

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-14/0205 vom 4. Juli 2014

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird gemäß der Verordnung (EU) Nr. 305/2011 auf der Grundlage von

Deutsches Institut für Bautechnik

Multifix Injektionssystem MF-EX1 für Beton

Verbunddübel mit Ankerstange zur Verankerung im Beton

Multi-Fix Fasteners Pte Ltd Block 211 Woodlands Avenue 9 #04-70/71 Woodlands Spectrum II SINGAPORE 738960 SINGAPUR

Multi-Fix Fasteners Pte Ltd Plant 2

27 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

Leitlinie für die europäisch technische Zulassung für "Metalldübel zur Verankerung im Beton" ETAG 001 Teil 5: "Verbunddübel", April 2013,

verwendet als Europäisches Bewertungsdokument (EAD) gemäß Artikel 66 Absatz 3 der Verordnung (EU) Nr. 305/2011, ausgestellt.

Europäische Technische Bewertung ETA-14/0205

Seite 2 von 27 | 4. Juli 2014

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Europäische Technische Bewertung ETA-14/0205

Seite 3 von 27 | 4. Juli 2014

Besonderer Teil

1 Technische Beschreibung des Produkts

Das "Multifix Injektionssystem MF-EX1 für Beton" ist ein Verbunddübel, der aus einer Mörtelkartusche mit Injektionsmörtel Multifix MF-EX1 und einem Stahlteil besteht. Das Stahlteil besteht aus einer handelsüblichen Gewindestange mit Scheibe und Sechskantmutter in den Größen M8 bis M30 oder aus einem gerippten Betonstahl mit Durchmesser 8 bis 32 mm.

Das Stahlteil wird in ein mit Injektionsmörtel gefülltes Bohrloch gesteckt und durch Verbund zwischen Stahlteil, Injektionsmörtel und Beton verankert.

Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton	Siehe Anhang C 1 / C 4 / C 7 / C 10
Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton	Siehe Anhang C 2 / C 5 / C 8 / C 11
Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton	Siehe Anhang C 3 / C 6 / C 9 / C 12
Verschiebungen unter Zug- und Querbeanspruchung	Siehe Anhang C 13 / C 14

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Der Dübel erfüllt die Anforderungen der Klasse A1
Feuerwiderstand	Keine Leistung festgestellt (KLF)

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

Bezüglich gefährlicher Stoffe können die Produkte im Geltungsbereich dieser Europäischen Technischen Bewertung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Verordnung (EU) Nr. 305/2011 zu erfüllen, müssen gegebenenfalls diese Anforderungen ebenfalls eingehalten werden.

Europäische Technische Bewertung ETA-14/0205

Seite 4 von 27 | 4. Juli 2014

3.4 Sicherheit bei der Nutzung (BWR 4)

Die wesentlichen Merkmale bezüglich Sicherheit bei der Nutzung sind unter der Grundanforderung Mechanische Festigkeit und Standsicherheit erfasst.

3.5 Schallschutz (BWR 5)

Nicht zutreffend.

3.6 Energieeinsparung und Wärmeschutz (BWR 6)

Nicht zutreffend.

3.7 Nachhaltige Nutzung der natürlichen Ressourcen (BWR 7)

Die nachhaltige Nutzung der natürlichen Ressourcen wurde nicht untersucht.

3.8 Allgemeine Aspekte

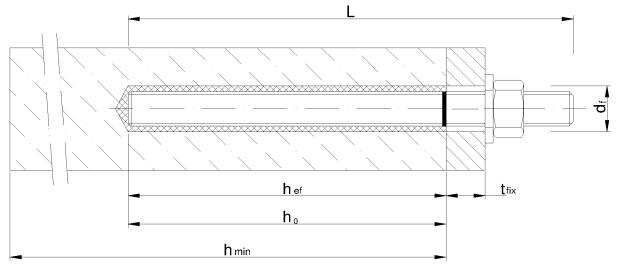
Der Nachweis der Dauerhaftigkeit ist Bestandteil der Prüfung der Wesentlichen Merkmale. Die Dauerhaftigkeit ist nur sichergestellt, wenn die Angaben zum Verwendungszweck gemäß Anhang B beachtet werden.

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

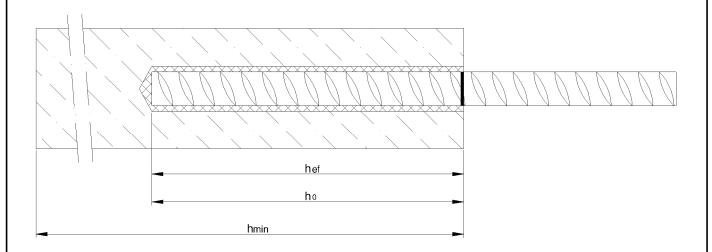
Gemäß Entscheidung der Kommission vom 24. Juni 1996 (96/582/EG) (ABI. L 254 vom 08.10.96, S. 62-65) gilt das System zur Bewertung und Überprüfung der Leistungsbeständigkeit (AVCP) (siehe Anhang V in Verbindung mit Artikel 65 Absatz 2 der Verordnung (EU) Nr. 305/2011) entsprechend der folgenden Tabelle.

Produkt	Verwendungszweck	Stufe oder Klasse	System
Metallanker zur Verwendung in Beton (hoch belastbar)	zur Verankerung und/oder Unterstützung tragender Betonelemente oder schwerer Bauteile wie Bekleidung und Unterdecken	_	1

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument


Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 4. Juli 2014 vom Deutschen Institut für Bautechnik


Uwe Bender Abteilungsleiter beglaubigt:

Einbauzustand Ankerstange

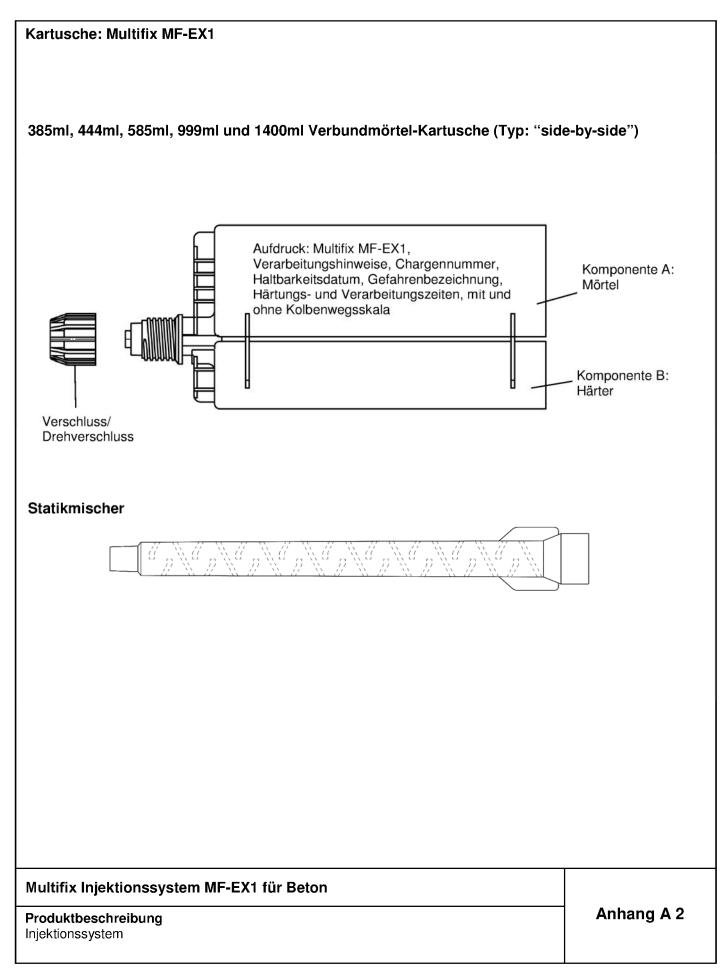
Einbauzustand Betonstahl

d_f = Durchgangsloch im anzuschließenden Bauteil

t_{fix} = Dicke des Anbauteils

 h_{ef} = effektive Setztiefe

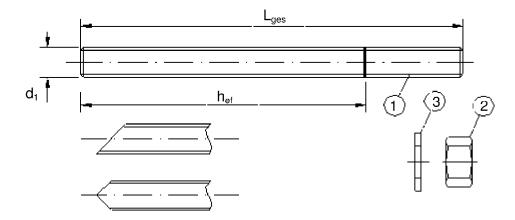
 $h_0 = Bohrlochtiefe$


h_{min} = Mindestbauteildicke

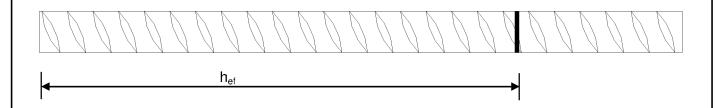
Produktbeschreibung

Einbauzustand


Anhang A 1



Ankerstange M8, M10, M12, M16, M20, M24, M27, M30 mit Unterlegscheibe und Sechskantmutter



Handelsübliche Gewindestange mit:

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004
- Markierung der Setztiefe

Betonstahl \varnothing 8, \varnothing 10, \varnothing 12, \varnothing 14, \varnothing 16, \varnothing 20, \varnothing 25, \varnothing 28, \varnothing 32

- Mindestwerte der bezogenen Rippenfläche f_{R,min} gemäß EN 1992-1-1:2004+AC:2010
- Die Rippenhöhe muss 0,05d ≤ h ≤ 0,07d betragen
 (d: Nenndurchmesser des Stabes; h: Rippenhöhe des Stabes)

Multifix Injektionssystem MF-EX1 für Beton

Produktbeschreibung
Ankerstange und Betontahl

Anhang A 3

Γeil	Benennung	Werkstoff	
	Iteile, galvanisch verzinkt ≥ 5 µm gemäß rverzinkt ≥ 40 µm gemäß EN ISO 1461:20		
1	Ankerstange	Stahl gemäß EN 10087:1998 oder EN 102 Festigkeitsklasse 4.6, 5.8, 8.8 gemäß EN 1	
2	Sechskantmutter, EN ISO 4032:2012	Stahl gemäß EN 10087:1998 oder EN 102 Festigkeitsklasse 4 (für Ankerstangen der K Festigkeitsklasse 5 (für Ankerstangen der K Festigkeitsklasse 8 (für Ankerstangen der K gemäß EN ISO 898-2:2012	(lasse 4.6) (lasse 5.8)
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Stahl, galvanisch verzinkt oder feuerverzink	:t
Stah	Iteile aus nichtrostendem Stahl		
1	Ankerstange	Werkstoff 1.4401 / 1.4404 / 1.4571, EN 100 > M24: Festigkeitsklasse 50 EN ISO 3506-1 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1	1:2009 1:2009
2	Sechskantmutter, EN ISO 4032:2012	Werkstoff 1.4401 / 1.4404 / 1.4571 EN 1008 > M24: Festigkeitsklasse 50 (für Ankerstang ≤ M24: Festigkeitsklasse 70 (für Ankerstang gemäß EN ISO 3506-2:2009	gen der Klasse 50)
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4401, 1.4404 oder 1.4571 gem	äß EN 10088-1:2005
Stah	lteile aus hochkorrosionsbeständigem S	Stahl	
1	Ankerstange	Werkstoff 1.4529 / 1.4565, EN 10088-1:200 > M24: Festigkeitsklasse 50 EN ISO 3506-1 ≤ M24: Festigkeitsklasse 70 EN ISO 3506-1	1:2009
2	Sechskantmutter, EN ISO 4032:2012	Werkstoff 1.4529 / 1.4565 EN 10088-1:2009 > M24: Festigkeitsklasse 50 (für Ankerstang ≤ M24: Festigkeitsklasse 70 (für Ankerstang gemäß EN ISO 3506-2:2009	gen der Klasse 50)
3	Unterlegscheibe, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 oder EN ISO 7094:2000	Werkstoff 1.4529 / 1.4565 gemäß EN 1008	8-1:2005
Beto	nstahl		
1	Betonstahl gemäß EN 1992-1-1:2004+AC:2010, Anhang C	Stäbe und Betonstabstahl vom Ring Klasse f_{yk} und k gemäß NDP oder NCL gemäß EN $f_{uk} = f_{tk} = k \cdot f_{yk}$	
1		f _{yk} und k gemäß NDP oder NCL gemäß EN	
	tifix Injektioneevetem ME EV1 für De	aton	
Mul	ltifix Injektionssystem MF-EX1 für Be	ן	

Spezifizierung des Verwendungszwecks

Beanspruchung der Verankerung:

- Statische und quasi-statische Lasten: M8 bis M30. Rebar Ø8 bis Ø32.
- Seismische Einwirkung für Anforderungsstufe C1: M12 bis M30, Betonstahl Ø12 bis Ø32.

Verankerungsgrund:

- Bewehrter oder unbewehrter Normalbeton gemäß EN 206-1:2000.
- Festigkeitsklasse C20/25 bis C50/60 gemäß EN 206-1:2000.
- Ungerissener Beton: M8 bis M30, Betonstahl Ø8 bis Ø32.
- Gerissener Beton: M12 bis M30, Betonstahl Ø12 bis Ø32.

Temperaturbereich:

- I: 40 °C bis +40 °C (max. Langzeit-Temperatur +24 °C und max. Kurzzeit-Temperatur +40 °C)
- II: 40 °C bis +60 °C (max. Langzeit-Temperatur +43 °C und max. Kurzzeit-Temperatur +60 °C)
- III: 40 °C bis +72 °C (max. Langzeit-Temperatur +43 °C und max. Kurzzeit-Temperatur +72 °C)

Anwendungsbedingungen (Umweltbedingungen):

- Bauteile unter den Bedingungen trockener Innenräume (verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien (einschließlich Industrieatmosphäre und Meeresnähe) und in Feuchträumen, wenn keine besonders aggressiven Bedingungen vorliegen (nichtrostendem Stahl oder hochkorrosionsbeständiger Stahl).
- Bauteile im Freien und in Feuchträumen, wenn besonders aggressive Bedingungen vorliegen (hochkorrosionsbeständiger Stahl).

Anmerkung: Aggressive Bedingungen sind z.B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Bemessung:

- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels angegeben (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern usw.).
- Die Bemessung der Verankerungen erfolgt unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.
- Die Bemessung der Verankerungen unter statischen und quasi-statischen Lasten erfolgt nach:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Fassung September 2010 oder
 - CEN/TS 1992-4:2009
- Die Bemessung der Verankerungen unter seismischer Einwirkung (gerissener Beton) erfolgt nach:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Fassung Februar 2013
 - Die Verankerungen sind außerhalb kritischer Bereiche (z.B.: plastischer Gelenke) der Betonkonstruktion anzuordnen.
 - Eine Abstandsmontage oder die Montage auf Mörtelschicht ist für seismische Einwirkungen nicht erlaubt.

Einbau:

- Trockener oder nasser Beton: M8 bis M30, Betonstahl Ø8 bis Ø32.
- Wassergefüllte Bohrlöcher (nicht Seewasser): M8 bis M30, Betonstahl Ø8 bis Ø32.
- · Bohrlochherstellung durch Hammer- oder Pressluftbohren.
- Überkopfmontage erlaubt.
- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.

Multifix Injektionssystem MF-EX1 für Beton	
Verwendungszweck	Anhang B 1
Spezifikationen	-

Tabelle B1: Montageke	annwerte für G	ewinde	etang	'n					
Dübelgröße		M 8	M 10	M 12	M 16	M 20	M 24	M 27	М 30
Bohrernenndurchmesser	d ₀ [mm] =	10	12	14	18	24	28	32	35
	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120
Effektive Verankerungstiefe	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360
Durchgangsloch im anzuschließenden Bauteil	d₁ [mm] ≤	9	12	14	18	22	26	30	33
Bürstendurchmesser	d _b [mm] ≥	12	14	16	20	26	30	34	37
Drehmoment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200
A selective desired to	t _{fix,min} [mm] >	0							
Anbauteildicke	t _{fix,max} [mm] <	1500							
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d ₀	ı		
minimaler Achsabstand	s _{min} [mm]	40	50	60	80	100	120	135	150
minimaler Randabstand	C _{min} [mm]	40	50	60	80	100	120	135	150

Tabelle B2: Montagekennwerte für Betonstahl

Dübelgröße		Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Bohrernenndurchmesser	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effektive	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Verankerungstiefe	h _{ef,max} [mm] =	96	120	144	168	192	240	300	336	384
Bürstendurchmesser	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Mindestbauteildicke	h _{min} [mm]	h _{ef} + 30 mm ≥ 100 mm					h _{ef} + 2d ₀)		
minimaler Achsabstand	s _{min} [mm]	40	50	60	70	80	100	125	140	160
minimaler Randabstand	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Multifix Injektionssystem MF-EX1 für Beton	
Verwendungszweck	Anhang B 2
Montagekennwerte	

Stahlbürste

Tabelle B3: Parameter für Reinigungs- und Setzzubehör

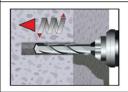
Gewindestangen	Betonstahl	d₀ Bohrer - Ø	d _b Bürsten - Ø	d _{b,min} min. Bürsten - Ø	Verfüll- stutzen	
(mm)	(mm)	(mm)	(mm)	(mm)	(No.)	
M8		10	12	10,5		
M10	8	12	14	12,5		
M12	10	14	16	14,5	Kein	
	12	16	18	16,5	Verfüllstutzen notwendig	
M16	14	18	20	18,5		
	16	20	22	20,5		
M20	20	24	26	24,5	# 24	
M24		28	30	28,5	# 28	
M27	25	32	34	32,5	# 32	
M30	28	35	37	35,5	# 35	
	32	40	41,5	40,5	# 38	

Handpumpe (Volumen 750 ml) Bohrerdurchmesser (d₀): 10 mm bis 20 mm Empfohlene Druckluftpistole (min 6 bar) Bohrerdurchmesser (d₀): 10 mm bis 40 mm

Verfüllstutzen für Überkopf- oder Horizontalmontage

Bohrerdurchmesser (d₀): 24 mm bis 40 mm

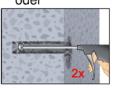
Multifix Injektionssystem MF-EX1 für Beton	
Verwendungszweck Reinigungs- und Installationszubehör	Anhang B 3

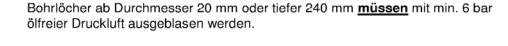

werden.

werden.

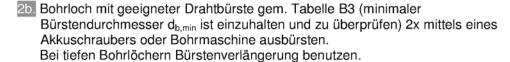
zu verwenden.

Setzanweisung


11. Bohrloch drehschlagend mit vorgeschriebenem Bohrerdurchmesser (Tabelle B1 oder Tabelle B2) und gewählter Bohrlochtiefe erstellen. Bei Fehlbohrungen ist das Bohrloch zu vermörteln.

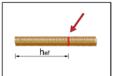

Achtung! Vor der Reinigung muss im Bohrloch stehendes Wasser entfernt

2a. Das Bohrloch vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) oder Handpumpe (Anhang B 3) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen


oder

Bohrlöcher bis Durchmesser 20 mm dürfen mit der Handpumpe ausgeblasen

oder


2c. Anschließend das Bohrloch gem. Anhang B 3 erneut vom Bohrlochgrund her 2x vollständig mit Druckluft (min. 6 bar) oder Handpumpe (Anhang B 3) ausblasen. Bei tiefen Bohrlöchern sind Verlängerungen zu verwenden.

Bohrlöcher bis Durchmesser 20 mm dürfen mit der Handpumpe ausgeblasen werden.

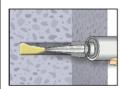
Bohrlöcher ab Durchmesser 20 mm oder tiefer 240 mm <u>müssen</u> mit min. 6 bar ölfreier Druckluft ausgeblasen werden.

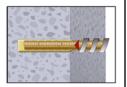
Nach der Reinigung ist das Bohrloch bis zum Injizieren des Mörtels vor erneutem Verschmutzen in einer geeigneten Weise zu schützen. Ggf. ist die Reinigung unmittelbar vor dem Injizieren des Mörtels zu wiederholen. Einfließendes Wasser darf nicht zur erneuten Verschmutzung des Bohrloches führen.

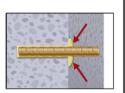
- 3. Den mitgelieferten Statikmischer fest auf die Kartusche aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Den Schlauchfolienclip vor der Verwendung abschneiden.

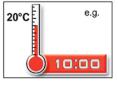
 Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit
 - Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B4) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.
- 4. Vor dem Injizieren des Mörtels die geforderte Setztiefe auf der Ankerstange markieren.
- 5. Der Mörtelvorlauf ist nicht zur Befestigung der Ankerstange geeignet. Daher Vorlauf solange verwerfen, bis sich eine gleichmäßig graue Mischfarbe eingestellt hat, jedoch min. 3 volle Hübe. Bei Schlauchfoliengebinden sind min. 6 volle Hübe zu verwerfen.

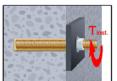
Multifix Injektionssystem MF-EX1 für Beton


Verwendungszweck


Setzanweisung


Anhang B 4




Setzanweisung (Fortsetzung)

- 6 Gereinigtes Bohrloch vom Bohrlochgrund her ca. zu 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Bei Verankerungstiefen größer 190 mm passende Mischerverlängerung verwenden. Für die Horizontal- oder Überkopfmontage sind Verfüllstutzen gemäß Anhang B 3 und Mischerverlängerungen zu verwenden. Die temperaturrelevanten Verarbeitungszeiten (Tabelle B 4) sind zu beachten.
- 7. Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einführen.

Die Ankerstange sollte schmutz-, fett-, und ölfrei sein.

- 8. Nach der Installation des Ankers sollte der Ringspalt komplett mit Mörtel ausgefüllt sein. Tritt keine Masse nach Erreichen der Verankerungstiefe heraus, ist diese Voraussetzung nicht erfüllt und die Anwendung muss vor Beendigung der Verarbeitungszeit wiederholt werden. Bei Überkopfmontage ist die Ankerstange zu fixieren (z.B. Holzkeile).
- 9. Die angegebene Aushärtezeit muss eingehalten werden. Anker während der Aushärtezeit nicht bewegen oder belasten. (siehe Tabelle B4).
- 10. Nach vollständiger Aushärtung kann das Anbauteil mit dem zulässigen Drehmoment (Tabelle B2) montiert werden. Die Mutter muss mit einem geeignetem Drehmomentschlüssel festgezogen werden.

Tabelle B4: Mindest-Aushärtezeiten

Beton Temperatur	Verarbeitungszeit	Mindest-Aushärtezeit in trockenem Beton	Mindest-Aushärtezeit in feuchtem Beton
≥ + 5 °C	120 min	50 h	100 h
≥ + 10 °C	90 min	30 h	60 h
≥ + 20 °C	30 min	10 h	20 h
≥ + 30 °C	20 min	6 h	12 h
≥ + 40 °C	12 min	4 h	8 h

Multifix Injektionssystem MF-EX1 für Beton	
Verwendungszweck Setzanweisung (Fortsetzung) Aushärtezeit	Anhang B 5

(Bemessungsverfahren gemäß TR 029)

Tabelle C1:	Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton
	(Bemessungsverfahren gemäß TR 029)

Dübelgröße Gewindest	angen		ŀ	M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Stahlversagen					•		•	•	•	•	•	
Charakteristische Zugtrag Stahl, Festigkeitsklasse	4.6	$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Charakteristische Zugtrag Stahl, Festigkeitsklasse		$N_{Rk,s}$	[kN]	18	29	42	78	122	176	230	280	
Charakteristische Zugtrag Stahl, Festigkeitsklasse 8	8.8	$N_{Rk,s}$	[kN]	29	46	67	125	196	282	368	449	
Charakteristische Zugtra Nichtrostender Stahl A4 I Festigkeitsklasse 50 (>M	und HCR	$N_{Rk,s}$	[kN]	26	41	59	110	171	247	230	281	
Kombiniertes Versager	n durch Herausziehen	und Betona	usbruch									
Charakteristische Verbur	ndtragfähigkeit im unger	rissenen Bet	on C20/25									
Temperaturbereich I: 40°C/24°C	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	15	15	15	14	13	12	12	12	
	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
60°C/43°C	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperaturbereich III:	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
		C30/37					1,	04				
Erhöhungsfaktor für Beto	n	C40/50					1,	08				
Ψ_{c}		C50/60		1,10								

Randabstand	C _{cr,sp}	[mm]	$1,0 \cdot h_{ef} \leq 2 \cdot h_{ef} \left(2 \cdot h_{ef} \right)$	$5 - \frac{h}{h_{ef}} \le 2.4 \cdot h_{ef}$			
Achsabstand	S _{cr,sp}	[mm]	2 c	cr,sp			
Montagesicherheitsbeiwert (trockener und feuchter Beton)	γ ₂		1,2	1,4			
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)	γ2		1,4				

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton	Anhang C 1

1

8.06.01-108/14

$N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,seis} = N^0_{Rk,s,seis}$ $N_{Rk,seis} = N^0_{Rk,s,seis}$ $N_{Rk,seis} = N^0_{Rk,seis}$		34 42 67 59 7,5 5,2 7,5 5,2 4,5 3,2 4,5	63 78 125 110 6,5 4,4 6,0 4,1 4,0 2,7	98 122 196 171 6,0 4,1 5,0 3,5 3,5 2,5	141 176 282 247 5,5 3,9 4,5 3,1 3,5 2,3	184 230 368 230 5,5 3,9 4,0 3,0 3,5 2,3	224 280 449 281 5,5 3,9 4,0 2,8 3,5 2,3	
$N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $\text{Eichen und Betonausbruch}$ euchter $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ euchter $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$	[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]	42 67 59 7,5 5,2 7,5 5,2 4,5 3,2	78 125 110 6,5 4,4 6,0 4,1 4,0 2,7	122 196 171 6,0 4,1 5,0 3,5 3,5 2,5	176 282 247 5,5 3,9 4,5 3,1 3,5 2,3	230 368 230 5,5 3,9 4,0 3,0 3,5 2,3	280 449 281 5,5 3,9 4,0 2,8 3,5 2,3	
$N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $N_{Rk,s} = N^0_{Rk,s,seis}$ $\text{Eichen und Betonausbruch}$ euchter $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$	[kN] [kN] [kN] [kN] [kN] [kN] [kN] [kN]	7,5 5,2 7,5 5,2 4,5 3,2	125 110 6,5 4,4 6,0 4,1 4,0 2,7	196 171 6,0 4,1 5,0 3,5 3,5 2,5	282 247 5,5 3,9 4,5 3,1 3,5 2,3	5,5 3,9 4,0 3,5 2,3	5,5 3,9 4,0 2,8 3,5 2,3	
$\begin{array}{c} N_{Rk,s} = N^0_{Rk,s,seis} \\ \hline \text{tiehen und Betonausbruc} \\ \text{n gerissenen Beton C20/25} \\ \text{euchter} \\ \hline \tau^0_{Rk,seis} \\ \hline \tau^0_{Rk,seis} \\ \hline \text{euchter} \\ \hline \tau^0_{Rk,seis} \\ \hline \text{euchter} \\ \hline \tau^0_{Rk,seis} \\ \hline \end{array}$	[KN] [kN] [kN] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]	7,5 5,2 7,5 5,2 4,5 3,2	6,5 4,4 6,0 4,1 4,0 2,7	6,0 4,1 5,0 3,5 3,5 2,5	5,5 3,9 4,5 3,1 3,5 2,3	5,5 3,9 4,0 3,0 3,5 2,3	5,5 3,9 4,0 2,8 3,5 2,3	
tiehen und Betonausbruch gerissenen Beton C20/25 euchter	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]	7,5 5,2 7,5 5,2 4,5 3,2	6,5 4,4 6,0 4,1 4,0 2,7	6,0 4,1 5,0 3,5 3,5 2,5	5,5 3,9 4,5 3,1 3,5 2,3	5,5 3,9 4,0 3,0 3,5 2,3	5,5 3,9 4,0 2,8 3,5 2,3	
euchter	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]	5,2 7,5 5,2 4,5 3,2	4,4 6,0 4,1 4,0 2,7	4,1 5,0 3,5 3,5 2,5	3,9 4,5 3,1 3,5 2,3	3,9 4,0 3,0 3,5 2,3	3,9 4,0 2,8 3,5 2,3	
euchter	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]	5,2 7,5 5,2 4,5 3,2	4,4 6,0 4,1 4,0 2,7	4,1 5,0 3,5 3,5 2,5	3,9 4,5 3,1 3,5 2,3	3,9 4,0 3,0 3,5 2,3	3,9 4,0 2,8 3,5 2,3	
euchter $\tau^0_{\rm Rk,seis}$ $\tau_{\rm Rk,cr}$ $\tau^0_{\rm Rk,seis}$ euchter $\tau^0_{\rm Rk,seis}$ $\tau_{\rm Rk,cr}$ $\tau^0_{\rm Rk,seis}$	[N/mm²] [N/mm²] [N/mm²] [N/mm²] [N/mm²]	5,2 7,5 5,2 4,5 3,2	4,4 6,0 4,1 4,0 2,7	4,1 5,0 3,5 3,5 2,5	3,9 4,5 3,1 3,5 2,3	3,9 4,0 3,0 3,5 2,3	3,9 4,0 2,8 3,5 2,3	
$\tau_{Rk,cr}$ $\tau^0_{Rk,seis}$ euchter $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$ $\tau^0_{Rk,seis}$	[N/mm²] [N/mm²] [N/mm²] [N/mm²]	7,5 5,2 4,5 3,2	6,0 4,1 4,0 2,7	5,0 3,5 3,5 2,5	4,5 3,1 3,5 2,3	4,0 3,0 3,5 2,3	4,0 2,8 3,5 2,3	
$\tau^0_{\rm Rk,seis}$ euchter $\tau^0_{\rm Rk,seis}$ $\tau^0_{\rm Rk,seis}$ $\tau^0_{\rm Rk,seis}$	[N/mm ²] [N/mm ²] [N/mm ²]	5,2 4,5 3,2	4,1 4,0 2,7	3,5 3,5 2,5	3,1 3,5 2,3	3,0 3,5 2,3	2,8 3,5 2,3	
$\tau^0_{\rm Rk,seis}$ euchter $\tau^0_{\rm Rk,seis}$ $\tau^0_{\rm Rk,seis}$ $\tau^0_{\rm Rk,cr}$	[N/mm²] [N/mm²]	4,5 3,2	4,0	3,5 2,5	3,5	3,5	3,5 2,3	
euchter $ \frac{\tau_{\text{Rk,cr}}}{\tau^0_{\text{Rk,seis}}} $ $ \frac{\tau_{\text{Rk,cr}}}{\tau^{\text{Rk,cr}}} $	[N/mm²]	3,2	2,7	2,5	2,3	2,3	2,3	
τ ⁰ _{Rk,seis} τ _{Rk,cr}	[N/mm²]		,			,		
τ _{Rk,cr}		4,5	4.0	3.5	0.5	2.5		
	[N/mm²]		1 4,0	0,5	3,5	3,5	3,5	
		3,2	2,7	2,5	2,3	2,3	2,3	
τ _{Rk,cr}	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
euchter	[N/mm²]	2,9	2,4	2,2	2,1	2,1	2,1	
7	[N/mm²]	4,0	3,5	3,0	3,0	3,0	3,0	
τ ⁰ _{Rk,seis}	[N/mm²]	2,9	2,4	2,2	2,1	2,1	2,1	
		, ,						
C50/60		1,10						
C _{cr,sp}	[mm]		$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 \right)$			$\left(\frac{h}{h_{\text{ef}}}\right) \le 2.4 \cdot h_{\text{ef}}$		
S _{cr,sp}	[mm]			2 0	>cr,sp			
γ ₂	1	1	,2		1	,4		
γ ₂				1	,4	4		
	C _{cr,sp} S _{cr,sp} γ ₂	C40/50 C50/60 C _{cr,sp} [mm] S _{cr,sp} [mm] γ ₂ γ ₂	C40/50 C50/60 C _{cr,sp} [mm] S _{cr,sp} [mm] γ ₂ 1	C40/50 C50/60 c _{cr,sp} [mm] 1,0 · h _{ef} ≤ s _{cr,sp} [mm] γ ₂ 1,2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Z36671.14

Tabelle C3: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß TR 029 oder TR 045)

Dübelgröße Gewindestangen			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Stahlversagen ohne Hebelarm				•	•	•				•	
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112	
Stahl, Festigkeitsklasse 4.6	V ⁰ _{Rk,s,seis}	[kN]	-	-	12	22	34	50	65	78	
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140	
Stahl, Festigkeitsklasse 5.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	15	27	43	62	81	98	
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224	
Stahl, Festigkeitsklasse 8.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	24	44	69	99	129	157	
Charakteristische Quertragfähigkeit, Nichtrostender Stahl A4 und HCR	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140	
Festigkeitsklasse 50 (>M24) und 70 (≤ M24)	V ⁰ _{Rk,s,seis}	[kN]	-	-	21	39	60	87	81	98	
Stahlversagen mit Hebelarm											
Charakteristisches Biegemoment,	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900	
Stahl, Festigkeitsklasse 4.6	M ⁰ _{Rk,s,seis}	[Nm]			Keine	Leistung	bestimm	it (NPD)			
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123	
	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)								
Charakteristisches Biegemoment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797	
Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s,seis}	[Nm]			Keine I	Leistung	bestimm	it (NPD)			
Charakteristische Biegemoment, Nichtrostender Stahl A4 und HCR	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125	
Festigkeitsklasse 50 (>M24) und 70 (≤ M24)	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)								
Betonausbruch auf der lastabgewandten Se	ite										
Faktor k in Gleichung (5.7) des Technical Report TR 029 für die Bemessung von Verbunddübeln	k	[-]				2	,0				
Montagesicherheitsbeiwert	γ2					1	,0				
Betonkantenbruch											
Montagesicherheitsbeiwert	γ2					1	,0				
			l								

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß TR 029 oder TR 045)	Anhang C 3

Dübelgröße Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen					•	•			•	•	•	
Charakteristische Zugtraç	gfähigkeit	N _{Rk,s}	[kN]					$A_s \cdot f_{uk}$				
Kombiniertes Versagen	durch Herausziehe	n und Bet	onausbruch									
Charakteristische Verbun	dtragfähigkeit im ung	jerissenen	Beton C20/2	5								
Temperaturbereich I:	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperaturbereich II: 60°C/43°C	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperaturbereich III:	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37	•	1,04								
Erhöhungsfaktor für Beto Ψ _c	n	C40/50		1,08								
		C50/60		1,10								
Spalten												
Randabstand	Randabstand $c_{\text{or,sp}}$ [mm]			$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$								
Achsabstand		S _{cr,sp}	[mm]					2 c _{cr,sp}				
Montagesicherheitsbeiwe (trockener und feuchter B		γ2	,			1,2				1	,4	
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)				1,4								

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß TR 029)	Anhang C 4

8.06.01-108/14

Dübelgröße Betonstah	I			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Stahlversagen												
Charakteristische Zugtra	agfähigkeit	N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	$A_s \cdot f_{uk}$								
Kombiniertes Versage	n durch Herausziehen ur	d Betonausbrucl	h									
Charakteristische Verbu	ndtragfähigkeit im gerisser	nen Beton C20/25	_									
	trockener und feuchter	$ au_{ m Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5		
Temperaturbereich I:	Beton	τ ⁰ _{Rk,seis}	[N/mm²]	5,2	4,7	4,4	4,1	3,9	3,9	3,9		
40°C/24°C	wassergefülltes	τ _{Rk,cr}	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0		
	Bohrloch	τ ⁰ _{Rk,seis}	[N/mm²]	5,2	4,6	4,1	3,5	3,0	2,9	2,7		
	trockener und feuchter	$ au_{ m Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5		
Temperaturbereich II:	Beton	τ ⁰ _{Rk,seis}	[N/mm²]	3,2	2,8	2,7	2,5	2,3	2,3	2,3		
60°C/43°C	wassergefülltes	$ au_{ m Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0		
	Bohrloch	τ ⁰ _{Rk,seis}	[N/mm²]	3,2	2,8	2,7	2,5	2,3	2,3	2,3		
	trockener und feuchter	$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
Temperaturbereich III: 72°C/43°C	Beton	τ ⁰ _{Rk,seis}	[N/mm²]	2,9	2,6	2,4	2,2	2,1	2,1	2,1		
	wassergefülltes Bohrloch	$ au_{ m Rk,cr}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0		
		τ ⁰ _{Rk,seis}	[N/mm²]	2,9	2,6	2,4	2,2	2,1	2,1	2,1		
Erhöhungsfaktor für Bet	on	C30/37	1,04									
(Nur statische oder quas Beanspruchung)		C40/50		1,08								
Ψc		C50/60		1,10								
Spalten		T	Т	1								
Randabstand		C _{cr,sp}	[mm]		1,0 · h _e	f ≤2·h	_{ef} 2,5 –	$\left(\frac{h}{h_{ef}}\right) \leq 2$,4 · h _{ef}			
Achsabstand		S _{cr,sp}	[mm]				2 C _{cr,sp}					
Montagesicherheitsbeiw (trockener und feuchter	Beton)	γ ₂			1,2			1	,4			
Montagesicherheitsbeiw (wassergefülltes Bohrlod		γ ₂					1,4	,4				

Z36671.14

Tabelle C6: Charakteris ungerissen)		
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Stahlversagen ohne Hebelarm													
	$V_{Rk,s}$	[kN]	0,50 • A _s • f _{uk}										
Charakteristische Quertragfähigkeit	$V^0_{\rm Rk,s,seis}$	[kN]	0,35 • A _s • f _{uk}										
Stahlversagen mit Hebelarm	1	'											
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]	1.2 · W _{el} · f _{uk}										
	$M^0_{\mathrm{Rk,s,seis}}$	[Nm]	Keine Leistung bestimmt (NPD)										
Betonausbruch auf der lastabgewan	dten Seite	'											
Faktor k in Gleichung (5.7) des Technical Report TR 029 für die Bemessung von Verbunddübeln	k	[-]					2,0						
Montagesicherheitsbeiwert	γ2		1,0										
Betonkantenbruch			•										
Montagesicherheitsbeiwert	γ ₂						1,0						

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß TR 029 oder TR 045)	Anhang C 6

Tabelle C7: Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)

Dübelgröße Gewindestand	nen			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Stahlversagen	Jon .			101 0	10110	141 12	10	101 20	1412-4	141 21	101 00
Charakteristische Zugtragfä	hiakeit	1	T						l		
Stahl, Festigkeitsklasse 4.6		$N_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224
Charakteristische Zugtragfä Stahl, Festigkeitsklasse 5.8	higkeit,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Charakteristische Zugtragfä Stahl, Festigkeitsklasse 8.8	higkeit,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Charakteristische Zugtragfähigkeit, Nichtrostender Stahl A4 und HCR		N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Festigkeitsklasse 50 (>M24)											<u> </u>
Kombiniertes Versagen du	urch Herausziehen und Bet	onausbru	en 								
Charakteristische Verbundtr	agfähigkeit im ungerissenen	Beton C20	/25								
Temperaturbereich I:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	15	15	15	14	13	12	12	12
40°C/24°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperaturbereich II:	trockener und feuchter Beton	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperaturbereich III: 72°C/43°C	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
	wassergefülltes Bohrloch	τ _{Rk,ucr}	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5
		C30/37 1,04							•		
Erhöhungsfaktor für Beton		C40/50	1,08								
ψ_{c}		C50/60		1,10							
Faktor gemäß CEN/TS 1992-4-5 Kapitel 6.	2.2.3	k ₈	[-]	10,1							
Betonausbruch			•								
Faktor gemäß CEN/TS 1992-4-5 Kapitel 6.	2.3.1	k _{ucr}	[-]				10),1			
Randabstand		C _{cr,N}	[mm]				1,5	i h _{ef}			
Achsabstand		S _{cr,N}	[mm]	3,0 h _{el}							
Spalten											
Randabstand			[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$					əf		
Achsabstand		S _{cr,sp}	[mm]	2 C _{cr,sp}							
Montagesicherheitsbeiwert (trockener und feuchter Beto	on)	γ2		1,2 1,4							
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)		γ2		1,4							

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)	Anhang C 7

Dübelgröße Gewindestangen M						M 20	M24	M27	M30		
Stahlversagen											
Charakteristische Zugtragfä	higkeit,	$N_{Rk,s} = N_{Rk,s,seis}^{0}$	[kN]	34	63	98	141	184	224		
Stahl, Festigkeitsklasse 4.6 Charakteristische Zugtragfähigkeit,			1	42	78	122	176	230	280		
Stahl, Festigkeitsklasse 5.8 Charakteristische Zugtragfä	hiakeit	$N_{Rk,s} = N_{Rk,s,seis}^0$	[kN]								
Stahl, Festigkeitsklasse 8.8		N _{Rk,s} =N ⁰ _{Rk,s,seis}	[kN]	67	125	196	282	368	449		
Charakteristische Zugtragfä Nichtrostender Stahl A4 und Festigkeitsklasse 50 (>M24)	HCR	$N_{Rk,s} = N_{Rk,s,seis}^{0}$	[kN] 59 110 171 247 230						281		
Kombiniertes Versagen du	urch Herausziehen und B	etonausbruch									
Charakteristische Verbundtr	agfähigkeit im gerissenen E	Beton C20/25									
	trockener und feuchter	$ au_{ m Rk,cr}$	[N/mm ²]	7,5	6,5	6,0	5,5	5,5	5,5		
Temperaturbereich I:	Beton	τ ⁰ _{Rk,seis}	[N/mm²]	5,2	4,4	4,1	3,9	3,9	3,9		
40°C/24°C	wassergefülltes	$ au_{ m Rk,cr}$	[N/mm²]	7,5	6,0	5,0	4,5	4,0	4,0		
	Bohrloch	$\tau^0_{ Rk, seis}$	[N/mm ²]	5,2	4,1	3,5	3,1	3,0	2,8		
	trockener und feuchter	$ au_{Rk,cr}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5		
Temperaturbereich II: 60°C/43°C	Beton	τ ⁰ _{Rk,seis}	[N/mm ²]	3,2	2,7	2,5	2,3	2,3	2,3		
	wassergefülltes	$ au_{Rk,cr}$	[N/mm²]	4,5	4,0	3,5	3,5	3,5	3,5		
	Bohrloch	τ ⁰ _{Rk,seis}	[N/mm ²]	3,2	2,7	2,5	2,3	2,3	2,3		
Temperaturbereich III:	trockener und feuchter	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0		
	Beton	τ ⁰ _{Rk,seis}	[N/mm ²]	2,9	2,4	2,2	2,1	2,1	2,1		
72°C/43°C	wassergefülltes	$ au_{Rk,cr}$	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0		
	Bohrloch	τ ⁰ _{Rk,seis}	[N/mm ²]	2,9	2,4	2,2	2,1	2,1	2,1		
Erhöhungsfaktor für Beton		C30/37				1,04					
Nur statische oder quasi-st	atische Beanspruchung)	C40/50				1,	1,08				
V c		C50/60				1,	10				
-aktor gemäß CEN/TS 1992-4-5 Kapitel 6.	2.2.3	k ₈	[-]	7,2							
Betonausbruch		•									
-aktor gemäß CEN/TS 1992-4-5 Kapitel 6.	2.3.1	k _{cr}	[-]		7,2						
Randabstand		C _{cr,N}	[mm]	1,5 h _{ef}							
Achsabstand		S _{cr,N}	[mm]			3,0	h _{ef}				
Spalten											
Randabstand		C _{cr,sp}	[mm]		1,0 · h _{ef} :	≤ 2 · h _{ef} (2,	$5-\frac{h}{h_{ef}}$	≤ 2,4 · h _{ef}			
Achsabstand	S _{cr,sp}	[mm]			2 c	cr,sp					
Montagesicherheitsbeiwert trockener und feuchter Beto	on)	γ ₂		1	,2		1	,4			
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)		γ ₂				1	,4		_		

Charakteristische Werte bei Zugbeanspruchung in gerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 oder TR 045)

Tabelle C9: Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 oder TR 045)

Dübelgröße Gewindestangen			М 8	M 10	M 12	M 16	M 20	M24	M 27	M 30		
Stahlversagen ohne Hebelarm		'		'	•			•				
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	7	12	17	31	49	71	92	112		
Stahl, Festigkeitsklasse 4.6	V ⁰ _{Rk,s,seis}	[kN]	-	-	12	22	34	50	65	78		
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	9	15	21	39	61	88	115	140		
Stahl, Festigkeitsklasse 5.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	15	27	43	62	81	98		
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	15	23	34	63	98	141	184	224		
Stahl, Festigkeitsklasse 8.8	V ⁰ _{Rk,s,seis}	[kN]	-	-	24	44	69	99	129	157		
Charakteristische Quertragfähigkeit,	$V_{Rk,s}$	[kN]	13	20	30	55	86	124	115	140		
Nichtrostender Stahl A4 und HCR Festigkeitsklasse 50 (>M24) und 70 (≤ M24)	V ⁰ _{Rk,s,seis}	[kN]	-	-	21	39	60	87	81	98		
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂			0,8								
Stahlversagen mit Hebelarm	-	'										
Charakteristisches Biegemoment, Stahl, Festigkeitsklasse 4.6	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900		
	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)									
Charakteristisches Biegemoment,	M ⁰ _{Rk,s}	[Nm]	19	37 65 166 324 560 83					833	1123		
Stahl, Festigkeitsklasse 5.8	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)									
Charakteristisches Biegemoment,	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797		
Stahl, Festigkeitsklasse 8.8	M ⁰ _{Rk,s,seis}	[Nm]		Ke	ine Leis	tung be	stimmt (NPD)				
Charakteristische Biegemoment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125		
Nichtrostender Stahl A4 und HCR Festigkeitsklasse 50 (>M24) und 70 (≤ M24)	M ⁰ _{Rk,s,seis}	[Nm]		Keine Leistung bestimmt (NPD)								
Betonausbruch auf der lastabgewandten Sei	ite	1										
Faktor in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3	k ₃					2,0						
Montagesicherheitsbeiwert	γ ₂					1,0						
Betonausbruch	'	I										
Effektive Ankerlänge	I _f	[mm]			l _t =	min(h _{ef} ; 8	3 d _{nom})					
Aussendurchmesser des Ankers	d _{nom}	[mm]	8	10	12	16	20	24	27	30		
Montagesicherheitsbeiwert	γ_2			-								

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Querbeanspruchung in gerissenem und ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 oder TR 045)	Anhang C 9

Tabelle C10: Cha	arakteristische emessungsver		_		-		_	ınger	issen	nem B	Beton	
Dübelgröße Betonstahl				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen												
Charakteristische Zugtragfähigkeit $N_{Rk,s}$ [kN]								$A_s \cdot f_{uk}$				
Kombiniertes Versagen du	urch Herausziehen un	d Betonau	sbruch	<u> </u>								
Charakteristische Verbundtr	ragfähigkeit im ungeriss	enen Betor	n C20/25									
Temperaturbereich I:	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	wassergefülltes Bohrloch	$ au_{Rk,uer}$	[N/mm²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperaturbereich II: 60°C/43°C	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperaturbereich III:	trockener und feuchter Beton	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	wassergefülltes Bohrloch	$ au_{ m Rk,ucr}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
	•	C30/37						1,04				
Erhöhungsfaktor für Beton Ψ _c		C40/50		1,08								
		C50/60		1,10								
Faktor gemäß CEN/TS 1992-4-5 Kapitel 6.	2.2.3	k ₈	[-]	10,1								
Betonausbruch												
Faktor gemäß CEN/TS 1992-4-5 Kapitel 6.	2.3.1	k _{ucr}	[-]					10,1				
Randabstand		C _{cr,N}	[mm]					1,5 h _{ef}				
Achsabstand		S _{cr,N}	[mm]	3,0 h _{ef}								
Spalten												
Randabstand c _{cr,sp} [mm]			[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$								
Achsabstand s _{cr,sp} [mm]				2 C _{or,sp}								
Montagesicherheitsbeiwert (trockener und feuchter Bete	on)	γ2		1,2 1,4								
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)		γ2						1,4				

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Zugbeanspruchung in ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4)	Anhang C 10

Dübelgröße Betonstahl				Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen										
Charakteristische Zugtraç	[kN]	A _s • f _{uk}								
Kombiniertes Versagen	durch Herausziehen	und Betonausbrud	:h	•						
Charakteristische Verbun	dtragfähigkeit im geris	senen Beton C20/25	5							
	trockener und	$ au_{ m Rk,cr}$	[N/mm²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperaturbereich I:	feuchter Beton	$ au^0_{ m Rk,seis}$	[N/mm²]	5,2	4,7	4,4	4,1	3,9	3,9	3,9
40°C/24°C	wassergefülltes	$ au_{ m Rk,cr}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0
	Bohrloch	τ ⁰ _{Rk,seis}	[N/mm²]	5,2	4,6	4,1	3,5	3,0	2,9	2,7
	trockener und	$ au_{ m Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperaturbereich II:	feuchter Beton	τ ⁰ _{Rk,seis}	[N/mm ²]	3,2	2,8	2,7	2,5	2,3	2,3	2,3
60°C/43°C	wassergefülltes	$ au_{ m Rk,cr}$	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	Bohrloch	$\tau^0_{Rk,seis}$	[N/mm ²]	3,2	2,8	2,7	2,5	2,3	2,3	2,3
Temperaturbereich III: 72°C/43°C	trockener und	$ au_{ m Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	feuchter Beton	τ ⁰ _{Rk,seis}	[N/mm ²]	2,9	2,6	2,4	2,2	2,1	2,1	2,1
	wassergefülltes	$ au_{ m Rk,cr}$	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	Bohrloch	τ ⁰ _{Rk,seis}	[N/mm²]	2,9	2,6	2,4	2,2	2,1	2,1	2,1
Erhöhungsfaktor für Beto (Nur statische oder quasi		C30/37	1,04							
Beanspruchung)	-statische	C40/50		1,08						
Ψ _c Faktor gemäß		C50/60		1,10						
CEN/TS 1992-4-5 Kapitel	1 6.2.2.3	k ₈	[-]				7,2			
Betonausbruch										
Faktor gemäß CEN/TS 1992-4-5 Kapitel	l 6.2.3.1	k _{cr}	[-]				7,2			
Randabstand		C _{cr,N}	[mm]				1,5 h _{ef}			
Achsabstand		S _{cr,N}	[mm]				3,0 h _{ef}			
Spalten			•	•						
Randabstand		C _{cr,sp}	[mm]	$1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left(2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$						
Achsabstand	S _{cr,sp}	[mm]				2 c _{cr,sp}				
Montagesicherheitsbeiwe (trockener und feuchter B	Montagesicherheitsbeiwert (%)				1,2			1	,4	
Montagesicherheitsbeiwert (wassergefülltes Bohrloch)							1,4			
<u></u>	,			1						

Z36671.14

Tabelle C12:	Charakteristische Werte bei Querbeanspruchung in gerissenem und
	ungerissenem Beton (Bemessungsverfahren gemäß CEN/TS 1992-4 oder
	TR 045)

TR 045)											
Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Stahlversagen ohne Hebelarm											
Charaktariatiaaha Quartraafähiakait	$V_{Rk,s}$	[kN]	0,50 ⋅ A _s ⋅ f _{uk}								
Charakteristische Quertragfähigkeit	V ⁰ _{Rk,s,seis}	[kN]	0,35 • A _s • f _{uk}								
Duktilitätsfaktor gemäß CEN/TS 1992-4-5 Kapitel 6.3.2.1	k ₂	k ₂ 0,8									
Stahlversagen mit Hebelarm											
Charakteristische Biegemoment	M ⁰ _{Rk,s}	[Nm]	1.2 • W _{el} • f _{uk}								
Charaktenstische biegemoment	M ⁰ _{Rk,s,seis}	[Nm]	Keine Leistung bestimmt (NPD)								
Betonausbruch auf der lastabgewandten Seite		•									
Faktor in Gleichung (27) der CEN/TS 1992-4-5 Kapitel 6.3.3	k ₃						2,0				
Montagesicherheitsbeiwert	γ2						1,0				
Betonausbruch											
Effektive Ankerlänge	I _f	[mm]	$I_{t} = min(h_{ef}; 8 d_{nom})$								
Aussendurchmesser des Ankers	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Montagesicherheitsbeiwert	γ2		1,0								

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Charakteristische Werte bei Querheanspruchung in gerissenem und ungerissenem Beton	Anhang C 12

(Bemessungsverfahren gemäß CEN/TS 1992-4 oder TR 045)

Tabelle C13: Verschiebung unter Zugbeanspruchung ¹⁾ (Ankerstange)											
Dübelgröße Gewir	ndestangen		M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Ungerissener Beto	on C20/25						•				
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,035	
40°C/24°C	δ _{N∞} -Faktor	[mm/(N/mm²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,140	
Temperaturbereich II:	$\delta_{\text{N0}} ext{-}\text{Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043	
60°C/43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161	
Temperaturbereich III:	$\delta_{\text{N0}} ext{-Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,043	
72°C/43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,161	
Gerissener Beton	C20/25										
Temperaturbereich I:	δ_{N0} -Faktor	[mm/(N/mm²)]			0,032	0,037	0,042	0,048	0,053	0,058	
40°C/24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]		-	0,21	0,21	0,21	0,21	0,21	0,21	
Temperaturbereich II:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067	
60°C/43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]		-	0,24	0,24	0,24	0,24	0,24	0,24	
Temperaturbereich III: 72°C/43°C	$\delta_{\text{N0}} ext{-Faktor}$	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,067	
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]		-	0,24	0,24	0,24	0,24	0,24	0,24	

 $^{^{1)}}$ Berechnung der Verschiebung $\delta_{N0} = \delta_{N0}\text{-Faktor} \ \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty}$ -Faktor $\cdot \tau$;

Tabelle C14: Verschiebung unter Querbeanspruchung¹⁾ (Ankerstange)

Dübelgröße Gewindestangen			М 8	M 10	M 12	M 16	M 20	M24	M 27	М 30
Beton C20/25										
Alle Temperaturbereiche	δ_{V0} -Faktor	[mm/(kN)]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03
	δ _{V∞} -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05

 $[\]begin{array}{l} ^{1)} \mbox{ Berechnung der Verschiebung} \\ \delta_{V0} = \delta_{V0}\mbox{-Faktor} \quad V; \\ \delta_{V\infty} = \delta_{V\infty}\mbox{-Faktor} \quad V; \end{array}$

Multifix Injektionssystem MF-EX1 für Beton	
Leistungen Verschiebungen (Ankerstange)	Anhang C 13

Tabelle C15: Verschiebung unter Zugbeanspruchung ¹⁾ (Betonstahl)											
Dübelgröße Betor	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32		
Ungerissener Beton C20/25											
Temperaturbereich I: 40°C/24°C	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
Temperaturbereich II: 60°C/43°C	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Temperaturbereich III:	$\delta_{\text{N0}} ext{-}\text{Faktor}$	[mm/(N/mm²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Gerissener Beton	C20/25										
Temperaturbereich I:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	,	-	0,21	0,21	0,21	0,21	0,21	0,21	0,21
Temperaturbereich II:	$\delta_{\text{N0}}\text{-Faktor}$	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N_{\infty}}$ -Faktor	[mm/(N/mm²)]	,	-	0,24	0,24	0,24	0,24	0,24	0,24	0,24
Temperaturbereich III: 72°C/43°C	$\delta_{\text{N0}} ext{-}\text{Faktor}$	[mm/(N/mm²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
	$\delta_{N\infty}$ -Faktor	[mm/(N/mm²)]	,	-	0,24	0,24	0,24	0,24	0,24	0,24	0,24

¹⁾ Berechnung der Verschiebung

 $\delta_{N0} = \delta_{N0}\text{-Faktor} \ \cdot \tau;$

 $\delta_{N\infty} = \delta_{N\infty}\text{-Faktor }\cdot\tau;$

Tabelle C16: Verschiebung unter Querbeanspruchung¹⁾ (Betonstahl)

Dübelgröße Betonstahl			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Beton C20/25											
Alle Temperaturbereiche	δ_{V0} -Faktor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
	$\delta_{V_{\infty}}$ -Faktor	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04

¹⁾ Berechnung der Verschiebung

 $\delta_{V0} = \delta_{V0}$ -Faktor · V;

 $\delta_{V_{\infty}} = \delta_{V_{\infty}}\text{-Faktor} \quad V;$

Multifix Injektionssystem MF-EX1 für Beton

Anhang C 14

Leistungen

Verschiebungen (Betonstahl)