.8	$V^0_{\ Rk,s,seis}$	[kN]	-	-	15	27	43	62	81	98	
Characteristic shear resistance,	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Steel, property class 8.8	$V^0_{Rk,s,seis}$	[kN]	-	-	24	44	69	99	129	157	
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140	
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	V ⁰ _{Rk,s,seis}	[kN]	-	-	21	39	60	87	81	98	
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,	8				
Steel failure with lever arm											
Characteristic bending moment,	[Nm]	15	30	52	133	260	449	666	900		
Steel, property class 4.6	${\rm M}^{0}_{\rm Rk,s,seis}$	[Nm]		_	No Perfo	rmance E	Determine	ed (NPD)	_		
Characteristic bending moment,	$M^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123	
Steel, property class 5.8	${\rm M}^{0}_{\rm Rk,s,seis}$	[Nm]			No Perfo	rmance E	Determine	ed (NPD)			
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Steel, property class 8.8	$M^0_{Rk,s,seis}$	[Nm]		_	No Perfo	rmance E	Determine	ed (NPD)	_		
Characteristic bending moment, Stainless steel A4 and HCR,	${\pmb M^0}_{Rk,s}$	[Nm]	26	52	92	232	454	784	832	1125	
property class 50 (>M24) and 70 (\leq M24)	${\rm M}^{\rm 0}_{\rm Rk,s,seis}$	[Nm]	m] No Performance Determined (NPD)								
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃		2,0								
Installation safety factor	γ2		1,0								
Concrete edge failure											
Effective length of anchor	l _f	[mm]				l _f = min(h	_{ef} ; 8 d _{nom})				
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30	
Installation safety factor	γ2					1	0				

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 or TR 045

Table C10: Char crack	acteristic value ked concrete (D								n Ioa	ds in	non	
Anchor size reinforcing ba	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resist	ance	N _{Rk,s}	[kN]					$A_{s} x f_{uk}$				
Combined pull-out and co	ncrete failure											
Characteristic bond resistan	ce in non-cracked concr	ete C20/	25									
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	12	12	11	11	10	10	9,5	9,0	9,0
40°C/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	12	11	9,5	9,0	8,0	7,0	6,0	6,0	5,5
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,5	5,5	5,5
60°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,0	4,5	4,5
		C30/37						1,04				
Increasing factors for concre ψ_c	ete	C40/50						1,08				
		C50/60						1,10				
Factor according to CEN/TS 1992-4-5 Section 6	.2.2.3	k ₈	[-]					10,1				
Concrete cone failure				-								
Factor according to CEN/TS 1992-4-5 Section 6	.2.3.1	k ucr	[-]					10,1				
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}								
Axial distance		S _{cr,N}	[mm]	3,0 h _{ef}								
Splitting failure												
	_	h	n / h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}		L			
Edge distance		2,0 > h	n / h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -					
		h	n / h _{ef} ≤ 1,3	2	2,26 h _{ef}		+		1,0∙h _{ef}	2,26	h _{ef}	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					$2 c_{cr,sp}$				
Installation safety factor (dry	/ and wet concrete)	γ2				1,2				1	,4	
Installation safety factor (floo	oded bore hole)	γ2						1,4				
Injection system				in non-	cracked	l concre	ete			Anne	ex C 1	0

Design according to CEN/TS 1992-4

	Characteristic valuer value valuer valu								n	
Anchor size reinford	ing bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										
Characteristic tension	resistance	N _{Rk,s} = N ⁰ _{Rk,s,seis}	[kN]				$A_{\rm s} x f_{\rm uk}$			
Combined pull-out a	ind concrete failure	-								
Characteristic bond re	esistance in cracked concre	te C20/25								
	dry and wet	τ _{Rk,cr}	[N/mm²]	6,5	5,5	5,5	5,0	4,5	4,5	4,5
Temperature range I:	concrete	$\tau^0_{\text{Rk,seis}}$	[N/mm²]	4,5	4,0	3,8	3,5	3,3	3,3	3,3
40°C/24°C	feeded here hele	$\tau_{\text{Rk,cr}}$	[N/mm²]	6,5	5,5	5,0	4,0	3,5	3,5	3,5
	flooded bore hole	$\tau^0_{Rk,seis}$	[N/mm²]	4,4	3,9	3,5	3,0	2,6	2,5	2,4
	dry and wet	$\tau_{\rm Rk,cr}$	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5
Temperature range II	concrete	$\tau^0_{Rk,seis}$	[N/mm²]	2,7	2,4	2,3	2,1	2,0	2,0	2,0
60°C/43°C		τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	2,5	2,5	2,5
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm²]	3,6	3,2	2,9	2,5	2,2	2,1	2,0
Increasing factors for	concrete	C30/37	•				1,04			
(only static or quasi-s	tatic actions)	C40/50					1,08			
Ψ_c Factor according to		C50/60	1				1,10			
CEN/TS 1992-4-5 Se	ction 6.2.2.3	k ₈	[-]				7,2			
Concrete cone failu	re									
Factor according to CEN/TS 1992-4-5 Se	ction 6.2.3.1	k _{cr}	[-]				7,2			
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}			
Axial distance		S _{cr,N}	[mm]				$3.0 h_{\rm ef}$			
Splitting failure		5								
			h / h _{ef} ≥ 2,0	1,1	0 h _{ef}	h/h _{ef}				
Edge distance	-	2,0 >	h / h _{ef} > 1,3	4,6 h _e	_f - 1,8 h	1,3 -		<u> </u>	<u> </u>	
	-		h / h _{ef} ≤ 1,3	2,2	26 h _{ef}	1 +	1	,0∙h _{ef}	2,26 h _{ef}	C _{cr,sp}
Axial distance	45	S _{cr,sp}	[mm]				2 c _{cr,sp}			
Installation safety fac	tor (dry and wet concrete)	γ2			1,2			1	,4	
Installation safety fac	tor (flooded bore hole)	γ2					1,4			

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 or TR 045

Table C12: Characteristic valu and non-cracked c											
Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
Characteristic shear resistance	V _{Rk,s}	[kN]				0,5	50 x A _s x	: f _{uk}			
	$V_{Rk,s,seis}$	[kN]				0,3	35 x A _s x	t f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
Characteristic bending moment	[Nm]				1.	2 ·W _{el} ·	f _{uk}				
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[N m]	No Performance Determined (NPD)								
Concrete pry-out failure	•										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor		1,0									
Concrete edge failure											
Effective length of anchor	lf	[mm]				l _f = m	nin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor						1,0					

Injection system UNIKA PE for concrete

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 or TR 045

Anchor size thre	aded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Non-cracked cor	crete C20/25									
40°C/24°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40°C/24°C ->	$\delta_{N\infty}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
00 C/43 C	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16 [,]	
Cracked concret	e C20/25									
40°C/24°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058
40 0/24 0 /	$\delta_{N\infty}$ – factor	[mm/(N/mm²)]		-	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
00 0/43 0	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]		-	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - \text{factor} \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty} - \text{factor} \cdot \tau;$

Table C14: Displacements under shear load¹⁾ (threaded rod)

Anchor size thread	Anchor size threaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
All tomporatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
All temperatures	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0} - \text{factor} \cdot V;$

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} - factor \cdot V;$

Injection system UNIKA PE for concrete

Performances Displacements (threaded rods)

Table C15:	Displace	ments unde	r tensi	ion loa	d ¹⁾ (ret	oar)					
Anchor size I	einforcing b	ar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked	concrete C2	20/25									
40°C/24°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40 0/24 0	$\delta_{\text{N}\infty}\text{factor}$	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
00 C/43 C	$\delta_{\text{N}\infty}\text{factor}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked con	crete C20/25										
40°C/24°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40 0/24 0	$\delta_{N\infty}\text{factor}$	[mm/(N/mm²)]		-	0,21	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C ²⁾	$\delta_{\text{N0}} - \text{factor}$	[mm/(N/mm²)]		_	0,037	0,040	0,043	0,049	0,056	0,063	0,070
00 0/43 0	$\delta_{\text{N}\infty}\text{factor}$	[mm/(N/mm²)]		-	0,24	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

 $\delta_{N0} = \delta_{N0} - \text{factor} \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty} - factor \cdot \tau;$

Table C16: Displacement under shear load¹⁾ (rebar)

Anchor size re	einforcing b	ar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
All	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
temperatures	$\delta_{V\infty}\text{factor}$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0} - \text{factor} \cdot V; \\ \delta_{V\infty} &= \delta_{V\infty} - \text{factor} \cdot V; \end{split}$$

Injection system UNIKA PE for concrete

Performances Displacements (rebar)