

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-14/0297 of 5 September 2014

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

SXRL 14

Plastic anchor for multiple use in concrete and masonry for non-structural applications

fischerwerke GmbH & Co. KG Weinhalde 14-18 72178 Waldachtal DEUTSCHLAND

fischerwerke

15 pages including 11 annexes which form an integral part of this assessment

Guideline for European technical approval of "Plastic Anchors for Multiple Use in Concrete and Masonry for Non", ETAG 020 structural Applications - Part 1: "General", Edition March 2012, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-14/0297

Page 2 of 15 | 5 September 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z43617.14 8.06.04-829/13

European Technical Assessment ETA-14/0297

Page 3 of 15 | 5 September 2014

Specific Part

Technical description of the product

1 The fischer frame fixing SXRL 14 is a plastic anchor consisting of a plastic sleeve made of polyamide and an accompanying specific screw of galvanised steel with an additional Duplex-coating or of stainless steel

The plastic sleeve is expanded by screwing in the specific screw which presses the sleeve against the wall of the drilled hole.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

The essential characteristics regarding mechanical resistance and stability are included under the Basic Works Requirement Safety in use.

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A 1
Resistance to fire	See Annex C 1

3.3 Hygiene, health and the environment (BWR 3)

Not applicable

3.4 Safety and accessibility (BWR 4)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads	See Annex C 1 – C 4
Characteristic resistance for bending moments	See Annex C 1
Displacements under shear and tension loads	See Annex C 1 + C 4
Anchor distances and dimensions of members	See Annex B 2 – B 3

Z43617.14 8.06.04-829/13

European Technical Assessment ETA-14/0297

Page 4 of 15 | 5 September 2014

3.5 Protection against noise (BWR 5)

Not applicable

3.6 Energy economy and heat retention (BWR 6)

Not applicable

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

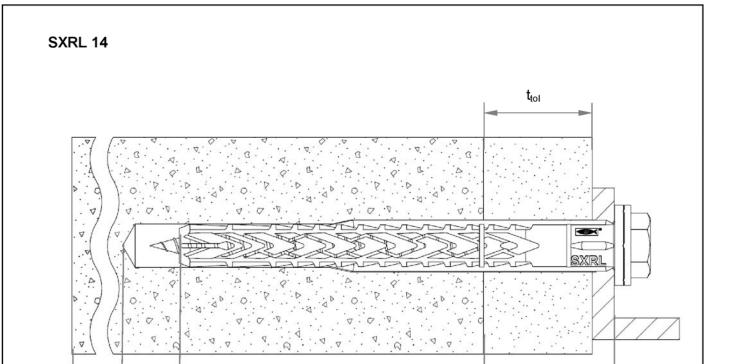
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision 97/463/EC of the Commission of 27 June 1997 (Official Journal of the European Communities L 198 of 25.07.1997, p. 31–32) the system of assessment and verification of constancy of performance (AVCP) (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

Product	Intended use	Level or class	System
Plastic anchors for use in concrete and masonry	For use in systems, such as façade systems, for fixing or supporting elements which contribute to the stability of the systems	_	2+

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 11 September 2014 by Deutsches Institut für Bautechnik

Uwe Benderbeglaubigt:Head of DepartmentZiegler

Z43617.14 8.06.04-829/13

 t_{fix}

h_{nom}

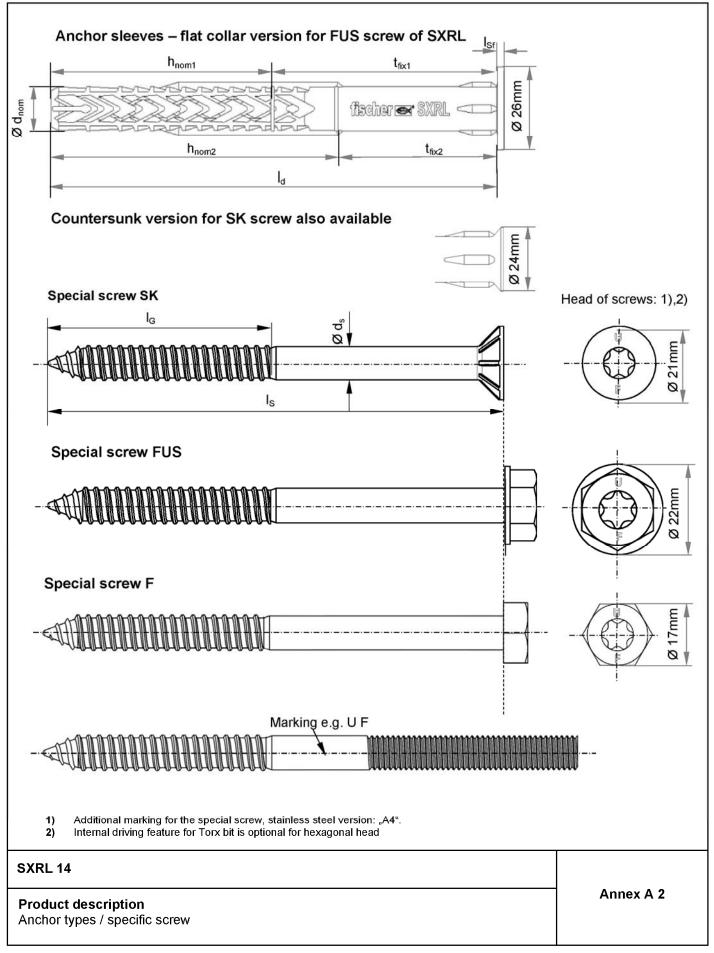
 h_1

h

Legend

h_{nom} = Overall plastic anchor embedment depth in the base material

 h_1 = Depth of drilled hole to deepest point


h = Thickness of member

t_{tol} = Thickness of equalizing layer or non-load bearing coating

 t_{fix} = Thickness of fixture + t_{tol}

SXRL 14	
Product description Installed anchor	Annex A 1

Table A3.1: Dimensions

Anchor Sleeve					Sp	ecial scr	ew		
type	h _{nom1} [mm]	h _{nom2} [mm] ⁾	Ø d _{nom} [mm]	t _{fix} [mm]	l _d [mm]	l _{sf} ²⁾ [mm]	Ø d _s [mm]	l _G [mm]	I _s [mm]
SXRL 14	70	90	14	≥ 1	71-600	3,1	9,6	63	≥ 81 ¹⁾

¹⁾ To insure that the screw penetrates the anchor sleeve, I_s must be $I_d + I_{Sf}^{(2)} + 10$ mm

Table A3.2: Materials

Name	Material
Anchor sleeve	Polyamide, PA6, colour grey
Special screw	- Steel gvz A2G or A2F acc. to EN ISO 4042:2001-01 or - Steel gvz A2G or A2F acc. to EN ISO 4042:2001-01 + Duplex-coating type Delta-Seal in three layers (total layer thickness ≥ 6 μm) or - Stainless steel acc. to EN 10 088-3:2012, e.g. 1.4401, 1.4571, 1.4578, 1.4362,

SXRL 14	
Product description Dimensions and Materials	Annex A 3

²⁾ Only valid for flat collar version

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads.
- · Multiple fixing of non-structural applications

Base materials:

- Reinforced or unreinforced normal weight concrete with strength classes ≥ C12/15 (use category a), according to EN 206-1:2000.
- Solid brick masonry (use category b), according to Annex C2.
 - Note: The characteristic resistance is also valid for larger brick sizes and higher compressive strength of the masonry unit.
- · Hollow brick masonry (use category c), according to Annex C3.
- · Autoclaved aerated concrete (use category d), according to Annex C4.
- Mortar strength class of the masonry ≥ M2,5 according to EN 998-2:2010.
- For other base materials of the use categories a, b, c and d the characteristic resistance of the anchor may be determined by job site tests according to ETAG 020, Annex B, Edition March 2012.

Temperature Range:

- c: 20° C to 50° C (max. short term temperature + 50° C and max long term temperature + 30° C)
- b: 20° C to 80° C (max. short term temperature + 80° C and max long term temperature + 50° C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel).
- The specific screw made of galvanised steel or galvanised steel with an additional Duplex-coating may also be used in structures subject to external atmospheric exposure, if the area of the head of the screw is protected against moisture and driving rain after mounting of the fixing unit in this way, that intrusion of moisture into the anchor shaft is prevented. Therefore there shall be an external cladding or a ventilated rainscreen mounted in front of the head of the screw and the head of the screw itself shall be coated with a soft plastic, permanently elastic bitumen-oil-combination coating (e. g. undercoating or body cavity protection for cars).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).
 - Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution
 - (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- The anchorages are to be designed in accordance with the ETAG 020, Annex C under the responsibility of an engineer experienced in anchorages and masonry work.
- Verifiable calculation notes and drawings shall be prepared taking account of the loads to be anchored, the
 nature and strength of the base materials and the dimensions of the anchorage members as well as of the
 relevant tolerances. The position of the anchor is indicated on the design drawings.
- Fasteners are only to be used for multiple use for non-structural application, according to ETAG 020, Edition March 2012.

Installation:

- Hole drilling by the drill modes according to Annex C1 C4 for use category b, c and d.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Installation temperature from -5°C to + 40°C
- Exposure to UV due to solar radiation of the anchor not protected ≤ 6 weeks

SXRL 14	
Intended Use	Annex B 1
Specifications	

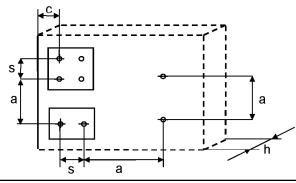
Z47547.14 8.06.04-829/13

Electronic copy of the ETA by DIBt: ETA-14/0297

Table B2.1: Installation instructions

Anchor type			SXRL 14
Drill hole diameter	d ₀ =	[mm]	14
Cutting diameter of drill bit	$d_{cut} \leq $	[mm]	14,45
Depth of drill hole to deepest point 1)	h _{1,1} ≥	[mm]	85
Depth of drill hole to deepest point 1)	h _{1,2} ≥	[mm]	105
Overall plastic anchor embedment depth in the base material 1) 2)	$h_{nom1} \geq $	[mm]	70
Overall plastic anchor embedment depth in the base material 1) 2)	$h_{nom2} \ge$	[mm]	90
Diameter of clearance hole in the fixture	$d_f \leq$	[mm]	15,40

⁾ See Annex 1


Table B2.2: Minimum thickness of member, edge distance and spacing in concrete

Anchor type SXRL 14		Minimum thickness of member h _{min} [mm]	Characteristic edge distance c _{cr,N} [mm] Characteristic spacing a [mm]		Minimum edge distances and spacing ³⁾ [mm]
Reinforced	≥ C16/20	110	100	120	$s_{min} = 60 \text{ for } c \ge 100$ $c_{min} = 60 \text{ for } s \ge 125$
Concrete	C 12/15	110	140	135	$s_{min} = 85 \text{ for } c \ge 140$ $c_{min} = 85 \text{ for } s \ge 175$
Unreinforced	≥ C16/20	110	100	120	c _{min} = 100 and s _{min} = 80
Concrete	C 12/15	110	140	135	$c_{min} = 140 \text{ and } s_{min} = 110$

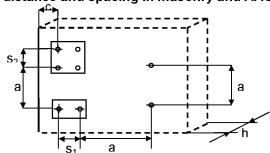
³⁾ Intermediate values by linear interpolation

Fixing points with a spacing \leq a are considered as a group with a max. characteristic resistance $N_{Rk,p}$ acc. to Table C1.3. For a spacing > a the anchors are always considered as single anchors, each with a characteristic resistance $N_{Rk,p}$ acc. to Table C1.3.

Scheme of distance and spacing in concrete

SXRL 14	
Intended Use Installation parameters, edge distances and spacing's for use in concrete	Annex B 2

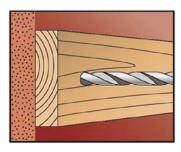
If the embedment depth is higher than h_{nom} given in Table B2.1 (only for hollow and perforated masonry), job site tests have to be carried out according to ETAG 020, Annex B.

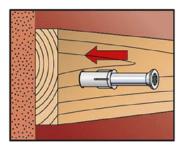

Table B3.1: Minimum distances and dimensions in masonry

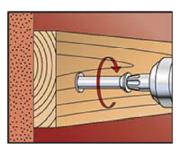
Anchor type			SXRL 14
Minimum thickness of member	h _{min}	[mm]	115
Single anchor			
Minimum spacing	a _{min}	[mm]	250
Minimum edge distance	C _{min}	[mm]	100
Anchor Group	,		
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	100
Minimum spacing parallel to free edge	S _{2,min}	[mm]	100
Minimum edge distance	C _{min}	[mm]	100

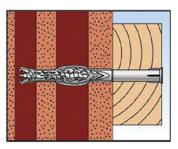
Table B3.2: Minimum distances and dimensions in AAC

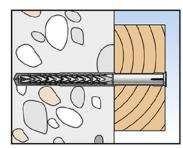
Anchor type SXRL 14	Anchor type SXRL 14		AAC f _b ≥2 N/mm²			AAC f _b ≥ 4 N/mm ²	
Nominal embedment depth	h_{nom}	[mm]	70	90	70	90	
Single anchor	·						
Minimum thickness of member	h _{min}	[mm]	175	175	300	300	
Minimum spacing	a _{min}	[mm]	250	250	250	250	
Minimum edge distance	C _{min}	[mm]	80	80	100	120	
Anchor Group	·						
Minimum thickness of member	h _{min}	[mm]	240	300	300	300	
Minimum spacing perpendicular to free edge	S _{1,min}	[mm]	80	80	80	100	
Minimum spacing parallel to free edge	S _{2,min}	[mm]	80	100	80	125	
Minimum edge distance	C _{1,min}	[mm]	120	120	120	150	
Minimum edge distance perpendicular to c ₁	C _{2,min}	[mm]	150	150	150	150	


Scheme of distance and spacing in masonry and AAC


SXRL 14	
Intended Use Installation parameters, edge distances and spacing's for use in masonry and AAC	Annex B 3


Installation instructions (the following pictures show fixing through timber)


1. Drill the bore hole Ø 14 mm using the drill method described in the corresponding annex.


2. Insert assembly group of anchor (screw and plug) using a hammer until the plastic sleeve is flush with surface of fixture.

3. The screw is screwed-in until the head of the screw touches the sleeve.

4. Correctly installed anchor in hollow masonry.

5. Correctly installed anchor in concrete.

SXRL 14

Intended use Installation instructions Annex B 4

Anchor type			SXRL 14						
aterial		Galvanised steel Stainless s			ss steel				
Overall plastic anchor embedment depth in the base material		h _{nom1} 70mm	h _{nom2} 90mm	h _{nom1} 70mm	h _{nom2} 90mm				
Characteristic bending resistance	M _{Rk,s} [Nm]	48,7	62,5	47,0	60,5				
Partial safety factor	1 γ _{Ms}	1,	25	1,	29				

¹⁾ In absence of other national regulations

Table C1.2: Characteristic resistance of the screw

			SXF	RL 14
Failure of expansion element (special screw)			Galvanized steel	Stainless steel
Characteristic tension resistance Partial safety factor for N _{Rk,s} Characteristic shear resistance	$N_{Rk,s}$	[kN]	43,4	42,0
Partial safety factor for N _{Rk,s}	γ _{Ms} 1		1,50	1,55
Characteristic shear resistance	$V_{Rk,s}$	[kN]	21,7	21,0
Partial safety factor for V _{Rk,s}	γ _{Ms} 1		1,25	1,29

¹⁾ In absence of other national regulations

Table C1.3: Characteristic resistance for use in concrete

Pull-out failure (plastic sleeve) SXRL 14		SXRL 14	
Temperature range			50/80 °C 30/50 °C
Concrete ≥ C12/15			
Characteristic resistance	N _{Rk,p} ²⁾	[kN]	8,5
Partial safety factor	γ _{Mc} 1)		1,8

¹⁾ In absence of other national regulations

Table C1.4: Displacements under tension und shear loading in concrete and masonry

Anchor type	Tension or shear load	Displacements under tension load ^{3), 4)}			ments under load ^{3), 4)}
	F [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	δ _{vo} [mm]	δ _{ν∞} [mm]
SXRL 14	3,40	0,39	0,63	2,79	4,19

Valid for all ranges of temperatures

Tabelle C1.5: Characteristic values under fire exposure in concrete C20/25 to C50/60 in any load direction, no permanent centric tension load and without lever arm

Fire resistance class	F _{Rk}
R 90	≤ 0,8 kN

SXRL 14	
Performances Characteristic resistance, Displacements under tension and shear loading in concrete and masonry	Annex C 1

²⁾ Hammer drilling

⁴⁾ Intermediate values by linear interpolation

Table C2.1: SXRL 14 characteristic resistance F_{Rk} in [kN] in solid masonry (use category "b")

Base material [Supplier]	Min. DF or min. size (L x W x H)	Minimum compressive strength f _b [N/mm²]	Drilling method ¹⁾	SXR F _i [k	ic resistance L 14 RK N] 70mm
	[mm]	≥ ρ [kg/dm³]		50/80 °C	30/50 °C
Clay brick, Mz e.g. acc. to DIN 105-100:2012-01,	NF	20/1,8	н	4,0 / 6,02)	4,0 / 7,02)
[mm] ≥ ρ [kg/dm³] 50/80 °C 30/50 Clay brick, Mz e.g. acc. to DIN 105-100:2012-01, EN 771-1:2011,Mz e.g. Ebersdobler Mz Calcium silicate solid brick KS e.g. acc. to DIN V 106:2005-10, EN 771-2:2011 e.g. Wemding KSV Lightweight solid brick,V, [mm] ≥ ρ [kg/dm³] 50/80 °C 30/50 4,0 / 7, 4,0 / 6,0²) 4,0 / 7, 4,0 / 7, 4,0 / 6,0²) 3,0 / 5, 4,0 / 7, 4,0 / 7, 4,0 / 6,0²) 4,0 / 7, 4,0 / 1, 3,0 / 4,5 / 6, 4,5 / 6, 4,5 / 6, 4,5 / 6, 4,0 / 1,0 / 2 3,0 / 4, 4,0 / 1,0 / 2 4,0 / 1,0 / 2 4,0 / 1,0 / 2 4,0 / 1,0 / 2 4,0 / 1,0 / 2 4,0 / 1,0 / 2 4,0 / 1,0 / 2 4,0 / 1,0 / 2 4,0 / 1,0 / 3 4,0 / 1,	3,0 / 5,0 ²⁾				
Calcium silicate solid brick		20/1,8		4,5 / 5,0 ²⁾	4,5 / 6,0 ²⁾
DIN V 106:2005-10,	(240X115X/1)	10/1,8	"	3,0 / 3,5 ²⁾	3,0 / 4,0 ²⁾
		12/1,8		4,0 / 11,0 ²⁾	4,0 / 11,5 ²⁾
e.g. Weinding NOV	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 DF			
	(495x175x240)	8/1,8	Н	2,5 / 7,5 ²⁾	2,5 / 7,5 ²⁾
		6/1,8		2,0 / 5,5 ²⁾	2,0 / 5,5 ²⁾
		4/1,8		1,2 / 3,5 ²⁾	1,2 / 3,5 ²⁾
		10/1,6		3,5 / 6,0 ²⁾	3,5 / 7,0 ²⁾
e.g. acc. to DIN V 18152-100:2005-10	(250×240×245)	8/1,6		3,0 / 5,0 ²⁾	3,0 / 6,0 ²⁾
EN 771-3:2011, e.g. KLB VL	(250x240x245)	6/1,6] н	2,0 / 3,5 ²⁾	2,0 / 4,5 ²⁾
		4/1,6] ''	1,5 / 2,5 ²⁾	1,5 / 3,0 ²⁾
	2DF (240x115x113)	2/1,2		0,9	1,2
Partial safety factor			γ _{Ms} 3)	2	,5

- 1) H = Hammer drilling, R = Rotary drilling
- 2) Only for edge distance $c \ge 200$ mm; intermediate values by linear interpolation
- 3) In absence of other national regulations

SXRL 14	
Performances Characteristic resistance for use in solid masonry	Annex C 2

Performances

Characteristic resistance for use in hollow or perforated masonry

Base material [Supplier]	Geometry and min. DF or min. size (L x W x H)	Min. compressive strength	Drilling method ¹⁾	resistance [k		cteristic F _{Rk} SXI (N]		
	[mm]	f _b [N/mm²] / bulk density ≥ ρ [kg/dm³]		h _{nom1} 70mm* 50/80 30/50 ° C ° C		h _{nom2} 90mm* 50/80 30/50 ° C		
Vertically perforated		12/1,0		2	,0	2	,5	
clay bricks e.g. acc. to DIN 105-100:2012-01,	× = 700000000000000000000000000000000000	10/1,0	R	2,	,0	2,	,0	
EN 771-1:2011,		8/1,0	K	1,	,5	1,	,5	
Schlagmann HLz	3 DF (240x175x113)	6/1,0		1,	,2	1,	,2	
Vertically perforated	\$	48/1,6		4,5	5,0	4,5	5,0	
clay bricks e.g. acc. to DIN 105-100:2012-01, EN 771-1:2011,	26 15 7	28/1,6	R	2,5	3,0	2,5	3,0	
Wienerberger HLz	26 5 7 240 240 NF (240x115x71)	20/1,6		1,5	2,0	1,5	2,0	
Hollow calcium silicate	3027,5	12/1,4		1,5	2,0	2,5		
brick KSL, acc. to DIN V 106:2005-10,		10/1,4	Н	1,5		2,0		
EN 771-2:2011 e.g. KS Wemding		8/1,4		1,2		1,5		
KSL	3d 25 240 2 DF (240x115x113)	6/1,4		0,	,9	1,2		
Hollow calcium silicate brick acc. to DIN V 106:2005-10,	E # 25 P 44	20/1,4	Н	3,5	4,0	1,5	2,0	
EN 771-2:2011 e.g . Xella KS	9 DF (380x175x240)	10/1,4	(Standar)	1,5	2,0	0,75	0,9	
Hollow brick leightweight concrete, e.g. acc. to DIN V 18153-100: 2005-10, EN 771-3:2011, e.g. KLB, Hbl	(240x500x240)	2/0,7	R	1,2	1,5	0,	75	
Hollow brick	155 60	10/1,2		3,0		i.	•	
leightweight concrete, e.g. acc. to DIN V	0	8/1,2		2	2,5		-	
18153-100: 2005-10,	210	6/1,2	R	2		-		
EN 771-3:2011, e.g. Masonry	35	4/1,2		1,	1,2		•	
Roadstone	440 (440x210x215)	2/1,2		0,6		(•	•	
Partial safety factor			γ _{Ms} 3)		2	,5		

Z47547.14 8.06.04-829/13

Annex C 3

Table C4.1: Characteristic resistance F_{RK} in [kN] in autoclaved aerated concrete (AAC) (use category "d")

Base material	Minimum compressive strength f _b ≥	Characteristic resistance F _{RK} SXRL 14		
	[N/mm²]	I/mm²] Drilling method	Temp. range "b" and "c" 50/80 °C	
			h _{nom1} 70mm	h _{nom2} 90mm
Autoclaved aerated concrete blocks, e.g. AAC acc. to DIN V 4165-100:2005-10, EN 771-4:2011	6	Hammer drilling	4,0	5,0
	4		2,5	3,0
	3		1,5	2,0
	2		0,9	1,2

Table C4.2: Displacements under tension and shear loading in autoclaved aerated concrete (AAC)

Anchor type	Tension or shear load	Displacements under tension load ²⁾		Displacements under shear load ²⁾	
SXRL 14	F [kN]	δ _{NO} [mm]	δ _{N∞} [mm]	δ _{vo} [mm]	δ _{ν∞} [mm]
$h_{\text{nom}} = 70/90\text{mm}$ $f_b \ge 2 \text{ N/mm}^2$	0,32/0,43	0,19/0,25	0,38/0,50	0,64/0,86	0,96/1,29
$h_{nom} = 70/90mm$ $f_b \ge 3 \text{ N/mm}^2$	0,60/0,77	0,23/0,31	0,45/0,63	1,19/1,54	1,79/2,31
$h_{\text{nom}} = 70/90\text{mm}$ $f_b \ge 4 \text{ N/mm}^2$	0,88/1,11	0,26/0,38	0,53/0,76	1,75/2,22	2,62/3,33
$h_{\text{nom}} = 70/90\text{mm}$ $f_b \ge 6 \text{ N/mm}^2$	1,43/1,79	0,34/0,51	0,68/1,02	2,86/3,58	4,29/5,37

Valid for all ranges of temperatures

SXRL 14	
Performances Characteristic resistance and displacements for use in autoclaved aerated concrete	Annex C 4

²⁾ Intermediate values by linear interpolation