



Approval body for construction products and types of construction

**Bautechnisches Prüfamt** 

An institution established by the Federal and Laender Governments



# **European Technical Assessment**

# ETA-14/0323 of 10 October 2014

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

B+BTec Injection system BIS-V for concrete

Bonded Anchor with Anchor rod for use in concrete

B+BTec Munterij 8 4762 AH ZEVENBERGEN NIEDERLANDE

B+BTec, Plant 1

27 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.



# **European Technical Assessment ETA-14/0323**

Page 2 of 27 | 10 October 2014

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Z51453.14 8.06.01-273/14



European Technical Assessment ETA-14/0323

Page 3 of 27 | 10 October 2014

#### **Specific Part**

# 1 Technical description of the product

The "B+BTec Injection system BIS-V for concrete" is a bonded anchor consisting of a cartridge with injection mortar B+BTec BIS-V and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product and references to the methods used for its assessment

# 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                      | Performance                      |  |
|-------------------------------------------------------------------------------|----------------------------------|--|
| Characteristic resistance for tension loads in non-cracked concrete           | See Annex C 1 / C 4 / C 7 / C 10 |  |
| Characteristic resistance for tension loads in cracked concrete               | See Annex C 2 / C 5 / C 8 / C 11 |  |
| Characteristic resistance for shear loads in cracked and non-cracked concrete | See Annex C 3 / C 6 / C 9 / C 12 |  |
| Displacements under tension and shear loads                                   | See Annex C 13 / C 14            |  |

#### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                                  |
|--------------------------|----------------------------------------------|
| Reaction to fire         | Anchorages satisfy requirements for Class A1 |
| Resistance to fire       | No performance determined (NPD)              |

# 3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

Z51453.14 8.06.01-273/14



# European Technical Assessment ETA-14/0323

### Page 4 of 27 | 10 October 2014

# 3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

# 3.5 Protection against noise (BWR 5)

Not applicable.

### 3.6 Energy economy and heat retention (BWR 6)

Not applicable.

# 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

#### 3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

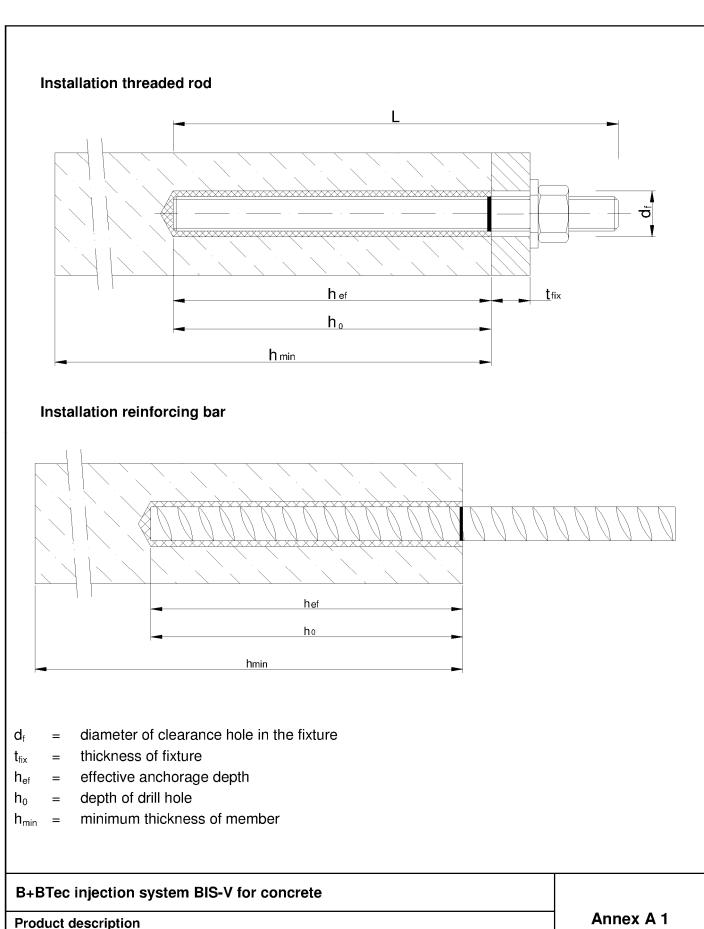
# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

| Product                                             | Intended use                                                                                                     | Level or class | System |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete (heavy-duty type) | For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings | _              | 1      |

# 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

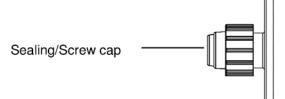
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 10 October 2014 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider

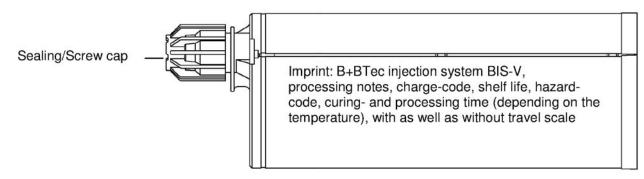
Z51453.14 8.06.01-273/14

Installed condition

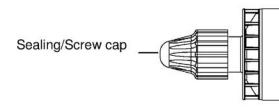






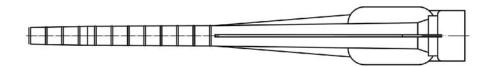


Cartridge: B+BTec injection system BIS-V

150 ml, 280 ml, 300 ml up to 333 ml and 380 ml up to 420 ml cartridge (Type: coaxial)




Imprint: B+BTec injection system BIS-V, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

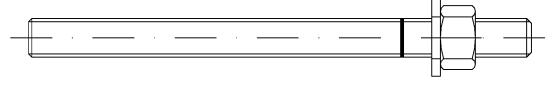
235 ml, 345 ml and 825 ml cartridge (Type: "side-by-side")

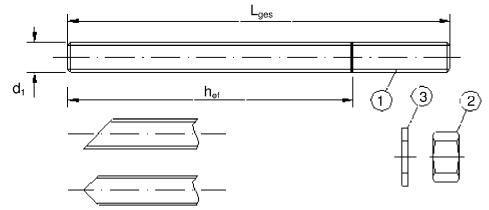



165 ml and 300 ml cartridge (Type: "foil tube")



Imprint: B+BTec injection system BIS-V, processing notes, charge-code, shelf life, hazard-code, curing- and processing time (depending on the temperature), with as well as without travel scale

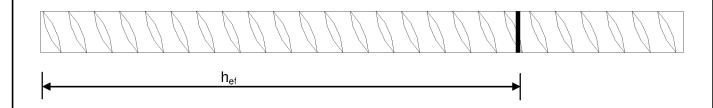

Static Mixer




# B+BTec injection system BIS-V for concrete Product description Injection system Annex A 2



Threaded rod M8, M10, M12, M16, M20, M24, M27, M30 with washer and hexagon nut






Commercial standard threaded rod with:

- Materials, dimensions and mechanical properties acc. Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004
- Marking of embedment depth

Reinforcing bar  $\varnothing$  8,  $\varnothing$  10,  $\varnothing$  12,  $\varnothing$  14,  $\varnothing$  16,  $\varnothing$  20,  $\varnothing$  25,  $\varnothing$  28,  $\varnothing$  32



- Minimum value of related rip area f<sub>R,min</sub> according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h ≤ 0,07d
   (d: Nominal diameter of the bar; h: Rip height of the bar)

| B+BTec injection system BIS-V for concrete           |           |
|------------------------------------------------------|-----------|
| Product description Threaded rod and reinforcing bar | Annex A 3 |

English translation prepared by DIBt



| Part  | Designation                                                                                | Material                                                                                                                                                                         |                                  |
|-------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
|       | , zinc plated ≥ 5 μm acc. to EN ISO 4042:19<br>, hot-dip galvanised ≥ 40 μm acc. to EN IS0 |                                                                                                                                                                                  | D:2009                           |
| 1     | Anchor rod                                                                                 | Steel, EN 10087:1998 or EN 10263:200<br>Property class 4.6, 5.8, 8.8, EN 1993-1-8                                                                                                | 1                                |
| 2     | Hexagon nut, EN ISO 4032:2012                                                              | Steel acc. to EN 10087:1998 or EN 1020<br>Property class 4 (for class 4.6 rod) EN IS<br>Property class 5 (for class 5.8 rod) EN IS<br>Property class 8 (for class 8.8 rod) EN IS | SO 898-2:2012,<br>SO 898-2:2012, |
| 3     | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000      | Steel, zinc plated or hot-dip galvanised                                                                                                                                         |                                  |
| Stain | less steel                                                                                 |                                                                                                                                                                                  |                                  |
| 1     | Anchor rod                                                                                 | Material 1.4401 / 1.4404 / 1.4571, EN 10 > M24: Property class 50 EN ISO 3506-1 ≤ M24: Property class 70 EN ISO 3506-1                                                           | :2009<br>:2009                   |
| 2     | Hexagon nut, EN ISO 4032:2012                                                              | Material 1.4401 / 1.4404 / 1.4571 EN 100 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro                                                     | d) EN ISO 3506-2:2009            |
| 3     | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000      | Material 1.4401, 1.4404 or 1.4571, EN 1                                                                                                                                          | 0088-1:2005                      |
| High  | corrosion resistance steel                                                                 |                                                                                                                                                                                  |                                  |
| 1     | Anchor rod                                                                                 | Material 1.4529 / 1.4565, EN 10088-1:20 > M24: Property class 50 EN ISO 3506-1 ≤ M24: Property class 70 EN ISO 3506-1                                                            | :2009                            |
| 2     | Hexagon nut, EN ISO 4032:2012                                                              | Material 1.4529 / 1.4565 EN 10088-1:200 > M24: Property class 50 (for class 50 ro ≤ M24: Property class 70 (for class 70 ro                                                      | d) EN ISO 3506-2:2009            |
| 3     | Washer, EN ISO 887:2006,<br>EN ISO 7089:2000, EN ISO 7093:2000 or<br>EN ISO 7094:2000      | Material 1.4529 / 1.4565, EN 10088-1:20                                                                                                                                          | 005                              |
| Reinf | orcing bars                                                                                |                                                                                                                                                                                  |                                  |
| 1     | Rebar<br>EN 1992-1-1:2004+AC:2010, Annex C                                                 | Bars and de-coiled rods class B or C $f_{yk}$ and k according to NDP or NCL of EN $f_{uk} = f_{tk} = k \cdot f_{yk}$                                                             | 1992-1-1/NA:2013                 |
|       |                                                                                            |                                                                                                                                                                                  |                                  |
|       | BTec injection system BIS-V for concre                                                     | ate -                                                                                                                                                                            |                                  |
| R + F |                                                                                            |                                                                                                                                                                                  |                                  |



# Specifications of intended use

# Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.

#### Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

# **Temperature Range:**

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +80 °C (max long term temperature +50 °C and max short term temperature +80 °C)
- III: 40 °C to +120 °C (max long term temperature +72 °C and max short term temperature +120 °C)

# Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

#### Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work
- Anchorages under static or quasi-static actions are designed in accordance with:
  - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
  - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
  - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
  - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
  - Fastenings in stand-off installation or with a grout layer are not allowed.

#### Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M16, Rebar Ø8 to Ø16.
- · Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

| B+BTec injection system BIS-V for concrete |           |
|--------------------------------------------|-----------|
| Intended Use<br>Specifications             | Annex B 1 |



| Table B1: Installation parameters for threaded rod |                             |                                     |      |      |      |      |      |      |      |
|----------------------------------------------------|-----------------------------|-------------------------------------|------|------|------|------|------|------|------|
| Anchor size                                        |                             | М 8                                 | M 10 | M 12 | M 16 | M 20 | M 24 | M 27 | M 30 |
| Nominal drill hole diameter                        | d <sub>0</sub> [mm] =       | 10                                  | 12   | 14   | 18   | 24   | 28   | 32   | 35   |
| Effective anabarage depth                          | h <sub>ef,min</sub> [mm] =  | 60                                  | 60   | 70   | 80   | 90   | 96   | 108  | 120  |
| Effective anchorage depth                          | h <sub>ef,max</sub> [mm] =  | 160                                 | 200  | 240  | 320  | 400  | 480  | 540  | 600  |
| Diameter of clearance hole in the fixture          | d <sub>f</sub> [mm] ≤       | 9                                   | 12   | 14   | 18   | 22   | 26   | 30   | 33   |
| Diameter of steel brush                            | d <sub>b</sub> [mm] ≥       | 12                                  | 14   | 16   | 20   | 26   | 30   | 34   | 37   |
| Torque moment                                      | T <sub>inst</sub> [Nm] ≤    | 10                                  | 20   | 40   | 80   | 120  | 160  | 180  | 200  |
| Thiskness of five wa                               | t <sub>fix,min</sub> [mm] > | 0                                   |      |      |      |      |      |      |      |
| Thickness of fixture                               | t <sub>fix,max</sub> [mm] < |                                     | 1500 |      |      |      |      |      |      |
| Minimum thickness of member                        | h <sub>min</sub> [mm]       | h <sub>ef</sub> + 30 mm<br>≥ 100 mm |      |      |      |      |      |      |      |
| Minimum spacing                                    | s <sub>min</sub> [mm]       | 40                                  | 50   | 60   | 80   | 100  | 120  | 135  | 150  |
| Minimum edge distance                              | c <sub>min</sub> [mm]       | 40                                  | 50   | 60   | 80   | 100  | 120  | 135  | 150  |

# Table B2: Installation parameters for rebar

| Rebar size                  |                            | Ø <b>8</b>                          | Ø 10 | Ø 12                              | Ø 14 | Ø 16 | Ø 20 | Ø 25 | Ø 28 | Ø 32 |
|-----------------------------|----------------------------|-------------------------------------|------|-----------------------------------|------|------|------|------|------|------|
| Nominal drill hole diameter | $d_0 [mm] =$               | 12                                  | 14   | 16                                | 18   | 20   | 24   | 32   | 35   | 40   |
| Effective anchorage depth   | $h_{ef,min}$ [mm] =        | 60                                  | 60   | 70                                | 75   | 80   | 90   | 100  | 112  | 128  |
| Enective anchorage depth    | h <sub>ef,max</sub> [mm] = | 160                                 | 200  | 240                               | 280  | 320  | 400  | 480  | 540  | 640  |
| Diameter of steel brush     | d <sub>b</sub> [mm] ≥      | 14                                  | 16   | 18                                | 20   | 22   | 26   | 34   | 37   | 41,5 |
| Minimum thickness of member | h <sub>min</sub> [mm]      | h <sub>ef</sub> + 30 mm<br>≥ 100 mm |      | h <sub>ef</sub> + 2d <sub>0</sub> |      |      |      |      |      |      |
| Minimum spacing             | s <sub>min</sub> [mm]      | 40                                  | 50   | 60                                | 70   | 80   | 100  | 125  | 140  | 160  |
| Minimum edge distance       | c <sub>min</sub> [mm]      | 40                                  | 50   | 60                                | 70   | 80   | 100  | 125  | 140  | 160  |
|                             |                            |                                     |      |                                   |      |      |      |      |      |      |

| B+BTec injection system BIS-V for concrete |           |
|--------------------------------------------|-----------|
| Intended Use                               | Annex B 2 |
| Installation parameters                    |           |

English translation prepared by DIBt



# Steel brush



Parameter cleaning and setting tools Table B3:

| Threaded<br>Rod | Rebar | d₀<br>Drill bit - Ø | d <sub>b</sub><br>Brush - Ø | d <sub>b,min</sub><br>min.<br>Brush - Ø | Piston<br>plug       |  |  |  |
|-----------------|-------|---------------------|-----------------------------|-----------------------------------------|----------------------|--|--|--|
| (mm)            | (mm)  | (mm)                | (mm)                        | (mm)                                    | (No.)                |  |  |  |
| M8              |       | 10                  | 12                          | 10,5                                    |                      |  |  |  |
| M10             | 8     | 12                  | 14                          | 12,5                                    |                      |  |  |  |
| M12             | 10    | 14                  | 16                          | 14,5                                    | No                   |  |  |  |
|                 | 12    | 16                  | 18                          | 16,5                                    | piston plug required |  |  |  |
| M16             | 14    | 18                  | 20                          | 18,5                                    | '                    |  |  |  |
|                 | 16    | 20                  | 22                          | 20,5                                    |                      |  |  |  |
| M20             | 20    | 24                  | 26                          | 24,5                                    | # 24                 |  |  |  |
| M24             |       | 28                  | 30                          | 28,5                                    | # 28                 |  |  |  |
| M27             | 25    | 32                  | 34                          | 32,5                                    | # 32                 |  |  |  |
| M30             | 28    | 35                  | 37                          | 35,5                                    | # 35                 |  |  |  |
|                 | 32    | 40                  | 41,5                        | 40,5                                    | # 38                 |  |  |  |

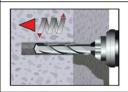




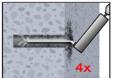
Hand pump (volume 750 ml)

Drill bit diameter (d<sub>0</sub>): 10 mm to 20 mm

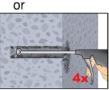
Recommended compressed air tool (min 6 bar) Drill bit diameter (d<sub>0</sub>): 10 mm to 40 mm




# Piston plug for overhead or horizontal installation Drill bit diameter ( $d_0$ ): 24 mm to 40 mm


| B+BTec injection system BIS-V for concrete |           |
|--------------------------------------------|-----------|
| Intended Use Cleaning and setting tools    | Annex B 3 |



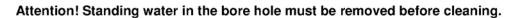

# Installation instructions



1. Drill with hammer drill a hole into the base material to the size and embedment depth required by the selected anchor (Table B1 or Table B2). In case of aborted drill hole: the drill hole shall be filled with mortar



0 "







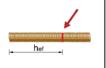

or





2a. Starting from the bottom or back of the bore hole, blow the hole clean with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm.


For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.

- 2b. Check brush diameter (Table B3) and attach the brush to a drilling machine or a battery screwdriver. Brush the hole with an appropriate sized wire brush > d<sub>b,min</sub> (Table B3) a minimum of four times.
  If the bore hole ground is not reached with the brush, a brush extension shall be used (Table B3).
- 2c. Finally blow the hole clean again with compressed air (min. 6 bar) or a hand pump (Annex B 3) a minimum of four times. If the bore hole ground is not reached an extension shall be used.

The hand-pump can be used for anchor sizes up to bore hole diameter 20 mm. For bore holes larger than 20 mm or deeper 240 mm, compressed air (min. 6 bar) **must** be used.

After cleaning, the bore hole has to be protected against re-contamination in an appropriate way, until dispensing the mortar in the bore hole. If necessary, the cleaning repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

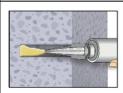


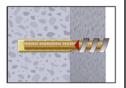


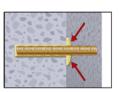


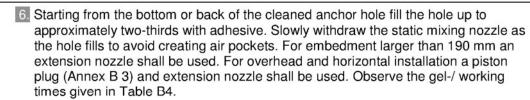
- 3. Attach a supplied static-mixing nozzle to the cartridge and load the cartridge into the correct dispensing tool. Cut off the foil tube clip before use.

  For every working interruption longer than the recommended working time (Table B4) as well as for new cartridges, a new static-mixer shall be used.
- 4. Prior to inserting the anchor rod into the filled bore hole, the position of the embedment depth shall be marked on the anchor rods.
- 5. Prior to dispensing into the anchor hole, squeeze out separately a minimum of three full strokes and discard non-uniformly mixed adhesive components until the mortar shows a consistent grey colour. For foil tube cartridges is must be discarded a minimum of six full strokes.


# B+BTec injection system BIS-V for concrete

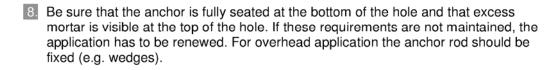

# Intended Use


Installation instructions

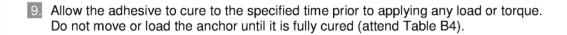

Annex B 4

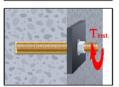
# Installation instructions (continuation)









7. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly to ensure positive distribution of the adhesive until the embedment depth is reached.

The anchor should be free of dirt, grease, oil or other foreign material.









Electronic copy of the ETA by DIBt: ETA-14/0323

10. After full curing, the add-on part can be installed with the max. torque (Table B2) by using a calibrated torque wrench.

Table B4: Minimum curing time

| Concrete temperature   | Gelling- / working time | Minimum curing time in dry concrete <sup>2)</sup> |
|------------------------|-------------------------|---------------------------------------------------|
| ≥ -10 °C <sup>1)</sup> | 90 min                  | 24 h                                              |
| ≥ -5 °C                | 90 min                  | 14 h                                              |
| ≥ 0 °C                 | 45 min                  | 7 h                                               |
| ≥ + 5 °C               | 25 min                  | 2 h                                               |
| ≥ +10 °C               | 15 min                  | 80 min                                            |
| ≥ + 20 °C              | 6 min                   | 45 min                                            |
| ≥ +30 °C               | 4 min                   | 25 min                                            |
| ≥ +35 °C               | 2 min                   | 20 min                                            |
| ≥ +40 °C               | 1,5 min                 | 15 min                                            |

<sup>1)</sup> Cartridge temperature must be at min. +15°C

# B+BTec injection system BIS-V for concrete Intended Use Installation instructions (continuation) Curing time Annex B 5

<sup>2)</sup> In wet concrete the curing time **must** be doubled



| Anchor size threaded ro                                                                                      | <br>ام                   |                   |                    | M 8                                                                                              | M 10   | M 12   | M 16   | M 20           | M24     | M 27     | M 30   |  |
|--------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|--------------------|--------------------------------------------------------------------------------------------------|--------|--------|--------|----------------|---------|----------|--------|--|
| Steel failure                                                                                                | <u> </u>                 |                   |                    | IVI O                                                                                            | INI TO | IVI 12 | IVI 16 | IVI ZU         | IVI 24  | IVI 27   | IVI 30 |  |
| Characteristic tension resi                                                                                  | stance                   |                   |                    |                                                                                                  | Ι      | Ī      |        |                |         |          | T      |  |
| Steel, property class 4.6                                                                                    | starice,                 | $N_{Rk,s}$        | [kN]               | 15                                                                                               | 23     | 34     | 63     | 98             | 141     | 184      | 224    |  |
| Characteristic tension resi<br>Steel, property class 5.8                                                     | stance,                  | N <sub>Rk,s</sub> | [kN]               | 18                                                                                               | 29     | 42     | 78     | 122            | 176     | 230      | 280    |  |
| Characteristic tension resi<br>Steel, property class 8.8                                                     | stance,                  | N <sub>Rk,s</sub> | [kN]               | 29                                                                                               | 46     | 67     | 125    | 196            | 282     | 368      | 449    |  |
| Characteristic tension resi<br>Stainless steel A4 and HC<br>property class 50 (>M24) a                       | ₽R,                      | $N_{Rk,s}$        | [kN]               | 26                                                                                               | 41     | 59     | 110    | 171            | 247     | 230      | 281    |  |
| Combined pull-out and o                                                                                      | concrete cone failure    |                   |                    |                                                                                                  |        |        |        |                |         |          |        |  |
| Characteristic bond resista                                                                                  | ance in non-cracked cond | crete C20/2       | 5                  |                                                                                                  |        |        |        |                |         |          |        |  |
| Temperature range I:                                                                                         | dry and wet concrete     | $	au_{ m Rk,ucr}$ | [N/mm²]            | 10                                                                                               | 12     | 12     | 12     | 12             | 11      | 10       | 9      |  |
| 40°C/24°C                                                                                                    | flooded bore hole        | $	au_{ m Rk,ucr}$ | [N/mm²]            | 7,5                                                                                              | 8,5    | 8,5    | 8,5    |                | not adr | nissible |        |  |
| Temperature range II:                                                                                        | dry and wet concrete     | $	au_{ m Rk,ucr}$ | [N/mm²]            | 7,5                                                                                              | 9      | 9      | 9      | 9              | 8,5     | 7,5      | 6,5    |  |
| 80°C/50°C                                                                                                    | flooded bore hole        | $	au_{ m Rk,ucr}$ | [N/mm²]            | 5,5                                                                                              | 6,5    | 6,5    | 6,5    | not admissible |         |          |        |  |
| Temperature range III:                                                                                       | dry and wet concrete     | $	au_{ m Rk,ucr}$ | [N/mm²]            | 5,5                                                                                              | 6,5    | 6,5    | 6,5    | 6,5            | 6,5     | 5,5      | 5,0    |  |
| 120°C/72°C                                                                                                   | flooded bore hole        | $	au_{ m Rk,ucr}$ | [N/mm²]            | 4,0                                                                                              | 5,0    | 5,0    | 5,0    |                | not adr | nissible |        |  |
|                                                                                                              |                          | C30/37            |                    |                                                                                                  |        |        | 1,     | 04             |         |          |        |  |
| Increasing factors for cond $\Psi_c$                                                                         | crete                    | C40/50            |                    | 1,08                                                                                             |        |        |        |                |         |          |        |  |
| Ψū                                                                                                           |                          | C50/60            |                    |                                                                                                  |        |        | 1,     | 10             |         |          |        |  |
| Splitting failure                                                                                            |                          | •                 |                    |                                                                                                  |        |        |        |                |         |          |        |  |
| Edge distance c <sub>c</sub>                                                                                 |                          |                   | [mm]               | $1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left( 2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$ |        |        |        |                |         |          |        |  |
| Axial distance s <sub>cr</sub>                                                                               |                          |                   | [mm]               | 2 C <sub>cr,sp</sub>                                                                             |        |        |        |                |         |          |        |  |
| Install safety factor (dry ar                                                                                | nd wet concrete)         | γ <sub>2</sub>    | •                  | 1,0 1,2                                                                                          |        |        |        |                |         |          |        |  |
| Install safety factor (dry and wet concrete) $\gamma_2$ Install safety factor (flooded bore hole) $\gamma_2$ |                          |                   | 1,4 not admissible |                                                                                                  |        |        |        |                |         |          |        |  |

| B+BTec injection system BIS-V for concrete                                                                                                  |           |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to TR 029) | Annex C 1 |



8.06.01-273/14

| Anchor size threaded i                                                           | rod                                          |                                                        |                      | M 12 | M 16                                                                                | M 20           | M24     | M 27     | M 30 |  |
|----------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------|----------------------|------|-------------------------------------------------------------------------------------|----------------|---------|----------|------|--|
| Steel failure                                                                    |                                              |                                                        |                      |      | l                                                                                   | l              | 1       | 1        |      |  |
| Characteristic tension re<br>Steel, property class 4.6                           |                                              | N <sub>Rk,s</sub> =N <sup>0</sup> <sub>Rk,s,seis</sub> | [kN]                 | 34   | 63                                                                                  | 98             | 141     | 184      | 224  |  |
| Characteristic tension re<br>Steel, property class 5.8                           |                                              | N <sub>Rk,s</sub> =N <sup>0</sup> <sub>Rk,s,seis</sub> | [kN]                 | 42   | 78                                                                                  | 122            | 176     | 230      | 280  |  |
| Characteristic tension re<br>Steel, property class 8.8                           |                                              | N <sub>Rk,s</sub> =N <sup>0</sup> <sub>Rk,s,seis</sub> | [kN]                 | 67   | 125                                                                                 | 196            | 282     | 368      | 449  |  |
| Characteristic tension re<br>Stainless steel A4 and F<br>property class 50 (>M24 | ICR,                                         | $N_{Rk,s} = N_{Rk,s,seis}^{0}$                         | [kN]                 | 59   | 110                                                                                 | 171            | 247     | 230      | 281  |  |
| Combined pull-out and                                                            | d concrete cone failure                      |                                                        |                      |      |                                                                                     |                |         |          |      |  |
| Characteristic bond resis                                                        | stance in cracked concret                    | e C20/25                                               |                      |      |                                                                                     |                |         |          |      |  |
|                                                                                  | dry and wat concrete                         | $	au_{ m Rk,cr}$                                       | [N/mm²]              | 5,5  | 5,5                                                                                 | 5,5            | 5,5     | 6,5      | 6,5  |  |
| Temperature range I:                                                             | dry and wet concrete                         | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²]              | 3,7  | 3,7                                                                                 | 3,7            | 3,8     | 4,5      | 4,5  |  |
| 40°C/24°C                                                                        | flooded bore hole                            | $	au_{ m Rk,cr}$                                       | [N/mm²]              | 5,5  | 5,5                                                                                 | not admissible |         |          |      |  |
|                                                                                  | 1100ded bore note $\tau^0_{ \text{Rk,seis}}$ |                                                        |                      | 3,7  | 3,7                                                                                 |                | not adı | missible |      |  |
|                                                                                  | dry and wet concrete                         | $	au_{ m Rk,cr}$                                       | [N/mm²]              | 4,0  | 4,0                                                                                 | 4,0            | 4,0     | 4,5      | 4,5  |  |
| Temperature range II:                                                            | dry and wet concrete                         | $	au^0_{ m Rk,seis}$                                   | [N/mm²]              | 2,7  | 2,7                                                                                 | 2,7            | 2,8     | 3,1      | 3,1  |  |
| 80°C/50°C                                                                        | C/50°C flooded bore hole                     |                                                        | [N/mm²]              | 4,0  | 4,0                                                                                 | not admissible |         |          |      |  |
| noded bale hale                                                                  |                                              | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²]              | 2,7  | 2,7                                                                                 |                | not adı | missible |      |  |
|                                                                                  | dry and wet concrete                         | $	au_{ m Rk,cr}$                                       | [N/mm²]              | 3,0  | 3,0                                                                                 | 3,0            | 3,0     | 3,5      | 3,5  |  |
| Temperature range III:                                                           | dry and wet concrete                         | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²]              | 2,0  | 2,0                                                                                 | 2,0            | 2,1     | 2,4      | 2,4  |  |
| 120°C/72°C                                                                       | flooded bore hole                            | $	au_{ m Rk, or}$                                      | [N/mm²]              | 3,0  | 3,0                                                                                 | not admissible |         |          |      |  |
|                                                                                  | lidoded bore fiole                           | $	au^0_{ m Rk,seis}$                                   | [N/mm <sup>2</sup> ] | 2,0  | 2,0                                                                                 | not admissible |         |          |      |  |
| Increasing factors for co                                                        | ncrete                                       | C30/37                                                 |                      |      |                                                                                     | 1,             | 04      |          |      |  |
| (only static or quasi-stat                                                       | ic actions)                                  | C40/50                                                 |                      | 1,08 |                                                                                     |                |         |          |      |  |
| Ψ <sub>c</sub>                                                                   |                                              | C50/60                                                 |                      |      |                                                                                     | 1,             | 10      |          |      |  |
| Splitting failure                                                                |                                              |                                                        | Т                    | Г    |                                                                                     |                |         |          |      |  |
| Edge distance                                                                    |                                              | C <sub>cr,sp</sub>                                     | [mm]                 |      | $1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left( 2.5 - \frac{h}{h_{ef}} \right) \le 2.4$ |                |         |          |      |  |
| Axial distance                                                                   |                                              | S <sub>cr,sp</sub>                                     | [mm]                 |      |                                                                                     | 2 (            | cr,sp   |          |      |  |
| Installation safety factor                                                       | (dry and wet concrete)                       | γ2                                                     |                      |      |                                                                                     | 1              | ,2      |          |      |  |
| Installation safety factor                                                       | (flooded bore hole)                          | γ2                                                     |                      | 1    | ,4                                                                                  |                | not adı | missible |      |  |
|                                                                                  |                                              |                                                        |                      |      |                                                                                     |                |         |          |      |  |
| D. D.T ::::::-                                                                   | on system BIS-V fo                           | or concrete                                            |                      |      |                                                                                     |                |         |          |      |  |

Z62985.14



| Table C3: Characteristic va                                                            |                                     |      |                                 |                                                                          |         |           |           |          |      |      |  |  |
|----------------------------------------------------------------------------------------|-------------------------------------|------|---------------------------------|--------------------------------------------------------------------------|---------|-----------|-----------|----------|------|------|--|--|
| Anchor size threaded rod                                                               |                                     |      | М 8                             | M 10                                                                     | M 12    | M 16      | M 20      | M24      | M 27 | M 30 |  |  |
| Steel failure without lever arm                                                        |                                     |      | 1                               |                                                                          | •       | '         |           | '        | •    |      |  |  |
| Characteristic shear resistance,                                                       | $V_{Rk,s}$                          | [kN] | 7                               | 12                                                                       | 17      | 31        | 49        | 71       | 92   | 112  |  |  |
| Steel, property class 4.6                                                              | V <sup>0</sup> <sub>Rk,s,seis</sub> | [kN] | -                               | -                                                                        | 12      | 22        | 34        | 50       | 65   | 78   |  |  |
| Characteristic shear resistance,                                                       | $V_{Rk,s}$                          | [kN] | 9                               | 15                                                                       | 21      | 39        | 61        | 88       | 115  | 140  |  |  |
| Steel, property class 5.8                                                              | V <sup>0</sup> <sub>Rk,s,seis</sub> | [kN] | -                               | -                                                                        | 15      | 27        | 43        | 62       | 81   | 98   |  |  |
| Characteristic shear resistance,                                                       | $V_{Rk,s}$                          | [kN] | 15                              | 23                                                                       | 34      | 63        | 98        | 141      | 184  | 224  |  |  |
| Steel, property class 8.8                                                              | $V^0_{Rk,s,seis}$                   | [kN] | -                               | -                                                                        | 24      | 44        | 69        | 99       | 129  | 157  |  |  |
| Characteristic shear resistance,<br>Stainless steel A4 and HCR.                        | $V_{\rm Rk,s}$                      | [kN] | 13                              | 20                                                                       | 30      | 55        | 86        | 124      | 115  | 140  |  |  |
| property class 50 (>M24) and 70 (≤ M24)                                                | V <sup>0</sup> <sub>Rk,s,seis</sub> | [kN] | -                               | -                                                                        | 21      | 39        | 60        | 87       | 81   | 98   |  |  |
| Steel failure with lever arm                                                           |                                     | •    | •                               |                                                                          | •       | •         | •         | •        |      | •    |  |  |
| Characteristic bending moment,                                                         | M <sup>0</sup> <sub>Rk,s</sub>      | [Nm] | 15                              | 30                                                                       | 52      | 133       | 260       | 449      | 666  | 900  |  |  |
| Steel, property class 4.6                                                              | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm] | No Performance Determined (NPD) |                                                                          |         |           |           |          |      |      |  |  |
| Characteristic bending moment,                                                         | M <sup>0</sup> <sub>Rk,s</sub>      | [Nm] | 19                              | 19         37         65         166         324         560         833 |         |           |           |          |      | 1123 |  |  |
| Steel, property class 5.8                                                              | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm] |                                 |                                                                          | No Perf | ormance l | Determine | ed (NPD) |      |      |  |  |
| Characteristic bending moment,                                                         | M <sup>0</sup> <sub>Rk,s</sub>      | [Nm] | 30                              | 60                                                                       | 105     | 266       | 519       | 896      | 1333 | 1797 |  |  |
| Steel, property class 8.8                                                              | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm] |                                 |                                                                          | No Perf | ormance I | Determine | ed (NPD) |      |      |  |  |
| Characteristic bending moment, Stainless steel A4 and HCR.                             | M <sup>0</sup> <sub>Rk,s</sub>      | [Nm] | 26                              | 52                                                                       | 92      | 232       | 454       | 784      | 832  | 1125 |  |  |
| property class 50 (>M24) and 70 (≤ M24)                                                | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm] | No Performance Determined (NPD) |                                                                          |         |           |           |          |      |      |  |  |
| Concrete pry-out failure                                                               |                                     |      |                                 |                                                                          |         |           |           |          |      |      |  |  |
| Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors | k                                   | [-]  | [-] 2,0                         |                                                                          |         |           |           |          |      |      |  |  |
| Installation safety factor                                                             | γ2                                  |      | 1,0                             |                                                                          |         |           |           |          |      |      |  |  |
| Concrete edge failure                                                                  |                                     |      |                                 |                                                                          |         |           |           |          |      |      |  |  |
| Installation safety factor                                                             | γ <sub>2</sub>                      |      |                                 |                                                                          |         | 1         | ,0        |          |      |      |  |  |
|                                                                                        |                                     |      |                                 |                                                                          |         |           |           |          |      |      |  |  |

| B+BTec injection system BIS-V for concrete                                                                                                                       |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to TR 029 or TR 045) | Annex C 3 |

| Anchor size reinforcing b             | ar                    |                     |                                                                                                  | Ø8                   | Ø 10 | Ø 12 | Ø 14 | Ø 16               | Ø 20           | Ø 25    | Ø 28     | Ø 32 |
|---------------------------------------|-----------------------|---------------------|--------------------------------------------------------------------------------------------------|----------------------|------|------|------|--------------------|----------------|---------|----------|------|
| Steel failure                         |                       |                     |                                                                                                  |                      |      | •    |      | •                  |                |         |          |      |
| Characteristic tension resis          | tance                 | N <sub>Rk,s</sub>   | [kN]                                                                                             |                      |      |      |      | $A_s \cdot f_{uk}$ |                |         |          |      |
| Combined pull-out and co              | oncrete cone failure  |                     |                                                                                                  |                      |      |      |      |                    |                |         |          |      |
| Characteristic bond resista           | nce in uncracked conc | rete C20/25         | 5                                                                                                |                      |      |      |      |                    |                |         |          |      |
| Temperature range I:                  | dry and wet concrete  | τ <sub>Rk,ucr</sub> | [N/mm²]                                                                                          | 10                   | 12   | 12   | 12   | 12                 | 12             | 11      | 10       | 8,5  |
| 40°C/24°C                             | flooded bore hole     | τ <sub>Rk,ucr</sub> | [N/mm²]                                                                                          | 7,5                  | 8,5  | 8,5  | 8,5  | 8,5                | not admissible |         |          |      |
| Temperature range II:<br>80°C/50°C    | dry and wet concrete  | τ <sub>Rk,ucr</sub> | [N/mm²]                                                                                          | 7,5                  | 9    | 9    | 9    | 9                  | 9              | 8,0     | 7,0      | 6,0  |
|                                       | flooded bore hole     | τ <sub>Rk,ucr</sub> | [N/mm²]                                                                                          | 5,5                  | 6,5  | 6,5  | 6,5  | 6,5                | not admissible |         |          |      |
| Temperature range III:                | dry and wet concrete  | $	au_{ m Rk,ucr}$   | [N/mm²]                                                                                          | 5,5                  | 6,5  | 6,5  | 6,5  | 6,5                | 6,5            | 6,0     | 5,0      | 4,5  |
| 120°C/72°C                            | flooded bore hole     | τ <sub>Rk,ucr</sub> | [N/mm²]                                                                                          | 4,0                  | 5,0  | 5,0  | 5,0  | 5,0                |                | not adr | missible |      |
|                                       |                       | C30/37              | •                                                                                                |                      |      |      |      | 1,04               |                |         |          |      |
| Increasing factors for conci $\Psi_c$ | rete                  | C40/50              |                                                                                                  | 1,08                 |      |      |      |                    |                |         |          |      |
|                                       |                       | C50/60              |                                                                                                  | 1,10                 |      |      |      |                    |                |         |          |      |
| Splitting failure                     |                       |                     |                                                                                                  |                      |      |      |      |                    |                |         |          |      |
| Edge distance                         | C <sub>cr,sp</sub>    | [mm]                | $1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left( 2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$ |                      |      |      |      |                    |                |         |          |      |
| Axial distance $s_{cr,sp}$            |                       |                     | [mm]                                                                                             | 2 C <sub>cr,sp</sub> |      |      |      |                    |                |         |          |      |
| Installation safety factor (dr        | y and wet concrete)   | γ <sub>2</sub>      |                                                                                                  | 1,0                  |      |      |      | 1                  | ,2             |         |          |      |
| Installation safety factor (flo       | ooded bore hole)      | γ2                  |                                                                                                  | 1,4 not admis        |      |      |      |                    | nissible       |         |          |      |

| B+BTec injection system BIS-V for concrete                                                                                          |           |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to TR 029) | Annex C 4 |



| Anchor size reinforcin                               | g bar                     |                                                        |         | Ø 12                                                                                             | Ø 14 | Ø 16 | Ø 20                 | Ø 25           | Ø 28     | Ø 32     |  |
|------------------------------------------------------|---------------------------|--------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------|------|------|----------------------|----------------|----------|----------|--|
| Steel failure                                        |                           |                                                        |         | •                                                                                                | •    |      |                      |                |          |          |  |
| Characteristic tension re                            | esistance                 | N <sub>Rk,s</sub> =N <sup>0</sup> <sub>Rk,s,seis</sub> | [kN]    |                                                                                                  |      |      | $A_s \cdot f_{uk}$   |                |          |          |  |
| Combined pull-out and                                | d concrete cone failure   |                                                        |         |                                                                                                  |      |      |                      |                |          |          |  |
| Characteristic bond resis                            | stance in cracked concret | e C20/25                                               |         |                                                                                                  |      |      |                      |                |          |          |  |
|                                                      |                           | $	au_{ m Rk,cr}$                                       | [N/mm²] | 5,5                                                                                              | 5,5  | 5,5  | 5,5                  | 5,5            | 6,5      | 6,5      |  |
| Temperature range I:                                 | dry and wet concrete      | $	au^0_{ m Rk,seis}$                                   | [N/mm²] | 3,7                                                                                              | 3,7  | 3,7  | 3,7                  | 3,8            | 4,5      | 4,5      |  |
| 40°C/24°C                                            | flooded bore hole         | $	au_{ m Rk,cr}$                                       | [N/mm²] | 5,5                                                                                              | 5,5  | 5,5  |                      | not adn        | nissible |          |  |
|                                                      |                           | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²] | 3,7                                                                                              | 3,7  | 3,7  |                      | not adn        | nissible |          |  |
|                                                      |                           | $	au_{ m Rk,cr}$                                       | [N/mm²] | 4,0                                                                                              | 4,0  | 4,0  | 4,0                  | 4,0            | 4,5      | 4,5      |  |
| Temperature range II:                                | dry and wet concrete      | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²] | 2,7                                                                                              | 2,7  | 2,7  | 2,7                  | 2,8            | 3,1      | 3,1      |  |
| 80°C/50°C                                            | 0°C/50°C                  |                                                        | [N/mm²] | 4,0                                                                                              | 4,0  | 4,0  |                      | not adr        | nissible |          |  |
| flooded bore hole                                    |                           | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²] | 2,7                                                                                              | 2,7  | 2,7  |                      | not admissible |          |          |  |
| Temperature range III:<br>120°C/72°C                 |                           | $	au_{ m Rk,cr}$                                       | [N/mm²] | 3,0                                                                                              | 3,0  | 3,0  | 3,0                  | 3,0            | 3,5      | 3,5      |  |
|                                                      | dry and wet concrete      | τ <sup>0</sup> Rk,seis                                 | [N/mm²] | 2,0                                                                                              | 2,0  | 2,0  | 2,0                  | 2,1            | 2,4      | 2,4      |  |
|                                                      |                           | $	au_{ m Rk,cr}$                                       | [N/mm²] | 3,0                                                                                              | 3,0  | 3,0  | not admissible       |                |          |          |  |
|                                                      | flooded bore hole         | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²] | 2,0                                                                                              | 2,0  | 2,0  | not admissible       |                |          |          |  |
|                                                      |                           | C30/37                                                 |         |                                                                                                  |      |      | 1,04                 |                |          |          |  |
| Increasing factors for co (only static or quasi-stat |                           | C40/50                                                 |         | 1,08                                                                                             |      |      |                      |                |          |          |  |
| $\psi_{c}$                                           |                           | C50/60                                                 |         | 1,10                                                                                             |      |      |                      |                |          |          |  |
| Splitting failure                                    |                           |                                                        |         | •                                                                                                |      |      |                      |                |          |          |  |
| Edge distance                                        |                           | C <sub>cr,sp</sub>                                     | [mm]    | $1,0 \cdot h_{ef} \le 2 \cdot h_{ef} \left( 2,5 - \frac{h}{h_{ef}} \right) \le 2,4 \cdot h_{ef}$ |      |      |                      |                |          |          |  |
| Axial distance                                       |                           | S <sub>cr,sp</sub>                                     | [mm]    |                                                                                                  |      |      | 2 c <sub>cr,sp</sub> |                |          |          |  |
| Installation safety factor                           | (dry and wet concrete)    | γ2                                                     | •       |                                                                                                  |      |      | 1,2                  |                |          |          |  |
| Installation safety factor                           | (flooded bore hole)       | γ2                                                     |         |                                                                                                  | 1,4  |      |                      | not adn        | nissible |          |  |
| B+BTec injection                                     | on system BIS-V f         | or concrete                                            |         |                                                                                                  |      |      |                      | A              | nex C    | <u> </u> |  |



| Table C6: Characterist and non-cra                                                           |                                     |                                         |         |                                         |      |          |          |           |      | racke | d    |  |  |
|----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------|---------|-----------------------------------------|------|----------|----------|-----------|------|-------|------|--|--|
| Anchor size reinforcing bar                                                                  |                                     |                                         | Ø8      | Ø 10                                    | Ø 12 | Ø 14     | Ø 16     | Ø 20      | Ø 25 | Ø 28  | Ø 32 |  |  |
| Steel failure without lever arm                                                              |                                     |                                         |         |                                         |      | •        | •        | 1         | '    |       |      |  |  |
| Characteristic shear resistance                                                              | [kN]                                | 0,50 • A <sub>s</sub> • f <sub>uk</sub> |         |                                         |      |          |          |           |      |       |      |  |  |
| Characteristic shear resistance                                                              | [kN]                                | 0,35 ⋅ A <sub>s</sub> ⋅ f <sub>uk</sub> |         |                                         |      |          |          |           |      |       |      |  |  |
| Steel failure with lever arm                                                                 |                                     |                                         |         |                                         |      |          |          |           |      |       |      |  |  |
| M <sup>0</sup> <sub>Rk,s</sub> [Nm]                                                          |                                     |                                         |         | 1.2 ⋅ W <sub>el</sub> ⋅ f <sub>uk</sub> |      |          |          |           |      |       |      |  |  |
| Characteristic bending moment                                                                | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm]                                    |         |                                         | No F | Performa | nce Dete | rmined (I | NPD) |       |      |  |  |
| Concrete pry-out failure                                                                     | I                                   |                                         |         |                                         |      |          |          |           |      |       |      |  |  |
| Factor k in equation (5.7) of Technical<br>Report TR 029 for the design of bonded<br>anchors | k                                   | [-]                                     | [-] 2,0 |                                         |      |          |          |           |      |       |      |  |  |
| Installation safety factor                                                                   | γ <sub>2</sub>                      |                                         | 1,0     |                                         |      |          |          |           |      |       |      |  |  |
| Concrete edge failure                                                                        |                                     |                                         |         |                                         |      |          |          |           |      |       |      |  |  |
| Installation safety factor                                                                   | γ <sub>2</sub>                      |                                         | 1,0     |                                         |      |          |          |           |      |       |      |  |  |

| B+BTec injection system BIS-V for concrete                                                                                                               |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to TR 029 or TR 045) | Annex C 6 |



| Anchor size threaded rod                                                                                     |                             |                     |         | М 8                                                                                              | M 10 | M 12               | M 16 | M 20            | M24     | M 27     | M 30     |
|--------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|---------|--------------------------------------------------------------------------------------------------|------|--------------------|------|-----------------|---------|----------|----------|
| Steel failure                                                                                                |                             |                     |         | •                                                                                                |      | •                  |      |                 |         |          |          |
| Characteristic tension resis                                                                                 | tance,                      | N <sub>Rk.s</sub>   | [kN]    | 15                                                                                               | 23   | 34                 | 63   | 98              | 141     | 184      | 224      |
| Steel, property class 4.6<br>Characteristic tension resis                                                    | tance,                      | N <sub>Rk.s</sub>   | [kN]    | 18                                                                                               | 29   | 42                 | 78   | 122             | 176     | 230      | 280      |
| Steel, property class 5.8 Characteristic tension resistance.                                                 |                             | ,-                  | ' '     |                                                                                                  |      |                    |      |                 | _       |          |          |
| Steel, property class 8.8                                                                                    | ,                           | $N_{Rk,s}$          | [kN]    | 29                                                                                               | 46   | 67                 | 125  | 196             | 282     | 368      | 449      |
| Characteristic tension resistance,<br>Stainless steel A4 and HCR,<br>property class 50 (>M24) and 70 (≤ M24) |                             | $N_{Rk,s}$          | [kN]    | 26                                                                                               | 41   | 59                 | 110  | 171             | 247     | 230      | 281      |
| Combined pull-out and co                                                                                     | oncrete failure             |                     |         |                                                                                                  |      | •                  |      |                 |         |          |          |
| Characteristic bond resista                                                                                  | nce in non-cracked concrete | e C20/25            |         |                                                                                                  |      |                    |      |                 |         |          |          |
| Temperature range I:                                                                                         | dry and wet concrete        | $	au_{Rk,ucr}$      | [N/mm²] | 10                                                                                               | 12   | 12                 | 12   | 12              | 11      | 10       | 9        |
| 40°C/24°C                                                                                                    | flooded bore hole           | $	au_{ m Rk,ucr}$   | [N/mm²] | 7,5                                                                                              | 8,5  | 8,5                | 8,5  |                 | not adr | nissible | 1        |
| Temperature range II:                                                                                        | dry and wet concrete        | τ <sub>Rk,ucr</sub> | [N/mm²] | 7,5                                                                                              | 9    | 9                  | 9    | 9               | 8,5     | 7,5      | 6,5      |
| 80°C/50°C                                                                                                    | flooded bore hole           | $	au_{ m Rk,ucr}$   | [N/mm²] | 5,5                                                                                              | 6,5  | 6,5                | 6,5  |                 | not adr | missible | <u> </u> |
| Temperature range III:                                                                                       | dry and wet concrete        | $	au_{ m Rk,ucr}$   | [N/mm²] | 5,5                                                                                              | 6,5  | 6,5                | 6,5  | 6,5             | 6,5     | 5,5      | 5,0      |
| 120°C/72°C                                                                                                   | flooded bore hole           | $	au_{ m Rk,ucr}$   | [N/mm²] | 4,0                                                                                              | 5,0  | 5,0                | 5,0  |                 | not adr | nissible |          |
|                                                                                                              | •                           | C30/37              | •       |                                                                                                  | 1    | •                  | 1,   | 04              |         |          |          |
| Increasing factors for concr<br>Ψ <sub>c</sub>                                                               | rete                        | C40/50              |         | 1,08                                                                                             |      |                    |      |                 |         |          |          |
| Ψū                                                                                                           |                             | C50/60              |         | 1,10                                                                                             |      |                    |      |                 |         |          |          |
| Factor according to CEN/TS 1992-4-5 Section                                                                  | 6223                        | k <sub>8</sub>      | [-]     | 10,1                                                                                             |      |                    |      |                 |         |          |          |
| Concrete cone failure                                                                                        |                             |                     | l       |                                                                                                  |      |                    |      |                 |         |          |          |
| Factor according to CEN/TS 1992-4-5 Section                                                                  | 6.2.3.1                     | k <sub>ucr</sub>    | [-]     |                                                                                                  |      |                    | 10   | ),1             |         |          |          |
| Edge distance                                                                                                |                             | C <sub>cr,N</sub>   | [mm]    |                                                                                                  |      |                    | 1,5  | h <sub>ef</sub> |         |          |          |
| Axial distance                                                                                               |                             |                     | [mm]    | 3,0 h <sub>et</sub>                                                                              |      |                    |      |                 |         |          |          |
| Splitting failure                                                                                            |                             |                     |         | •                                                                                                |      |                    |      |                 |         |          |          |
| Edge distance c <sub>cr,sp</sub> [mm]                                                                        |                             |                     |         | $1.0 \cdot h_{ef} \le 2 \cdot h_{ef} \left( 2.5 - \frac{h}{h_{ef}} \right) \le 2.4 \cdot h_{ef}$ |      |                    |      |                 |         |          |          |
| Axial distance S <sub>cr.sp</sub>                                                                            |                             |                     | [mm]    | 2 C <sub>cr.sp</sub>                                                                             |      |                    |      |                 |         |          |          |
| Installation safety factor (dr                                                                               | y and wet concrete)         | γ <sub>2</sub>      |         | 1,0 1,2                                                                                          |      |                    |      |                 |         |          |          |
| Installation safety factor (flo                                                                              | ooded bore hole)            | γ <sub>2</sub>      | 1 2     |                                                                                                  |      | 1.4 not admissible |      |                 |         |          |          |

| B+BTec injection system BIS-V for concrete                                                                                                         |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Performances Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4) | Annex C 7 |



| Anchor size threaded rod                                  | l                          |                                                        |                      | M 12       | M 16                    | M 20                     | M24                                     | M27                     | МЗС |
|-----------------------------------------------------------|----------------------------|--------------------------------------------------------|----------------------|------------|-------------------------|--------------------------|-----------------------------------------|-------------------------|-----|
| Steel failure                                             |                            |                                                        |                      |            |                         |                          | ı                                       |                         |     |
| Characteristic tension resis<br>Steel, property class 4.6 | tance,                     | N <sub>Rk,s</sub> =N <sup>0</sup> <sub>Rk,s,seis</sub> | [kN]                 | 34         | 63                      | 98                       | 141                                     | 184                     | 224 |
| Characteristic tension resis                              | tance,                     | $N_{Rk,s} = N_{Rk,s,seis}^0$                           | [kN]                 | 42         | 78                      | 122                      | 176                                     | 230                     | 280 |
| Steel, property class 5.8<br>Characteristic tension resis | tance,                     |                                                        | +                    | 67         | 125                     | 196                      | 282                                     | 368                     | 449 |
| Steel, property class 8.8<br>Characteristic tension resis | tance.                     | N <sub>Rk,s</sub> =N <sup>0</sup> <sub>Rk,s,seis</sub> | [kN]                 | 07         | 120                     | 190                      | 202                                     | 300                     | 443 |
| Stainless steel A4 and HCF property class 50 (>M24) a     | ₹,                         | N <sub>Rk,s</sub> =N <sup>0</sup> <sub>Rk,s,seis</sub> | [kN]                 | 59         | 110                     | 171                      | 247                                     | 230                     | 28  |
| Combined pull-out and co                                  | oncrete failure            |                                                        |                      |            |                         |                          |                                         |                         |     |
| Characteristic bond resista                               | nce in cracked concrete C2 | 20/25                                                  |                      |            |                         |                          |                                         |                         |     |
|                                                           | dry and wet concrete       | $	au_{Rk,cr}$                                          | [N/mm <sup>2</sup> ] | 5,5        | 5,5                     | 5,5                      | 5,5                                     | 6,5                     | 6,5 |
| Temperature range I:                                      | ,                          | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm <sup>2</sup> ] | 3,7        | 3,7                     | 3,7                      | 3,8                                     | 4,5                     | 4,5 |
| 40°C/24°C                                                 | flooded bore hole          | τ <sub>Rk,cr</sub>                                     | [N/mm <sup>2</sup> ] | 5,5        | 5,5                     |                          |                                         | missible                |     |
|                                                           |                            | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²]              | 3,7        | 3,7                     |                          | 1                                       | missible                | Ι   |
|                                                           | dry and wet concrete       | τ <sub>Rk,cr</sub>                                     | [N/mm²]              | 4,0        | 4,0                     | 4,0                      | 4,0                                     | 4,5                     | 4,  |
| Temperature range II:<br>80°C/50°C                        |                            | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²]              | 2,7        | 2,7                     | 2,7                      | 2,8                                     | 3,1<br>missible         | 3,  |
| 00 0,00                                                   | flooded bore hole          | $	au_{ m Rk,cr}$ $	au^0_{ m Rk,seis}$                  | [N/mm²]              | 4,0<br>2,7 | 4,0<br>2,7              |                          |                                         | nissible                |     |
|                                                           |                            | τ <sub>Rk,cr</sub>                                     | [N/mm²]              | 3,0        | 3.0                     | 3.0                      | 3.0                                     | 3,5                     | 3,  |
| Temperature range III:                                    | dry and wet concrete       | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²]              | 2,0        | 2,0                     | 2,0                      | 2,1                                     | 2,4                     | 2,  |
| 120°C/72°C                                                |                            | τ <sub>Rk,cr</sub>                                     | [N/mm²]              | 3,0        | 3,0                     | ,                        | not adr                                 | nissible                | 1   |
|                                                           | flooded bore hole          | τ <sup>0</sup> <sub>Rk,seis</sub>                      | [N/mm²]              | 2,0        | 2,0 2,0 not admissible  |                          |                                         |                         |     |
| Increasing factors for conc                               | roto                       | C30/37                                                 |                      | 1,04       |                         |                          |                                         |                         |     |
| only static or quasi-static a                             |                            | C40/50                                                 |                      | 1,08       |                         |                          |                                         |                         |     |
| $\Psi_{ m c}$                                             |                            | C50/60                                                 |                      | 1,10       |                         |                          |                                         |                         |     |
| Factor according to<br>CEN/TS 1992-4-5 Section            | 6.2.2.3                    | k <sub>8</sub>                                         | [-]                  | 7,2        |                         |                          |                                         |                         |     |
| Concrete cone failure                                     |                            |                                                        |                      |            |                         |                          |                                         |                         |     |
| Factor according to<br>CEN/TS 1992-4-5 Section            | 6.2.3.1                    | k <sub>cr</sub>                                        | [-]                  |            |                         | 7                        | ,2                                      |                         |     |
| Edge distance                                             |                            | C <sub>cr,N</sub>                                      | [mm]                 |            |                         | 1,5                      | i h <sub>ef</sub>                       |                         |     |
| Axial distance                                            |                            | S <sub>cr,N</sub>                                      | [mm]                 |            |                         | 3,0                      | ) h <sub>ef</sub>                       |                         |     |
| Splitting failure                                         |                            | •                                                      |                      | •          |                         |                          |                                         |                         |     |
| Edge distance                                             |                            | C <sub>cr,sp</sub>                                     | [mm]                 |            | 1,0 · h <sub>ef</sub> : | ≤ 2 · h <sub>ef</sub> (2 | $\left(5 - \frac{h}{h_{ef}}\right) \le$ | ≤ 2,4 · h <sub>ef</sub> |     |
| Axial distance                                            |                            | S <sub>cr,sp</sub>                                     | [mm]                 |            |                         | 2 0                      | cr,sp                                   |                         |     |
| Installation safety factor (dr                            | ry and wet concrete)       | γ2                                                     | 1                    |            |                         | 1                        | ,2                                      |                         |     |
| Installation safety factor (flo                           | ooded bore hole)           | γ2                                                     |                      | 1          | ,4                      |                          | not adr                                 | missible                |     |
|                                                           |                            |                                                        |                      |            |                         |                          |                                         |                         |     |



| Table C9: | Characteristic values of resistance for threaded rods under shear loads in cracked |
|-----------|------------------------------------------------------------------------------------|
|           | and non-cracked concrete (Design according to CEN/TS 1992-4 or TR 045)             |

| Anchor size threaded rod                                               |                                     |      | M 8                             | M 10 | M 12             | M 16                    | M 20                 | M24   | M 27 | M 30 |
|------------------------------------------------------------------------|-------------------------------------|------|---------------------------------|------|------------------|-------------------------|----------------------|-------|------|------|
| Steel failure without lever arm                                        |                                     | '    |                                 | '    | •                |                         |                      | •     |      | •    |
| Characteristic shear resistance,                                       | $V_{Rk,s}$                          | [kN] | 7                               | 12   | 17               | 31                      | 49                   | 71    | 92   | 112  |
| Steel, property class 4.6                                              | $V^0_{\text{Rk,s,seis}}$            | [kN] | -                               | -    | 12               | 22                      | 34                   | 50    | 65   | 78   |
| Characteristic shear resistance,                                       | $V_{Rk,s}$                          | [kN] | 9                               | 15   | 21               | 39                      | 61                   | 88    | 115  | 140  |
| Steel, property class 5.8                                              | $V^0_{Rk,s,seis}$                   | [kN] | -                               | -    | 15               | 27                      | 43                   | 62    | 81   | 98   |
| Characteristic shear resistance,                                       | $V_{Rk,s}$                          | [kN] | 15                              | 23   | 34               | 63                      | 98                   | 141   | 184  | 224  |
| Steel, property class 8.8                                              | $V^0_{\text{Rk,s,seis}}$            | [kN] | -                               | -    | 24               | 44                      | 69                   | 99    | 129  | 157  |
| Characteristic shear resistance,                                       | $V_{\rm Rk,s}$                      | [kN] | 13                              | 20   | 30               | 55                      | 86                   | 124   | 115  | 140  |
| Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤ M24)    | V <sup>0</sup> <sub>Rk,s,seis</sub> | [kN] | -                               | -    | 21               | 39                      | 60                   | 87    | 81   | 98   |
| Ductility factor according to<br>CEN/TS 1992-4-5 Section 6.3.2.1       | k <sub>2</sub>                      |      |                                 |      |                  | 0,8                     |                      |       |      |      |
| Steel failure with lever arm                                           |                                     | ·    |                                 |      |                  |                         |                      |       |      |      |
| Characteristic bending moment,                                         | M <sup>0</sup> <sub>Rk,s</sub>      | [Nm] | 15                              | 30   | 52               | 133                     | 260                  | 449   | 666  | 900  |
| Steel, property class 4.6                                              | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm] |                                 | No   | Performa         | ance Det                | ermined              | (NPD) |      |      |
| Characteristic bending moment,                                         | M <sup>0</sup> <sub>Rk,s</sub>      | [Nm] | 19                              | 37   | 65               | 166                     | 324                  | 560   | 833  | 1123 |
| Steel, property class 5.8                                              | $M^0_{Rk,s,seis}$                   | [Nm] | No Performance Determined (NPD) |      |                  |                         |                      |       |      |      |
| Characteristic bending moment,                                         | $M^0_{Rk,s}$                        | [Nm] | 30                              | 60   | 105              | 266                     | 519                  | 896   | 1333 | 1797 |
| Steel, property class 8.8                                              | $M^0_{Rk,s,seis}$                   | [Nm] |                                 | No   | Performa         | ance Det                | ermined              | (NPD) |      |      |
| Characteristic bending moment,                                         | $M^0_{Rk,s}$                        | [Nm] | 26                              | 52   | 92               | 232                     | 454                  | 784   | 832  | 1125 |
| Stainless steel A4 and HCR,<br>property class 50 (>M24) and 70 (≤ M24) | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm] |                                 | No   | Performa         | ance Det                | ermined              | (NPD) |      |      |
| Concrete pry-out failure                                               | <u>.</u>                            |      |                                 |      |                  |                         |                      |       |      |      |
| Factor in equation (27) of<br>CEN/TS 1992-4-5 Section 6.3.3            | k <sub>3</sub>                      |      |                                 |      |                  | 2,0                     |                      |       |      |      |
| Installation safety factor                                             | γ2                                  |      |                                 |      |                  | 1,0                     |                      |       |      |      |
| Concrete edge failure <sup>3)</sup>                                    |                                     |      |                                 |      |                  |                         |                      |       |      |      |
| Effective length of anchor                                             | I <sub>f</sub>                      | [mm] |                                 |      | I <sub>f</sub> = | min(h <sub>ef</sub> ; 8 | 3 d <sub>nom</sub> ) |       |      |      |
| Outside diameter of anchor                                             | d <sub>nom</sub>                    | [mm] | 8                               | 10   | 12               | 16                      | 20                   | 24    | 27   | 30   |
| Installation safety factor                                             | $\gamma_2$                          |      |                                 |      |                  | 1,0                     |                      |       |      |      |

| B+BTec injection | system | BIS-V for | concrete |
|------------------|--------|-----------|----------|
|------------------|--------|-----------|----------|

# **Performances**

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 or TR 045)

Annex C 9



| Anchor size reinforcing ba                      | ar                        |                     |             | Ø8   | Ø 10 | Ø 12    | Ø 14               | Ø 16                 | Ø 20                        | Ø 25                | Ø 28     | Ø 32 |
|-------------------------------------------------|---------------------------|---------------------|-------------|------|------|---------|--------------------|----------------------|-----------------------------|---------------------|----------|------|
| Steel failure                                   |                           |                     |             | ı    |      | ı       | l                  |                      | l                           |                     |          | 1    |
| Characteristic tension resist                   | ance                      | N <sub>Rk,s</sub>   | [kN]        |      |      |         |                    | $A_s \cdot f_{uk}$   |                             |                     |          |      |
| Combined pull-out and co                        | ncrete failure            | •                   | 1           | •    |      |         |                    |                      |                             |                     |          |      |
| Characteristic bond resistar                    | ice in non-cracked concre | te C20/2            | 5           |      |      |         |                    |                      |                             |                     |          |      |
| Temperature range I:                            | dry and wet concrete      | τ <sub>Rk,ucr</sub> | [N/mm²]     | 10   | 12   | 12      | 12                 | 12                   | 12                          | 11                  | 10       | 8,5  |
| 40°C/24°C                                       | flooded bore hole         | τ <sub>Rk,ucr</sub> | [N/mm²]     | 7,5  | 8,5  | 8,5     | 8,5                | 8,5                  | not admissible              |                     |          |      |
| Temperature range II:                           | dry and wet concrete      | $	au_{Rk,ucr}$      | [N/mm²]     | 7,5  | 9    | 9       | 9                  | 9                    | 9                           | 8,0                 | 7,0      | 6,0  |
| 80°C/50°C                                       | flooded bore hole         | $	au_{ m Rk,ucr}$   | [N/mm²]     | 5,5  | 6,5  | 6,5     | 6,5                | 6,5                  | not admissible              |                     |          |      |
| Temperature range III:                          | dry and wet concrete      | τ <sub>Rk,ucr</sub> | [N/mm²]     | 5,5  | 6,5  | 6,5     | 6,5                | 6,5                  | 6,5                         | 6,0                 | 5,0      | 4,5  |
| 120°C/72°C                                      | flooded bore hole         | $	au_{Rk,ucr}$      | [N/mm²]     | 4,0  | 5,0  | 5,0     | 5,0                | 5,0                  | not admissible              |                     |          |      |
|                                                 |                           | C30/37              | C30/37 1,04 |      |      |         |                    |                      |                             |                     |          |      |
| Increasing factors for concre<br>Ψ <sub>c</sub> | ete                       | C40/50              |             | 1,08 |      |         |                    |                      |                             |                     |          |      |
| •                                               |                           | C50/60              |             | 1,10 |      |         |                    |                      |                             |                     |          |      |
| Factor according to CEN/TS 1992-4-5 Section 6   | 5.2.2.3                   | k <sub>8</sub>      | [-]         |      |      |         |                    | 10,1                 |                             |                     |          |      |
| Concrete cone failure                           |                           |                     |             |      |      |         |                    |                      |                             |                     |          |      |
| Factor according to CEN/TS 1992-4-5 Section 6   | 5.2.3.1                   | k <sub>ucr</sub>    | [-]         |      |      |         |                    | 10,1                 |                             |                     |          |      |
| Edge distance                                   |                           | C <sub>cr,N</sub>   | [mm]        |      |      |         |                    | 1,5 h <sub>ef</sub>  |                             |                     |          |      |
| Axial distance                                  |                           | S <sub>cr,N</sub>   | [mm]        |      |      |         |                    | 3,0 h <sub>ef</sub>  |                             |                     |          |      |
| Splitting failure                               |                           |                     |             |      |      |         |                    |                      |                             |                     |          |      |
| Edge distance                                   |                           | C <sub>cr,sp</sub>  | [mm]        |      |      | 1,0 · h | <sub>ef</sub> ≤2·h | ef (2,5 -            | $\frac{h}{h_{ef}}$ $\leq 2$ | 4 · h <sub>ef</sub> |          |      |
| Axial distance                                  |                           | S <sub>cr,sp</sub>  | [mm]        |      |      |         |                    | 2 c <sub>cr,sp</sub> |                             |                     |          |      |
| Installation safety factor (dry                 | and wet concrete)         | γ2                  |             | 1.0  |      |         |                    | 1                    | ,2                          |                     |          |      |
| Installation safety factor (flooded bore hole)  |                           |                     |             |      |      | 1.4     |                    |                      |                             | not odr             | nissible |      |

| B+BTec injection system BIS-V for concrete                                                                                                 |            |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of resistance for rebar under tension loads in non-cracked concrete (Design according to CEN/TS 1992-4) | Annex C 10 |



| cracked concrete and wet concrete led bore hole and wet concrete | $\begin{aligned} &N_{Rk,s} {=} N^0_{Rk,s,seis} \\ \\ &C20/25 \\ &\tau_{Rk,cr} \\ &\tau^0_{Rk,seis} \\ &\tau_{Rk,cr} \\ &\tau^0_{Rk,seis} \end{aligned}$         | [N/mm²] [N/mm²]      | 5,5<br>3,7<br>5,5                                                                                                                                                                                                                                                                                                                                                                       | 5,5<br>3,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,5                  | A <sub>s</sub> · f <sub>uk</sub>                              | 5,5                                                    | 6,5                                                    |                                                        |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--|
| cracked concrete and wet concrete led bore hole                  | $\begin{array}{c} \text{C20/25} \\ \\ \tau_{\text{Rk,cr}} \\ \\ \tau^0_{\text{Rk,seis}} \\ \\ \tau_{\text{Rk,cr}} \\ \\ \\ \tau^0_{\text{Rk,seis}} \end{array}$ | [N/mm²] [N/mm²]      | 3,7                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                               | 5,5                                                    | 6.5                                                    |                                                        |  |
| cracked concrete and wet concrete led bore hole                  | $	au_{Rk,cr}$ $	au^0_{Rk,seis}$ $	au_{Rk,cr}$ $	au^0_{Rk,seis}$                                                                                                 | [N/mm²]              | 3,7                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 5,5                                                           | 5,5                                                    | 6.5                                                    |                                                        |  |
| and wet concrete                                                 | $	au_{Rk,cr}$ $	au^0_{Rk,seis}$ $	au_{Rk,cr}$ $	au^0_{Rk,seis}$                                                                                                 | [N/mm²]              | 3,7                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 5,5                                                           | 5,5                                                    | 6.5                                                    |                                                        |  |
| led bore hole                                                    | $	au^0_{Rk,seis}$ $	au_{Rk,cr}$ $	au^0_{Rk,seis}$                                                                                                               | [N/mm²]              | 3,7                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 5,5                                                           | 5,5                                                    | 6.5                                                    |                                                        |  |
| led bore hole                                                    | $	au_{Rk,cr}$ $	au^0_{Rk,seis}$                                                                                                                                 | [N/mm²]              |                                                                                                                                                                                                                                                                                                                                                                                         | 3,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                                               |                                                        | , -,- ,                                                | 6,5                                                    |  |
|                                                                  | $	au_{Rk,cr}$ $	au^0_{Rk,seis}$                                                                                                                                 | <u> </u>             | 5.5                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3,7                  | 3,7                                                           | 3,8                                                    | 4,5                                                    | 4,5                                                    |  |
|                                                                  |                                                                                                                                                                 | [N1/2]               | 5,5                                                                                                                                                                                                                                                                                                                                                                                     | 5,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,5                  |                                                               | not adn                                                | nissible                                               |                                                        |  |
| and wet concrete                                                 | τ <sub>Rk,cr</sub>                                                                                                                                              | [N/mm <sup>2</sup> ] | 3,7                                                                                                                                                                                                                                                                                                                                                                                     | 3,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,7                  |                                                               | not adm                                                | nissible                                               |                                                        |  |
| and wet concrete                                                 |                                                                                                                                                                 | [N/mm <sup>2</sup> ] | 4,0                                                                                                                                                                                                                                                                                                                                                                                     | 4,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,0                  | 4,0                                                           | 4,0                                                    | 4,5                                                    | 4,5                                                    |  |
|                                                                  | τ <sup>0</sup> <sub>Rk,seis</sub>                                                                                                                               | [N/mm²]              | 2,7                                                                                                                                                                                                                                                                                                                                                                                     | 2,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,7                  | 2,7                                                           | 2,8                                                    | 3,1                                                    | 3,                                                     |  |
|                                                                  | $	au_{ m Rk,cr}$                                                                                                                                                | [N/mm²]              | 4,0                                                                                                                                                                                                                                                                                                                                                                                     | 4,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,0                  |                                                               | not adm                                                | <br>nissible                                           |                                                        |  |
| led bore hole                                                    | τ <sup>0</sup> <sub>Rk,seis</sub>                                                                                                                               | [N/mm²]              | 2,7                                                                                                                                                                                                                                                                                                                                                                                     | 2,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,7                  |                                                               | not adm                                                | nissible                                               |                                                        |  |
|                                                                  | τ <sub>Rk,cr</sub>                                                                                                                                              | [N/mm <sup>2</sup> ] | 3,0                                                                                                                                                                                                                                                                                                                                                                                     | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,0                  | 3,0                                                           | 3,0                                                    | 3,5                                                    | 3,5                                                    |  |
| and wet concrete                                                 | τ <sup>0</sup> <sub>Rk,seis</sub>                                                                                                                               | [N/mm <sup>2</sup> ] | 2,0                                                                                                                                                                                                                                                                                                                                                                                     | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,0                  | 2,0                                                           | 2,1                                                    | 2,4                                                    | 2,4                                                    |  |
|                                                                  |                                                                                                                                                                 | [N/mm <sup>2</sup> ] | 3,0                                                                                                                                                                                                                                                                                                                                                                                     | 3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,0                  |                                                               | not adn                                                | <br>nissible                                           |                                                        |  |
| led bore hole                                                    |                                                                                                                                                                 | [N/mm <sup>2</sup> ] | 2,0                                                                                                                                                                                                                                                                                                                                                                                     | 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,0                  |                                                               | not adn                                                | <br>nissible                                           |                                                        |  |
|                                                                  |                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                  | 1,04                                                          |                                                        |                                                        |                                                        |  |
| s)                                                               | C40/50                                                                                                                                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 1,08                                                          |                                                        |                                                        |                                                        |  |
|                                                                  | C50/60                                                                                                                                                          | T                    | 1,10                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                               |                                                        |                                                        |                                                        |  |
| 3                                                                | k <sub>8</sub>                                                                                                                                                  | [-]                  |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 7,2                                                           |                                                        |                                                        |                                                        |  |
|                                                                  |                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                               |                                                        |                                                        |                                                        |  |
| 1                                                                | k <sub>cr</sub>                                                                                                                                                 | [-]                  | 7,2                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                               |                                                        |                                                        |                                                        |  |
|                                                                  | C <sub>cr,N</sub>                                                                                                                                               | [mm]                 | 1,5 h <sub>el</sub>                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                               |                                                        |                                                        |                                                        |  |
|                                                                  | S <sub>cr,N</sub>                                                                                                                                               | [mm]                 |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 3,0 h <sub>ef</sub>                                           |                                                        |                                                        |                                                        |  |
|                                                                  |                                                                                                                                                                 | •                    |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                               |                                                        |                                                        |                                                        |  |
| Edge distance                                                    |                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                         | 1,0 ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h <sub>ef</sub> ≤2·h | $\frac{1}{\text{ef}} \left( 2,5 - \frac{1}{\text{r}} \right)$ | $\frac{h}{n_{\rm ef}}$ $\leq 2.4$                      | ·h <sub>ef</sub>                                       |                                                        |  |
| Axial distance                                                   |                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 2 c <sub>cr,sp</sub>                                          |                                                        |                                                        |                                                        |  |
| Installation safety factor (dry and wet concrete)                |                                                                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 1,2                                                           |                                                        |                                                        |                                                        |  |
|                                                                  | γ <sub>2</sub>                                                                                                                                                  |                      | 1,4                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                                               | not admissible                                         |                                                        |                                                        |  |
|                                                                  | 3                                                                                                                                                               | led bore hole        | $ \frac{\tau_{\text{Rk,cr}}}{\tau^0_{\text{Rk,seis}}} = \frac{[\text{N/mm}^2]}{[\text{N/mm}^2]} $ $ \frac{\text{C30/37}}{\text{C40/50}} = \frac{\text{C50/60}}{\text{C50/60}} $ $ \frac{\text{k}_8}{\text{C}} = \frac{[\text{-}]}{\text{C}_{\text{cr,N}}} = \frac{[\text{mm}]}{\text{mm}} $ $ \frac{\text{C}_{\text{cr,Sp}}}{\text{C}_{\text{cr,Sp}}} = \frac{[\text{mm}]}{\text{mm}} $ | $ \frac{\tau_{\text{Rk,or}}}{\tau^0_{\text{Rk,seis}}} = \frac{[\text{N/mm}^2]}{\tau^0_{\text{Rk,seis}}} = \frac{3,0}{[\text{N/mm}^2]} = \frac{2,0}{2,0} $ $ \frac{\text{C30/37}}{\text{C40/50}} = \frac{5,0}{\text{C50/60}} = \frac{5,0}{\text$ | T <sub>Rk,cr</sub>   | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |  |

Z62985.14

8.06.01-273/14

Installation safety factor



1,0

| Table C12: Characteristic val                                 |                                     |      | _                                       |      |       |              |                         |                    |       |      |      |  |  |
|---------------------------------------------------------------|-------------------------------------|------|-----------------------------------------|------|-------|--------------|-------------------------|--------------------|-------|------|------|--|--|
| Anchor size reinforcing bar                                   |                                     |      | Ø8                                      | Ø 10 | Ø 12  | Ø 14         | Ø 16                    | Ø 20               | Ø 25  | Ø 28 | Ø 32 |  |  |
| Steel failure without lever arm                               |                                     |      |                                         |      |       |              |                         |                    |       | 1    |      |  |  |
|                                                               | $V_{Rk,s}$                          | [kN] | 0,50 · A <sub>s</sub> · f <sub>uk</sub> |      |       |              |                         |                    |       |      |      |  |  |
| Characteristic shear resistance                               | V <sup>0</sup> <sub>Rk,s,seis</sub> | [kN] | 0,35 • A <sub>s</sub> • f <sub>uk</sub> |      |       |              |                         |                    |       |      |      |  |  |
| Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1 | k <sub>2</sub>                      |      |                                         |      |       |              | 0,8                     |                    |       |      |      |  |  |
| Steel failure with lever arm                                  |                                     |      | •                                       |      |       |              |                         |                    |       |      |      |  |  |
|                                                               | M <sup>0</sup> <sub>Rk,s</sub>      | [Nm] | 1.2 ⋅ W <sub>el</sub> ⋅ f <sub>uk</sub> |      |       |              |                         |                    |       |      |      |  |  |
| Characteristic bending moment                                 | M <sup>0</sup> <sub>Rk,s,seis</sub> | [Nm] |                                         |      | No Pe | erformar     | nce Dete                | rmined             | (NPD) |      |      |  |  |
| Concrete pry-out failure                                      | ·                                   | •    | •                                       |      |       |              |                         |                    |       |      |      |  |  |
| Factor in equation (27) of CEN/TS 1992-4-5<br>Section 6.3.3   | <b>k</b> <sub>3</sub>               |      |                                         |      |       |              | 2,0                     |                    |       |      |      |  |  |
| Installation safety factor                                    | γ2                                  | γ2   |                                         |      | 1,0   |              |                         |                    |       |      |      |  |  |
| Concrete edge failure                                         |                                     |      | •                                       |      |       |              |                         |                    |       |      |      |  |  |
| Effective length of anchor                                    | I <sub>f</sub>                      | [mm] |                                         |      |       | $I_{f} = rr$ | nin(h <sub>ef</sub> ; 8 | d <sub>nom</sub> ) |       |      |      |  |  |
| Outside diameter of anchor                                    | d <sub>nom</sub>                    | [mm] | 8                                       | 10   | 12    | 14           | 16                      | 20                 | 25    | 28   | 32   |  |  |

γ2

| B+BTec injection system BIS-V for concrete                                                                                                                      |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Performances Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, (Design according to CEN/TS 1992-4 or TR 045) | Annex C 12 |

English translation prepared by DIBt



| Anchor size thread     | led rod                       |              | М 8   | M 10  | M 12  | M 16  | M 20  | M24   | M 27  | M 30  |
|------------------------|-------------------------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Non-cracked conc       | rete C20/25                   |              | •     |       |       |       |       |       |       |       |
| Temperature range I:   | $\delta_{\text{N0}}$ -factor  | [mm/(N/mm²)] | 0,021 | 0,023 | 0,026 | 0,031 | 0,036 | 0,041 | 0,045 | 0,049 |
| 40°C/24°C              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] | 0,030 | 0,033 | 0,037 | 0,045 | 0,052 | 0,060 | 0,065 | 0,071 |
| Temperature range II:  | $\delta_{\text{N0}}$ -factor  | [mm/(N/mm²)] | 0,050 | 0,056 | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |
| 80°C/50°C              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] | 0,072 | 0,081 | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |
| Temperature range III: | $\delta_{\text{N0}}$ -factor  | [mm/(N/mm²)] | 0,050 | 0,056 | 0,063 | 0,075 | 0,088 | 0,100 | 0,110 | 0,119 |
| 120°C/72°C             | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] | 0,072 | 0,081 | 0,090 | 0,108 | 0,127 | 0,145 | 0,159 | 0,172 |
| Cracked concrete       | C20/25                        |              | ·     |       |       |       |       |       |       |       |
| Temperature range I:   | $\delta_{\text{N0}}$ -factor  | [mm/(N/mm²)] |       |       |       |       | 0,0   | 70    |       |       |
| 40°C/24°C              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] |       | -     | 0,105 |       |       |       |       |       |
| Temperature range II:  | $\delta_{\text{N0}}$ -factor  | [mm/(N/mm²)] |       |       |       |       | 0,1   | 70    |       |       |
| 80°C/50°C              | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] |       | -     | 0,245 |       |       |       |       |       |
| Temperature range III: | $\delta_{\text{N0}}$ -factor  | [mm/(N/mm²)] |       |       |       |       | 0,1   | 70    |       |       |
| 120°C/72°C             | δ <sub>N∞</sub> -factor       | [mm/(N/mm²)] |       | -     |       |       | 0,2   | 245   |       |       |

<sup>1)</sup> Calculation of the displacement

$$\begin{split} \delta_{\text{N0}} &= \delta_{\text{N0}}\text{-factor} \ \cdot \tau; \\ \delta_{\text{N}\infty} &= \delta_{\text{N}\infty}\text{-factor} \ \cdot \tau; \end{split}$$

# Table C14: Displacements under shear load (threaded rod)

| Anchor size thread | Anchor size threaded rod      |           |      | M 10 | M 12 | M 16 | M 20 | M24  | M 27 | M 30 |
|--------------------|-------------------------------|-----------|------|------|------|------|------|------|------|------|
| For non-cracked c  | oncrete C2                    | 0/25      |      |      |      |      |      |      |      |      |
| All temperature    | $\delta_{V0}$ -factor         | [mm/(kN)] | 0,06 | 0,06 | 0,05 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
| ranges             | $\delta_{V_{\infty}}$ -factor | [mm/(kN)] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,05 |
| For cracked concr  | ete C20/25                    |           |      |      |      |      |      |      |      |      |
| All temperature    | $\delta_{V0}$ -factor         | [mm/(kN)] |      |      | 0,11 | 0,10 | 0,09 | 0,08 | 0,08 | 0,07 |
| ranges             | $\delta_{V_{\infty}}$ -factor | [mm/(kN)] | •    | =    | 0,17 | 0,15 | 0,14 | 0,13 | 0,12 | 0,10 |

<sup>1)</sup> Calculation of the displacement

 $\delta_{\text{V0}} = \delta_{\text{V0}}\text{-factor} \ \cdot \ \text{V};$ 

 $\delta_{V_{\infty}} = \delta_{V_{\infty}} \text{-factor } \cdot V;$ 

| Annex C 13 |
|------------|
|            |
|            |
|            |



| Anchor size reinforcing bar       |                               |              | Ø8    | Ø 10  | Ø 12  | Ø 14  | Ø 16  | Ø <b>20</b> | Ø <b>25</b> | Ø 28  | Ø 32  |
|-----------------------------------|-------------------------------|--------------|-------|-------|-------|-------|-------|-------------|-------------|-------|-------|
| Non-cracked cond                  | crete C20/2                   | 25           |       |       |       |       |       |             |             |       |       |
| Temperature range I: 40°C/24°C    | $\delta_{\text{N0}}$ -factor  | [mm/(N/mm²)] | 0,021 | 0,023 | 0,026 | 0,028 | 0,031 | 0,036       | 0,043       | 0,047 | 0,052 |
|                                   | $\delta_{N\infty}$ -factor    | [mm/(N/mm²)] | 0,030 | 0,033 | 0,037 | 0,041 | 0,045 | 0,052       | 0,061       | 0,071 | 0,075 |
| Temperature range II: 80°C/50°C   | $\delta_{\text{No}}$ -factor  | [mm/(N/mm²)] | 0,050 | 0,056 | 0,063 | 0,069 | 0,075 | 0,088       | 0,104       | 0,113 | 0,126 |
|                                   | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] | 0,072 | 0,081 | 0,090 | 0,099 | 0,108 | 0,127       | 0,149       | 0,163 | 0,181 |
| Temperature range III: 120°C/72°C | $\delta_{\text{No}}$ -factor  | [mm/(N/mm²)] | 0,050 | 0,056 | 0,063 | 0,069 | 0,075 | 0,088       | 0,104       | 0,113 | 0,126 |
|                                   | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] | 0,072 | 0,081 | 0,090 | 0,099 | 0,108 | 0,127       | 0,149       | 0,163 | 0,181 |
| Cracked concrete                  | C20/25                        |              |       |       |       |       |       |             |             |       |       |
| Temperature range I: 40°C/24°C    | $\delta_{\text{No}}$ -factor  | [mm/(N/mm²)] | 0,070 |       |       |       |       |             |             |       |       |
|                                   | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] | Ī .   | -     |       |       |       | 0,105       |             |       |       |
| Temperature range II: 80°C/50°C   | $\delta_{\text{No}}$ -factor  | [mm/(N/mm²)] | 0,170 |       |       |       |       |             |             |       |       |
|                                   | $\delta_{N_{\infty}}$ -factor | [mm/(N/mm²)] | 0,245 |       |       |       |       |             |             |       |       |
| Temperature range III: 120°C/72°C | $\delta_{\text{No}}$ -factor  | [mm/(N/mm²)] |       |       |       |       |       | 0,170       |             |       |       |
|                                   | δ <sub>N∞</sub> -factor       | [mm/(N/mm²)] | ]     | -     |       |       |       | 0,245       |             |       |       |

<sup>)</sup> Calculation of the displacement  $\delta_{N0}=\delta_{N0}\text{-factor}\ \cdot \tau;$ 

 $\delta_{N\infty} = \delta_{N\infty} \text{-factor } \cdot \tau;$ 

# Table C16: Displacement under shear load 1) (rebar)

| Anchor size reinforcing bar |                               |           | Ø8   | Ø 10 | Ø 12 | Ø 14 | Ø 16 | Ø 20 | Ø 25 | Ø 28 | Ø 32 |
|-----------------------------|-------------------------------|-----------|------|------|------|------|------|------|------|------|------|
| Non-cracked concrete C20/25 |                               |           |      |      |      |      |      |      |      |      |      |
| All temperature ranges      | $\delta_{V0}$ -factor         | [mm/(kN)] | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 | 0,04 | 0,03 | 0,03 | 0,03 |
|                             | $\delta_{V_{\infty}}$ -factor | [mm/(kN)] | 0,09 | 0,08 | 0,08 | 0,06 | 0,06 | 0,05 | 0,05 | 0,04 | 0,04 |
| Cracked concrete C20/25     |                               |           |      |      |      |      |      |      |      |      |      |
| All temperature ranges      | $\delta_{V0}$ -factor         | [mm/(kN)] |      | _    | 0,11 | 0,11 | 0,10 | 0,09 | 0,08 | 0,07 | 0,06 |
|                             | $\delta_{V_{\infty}}$ -factor | [mm/(kN)] |      | '    | 0,17 | 0,16 | 0,15 | 0,14 | 0,12 | 0,11 | 0,10 |

 $<sup>\</sup>begin{array}{l} ^{1)} \mbox{ Calculation of the displacement} \\ \delta_{V0} = \delta_{V0}\mbox{-factor } \cdot \mbox{ V}; \\ \delta_{V\infty} = \delta_{V\infty}\mbox{-factor } \cdot \mbox{ V}; \end{array}$ 

| B+BTec injection system BIS-V for concrete |            |
|--------------------------------------------|------------|
| Performances                               | Annex C 14 |
| Displacements (rebar)                      |            |
|                                            |            |