

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-14/0024 of 25 March 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

Bonded anchor with anchor rod for use in concrete

TRUTEK Fasteners Polska Sp z o.o Al. Krakowska 55, Sekocin Nowy 05-090 RASZYN POLEN

TRUTEK PLANT 3

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-14/0024

Page 2 of 27 | 25 March 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-14/0024

Page 3 of 27 | 25 March 2014

Specific Part

1 Technical description of the product

The "Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete" is a bonded anchor consisting of a cartridge with injection mortar TCM385RE, TCM585RE, TCM1000RE, TCM1400RE and a steel element. The steel elements are commercial threaded rods according to Annex A 3 in the range of M8 to M30 or reinforcing bar according to Annex A 3 in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The Illustration and the description of the product are given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead the assumption of working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance		
Characteristic resistance for tension loads in non-cracked concrete	See Annex C 1 / C 4 / C 7 / C 10		
Characteristic resistance for tension loads in cracked concrete	See Annex C 2 / C 5 / C 8 / C 11		
Characteristic resistance for shear loads in cracked and non-cracked concrete	See Annex C 3 / C 6 / C 9 / C 12		
Displacements under tension and shear loads	See Annex C 13 / C 14		

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European Technical Assessment, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the

European Technical Assessment ETA-14/0024

Page 4 of 27 | 25 March 2014

provisions of the EU-Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic Works Requirement Safety in use the same criteria are valid as for Basic Works Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6)

Not applicable.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was investigated for this product.

3.8 General aspects

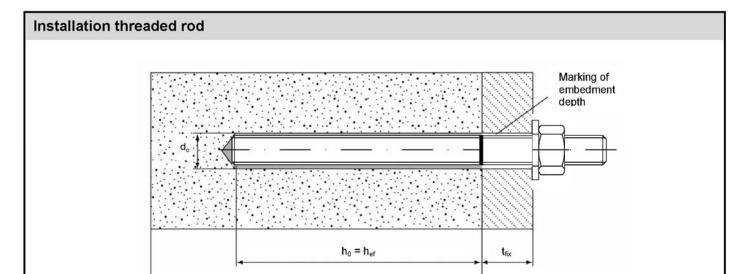
The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

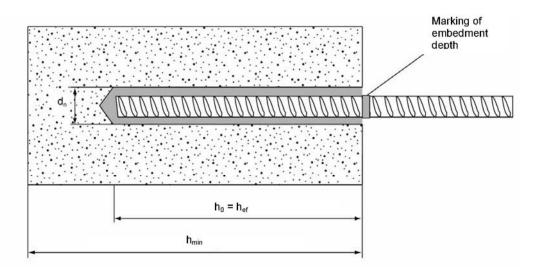
According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European assessment Dcoument


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 25 March 2014 by Deutsches Institut für Bautechnik


Gerhard Breitschaft President Beglaubigt:

Baderschneider

Installation reinforcing bar

 d_0 = diameter of bore hole

 t_{fix} = thickness of fixture

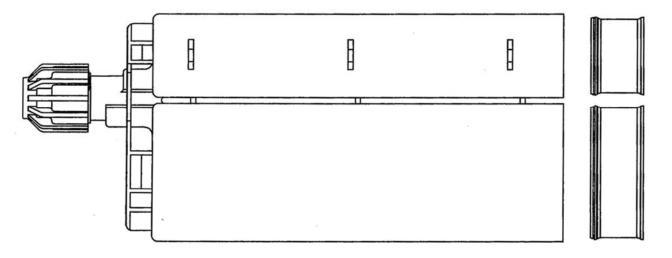
h_{ef} = effective anchorage depth

 h_0 = depth of drill hole

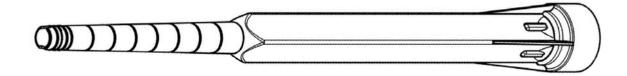
 h_{min} = minimum thickness of member

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

Product description
Installed condition


Annex A 1

Deutsches Institut für Bautechnik

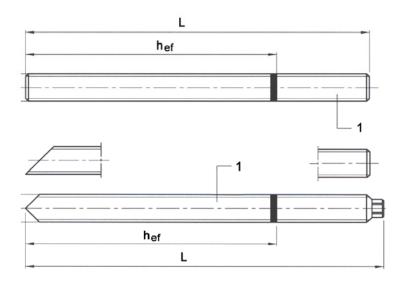

Injection mortar: TCM385RE, TCM585RE, TCM1000RE, TCM1400RE

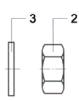
Side-by-Side cartridge 385ml, 585ml, 1000ml and 1400ml

Cartridge label: TCM385RE, TCM585RE, TCM1000RE, TCM1400RE, processing notes, chargecode, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

Static mixer

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

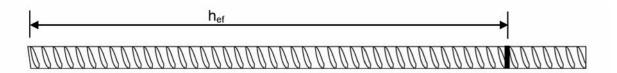

Product description


Injection system

Annex A 2

Deutsches
Institut
für
Bautechnik

Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut



Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

Minimum value of related rip area $f_{R,min}$ according to EN 1992-1-12004+AC:2010 Rib hight of the bar shall be in the range $0.05 * d \le h_{rib} \le 0.07 * d$ (d = Nominal diameter of the rebar; h: Rib height of the bar)

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

Product description
Threaded rod and reinforcing bar

Annex A 3

Electronic copy of the ETA by DIBt: ETA-14/0024

Table A1: Materials

Part	Designation	Material						
Steel, zinc plated ≥ 5 µm acc. to EN ISO 4042 or Steel,								
hot-d	hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009							
1	Anchor rod	Steel, EN 10087:1998 or EN 10263:2001 Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009						
2	Hexagon nut, EN ISO 4032:2012	Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012						
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Steel, zinc plated or hot-dip galvanised						
Stain	less steel							
1	Anchor rod	Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009						
2	Hexagon nut, EN ISO 4032:2012	Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009						
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005						
High	corrosion resistance steel							
1	Anchor rod	Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 ≤ M24: Property class 70 EN ISO 3506-1:2009						
2	Hexagon nut, EN ISO 4032:2012	Material 1.4529 / 1.4565 EN 10088-1:2005, > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009						
3	Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 or EN ISO 7094:2000	Material 1.4529 / 1.4565, EN 10088-1:2005						
Reint	orcing bars							
1	Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f _{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 f _{uk} = f _{tk} = k•f _{yk}						

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Product description Materials	Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
- Conditions for anchorages under seismic actions:
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

Electronic copy of the ETA by DIBt: ETA-14/0024

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30. Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

Intended Use
Specifications

Annex B 1

Table B1: Installation parameters for threaded rod

Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35
Effective anchorage depth	h _{ef,min} [mm] =	64	80	96	128	160	192	216	240
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
Thickness of fixture	t _{fix,min} [mm] >	0							
THICKINESS OF HIXTURE	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀							
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150

Table B2: Installation parameters for rebar

Rebar size			Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective anchorage donth	h _{ef,min} [mm] =	64	80	96	112	128	160	200	224	256
Effective afformage depth	Effective anchorage depth $h_{ef,max}$ [mm] =		120	144	168	192	240	300	336	384
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		0 mm 0 mm	h _{ef} + 2d ₀						
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Intended Use Installation parameters	Annex B 2

Installation instructions

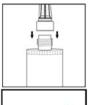
1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2).

Attention! Standing water in the bore hole must be removed before cleaning.

2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.

For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) <u>must</u> be used.


2b. Check brush diameter (Table 5) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ (Table B4) a minimum of two times. If the bore hole ground is not reached with the brush, a brush extension shall be used (Table 5).

2c. Finally blow the hole clean again with compressed air or a hand pump (Annex B 5) a minimum of two times. If the bore hole ground is not reached an extension shall be used. The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger then 20 mm or deeper 240 mm, compressed air (min. 6 bar) must be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool.

For every working interruption longer than the recommended working time (Table B3) as well as for new cartridges, a new static-mixer shall be used.

4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.

5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent colour.

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Intended Use Installation instructions	Annex B 3

Installation instructions (continuation)

6. Starting from the bottom or back of the cleaned anchor hole fill the hole up to approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle as the hole fills to avoid creating air pockets. For embedment larger than 190 mm an extension nozzle shall be used. For overhead and horizontal installation in bore holes larger than Ø 20 mm a piston plug and extension nozzle (Annex B 5) shall be used. Observe the gel-/ working times given in Table B3.

7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached. The anchor should be free of dirt, grease, oil or other foreign material.

8. Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).

9. Allow the adhesive to cure to the specified time prior to applying any load or torque. Do not move or load the anchor until it is fully cured (attend Table B3).

10. After full curing, the add-on part can be installed with the max. torque (Table B1) by using a calibrated torque wrench.

Table B3: Minimum curing time

Base material temperature	(iel time (working time)		Minimum curing time in wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40 °C	12 min	4 h	8 h

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Intended Use Installation instructions (continuation) Curing time	Annex B 4

Table B4: Parameter cleaning and setting tools

Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
	М8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not necessary
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
7777777777777777	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

Intended Use

Cleaning and setting tools

Annex B 5

Table C1: Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029)

in non-cracked concrete (Design according to TR 029)											
Anchor size threaded rod				М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resistance, Steel, property class 4.6		N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resists Steel, property class 5.8	,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resists Steel, property class 8.8		N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resists Stainless steel A4 and HCR property class 50 (>M24) an	1	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and co	ncrete cone failure										
Characteristic bond resistan	ce in non-cracked co	ncrete C20/	25								
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	13	13	12	12	11	10	10	10
40°C/24°C	flooded bore hole	T _{Rk,ucr}	[N/mm²]	13	12	11	9,0	8,0	7,0	6,5	6,0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,5	6,0	6,0
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,0	5,5	5,0
		C30/37 1,04									
Increasing factors for concre Ψ _c	ete	C40/50		1,08							
		C50/60		1,10							
Splitting failure											
	_	h	/ h _{ef} ≥ 2,0	1,0 h _{ef}			h _{ef}				
Edge distance $ 2,0 > h \ / \ h_{ef} > 1,3 $ $ h \ / \ h_{ef} \le 1,3 $		2,0 > h	/ h _{ef} > 1,3	4,6 h	4,6 h _{ef} - 1,8 h		,3 -				
		/ h _{ef} ≤ 1,3	2,26 h _{ef}			1,0·h	l _{ef} 2,2	26·h _{ef}	C _{cr,sp}		
Axial distance		S _{cr,sp}	[mm]				2 0	cr,sp			
Installation safety factor (dry	and wet concrete)	γ2			1	,2			1	,4	
Installation safety factor (floo	oded bore hole)	γ2					1	,4			

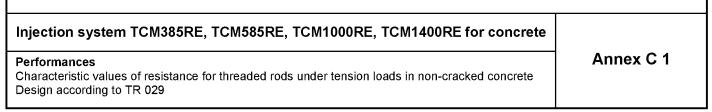


Table C2: Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to TR 029 or TR 045)

in cracked concrete (Design according to TR 029 or TR 045)										
Anchor size threaded	rod			M 12	M 16	M 20	M24	M 27	М 30	
Steel failure					•					
Characteristic tension re Steel, property class 4.6		N _{Rk,s} = N ⁰ _{Rk,s,seis}	[kN]	34	63	98	141	184	224	
Characteristic tension re Steel, property class 5.5	esistance,	N _{Rk,s} = N ⁰ _{Rk,s,seis}	[kN]	42	78	122	176	230	280	
Characteristic tension re Steel, property class 8.5	esistance,	N _{Rk,s} = N ⁰ _{Rk,s,seis}	[kN]	67	125	196	282	368	449	
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)		$N_{Rk,s} = N_{Rk,s,seis}^0$	[kN]	59	110	171	247	230	281	
Combined pull-out an	d concrete cone failure)								
Characteristic bond res	istance in cracked concr	ete C20/25								
		$ au_{Rk,cr}$	[N/mm²]	6,5	5,5	5,0	4,5	4,5	4,5	
Temperature range I:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	4,5	3,8	3,5	3,3	3,3	3,3	
40°C/24°C	flooded bore hole	τ _{Rk,cr}	[N/mm²]	6,5	5,0	4,0	3,5	3,5	3,5	
		τ ⁰ _{Rk,seis}	[N/mm²]	4,4	3,5	3,0	2,6	2,5	2,4	
		τ _{Rk,cr}	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5	
Temperature range II:	dry and wet concrete	τ ⁰ _{Rk,seis}	[N/mm²]	2,7	2,3	2,1	2,0	2,0	2,0	
60°C/43°C	flooded bore bole	τ _{Rk,cr}	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5	
	flooded bore hole	$\tau^0_{Rk,seis}$	[N/mm²]	3,6	2,9	2,5	2,2	2,1	2,0	
Increasing factors for co	oncrete	C30/37	•	1,04						
(only static or quasi-sta		C40/50		1,08						
Ψ¢		C50/60		III		1,	10			
Splitting failure										
	<u></u>	h.	/ h _{ef} ≥ 2,0	1,0 h	ef	2,0				
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6 h _{ef} - 1,8 h		1,3				
	h.	h / h _{ef} ≤ 1,3		1 _{ef}	1	1,0·h _{ef}	2,26·h _{ef}	C _{cr,st}		
Axial distance		S _{cr,sp}	[mm]			2 c	cr,sp			
Installation safety factor	(dry and wet concrete)	γ ₂		1,	2		1	,4		
Installation safety factor	(flooded bore hole)	γ ₂		1,4						

Table C3: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to TR 029 or TR 045)

cracked and nor	1-сгаскеа	conc	rete (L	esign	acco	raing	to IK	U29 O	riku	45)
Anchor size threaded rod			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure without lever arm									,	
Characteristic shear resistance.	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112
Steel, property class 4.6	V ⁰ _{Rk,s,seis}	[kN]	-	-	12	22	34	50	64	78
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140
Steel, property class 5.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	15	27	43	62	81	98
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Steel, property class 8.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	24	44	69	99	129	157
Characteristic shear resistance,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)	V ⁰ _{Rk,s,seis}	[kN]	-	-	21	39	60	87	81	98
Steel failure with lever arm										
Characteristic bending moment, Steel, property class 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)							
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Steel, property class 5.8	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)							
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179
Steel, property class 8.8	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)							
Characteristic bending moment, Stainless steel A4 and HCR,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
property class 50 (>M24) and 70 (≤ M24)	M ⁰ _{Rk,s,seis}	[Nm]			Keine I	_eistung	bestimn	nt (NPD)		
Concrete pry-out failure										
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors 2,0										
Installation safety factor	γ2	1,0								
Concrete edge failure										
See section 5.2.3.4 of Technical Report TR 02	29 for the desig	n of Bond	led Ancho	ors						
Installation safety factor	γ2					1	,0			

Injection system To	CM385RE,	TCM585RE,	TCM1000RE,	TCM1400RE for	concrete

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to TR 029 or TR 045

Annex C 3

Table C4: Characteristic values of resistance for rebar under tension loads in non- cracked concrete (Design according to TR 029)												
Anchor size reinforcing ba	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resistance N _{Rk,s} [kN				A _s x f _{uk}								
Combined pull-out and concrete cone failure												
Characteristic bond resistar	nce in uncracked cond	rete C20/25	;									
Temperature range I: dry and wet concrete		T _{Rk,ucr}	[N/mm²]	12	12	11	11	10	10	9,5	9,0	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	12	11	9,5	9,0	8,0	7,0	6,0	6,0	5,5
Temperature range II:	dry and wet concrete	T _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,5	5,5	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,0	4,5	4,5
		C30/37 1,04										
Increasing factors for concre ψ_c	ete	C40/50	1,08									
		C50/60		1,10								
Splitting failure												
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}					
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -	*************************				
		h	n / h _{ef} ≤ 1,3	2,26 h _{ef}			+		1,0·h _{ef}	2,26	h _{ef}	C _{cr.sp}
Axial distance		S _{cr,sp}	[mm]	2 c _{cr.sp}								
Installation safety factor (dry	y and wet concrete)	γ2				1,2				1	,4	
Installation safety factor (flo	oded bore hole)	γ2		1,4								

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to TR 029	Annex C 4

Table C5: Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to TR 029 or TR 045) Ø 12 Ø 16 Anchor size reinforcing bar Ø 14 Ø 20 Ø 25 Ø 28 Ø 32 Steel failure N_{Rk,s} = Characteristic tension resistance [kN] $A_s \times f_{uk}$ N⁰_{Rk,s,seis} Combined pull-out and concrete cone failure Characteristic bond resistance in cracked concrete C20/25 [N/mm²] 6,5 5.5 5,5 5.0 4,5 4,5 4,5 dry and wet concrete τ⁰_{Rk,seis} $[N/mm^2]$ 4,5 4,0 3,8 3,5 3,3 3,3 3,3 Temperature range I: 40°C/24°C [N/mm²] 6,5 5,5 5,0 4,0 3,5 3,5 3,5 T_{Rk,cr} flooded bore hole τ⁰ Rk,seis [N/mm²] 4,4 3,9 3,5 3.0 2,6 2,5 2,4 2,5 3,5 2,5 [N/mm²] 4,0 3,0 3,0 2,5 TRKC dry and wet concrete τ⁰ Rk,seis [N/mm²] 2,7 2,4 2,3 2,1 2,0 2,0 2,0 Temperature range II: 60°C/43°C 4,0 3,5 2,5 [N/mm²] 3.0 3.0 2.5 2.5 flooded bore hole τ⁰ Rk,seis 2,0 $[N/mm^2]$ 3.6 3,2 2,9 2,5 2,2 2,1 C30/37 1.04 Increasing factors for concrete (only static or quasi-static actions) C40/50 1,08

1,10 Splitting failure h/h_{ef} $h/h_{ef} \ge 2.0$ 1,0 h_{ef} 2,0 2,0 > h / h_{ef} > 1,3 Edge distance 4,6 hef - 1,8 h 1,3 $h/h_{ef} \le 1,3$ 2,26 h_{ef} C_{cr,sp} 1,0 · hef 2,26·hef Axial distance [mm] $2 c_{cr,sp}$ S_{cr,sp} Installation safety factor (dry and wet concrete) 1,2 1,4 72 Installation safety factor (flooded bore hole) γ2 1,4

C50/60

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 or TR 045	Annex C 5

Table C6: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to TR 029 or TR 045)

Anchor size reinforcing bar	Anchor size reinforcing bar					Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Steel failure without lever arm		•			•								
Characteristic shear resistance	[kN]	0,50 x A _s x f _{uk}											
$V^{0}_{Rk,s,seis} \qquad [kN] \qquad \qquad 0.35 \times A_s \times f_{uk}$													
Steel failure with lever arm													
M ⁰ _{Rk,s} [Nm] Characteristic bending moment				1.2 ·W _{el} · f _{uk}									
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[Nm]		No Performance Determined (NPD)									
Concrete pry-out failure													
Factor k in equation (5.7) of Technical Re TR 029 for the design of bonded anchors			2,0										
Installation safety factor	γ2						1,0						
Concrete edge failure													
See section 5.2.3.4 of Technical Report TR 029 for the design of Bonded Anchors													
Installation safety factor γ_2 1,0													

Annex C 6

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to TR 029 or TR 045 $\,$

Table C7: Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4)

111 110	n-cracked concre	ete (Des	sign act	Jorun	_						
Anchor size threaded rod				M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Steel failure											
Characteristic tension resist	ance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Steel, property class 4.6 Characteristic tension resist	anao	r.k,5	[]			<u> </u>	"	"		101	
Steel, property class 5.8	ance,	$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resist	ance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resist	ance		1		"	-	1	100			
Stainless steel A4 and HCR		N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
property class 50 (>M24) an	d 70 (≤ M24)	1.0.10									
Combined pull-out and co	ncrete failure										
Characteristic bond resistan	ce in non-cracked concrete	C20/25									
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm²]	13	13	12	12	11	10	10	10
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	13	12	11	9,0	8,0	7,0	6,5	6,0
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,5	6,0	6,0
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	8,0	8,0	7,5	7,0	6,5	6,0	5,5	5,0
		C30/37	C30/37 1,04								
Increasing factors for concre	ete	C40/50					1,	08			
Ψс		C50/60 1,10									
Factor according to CEN/TS	1992-4-5 Section 6.2.2.3	k ₈	[-]	10,1							
Concrete cone failure											
Factor according to CEN/TS	1992-4-5 Section 6.2.3.1	k _{ucr}	[-]	10,1							
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}							
Axial distance		S _{cr,N}	[mm]				3,0) h _{ef}			
Splitting failure				-							
	*	h	/h >20	1.	0 b	1	n/h _{ef}				
			/ h _{ef} ≥ 2,0	1,1	0 h _{ef}		2,0				
Edge distance		2,0 > h	/ h _{ef} > 1,3	4,6 h _{ef} - 1,8 h			1,3				
h			/ h _{ef} ≤ 1,3	2,26 h _{ef} 1,0·h _{ef} 2,26·h _{ef}			C _c	er,sp			
Axial distance		S _{cr,sp}	[mm]			4	2 0	cr,sp		- 7101	
Installation safety factor (dry	and wet concrete)	γ2			1	,2			1	,4	
Installation safety factor (floo	oded bore hole)	γ2					1	,4			

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4	Annex C 7

Table C8: Characteristic values of resistance for threaded rods under tension loads in cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

сгаско	ea concrete (Des	sign accord	ling to C	EN/15	1992-	4 or 11	(045)			
Anchor size threaded rod					M 16	M 20	M24	M27	M30	
Steel failure										
Characteristic tension resis Steel, property class 4.6	$N_{Rk,s} = N_{Rk,seis}^0$	[kN]	34	63	98	141	184	224		
Characteristic tension resis Steel, property class 5.8	tance,	$N_{Rk,s} = N_{Rk,seis}^0$	[kN]	42	78	122	176	230	280	
Characteristic tension resis	tance,	N _{Rk,s} = N ⁰ _{Rk,seis}	[kN]	67	125	196	282	368	449	
Steel, property class 8.8 Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a	$N_{Rk,s} = N_{Rk,seis}^0$	[kN]	59	110	171	247	230	281		
Combined pull-out and co	oncrete failure									
Characteristic bond resistar	nce in cracked concrete C	20/25								
	dry and wet concrete	$ au_{Rk,cr}$	[N/mm²]	6,5	5,5	5,0	4,5	4,5	4,5	
Temperature range I:	dry and wet concrete	$\tau^0_{\ Rk,seis}$	[N/mm²]	4,5	3,8	3,5	3,3	3,3	3,3	
40°C/24°C	flooded bore hole	$ au_{Rk,cr}$	[N/mm²]	6,5	5,0	4,0	3,5	3,5	3,5	
	llooded bore flole	$\tau^0_{\text{Rk,seis}}$	[N/mm²]	4,4	3,5	3,0	2,6	2,5	2,4	
Temperature range II: 60°C/43°C	dry and wat concrete	$ au_{Rk,cr}$	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5	
	dry and wet concrete	$\tau^0_{Rk,seis}$	[N/mm²]	2,7	2,3	2,1	2,0	2,0	2,0	
	flooded being belo	$ au_{Rk,cr}$	[N/mm²]	4,0	3,0	3,0	2,5	2,5	2,5	
	flooded bore hole	τ ⁰ _{Rk,seis}	[N/mm²]	3,6	2,9	2,5	2,2	2,1	2,0	
Increasing factors for concrete		C30/37		1,04						
(only static or quasi-static a		C40/50		1,08						
Ψο		C50/60		1,10						
Factor according to CEN/TS 6.2.2.3	S 1992-4-5 Section	k ₈	[-]	7,2						
Concrete cone failure		•								
Factor according to CEN/TS 6.2.3.1	S 1992-4-5 Section	k _{or}	[-]			7	,2			
Edge distance		C _{cr,N}	[mm]		1,5 h _{ef}					
Axial distance		S _{cr,N}	[mm]	3,0 h _{ef}						
Splitting failure				55						
	_		h / h _{ef} ≥ 2,0	1,0 h	lef	h/h _{ef} 2,0				
Edge distance	_	2,0 >	h / h _{ef} > 1,3	4,6 h _{ef} - 1,8 h		r-1,8 h				
		h / h _{ef} ≤ 1,3		2,26 h _{ef}			1,0 h _{ef} 2,26 h _{ef} c _{cr,sp}			
Axial distance		S _{cr,sp}	[mm]	2 C _{cr,sp}						
Installation safety factor (dr	y and wet concrete)	γ2		1,2 1,4						
Installation safety factor (flo	oded bore hole)	γ ₂		1,4						

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 or TR 045	Annex C 8

Deutsches
Institut
für
Bautechnik

Table C9: Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

(Design according to OLIV/13 1332-4 of 110 043)										
Anchor size threaded rod				M 12	M 16	M 20	M24	M 27	M 30	
$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
V ⁰ _{Rk,s,seis}	[kN]	-	-	12	22	34	50	64	78	
$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
$V^0_{Rk,s,seis}$	[kN]	-	-	15	27	43	62	81	98	
$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
$V^0_{Rk,s,seis}$	[kN]	-	-	24	44	69	99	129	157	
$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140	
V ⁰ _{Rk,s,seis}	[kN]	-	-	21	39	60	87	81	98	
k ₂	0,8									
•		•								
M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)								
$\mathbf{M}^0_{Rk,s}$	[Nm]	19	37	65	166	324	560	833	1123	
M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)								
M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
M ⁰ _{Rk,s,seis}	[Nm]			No Perfo	rmance [Determine	d (NPD)			
$\mathbf{M^0}_{Rk,s}$	[Nm]	26	52	92	232	454	784	832	1125	
M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)								
	•	•								
k ₃					2	.0				
γ2					1,	,0				
I _f	[mm]				I _f = min(h	_{ef} ; 8 d _{nom})				
d _{nom}	[mm]	8	10	12	16	20	24	27	30	
γ2					1,	,0				
	V _{Rk,s} V ⁰ _{Rk,s,seis} K ₂ M ⁰ _{Rk,s,seis}	V _{Rk,S} [kN] V ⁰ _{Rk,S,Seis} [kN] V ₀ [kN] V ⁰ _{Rk,S,Seis} [kN] V ₀ [kN] V ⁰ _{Rk,S,Seis} [kN] V ₀ [kN] V ⁰ _{Rk,S,Seis} [kN] V ⁰ _{Rk,S,Seis} [kN] k ₂ M ⁰ _{Rk,S} [Nm] M ⁰ _{Rk,S,Seis} [Nm]	M 8	M 8 M 10	M 8 M 10 M 12	M 8 M 10 M 12 M 16 V _{Rk,s} [kN] 7 12 17 31 V _{Rk,s} [kN] - - 12 22 V _{Rk,s} [kN] - - 15 27 V _{Rk,s} [kN] - - 15 27 V _{Rk,s} [kN] - - 24 44 V _{Rk,s} [kN] 13 20 30 55 V _{Rk,s} [kN] - - 21 39 k ₂ 0 30 55 30 55 V _{Rk,s} [kN] - - 21 39 k ₂ 0 0 0 0 0 0 M ⁰ _{Rk,s,seis} [Nm] 15 30 52 133 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M 8 M 10 M 12 M 16 M 20	M 8 M 10 M 12 M 16 M 20 M24	M 8 M 10 M 12 M 16 M 20 M 24 M 27	

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 or TR 045	Annex C 9

Table C10: Characteristic values of resistance for rebar under tension loads in non cracked concrete (Design according to CEN/TS 1992-4)

	· - (-											
Anchor size reinforcing ba	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resist	ance	$N_{Rk,s}$	[kN]					$A_s \times f_{uk}$				
Combined pull-out and co	ncrete failure		•	•								
Characteristic bond resistan	ce in non-cracked concr	ete C20/2	25									
Temperature range I:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	12	12	11	11	10	10	9,5	9,0	9,0
40°C/24°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	12	11	9,5	9,0	8,0	7,0	6,0	6,0	5,5
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,5	5,5	5,5
60°C/43°C	flooded bore hole	τ _{Rk,ucr}	[N/mm²]	7,0	7,0	7,0	6,5	6,5	6,0	5,0	4,5	4,5
Increasing factors for concrete Ψc		C30/37		1,04								
		C40/50		1,08								
		C50/60		1,10								
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3		k ₈	[-]	10,1								
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	.2.3.1	k _{ucr}	[-]	10,1								
Edge distance		C _{cr,N}	[mm]	1,5 h _{ef}								
Axial distance		S _{cr,N}	[mm]	3,0 h _{ef}								
Splitting failure			71:			Mary .						
	_	h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef} 2,0					
Edge distance	<u> </u>	2,0 > h	/ h _{ef} > 1,3	4,6 h _{ef} - 1,8 h		h	1,3					
h.			/ h _{ef} ≤ 1,3	2,26 h _{ef}			1	1,0·h _{ef}	2,26	i∙h _{ef}	C _{cr,sp}	
Axial distance		S _{cr,sp}	[mm]	2 c _{cr,sp}								
Installation safety factor (dry	and wet concrete)	γ2				1,2				1	,4	
Installation safety factor (floo	oded bore hole)	γ2		1,4								

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete Design according to CEN/TS 1992-4	Annex C 10

Table C11: Characteristic values of resistance for rebar under tension loads in cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

Anchor size reinforcing bar \emptyset 12 \emptyset 14 \emptyset 16 \emptyset 20 \emptyset 2 Steel failure Characteristic tension resistance $N_{Rk,s} = N_{Rk,s,seis}^0$ [kN] $A_s \times f_{uk}$ Combined pull-out and concrete failure Characteristic bond resistance in cracked concrete C20/25 Temperature range I: $\frac{dry}{dry}$ and wet concrete $\frac{dry}{dry}$ and wet concrete $\frac{dry}{dry}$ and wet concrete $\frac{dry}{dry}$ and wet concrete $\frac{dry}{dry}$ and \frac	5 4,5	Ø 32						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4,5						
		4,5						
		4,5						
Temperature range I: $ \frac{\text{dry and wet concrete}}{40^{\circ}\text{C}/24^{\circ}\text{C}} = \frac{\tau_{\text{Rk,cr}}}{\tau_{\text{Rk,seis}}} = \frac{[\text{N/mm}^2]}{[\text{N/mm}^2]} = \frac{6.5}{4.5} = \frac{5.5}{5.5} = \frac{5.0}{5.0} = \frac{4.5}{3.5} = \frac{4.5}{3.5} = \frac{1}{3.5} = $		4,5						
Temperature range I: $\tau^0_{Rk,seis}$ [N/mm²] 4,5 4,0 3,8 3,5 3,5 4,0 $\tau^0_{Rk,seis}$ [N/mm²] 6,5 5,5 5,0 4,0 3,8		4,5						
Temperature range I: $\tau_{Rk,seis}$ [N/mm²] 4,5 4,0 3,8 3,5 3,5 4,0 4,0 3,8 3,5 3,5 3,5 3,6 4,0 5,5 5,5 5,0 4,0 3,8 5,5 5,5 5,0 4,0 5,5 5,5 5,5 5,0 4,0 5,5 5,5 5,5 5,0 4,0 5,5 5,5 5,5 5,0 5,0 5,5 5,5 5,5 5,0 5,0	3,3							
flooded hore hole T _{Rk,cr} [N/mm²] 5,5 5,0 4,0 3,5	1 '	3,3						
nooded bore note	3,5	3,5						
$ au^0_{Rk,seis}$ [N/mm²] 4,4 3,9 3,5 3,0 2,6	3 2,5	2,4						
dry and wet τ _{Rk,cr} [N/mm²] 4,0 3,5 3,0 3,0 2,	5 2,5	2,5						
Temperature range II: concrete $\tau^0_{Rk,seis}$ [N/mm²] 2,7 2,4 2,3 2,1 2,0	2,0	2,0						
60°C/43°C $\tau_{Rk,cr}$ [N/mm²] 4,0 3,5 3,0 3,0 2,5	5 2,5	2,5						
flooded bore hole	2 2,1	2,0						
Increasing factors for concrete C30/37 1,04	1,04							
(only static or quasi-static actions) C40/50 1,08								
Ψ _c C50/60 1,10	1,10							
Factor according to CEN/TS 1992-4-5 Section 6.2.2.3 k ₈ [-] 7,2	7,2							
Concrete cone failure								
Factor according to CEN/TS 1992-4-5 Section 6.2.3.1 k_{α} [-] 7,2								
Edge distance $c_{\alpha,N}$ [mm] 1,5 h_{ef}	1,5 h _{ef}							
Axial distance S _{cr,N} [mm] 3.0 h _{ef}	3.0 h _{ef}							
Splitting failure								
h / h _{ef} ≥ 2,0 1,0 h _{ef} 2,0 2,0								
Edge distance 2,0 > h / h _{ef} > 1,3 4,6 h _{ef} - 1,8 h								
h / h _{ef} ≤ 1,3 2,26 h _{ef} 1,0·h _{ef}	2,26·h	C _{cr,sp}						
Axial distance $s_{cr,sp}$ [mm] $2 c_{cr,sp}$								
Installation safety factor (dry and wet concrete) γ_2 1,2	1,2 1,4							
Installation safety factor (flooded bore hole) γ_2 1,4	1,4							

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 or TR 045	Annex C 11

Table C12: Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete (Design according to CEN/TS 1992-4 or TR 045)

Anchor size reinforcing bar Ø 8 Ø 10							Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm								<u> </u>			
Characteristic shear resistance	V _{Rk,s}	[kN]	$0.50 \times A_s \times f_{uk}$								
Characteristic shear resistance	V _{Rk,s,seis}	[kN]				0,3	35 x A _s x	(f _{uk}			
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂					0,8					
Steel failure with lever arm											
Characteristic bending moment	M ⁰ _{Rk,s}	[Nm] 1.2 · W _{el} · f _{uk}									
Characteristic bending moment	M ⁰ _{Rk,s,seis}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure											
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃		2,0								
Installation safety factor	γ2		1,0								
Concrete edge failure	,										
Effective length of anchor	I _f	[mm]	If = min(h _{ef} ; 8 d _{nom})								
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor	γ2	1,0									

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete	
Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 or TR 045	Annex C 12

Table C13: Displacements under tension load ¹⁾ (threaded

Anchor size threaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Non-cracked concrete C20/25										
40°C/24°C ²⁾	δ _{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035
40 0/24 0	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043
δι 6/43 C	$\delta_{N_\infty} \text{factor}$	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161
Cracked concrete C20/25										
40°C/24°C ²⁾	δ _{N0} – factor	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058
40 C/24 C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	·	•	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067
00 C/43 C	$\delta_{N\infty}$ – factor	[mm/(N/mm²)]		-	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

 δ_{N0} = δ_{N0} – factor \cdot τ ;

 $\delta_{N_{\infty}} = \delta_{N_{\infty}} - factor \cdot \tau;$

Table C14: Displacements under shear load¹⁾ (threaded rod)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
All temperatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

¹⁾ Calculation of the displacement

 δ_{V0} = δ_{V0} – factor · V;

 $\delta_{\text{V}\infty}\text{=}~\delta_{\text{V}\infty}\text{--}\text{factor}\cdot\text{V};$

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

Performances

Displacements (threaded rods)

Annex C 13

Table C15:	Displacements under tension load ¹⁾ (rebar)

Anchor size reinforcing bar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked concrete C20/25											
40°C/24°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
	$\delta_{N\infty}$ – factor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N\infty}$ – factor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked concrete C20/25											
40°C/24°C ²⁾	δ _{N0} – factor	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
	δ _{N∞} – factor	[mm/(N/mm²)]	-		0,21	0,21	0,21	0,21	0,21	0,21	0,21
60°C/43°C ²⁾	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm²)]	-		0,24	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \tau;$

 $\delta_{N_{\infty}}$ = $\delta_{N_{\infty}}$ – factor \cdot τ ;

Table C16: Displacement under shear load¹⁾ (rebar)

Anchor size reinforcing bar		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
All temperatures	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ – factor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 δ_{V0} = δ_{V0} – factor · V;

 $\delta_{\text{V}\infty}\text{=}~\delta_{\text{V}\infty}-\text{factor}~\cdot~\text{V};$

Injection system TCM385RE, TCM585RE, TCM1000RE, TCM1400RE for concrete

Performances
Displacements (rebar)

Annex C 14